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Abstract. This paper presents a new algorithm to perform regression estimation, in both the inductive and transductive setting.
The estimator is defined as a linear combination of functions in a given dictionary. Coefficients of the combinations are computed
sequentially using projection on some simple sets. These sets are defined as confidence regions provided by a deviation (PAC)
inequality on an estimator in one-dimensional models. We prove that every projection the algorithm actually improves the per-
formance of the estimator. We give all the estimators and results at first in the inductive case, where the algorithm requires the
knowledge of the distribution of the design, and then in the transductive case, which seems a more natural application for this
algorithm as we do not need particular information on the distribution of the design in this case. We finally show a connection with
oracle inequalities, making us able to prove that the estimator reaches minimax rates of convergence in Sobolev and Besov spaces.

Résumé. Cette article présente un nouvel algorithme d’estimation de régression, dans les contextes inductifs et transductifs.
L’estimateur est défini par une combinaison linéaire de fonctions choisies dans un dictionnaire donné. Les coefficients de cette
combinaison sont calculés par des projections successives sur des ensembles simples. Ces ensembles sont définis comme des ré-
gions de confiance données par une inégalité de déviation (ou inégalité PAC). On démontre en particulier que chaque projection
au cours de l’algorithme améliore effectivement l’estimateur obtenu. On donne tout d’abord les résultats dans le contexte inductif,
où l’algorithme nécessite la connaissance de la distribution du design, puis dans le contexte transductif, plus naturel ici puisque
l’algorithme s’applique sans la connaissance de cette distribution. On établit finalement un lien avec les inégalités d’oracle, per-
mettant de montrer que notre estimateur atteint les vitesses optimales dans les espaces de Sobolev et de Besov.
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1. The setting of the problem

We give here notations and introduce the inductive and transductive settings.

1.1. Transductive and inductive settings

Let (X ,B) be a measure space and let BR denote the Borel σ -algebra on R.

1.1.1. The inductive setting
In the inductive setting, we assume that P is a distribution on pairs Z = (X,Y ) taking values in (X × R,B ⊗ BR),
that P is such that:

P |Y | < ∞,

and that we observe N independent pairs Zi = (Xi, Yi) for i ∈ {1, . . . ,N}. Our objective is then to estimate the
regression function on the basis of the observations.
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Definition 1.1 (The regression function). We denote:

f :X → R,

x �→ P(Y |X = x).

1.1.2. The transductive setting
In the transductive case, we will assume that, for a given integer k > 0, P(k+1)N is some exchangeable probabil-
ity measure on the space ((X × R)(k+1)N , (B ⊗ BR)⊗2N). We will write (Xi, Yi)i=1,...,(k+1)N = (Zi)i=1,...,(k+1)N a
random vector distributed according to P(k+1)N .

Definition 1.2 (Exchangeable probability distribution). For any integer j , let Sj denote the set of all permutations
of {1, . . . , j}. We say that P(k+1)N is exchangeable if for any σ ∈ S(k+1)N we have: (Xσ(i), Yσ(i))i=1,...,(k+1)N has the
same distribution under P(k+1)N that (Xi, Yi)i=1,...,(k+1)N .

We assume that we observe (Xi, Yi)i=1,...,N and (Xi)i=N+1,...,(k+1)N ; and the observation (Xi, Yi)i=1,...,(k+1)N is
usually called the training sample, while the other part of the vector, (Xi, Yi)i=N+1,...,(k+1)N is called the test sample.
In this case, we only focus on the estimation of the values (Yi)i=N+1,...,(k+1)N . This is why Vapnik [22] called this
kind of inference “transductive inference” when he introduced it.

Note that in this setting, the pairs (Xi, Yi) are not necessarily independent, but are identically distributed. We will
let P denote their marginal distribution, and we can here again define the regression function f .

Actually, most statistical problems being usually formulated in the inductive setting, the reader may wonder about
the pertinence of the study of the transductive setting. Let us think of the following examples: in quality control, or in
a sample survey, we try to infer informations about a whole population from observations on a small sample. In this
cases, transductive inference seems actually more adapted than inductive inference, with N the size of the sample and
(k + 1)N the size of the population. One can see that the use of inductive results in this context is only motivated by
the large values of k (the inductive case is the limit case of the transductive case where k → +∞). In the problems
connected with regression estimation or classification, we can imagine a case where a lot of images are collected for
example on the internet. The time to label every picture according to the fact that it represents, or not, a given object
being too long, one can think of labeling only 1 over k + 1 images, and to use then a transductive algorithm to label
automatically the other data. We hope that these examples can convince the reader that the use of the transductive
setting is not unrealistic. However, the reader that is not convinced should remember that the transductive inference
was first introduced by Vapnik mainly as a tool to study the inductive case: there are techniques to get rid of the second
part of the sample by taking an expectation with respect to it and obtain results valid in the inductive setting (see for
example a result by Panchenko used in this paper, [17]).

1.2. The model

In both settings, we are going to use the same model to estimate the regression function: Θ . The only thing we assume
about Θ is that it is a vector space of functions.

Note in particular that we do not assume that f belongs to Θ .

1.3. Overview of the results

In both settings, we give a PAC inequality on the risk of estimators in one-dimensional models of the form:{
αθ(·), α ∈ R

}
for a given θ ∈ Θ .

This result motivates an algorithm that performs iterative feature selection in order to perform regression estimation.
We will then remark that the selection procedure gives the guarantee that every selected feature actually improves the
current estimator.
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In the inductive setting (Section 2), it means that we estimate f (·) by a function θ̂ (·) ∈ Θ , but the selection
procedure can only be performed if the statistician knows the marginal distribution P(X) of X under P .

In the transductive case (Section 3), the estimation of YN+1, . . . , Y(k+1)N can be performed by the procedure with-
out any prior knowledge about the marginal distribution of X under P . We first focus on the case k = 1, and then on
the general case k ∈ N

∗.
Finally, in Section 4, we use the main result of the paper (the fact that every selected feature improves the perfor-

mance of the estimator) as an oracle inequality, to compute the rate of convergence of the estimator in Sobolev and
Besov spaces.

The last section (Section 5) is dedicated to the proofs.
The literature on iterative methods for regression estimation is very important, let us mention one of the first

algorithm, AdaLine, by Widrow and Hoff [23], or more recent versions like boosting, see [18] and the references
within. The technique developed here has some similarity with the so-called greedy algorithms, see [3] (and the
references within) for a survey and some recent results. However, note that in this techniques, the iterative update
of the estimator is motivated by algorithmic issues, and is not motivated statistically. In particular, AdaLine has no
guarantee against overfitting if the number of variables m is large (say m = N ). For greedy algorithms, on has to
specify a particular penalization if one wants to get a guarantee against overfitting. The same remark can be done
about boosting algorithm. Here, the algorithm is motivated by a statistical result, and as a consequence has theoretical
guarantees against overlearning. It stays however computationally feasible, some pseudo-code is given in the paper.

Closer to our technique are the methods of aggregation of statistical estimators, see [16] and [21] and more recently
the mirror descent algorithm studied in [13] or [14]. In this papers, oracle inequalities are given ensuring that the esti-
mator performs as well as the best (linear or convex) aggregation of functions in a given family, up to an optimal term.
Note that these inequalities are given in expectation, here almost all results are given in a deviation bound (or PAC
bound, a bound that is true with high probability, from which we derive a bound in expectation in Section 4). Similar
bounds where given for the PAC-Bayesian model aggregation developed by Catoni [7], Yang [24] and Audibert [2].
In some way, the algorithm proposed in this paper can be seen as a practical way to implement these results.

Note that nearly all the methods in the papers mentioned previously where designed especially for the inductive
setting. Very few algorithms were created specifically for the transductive regression problem. The algorithm de-
scribed in this paper seems more adapted to the transductive setting (remember that the procedure can be performed
in the inductive setting only if the statistician knows the marginal distribution of X under P , while there is no such
assumption in the transductive context).

Let us however start with a presentation of our method in the inductive context.

2. Main theorem in the inductive case, and application to estimation

2.1. Additional definition

Definition 2.1. We put:

R(θ) = P
[(

Y − θ(X)
)2]

,

r(θ) = 1

N

N∑
i=1

(
Yi − θ(Xi)

)2
,

and in this setting, our objective is �θ given by:

�θ ∈ arg min
θ∈Θ

R(θ).

2.2. Main theorem

We suppose that we have an integer m ∈ N and that we are given a finite family of functions:

Θ0 = {θ1, . . . , θm} ⊂ Θ.
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Definition 2.2. Let us put, for any k ∈ {1, . . . ,m}:

�αk = arg min
α∈R

R(αθk) = P [θk(X)Y ]
P [θk(X)2] ,

α̂k = arg min
α∈R

r(αθk) = (1/N)
∑N

i=1 θk(Xi)Yi

(1/N)
∑N

i=1 θk(Xi)2
,

Ck = (1/N)
∑N

i=1 θk(Xi)
2

P [θk(X)2] .

Theorem 2.1. Moreover, let us assume that P is such that |f | is bounded by a constant B , and such that:

P
{[

Y − f (X)
]2} ≤ σ 2 < +∞.

We have, for any ε > 0, with P ⊗N -probability at least 1 − ε, for any k ∈ {1, . . . ,m}:

R(Ckα̂kθk) − R(�αkθk) ≤ 4[1 + log(2m/ε)]
N

[
(1/N)

∑N
i=1 θk(Xi)

2Y 2
i

P [θk(X)2] + B2 + σ 2
]
. (2.1)

The proof of this theorem is given in Section 5.6.

2.3. Application to regression estimation

2.3.1. Interpretation of Theorem 2.1 in terms of confidence intervals

Definition 2.3. Let us put, for any (θ, θ ′) ∈ Θ2:

dP

(
θ, θ ′) =

√
P(X)

[(
θ(X) − θ ′(X)

)2]
.

Let also ‖ · ‖P denote the norm associated with this distance, ‖θ‖P = dP (θ,0), and 〈·, ·〉P the associated scalar
product:

〈
θ, θ ′〉

P
= P

[
θ(X)θ ′(X)

]
.

Because �αk = arg minα∈R R(αθk) we have:

R(Ckα̂kθk) − R(�αkθk) = d2
P (Ckα̂kθk,�αkθk).

So the theorem can be written:

P ⊗N
{∀k ∈ {1, . . . ,m}, d2

P (Ckα̂kθk,�αkθk) ≤ β(ε, k)
} ≥ 1 − ε,

where β(ε, k) is the right-hand side of inequality (2.1).
Now, note that �αkθk is the orthogonal projection of:

�θ = arg min
θ∈Θ

R(θ)

onto the space {αθk,α ∈ R}, with respect to the inner product 〈·, ·〉P :

�αk = arg min
α∈R

dP (αθk,�θ).
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Definition 2.4. We define, for any k and ε:

CR(k, ε) =
{
θ ∈ Θ:

∣∣∣∣
〈
θ − Ckα̂kθk,

θk

‖θk‖P

〉
P

∣∣∣∣ ≤ √
β(ε, k)

}
.

Then the theorem is equivalent to the following corollary.

Corollary 2.2. We have:

P ⊗N
[∀k ∈ {1, . . . ,m},�θ ∈ CR(k, ε)

] ≥ 1 − ε.

In other words:
⋂

k∈{1,...,m} CR(k, ε) is a confidence region at level ε for �θ .

Definition 2.5. We write Π
k,ε
P the orthogonal projection into CR(k, ε) with respect to the distance dP .

Note that this orthogonal projection is not a projection on a linear subspace of Θ , and so it is not a linear mapping.

2.3.2. The algorithm
The previous corollaries of Theorem 2.1 motivate the following iterative algorithm:

• choose θ(0) ∈ Θ , for example, θ(0) = 0;
• at step n ∈ N

∗, we have: θ(0), . . . , θ (n−1). Choose k(n) ∈ {1, . . . ,m} (this choice can of course be data dependent),
and take:

θ(n) = Π
k(n),ε
P θ(n−1);

• we can use the following stopping rule: ‖θ(n−1) − θ(n)‖2
P ≤ κ , where 0 < κ < 1

N
.

Definition 2.6. Let n0 denote the stopping step, and:

θ̂ (·) = θ(n0)(·)
the corresponding function.

2.3.3. Results and comments on the algorithm

Theorem 2.3. We have:

P ⊗N
[∀n ∈ {1, . . . , n0},R

(
θ(n)

) ≤ R
(
θ(n−1)

) − d2
P

(
θ(n), θ(n−1)

)] ≥ 1 − ε.

Proof. This is just a consequence of the preceding corollary. Let us assume that:

∀k ∈ {1, . . . ,m}, R(Ckα̂kθk) − R(�αkθk) ≤ β(ε, k).

Let us choose n ∈ {1, . . . , n0}. We have, for a k ∈ {1, . . . ,m}:
θ(n) = Π

k,ε
P θ(n−1),

where Π
k,ε
P is the projection into a convex set that contains �θ . This implies that:

〈
θ(n) − θ(n−1),�θ − θ(n)

〉
P

≥ 0,

or:

d2
P

(
θ(n−1),�θ ) ≥ d2

P

(
θ(n),�θ ) + d2

P

(
θ(n−1), θ (n)

)
,
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which can be written:

R
[
θ(n−1)

] − R(�θ) ≥ R
[
θ(n)

] − R(�θ) + d2
P

(
θ(n−1), θ (n)

)
. �

Actually, the main point in the motivation of the algorithm is that, with probability at least 1 − ε, whatever the
current value θ(n) ∈ Θ , whatever the feature k ∈ {1, . . . ,m} (even chosen on the basis of the data), Π

k,ε
P θ(n) is a better

estimator than θ(n).
So we can choose k(n) as we want in the algorithm. For example, Theorem 2.3 motivates the choice:

k(n) = arg max
k

d2
P

(
θ(n−1),CR(k, ε)

)
.

This version of the algorithm is detailed in Fig. 1. If looking for the exact maximum of

dP

(
θ(n−1),CR(k, ε)

)
with respect to k is too computationally intensive we can use any heuristic to choose k(n), or even skip this maxi-
mization and take:

k(1) = 1, . . . , k(m) = m, k(m + 1) = 1, . . . , k(2m) = m, . . . .

Example 2.1. Let us assume that X = [0,1] and let us put Θ = L2(P(X)). Let (θk)k∈N∗ be an orthonormal basis of Θ .
The choice of m should not be a problem, the algorithm itself avoiding itself overlearning we can take a large value
of m like m = N . In this setting, the algorithm is a procedure for (soft) thresholding of coefficients. In the particular
case of a wavelets basis, see [10] or [15] for a presentation of wavelets coefficient thresholding. Here, the threshold
is not necessarily the same for every coefficient. We can remark that the sequential projection on every k is sufficient
here:

k(1) = 1, . . . , k(m) = m,

after that θ(m+n) = θ(m) for every n ∈ N (because all the directions of the different projections are orthogonals).

Actually, it is possible to prove that the estimator is able to adapt itself to the regularity of the function to achieve
a good mean rate of convergence. More precisely, if we assume that the true regression function has an (unknown)
regularity β , then it is possible to choose m and ε in such a way that the rate of convergence is:

N−2β/(2β+1) logN.

We prove this point in Section 4.

Remark 2.1. Note that in its general form, the algorithm does not require any assumption about the dictionary of
functions Θ0 = {θ1, . . . , θm}. This family can be non-orthogonal, it can even be redundant (the dimension of the
vector space generated by Θ0 can be smaller than m).

Remark 2.2. It is possible to generalize Theorem 2.1 to models of dimension larger than 1. The algorithm itself can
take advantage of these generalizations. This point is developed in [1], where some experiences about the perfor-
mances of our algorithm can also be found.

2.4. Additional notations for some refinements of Theorem 2.1

Note that an improvement of the inequality in Theorem 2.1 (inequality (2.1)) would allow to apply the same method,
but would lead to smaller confidence regions and so to better performances. The end of this section is dedicated to
improvements (and generalizations) of this bound.
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We have ε > 0, κ > 0, N observations (X1, Y1), . . . , (XN,YN), m features
θ1(·), . . . , θm(·) and c = (c1, . . . , cm) = (0, . . . ,0) ∈ R

m. Compute at first every
α̂k and β(ε, k) for k ∈ {1, . . . ,m}. Set n ← 0.

Repeat:

• set n ← n + 1;
• set best_improvement ← 0;
• for k ∈ {1, . . . ,m}, compute:

vk = P
[
θk(X)2],

γk ← α̂k − 1

vk

m∑
j=1

cjP
[
θj (X)θk(X)

]
,

δk ← vk

(|γk| − β(ε, k)
)2
+,

and if δk > best_improvement , set:

best_improvement ← δk,

k(n) ← k;
• if best_improvement > 0 set:

ck(n) ← ck(n) + sgn(γk(n))
(|γk(n)| − β

(
ε, k(n)

))
+;

until best_improvement < κ (where sgn(x) = −1 if x ≤ 0 and 1 otherwise).

Note that at each step n, θ(n) is given by:

θ(n)(·) =
m∑

k=1

ckθk(·),

so after the last step we can return the estimator:

θ̂ (·) =
m∑

k=1

ckθk(·).

Fig. 1. Detailed version of the feature selection algorithm.

Hypothesis. Until the end of Section 2, we assume that Θ and P are such that:

∀θ ∈ Θ, P exp
[
θ(X)Y

]
< +∞.

Definition 2.7. For any random variable T we put:

V (T ) = P
[
(T − PT )2],

M3(T ) = P
[
(T − PT )3],
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and we define, for any γ ≥ 0, PγT by:

dPγT

dP
= exp(γ T )

P [exp(γ T )] .

For any random variables T ,T ′ and any γ ≥ 0 we put:

VγT

(
T ′) = PγT

[(
T ′ − PγT T ′)2]

,

M3
γ T

(
T ′) = PγT

[(
T ′ − PγT T ′)3]

.

Section 2.5 gives an improvement of Theorem 2.1 while Section 2.6 extends it to the case of a data-dependant
family Θ0.

2.5. Refinements of Theorem 2.1

Theorem 2.4. Let us put:

Wθ = θ(X)Y − P
(
θ(X)Y

)
.

Then we have, for any ε > 0, with P ⊗N -probability at least 1 − ε, for any k ∈ {1, . . . ,m}:

R(Ckα̂kθk) − R(�αkθk) ≤ 2 log(2m/ε)

N

V (Wθk
)

P [θk(X)2] + log3(2m/ε)

N3/2
CN(P,m, ε, θk),

where we have:

CN(P,m, ε, θk) = Iθk

(√
2 log(2m/ε)

NV (Wθk
)

)2 √
2

V (Wθk
)5/2P [θk(X)2]

+ Iθk

(√
2 log(2m/ε)

NV (Wθk
)

)4 log2(2m/ε)√
NV (Wθk

)6P [θk(X)2] ,

with:

Iθ (γ ) =
∫ 1

0
(1 − β)2M3

βγWθ
(Wθ)dβ.

For the proof, see Section 5.1.
Actually, the method we proposed requires to be able to compute explicitly the upper bound in this theorem.

Remark that, with ε and m fixed:

CN(P,m, ε, θk) −→
N→+∞

√
2[M3(Wθk

)]2

9V (Wθk
)5/2P [θk(X)2] ,

and so we can choose to consider only the first-order term. Another possible choice is to make stronger assumptions
on P and Θ0 that allow to upper bound explicitly CN(P,m, ε, θk). For example, if we assume that Y is bounded by
CY and that θk(·) is bounded by C′

k then Wθk
is bounded by Ck = 2CY C′

k and we have (basically):

CN(P,m, ε, θk) ≤ 64
√

2C2
k

9V (Wθk
)5/2P [θk(X)2] + 4096C4

k log3(2m/ε)

81
√

NV (Wθk
)6P [θk(X)2] .



Iterative feature selection in least square regression estimation 55

The main problem is actually that the first-order term contains the quantity V (Wθk
) that is not observable, and we

would like to be able to replace this quantity by its natural estimator:

V̂k = 1

N

N∑
i=1

[
Yiθk(Xi) − 1

N

N∑
j=1

Yj θk(Xj )

]2

.

The following theorem justifies this method.

Theorem 2.5. If we assume that there is a constant c such that:

∀k ∈ {1, . . . ,m}, P
[
exp

(
cW 2

θk

)]
< ∞,

we have, for any ε > 0, with P ⊗N -probability at least 1 − ε, for any k ∈ {1, . . . ,m}:

R(Ckα̂kθk) − R(�αkθk) ≤ 2 log(4m/ε)

N

V̂k

P [θk(X)2] + log(4m/ε)

N3/2
C′

N(P,m, ε, θk),

where we have:

V̂k = 1

N

N∑
i=1

[
Yiθk(Xi) − 1

N

N∑
j=1

Yj θk(Xj )

]2

,

and

C′
N(P,m, ε, θk) = CN

(
P,m,

ε

2
, θk

)
log2 4m

ε

+ 2 log1/2(2m/ε)

P [θk(X)2]
[√

2V
(
W 2

θk

) + log(2m/ε)√
NV (W 2

θk
)
Jθk

(√
2 log(2m/ε)

NV (W 2
θk

)

)]

+ 2 log1/2(4m/ε)

P [θk(X)2]
[√

2V (Wθk
) + log2(2m/ε)√

NV (Wθk
)3

Iθk

(√
2 log(4m/ε)

NV (Wθk
)

)]

×
[∣∣∣∣∣ 2

N

N∑
i=1

Yiθk(Xi)

∣∣∣∣∣
√

2V (Wθk
) log(4m/ε)

N
+ log5/2(2m/ε)

NV (Wθk
)3

Iθk

(√
2 log(4m/ε)

NV (Wθk
)

)]

and

Jθ (γ ) =
∫ 1

0
(1 − β)2M3

γβW 2
θk

(
W 2

θ

)
dβ.

The proof is given in Section 5.1.

2.6. An extension to the case of Support Vector Machines

Thanks to a method due to Seeger [20], it is possible to extend this method to the case where the set Θ0 is data
dependent in the following way:

Θ0(Z1, . . . ,ZN,N) =
N⋃

i=1

Θ0(Zi,N),
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where for any z ∈ X × R, the cardinality of the set Θ0(z,N) depends only on N , not on z. We will write m′(N) this
cardinality. So we have:∣∣Θ0(Z1, . . . ,ZN,N)

∣∣ ≤ N
∣∣Θ0(Zi,N)

∣∣ = Nm′(N).

We put:

Θ0(Zi,N) = {θi,1, . . . , θi,m′(N)}.
In this case, we need some adaptations of our previous notations.

Definition 2.8. We put, for i ∈ {1, . . . ,N}:

ri(θ) = 1

N − 1

∑
j∈{1,...,N},

j �=i

(
Yj − θ(Xj )

)2
.

For any (i, k) ∈ {1, . . . ,N} × {1, . . . ,m′(N)}, we write:

α̂i,k = arg min
α∈R

ri(αθi,k) =
∑

j �=i θi,k(Xj )Yj∑
j �=i θi,k(Xj )2

,

�αi,k = arg min
α∈R

R(αθi,k) = P [θi,k(X)Y ]
P [θi,k(X)2] ,

Ci,k = 1/(N − 1)
∑

j �=i θi,k(Xj )
2

P [θi,k(X)2] .

Theorem 2.6. We have, for any ε > 0, with P ⊗N -probability at least 1 − ε, for any k ∈ {1, . . . ,m′(N)} and i ∈
{1, . . . ,N}:

R(Ci,kα̂i,kθi,k) − R(�αi,kθi,k) ≤ 2 log(2Nm′(N)/ε)

N − 1

V (Wθi,k
)

P [θi,k(X)2]

+ log3(2Nm′(N)/ε)

(N − 1)3/2
CN−1

(
P,Nm′(N), ε, θi,k

)
.

The proof is given in Section 5.1.
We can use this theorem to build an estimator using the algorithm described in the previous subsection, with

obvious changes in the notations.

Example 2.2. Let us consider the case where H is a Hilbert space with scalar product 〈·, ·〉, and:

Θ = {
θ(·) = 〈

h,Ψ (·)〉, h ∈ H
}

where Ψ is an application X → Θ . Let us put Θ0[(x, y),N] = {〈Ψ (x),Ψ (·)〉}. In this case we have m′(N) = 1 and
the estimator is of the from:

θ̂ (·) =
N∑

i=1

αi,1
〈
Ψ (Xi),Ψ (·)〉.

Let us define,

K
(
x, x′) = 〈

Ψ (x),Ψ
(
x′)〉,
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the function K is called the kernel, and:

I = {1 ≤ i ≤ N : αi,1 �= 0},
that is called the set of support vectors. Then the estimate has the form of a support vector machine (SVM):

θ̂ (·) =
∑
i∈I

αi,1K(Xi, ·).

SVM where first introduced by Boser, Guyon and Vapnik [5] in the context of classification, and then generalized by
Vapnik [22] to the context of regression estimation. For a general introduction to SVM, see also [6] and [9].

Example 2.3. A widely used kernel is the Gaussian kernel:

Kγ

(
x, x′) = exp

(
−γ

d2(x, x′)
2

)
,

where d(·, ·) is some distance over the space X and γ > 0. But in practice, the choice of the parameter γ is difficult.
A way to solve this problem is to introduce multiscale SVM. We simply take Θ as the set of all bounded functions
X → R. Now, let us put:

Θ0
[
(x, y),N

] = {
K2(x, ·),K22(X, ·), . . . ,K2m′(N) (x, ·)}.

In this case, we obtain an estimator of the form:

θ̂ (·) =
m′(N)∑
k=1

∑
i∈Ik

αi,kK2k (Xi, ·),

that could be called multiscale SVM. Remark that we can use this technique to define SVM using simultaneously
different kernels (not necessarily the same kernel at different scales).

3. The transductive case

3.1. Notations

Let us recall that we assume that k ∈ N
∗, that P(k+1)N is some exchangeable probability measure (let us recall that ex-

changeability is defined in Definition 1.2) on the space ((X ×R)(k+1)N , (B×BR)⊗(k+1)N ). Let (Xi, Yi)i=1,...,(k+1)N =
(Zi)i=1,...,(k+1)N denote a random vector distributed according to P(k+1)N .

Let us remark that under this condition, the marginal distribution of every Zi is the same, we will call P this
distribution. In the particular case where the observations are i.i.d., we will have P(k+1)N = P ⊗(k+1)N , but what
follows still holds for general exchangeable distributions P(k+1)N .

We assume that we observe (Xi, Yi)i=1,...,N and (Xi)i=N+1,...,(k+1)N . In this case, we only focus on the estimation
of the values (Yi)i=N+1,...,(k+1)N .

Definition 3.1. We put, for any θ ∈ Θ :

r1(θ) = 1

N

N∑
i=1

(
Yi − θ(Xi)

)2
,

r2(θ) = 1

kN

(k+1)N∑
i=N+1

(
Yi − θ(Xi)

)2
.
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Our objective is:

�θ2 = arg min
θ∈Θ

r2(θ),

if the minimum of r2 is not unique then we take for �θ2 any element of Θ reaching the minimum value of r2.

Let Θ0 be a finite family of vectors belonging to Θ , so that |Θ0| = m. Actually, Θ0 is allowed to be data-dependent:

Θ0 = Θ0(X1, . . . ,X(k+1)N ),

but we assume that the function (x1, . . . , x(k+1)N ) �→ Θ0(x1, . . . , x(k+1)N ) is exchangeable with respect to its (k+1)N

arguments, and is such that m = m(N) depends only on N , not on (X1, . . . ,X(k+1)N ).
The problem of the indexation of the elements of Θ0 is not straightforward and we must be very careful about it.

Let <Θ be a complete order on Θ , and write:

Θ0 = {θ1, . . . , θm},
where

θ1 <Θ · · · <Θ θm.

Remark that, in this case, every θh is an exchangeable function of (X1, . . . ,X(k+1)N ).

Definition 3.2. Now, let us write, for any h ∈ {1, . . . ,m}:

αh
1 = arg min

α∈R

r1(αθh) =
∑N

i=1 θh(Xi)Yi∑N
i=1 θh(Xi)2

,

αh
2 = arg min

α∈R

r2(αθh) =
∑(k+1)N

i=N+1 θh(Xi)Yi∑(k+1)N
i=N+1 θh(Xi)2

,

Ch = (1/N)
∑N

i=1 θh(Xi)
2

(1/(kN))
∑(k+1)N

i=N+1 θh(Xi)2
.

3.2. Basic results for k = 1

In a first time we focus on the case where k = 1 as a method due to Catoni [6] brings a substantial simplification of
the bound in this case.

Theorem 3.1. We have, for any ε > 0, with P2N -probability at least 1 − ε, for any h ∈ {1, . . . ,m}:

r2
[(
Chαh

1

) · θh

] − r2
(
αh

2 · θh

) ≤ 4

[
(1/N)

∑2N
i=1 θh(Xi)

2Y 2
i

(1/N)
∑2N

i=N+1 θh(Xi)2

]
log(2m/ε)

N
.

Remark 3.1. Here again, it is possible to make some hypothesis in order to make the right-hand side of the theorem
observable. In particular, if we assume that:

∃B ∈ R+, P
(|Y | ≤ B

) = 1,

then we can get a looser observable upper bound:

P2N

{
∀k ∈ {1, . . . ,m}, r2

[(
Chαh

1

) · θh

] − r2
(
αh

2 · θh

) ≤ 4

[
B2 + (1/N)

∑N
i=1 θh(Xi)

2Y 2
i

(1/N)
∑2N

i=N+1 θh(Xi)2

]
log(2m/ε)

N

}
≥ 1 − ε.
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If we do not want to make this assumption, we can use the following variant, that gives a first-order approximation for
the bound.

Theorem 3.2. For any ε > 0, with P2N -probability at least 1 − ε, for any h ∈ {1, . . . ,m}:
r2

[(
Chαh

1

) · θh

] − r2
(
αh

2 · θh

)

≤ 8 log(4m/ε)

N

[
(1/N)

∑N
i=1 θh(Xi)

2Y 2
i

(1/N)
∑2N

i=N+1 θh(Xi)2
+

√
(1/N)

∑2N
i=1 θh(Xi)4Y 4

i log(2m/ε)

2N

]
.

Remark 3.2. Let us assume that Y is such that we know two constants bY and BY such that:

P exp
(
bY |Y |) ≤ BY < ∞.

Then we have, with probability at least 1 − ε:

sup
i∈{1,...,2N}

|Yi | ≤ 1

bY

log
2NBY

ε
.

Combining both inequalities leads by a union bound argument leads to:

r2
[(
Chαh

1

) · θh

] − r2
(
αh

2 · θh

)

≤ 8 log(8m/ε)

N

[
(1/N)

∑N
i=1 θh(Xi)

2Y 2
i

(1/N)
∑2N

i=N+1 θh(Xi)2
+

√√√√ (1/N)
∑2N

i=1 θh(Xi)4 log(4m/ε) log4(4NBY /ε)

2Nb4
Y

]
.

The proofs of both theorems are given in the proofs section, more precisely in Section 5.2.
Let us compare the first-order term of this theorem to the analogous term in the inductive case (Theorems

2.4 and 2.5). The factor of the variance term is 8 instead of 2 in the inductive case. A factor 2 is to be lost be-
cause we have here the variance of a sample of size 2N instead of N in the inductive case. But another factor 2 is lost
here. Moreover, in the inductive case, we obtained the real variance of Yθh(X) instead of the moment of order 2 here.

In the next subsection, we give several improvements of these bounds, that allows to recover a real variance, and
to recover the factor 2. We also give a version that allows to deal with a test sample of different size, this being a
generalization of Theorem 3.1 more than of its improved variants.

We then give the analog of the algorithm proposed in the inductive case in this transductive setting.

3.3. Improvements of the bound and general values for k

The proof of all the theorems of this subsection is given in the next section.

3.3.1. Variance term (in the case k = 1)
We introduce some new notations.

Definition 3.3. We write:

∀θ ∈ Θ,r1,2(θ) = r1(θ) + r2(θ)

and, in the case of a model k ∈ {1, . . . ,m}:
αh

1,2 = arg min
α∈R

r1,2(αθh).

The we have the following theorem.
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Theorem 3.3. We have, for any ε > 0, with P2N -probability at least 1 − ε, for any h ∈ {1, . . . ,m}:

r2
(
Chαh

1 θh

) − r2
(
αh

2 θh

) ≤ 4

[
(1/N)

∑2N
i=1[θh(Xi)Yi − αh

1,2θh(Xi)
2]2

(1/N)
∑2N

i=N+1 θh(Xi)2

]
log(2m/ε)

N
.

For the proof see Section 5.3.
It is moreover possible to modify the upper bound to make it observable. We obtain that with P2N -probability at

least 1 − ε, for any k ∈ {1, . . . ,m}:

r2
[(
Chαh

1

)
θh

] − r2
(
αh

2 θh

) ≤ 16 log(4m/ε)

N

[
1

N

N∑
i=1

(
θh(Xi)Yi − αh

1 θh(Xi)
2)2

]
+ O

([
log(m/ε)

N

]3/2)
.

So we can see that this theorem is an improvement on Theorem 3.1 when some features θh(X) are well correlated
with Y . But we loose another factor 2 by making the first-order term of the bound observable.

3.3.2. Improvement of the variance term (k = 1)

Theorem 3.4. We have, for any ε > 0, with P2N -probability at least 1 − ε, for any h ∈ {1, . . . ,m}:

r2
(
Chαh

1 θh

) − r2
(
αh

2 θh

) ≤
[

1

1 − 2 log(2m/ε)/N

]
2 log(2m/ε)

N

V1(θh) + V2(θh)

(1/N)
∑2N

i=N+1 θh(Xi)2
,

where:

V1(θh) = 1

N

N∑
i=1

[
Yiθh(Xi) − 1

N

N∑
j=1

Yj θh(Xj )

]2

,

V2(θh) = 1

N

2N∑
i=N+1

[
Yiθh(Xi) − 1

N

2N∑
j=N+1

Yj θh(Xj )

]2

.

It is moreover possible to give an observable upper bound: we obtain that with P2N -probability at least 1 − ε, for any
k ∈ {1, . . . ,m}:

r2
[(
Chαh

1

)
θh

] − r2
(
αh

2 θh

) ≤
[

1

1 − 2 log(4m/ε)/N

]
4 log(4m/ε)

N

V1(θh)

(1/N)
∑2N

i=N+1 θh(Xi)2

+
[

1

1 − 2 log(4m/ε)/N

]
2
(
2 + √

2
)( log(6m/ε)

N

)3/2
√

(1/N)
∑2N

i=1 θh(Xi)4Y 4
i

(1/N)
∑2N

i=N+1 θh(Xi)2
.

Here again, we can make the bound fully observable under an exponential moment or boundedness assumption
about Y . For a complete proof see Section 5.4.

3.3.3. The general case (k ∈ N
∗)

We need some new notations in this case.

Definition 3.4. Let us put:

P = 1

(k + 1)N

(k+1)N∑
i=1

δZi
,
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and, for any θ ∈ Θ :

Vθ = P
{[(

θ(X)Y
) − P

(
θ(X)Y

)]2}
.

Then we have the following theorem.

Theorem 3.5. Let us assume that we have constants Bh and βh such that, for any h ∈ {1, . . . ,m}:
P exp

(
βh

∣∣θh(Xi)Yi

∣∣) ≤ Bh.

For any ε > 0, with P(k+1)N probability at least 1 − ε we have, for any h ∈ {1, . . . ,m}:
r2

(
Chαh

1 θh

) − r2
(
αh

2 θh

)
≤ (1 + 1/k)2

(1/(kN))
∑(k+1)N

i=N+1 θh(Xi)2

[
2Vθh

log(4m/ε)

N

+ 16(log(4m/ε))3/2(log(4(k + 1)mNBh/ε))
3

3β3
hN3/2V

1/2
θh

+ 64(log(4m/ε))2(log(4(k + 1)mNBh/ε))
6

9β6
hN2V

2
θh

]
.

Here again, it is possible to replace the variance term by its natural estimator:

V̂θh
= 1

N

N∑
i=1

[
θh(Xi)Yi − 1

N

N∑
j=1

θh(Xj )Yj

]2

.

For a complete proof of the theorem see the section dedicated to the proofs (more precisely Section 5.5).

3.4. Application to transductive regression

We give here the interpretation of the preceding theorems in terms of confidence; this motivates an algorithm similar
to the one described in the inductive case.

Definition 3.5. We take, for any (θ, θ ′) ∈ Θ2:

d2
(
θ, θ ′) =

√√√√ 1

kN

(k+1)N∑
i=N+1

[
θ(Xi) − θ ′(Xi)

]2
.

Let also ‖θ‖2 = d2(θ,0) and:

〈
θ, θ ′〉

2 = 1

(k + 1)N

(k+1)N∑
i=N+1

θ(Xi)θ
′(Xi).

We define, for any h ∈ {1, . . . ,m} and ε:

CR(h, ε) = {
θ ∈ Θ:

∣∣〈θ − Chαh
1 θh, θh

〉
2

∣∣ ≤ √
β(ε,h)

}
,

where β(ε,h) is the upper bound in Theorem 3.1 (or in any other theorem given in the transductive section).

For the same reasons as in the inductive case, these theorems imply the following result.

Corollary 3.6. We have:

P2N

[∀h ∈ {1, . . . ,m},�θ2 ∈ CR(h, ε)
] ≥ 1 − ε.
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Definition 3.6. We call Π
h,ε
2 the orthogonal projection into CR(h, ε) with respect to the distance d2.

We propose the following algorithm:

• choose θ(0) ∈ Θ (for example 0);
• at step n ∈ N

∗, we have: θ(0), . . . , θ (n−1). Choose h(n), for example:

h(n) = arg max
h∈{1,...,m}

d2
(
θ(n−1),CR(h, ε)

)
,

and take:

θ(n) = Π
h(n),ε
2 θ(n−1);

• we can use the following stopping rule: ‖θ(n−1) − θ(n)‖2
2 ≤ κ where 0 < κ < 1

N
.

Definition 3.7. We write n0 the stopping step, and:

θ(·) = θ(n0)(·)
the corresponding function.

Here again we give a detailed version of the algorithm, see Fig. 2. Remark that as in the inductive case, we are
allowed to use whatever heuristic to choose k(n) if we want to avoid the maximization.

Theorem 3.7. We have:

P2N

[∀n ∈ {1, . . . , n0}, r2
(
θ(n)

) ≤ r2
(
θ(n−1)

) − d2
2

(
θ(n), θ(n−1)

)] ≥ 1 − ε.

The proof of this theorem is exactly the same as the proof of Theorem 2.3.

Example 3.1 (Estimation of wavelet coefficients). Let us consider the case where Θ0 does not depend on the ob-
servations. We can, for example, choose a basis of Θ , or a basis of a subspace of Θ . We obtain an estimator of the
form:

θ(x) =
m∑

h=1

αhθh(x).

In the case when (θk)k is a wavelet basis, then we obtain here again a procedure for thresholding wavelets coefficients.

Example 3.2 (SVM and multiscale SVM). Let us choose Θ as the set of all functions X → R, a family of kernels
K1, . . . ,Km′(N) for a m′(N) ≥ 1 and:

Θ0 = {
Kh(Xi, ·), h ∈ {

1, . . . ,m′(N)
}
, i ∈ {

1, . . . , (k + 1)N
}}

.

In this case we have m = (k + 1)Nm′(N). We obtain an estimator of the form:

θ(x) =
m′(N)∑
h=1

2N∑
j=1

αj,hKh(Xj , x).

Let us put:

Ih = {
j ∈ {1, . . . ,2N}, αj,h �= 0

}
.
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We have ε > 0, κ > 0, N observations (X1, Y1), . . . , (XN,YN) and also
XN+1, . . . ,X(k+1)N , m features θ1(·), . . . , θm(·) and c = (c1, . . . , cm) =
(0, . . . ,0) ∈ R

m. First, compute every αh
1 and β(ε,h) for h ∈ {1, . . . ,m}. Set

n ← 0.

Repeat:

• set n ← n + 1;
• set best_improvement ← 0;
• for h ∈ {1, . . . ,m}, compute:

vh = 1

kN

(k+1)N∑
i=N+1

θh(Xi)
2,

γh ← αh
1 − 1

vh

m∑
j=1

cj

1

kN

(k+1)N∑
i=N+1

θj (Xi)θh(Xi),

δh ← vh

(|γh| − β(ε,h)
)2
+,

and if δh > best_improvement, set:

best_improvement ← δh,

h(n) ← h;
• if best_improvement > 0 set:

ch(n) ← ch(n) + sgn(γh(n))
(|γh(n)| − β

(
ε,h(n)

))
+;

until best_improvement < κ .

Return the estimation:

[ỸN+1, . . . , Ỹ(k+1)N ] = [
θ̂ (XN+1), . . . , θ̂ (X(k+1)N )

]
,

where:

θ̂ (·) =
m∑

h=1

chθh(·).

Fig. 2. Detailed version of the feature selection algorithm in the transductive case.

We have:

θ(x) =
m′(N)∑
h=1

∑
j∈Ih

αj,hKh(Xi, x),

that is a Support Vector Machine with different kernel estimate; like in Example 2.3, the kernels Kh can be the same
kernel taken at different scales.
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Example 3.3 (Kernel PCA Kernel Projection Machine). Take the same Θ and consider the kernel:

K
(
x, x′) = 〈

Ψ (x),Ψ
(
x′)〉.

Let us consider a principal component analysis (PCA) of the family:{
K(Xi, ·), . . . ,K(X(k+1)N , ·)}

by performing a diagonalization of the matrix:(
K(Xi,Xj )

)
1≤i,j≤(k+1)N

.

This method is known as Kernel PCA, see for example [19]. We obtain eigenvalues:

λ1 ≥ · · · ≥ λ(k+1)N

and associated eigenvectors e1, . . . , e(k+1)N , associated to elements of Θ :

k1(·) =
(k+1)N∑

i=1

e1
i K(Xi, ·), . . . , k(k+1)N (·) =

(k+1)N∑
i=1

e
(k+1)N
i K(Xi, ·)

that are exchangeable functions of the observations. Using the family:

Θ0 = {k1, . . . , k(k+1)N },
we obtain an algorithm that selects which eigenvectors are going to be used in the regression estimation. This is very
close to the Kernel Projection Machine (KPM) described by Blanchard, Massart, Vert and Zwald [4] in the context of
classification.

4. Rates of convergence in Sobolev and Besov spaces

We conclude this paper by coming back to the inductive case. We use Theorem 2.3 as an oracle inequality to show
that the obtained estimator is adaptative, which means that if we assume that the true regression function f has an
unknown regularity β , then the estimator is able to reach the optimal speed of convergence N−2β/(2β+1) up to a logN

factor.

4.1. Presentation of the context

Here we assume that X is a compact interval of R, that Θ = L2(P(X)) and that P is such that Y = f (X) + η with η

independent of X, Pη = 0 and P(η2) ≤ σ 2 < +∞.
We assume that (θk)k∈N∗ is an orthonormal basis of Θ . We still have to choose m ∈ N and we will take Θ0 =

{θ1, . . . , θm}.
Remark that the orthogonality means here that P [θk(X)2] = 1 for any k ∈ N

∗, and that:

P
[
θk(X)θk′(X)

] = 0

for any k′ �= k.

4.2. Rate of convergence of the estimator: the Sobolev space case

Now, let us put:

�θm = arg min
θ∈Span(Θ0)

R(θ)



Iterative feature selection in least square regression estimation 65

(that depends effectively on m by Θ0 = {θ1, . . . , θm}), and let us assume that f satisfies the two following conditions:
it is regular, namely there is an unknown β ≥ 1 and a C ≥ 0 such that:

∥∥�θm − f
∥∥2

P
≤ Cm−2β,

and that we have a constant B < ∞ such that:

sup
x∈X

f (x) ≤ B

with B known to the statistician. It follows that:

‖f ‖2
P ≤ B2.

If follows that every set, for k ∈ {1, . . . ,m}:

Fk =
{ ∞∑

j=1

αj θj : α2
k ≤ B2

}
∩ Θ

is a convex set that contains f and such that the orthogonal projection: Π
F ,m
P = Π

Fm

P · · ·ΠF1
P (where Π

Fk

P denotes
the orthogonal projection on Fk) can only improve an estimator:

∀θ,
∥∥Π

F ,m
P θ − f

∥∥2
P

≤ ‖θ − f ‖2
P .

Actually, note that this projection just consists in thresholding very large coefficients to a limited value. This modifica-
tion is necessary in what follows, but this is just a technical remark: most of the time, our estimator won’t be modified
by Π

F ,m
P for any m.

Remember also that in this context, the estimator given in Definition 2.6 is just:

θ̂ = Π
m,ε
P · · ·Π1,ε

P 0.

Theorem 4.1. Let us assume that Θ = L2(P(X)), X = [0,1] and (θk)k∈N∗ is an orthonormal basis of Θ . Let us
assume that we are in the idealized regression model:

Y = f (X) + η,

where Pη = 0, P(η2) ≤ σ 2 < ∞ and η and X are independent, and σ is known. Let us assume that f ∈ Θ is such
that there is an unknown β ≥ 1 and an unknown C ≥ 0 such that:

‖�θm − f ‖2
P ≤ Cm−2β,

and that we have a constant B < ∞ such that:

sup
x∈X

f (x) ≤ B

with B known to the statistician. Then our estimator θ̂ (given in Definition 2.6 with n0 = m here, build using the bound
β(ε, k) given in Theorem 2.1), with ε = N−2 and m = N , is such that, for any N ≥ 2,

P ⊗N
[∥∥Π

F ,N
P θ̂ − f

∥∥2
P

] ≤ C′(C,B,σ )

(
logN

N

)2β/(2β+1)

.
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Here again, the proof is given at the end of the paper (Section 5.7). Let us just remark that, in the case where
X = [0,1], P is the Lebesgue measure, and (θk)k∈N∗ is the trigonometric basis, the condition:

∥∥�θm − f
∥∥2

P
≤ Cm−2β

is satisfied for C = C(β,L) as soon as f ∈ W(β,L) where W(β,L) is the Sobolev class:

{
f ∈ L2: f (β−1) is absolutely continuous and

∫ 1

0
f (β)(x)2λ(dx) ≤ L2

}
.

The minimax rate of convergence in W(β,L) is N−2β/(2β+1), so we can see that our estimator reaches the best rate
of convergence up to a logN factor with an unknown β .

4.3. Rate of convergence in Besov spaces

We here extend the previous result to the case of a Besov space Bs,p,q in the case of a wavelet basis (see [11] or [12]).

Theorem 4.2. Let us assume that X = [−A,A], that P(X) is uniform on X and that (ψj,k)j=0,...,+∞,k∈{1,...,2j } is
a wavelet basis, together with a function φ, satisfying the conditions given in [11], with φ and ψ0,1 supported by
[−A,A]. Let us assume that f ∈ Bs,p,q with s > 1

p
, 1 ≤ p,q ≤ ∞, with:

Bs,p,q =
{

g: [−A,A] → R, g(·) = αφ(·) +
∞∑

j=0

2j∑
k=1

βj,kψj,k(·),

∞∑
j=0

2jq(s−1/2−1/p)

[
2j∑

k=1

|βj,k|p
]q/p

= ‖g‖q
s,p,q < +∞

}

(with obvious changes for p = +∞ or q = +∞) with unknown constants s, p and q and that for any x, |f (x)| ≤ B

for a known constant B . Let us choose:

{θ1, . . . , θm} = {φ} ∪ {
ψj,k, j = 1, . . . ,2�logN/log 2�, k = 1, . . . ,2j

}
(so N

2 ≤ m ≤ N ) and ε = N−2 in the definition of θ̂ . Then we have:

P ⊗N
[∥∥Π

F ,N
P θ̂ − f

∥∥2
P

] = O

((
logN

N

)2s/(2s+1)

(logN)(1−2/((1+2s)q))+
)

.

Let us remark that we obtain nearly the same rate of convergence than in [11], namely the minimax rate of conver-
gence up to a logN factor.

For the proof, see Section 5.7.

5. Proofs

The order of the proofs is exactly the order of apparition of the results in the paper, except for the first theorem
(Theorem 2.1): its proof using lemmas proved in the transductive setting, it is given after the proof of the transductive
theorems.

5.1. Proof of Theorems 2.4–2.6

First, we prove a lemma that is the basis of proofs of Theorems 2.4–2.6.
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Lemma 5.1. We have, for any θ ∈ Θ , γ > 0 and η ≥ 0:

P exp(γWθ − η) = exp

{
γ 2

2
V (Wθ) + γ 3

2

∫ 1

0
(1 − β)2M3

γβWθ
(Wθ)dβ − η

}
,

and

P exp(−γWθ − η) = exp

{
γ 2

2
V (Wθ) − γ 3

2

∫ 1

0
(1 − β)2M3

γβWθ
(Wθ)dβ − η

}
.

Proof. For the first equality, we write:

logP exp(γWθ − η) = logP exp(γWθ) − η

=
∫ γ

0
PβWθ (Wθ)dβ − η =

∫ γ

0
(γ − β)VβWθ (Wθ)dβ − η

= γ 2

2
V (Wθ) +

∫ γ

0

(γ − β)2

2
M3

βWθ
(Wθ)dβ − η

= γ 2

2
V (Wθ) + γ 3

2

∫ 1

0
(1 − β)2M3

γβWθ
(Wθ)dβ − η.

For the reverse equality, the proof is exactly the same, replacing γ by −γ . �

We can now give the proof of both theorems.

Proof of Theorem 2.4. Let us choose k ∈ {1, . . . ,m}, for any λk > 0 and ηk ≥ 0 we have:

P ⊗N exp

{
λk

N

N∑
i=1

[
Yiθk(Xi) − P

(
Yθk(X)

)] − ηk

}

=
{
P exp

[
λk

N
Wθk

− ηk

N

]}N

= exp

[
λ2

k

2N
V (Wθk

) + λ3
k

2N2

∫ 1

0
(1 − β)2M3

(βλk/N)Wθk
(Wθk

)dβ − ηk

]

by the first equality of Lemma 5.1. By the same way, using the reverse inequality we obtain:

P ⊗N exp

{
λk

N

N∑
i=1

[
P

(
Yθk(X)

) − Yiθk(Xi)
] − ηk

}

= exp

[
λ2

k

2N
V (Wθk

) − λ3
k

2N2

∫ 1

0
(1 − β)2M3

(βλk/N)Wθk
(Wθk

)dβ − ηk

]
.

So we obtain, for any k ∈ {1, . . . ,m}, for any λk > 0 and ηk ≥ 0:

P ⊗N exp

{
λk

∣∣∣∣∣ 1

N

N∑
i=1

Yiθk(Xi) − P
(
Yθk(X)

)∣∣∣∣∣ − ηk

}

≤ 2 exp

[
λ2

k

2N
V (Wθk

) − ηk

]
cosh

[
λ3

k

2N2

∫ 1

0
(1 − β)2M3

(βλk/N)Wθk
(Wθk

)dβ

]

≤ 2 exp

[
λ2

k

2N
V (Wθk

) − ηk + λ6
k

8N4

(∫ 1

0
(1 − β)2M3

(βλk/N)Wθk
(Wθk

)dβ

)2]
,
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since, for any x ∈ R, we have:

cosh(x) ≤ exp

(
x2

2

)
.

Now, let us choose ε > 0 and put:

ηk = λ2
k

2N
V (Wθk

) + λ6
k

8N4

(∫ 1

0
(1 − β)2M3

(βλk/N)Wθk
(Wθk

)dβ

)2

− log
ε

2m
.

We obtain:

P ⊗N

m∑
k=1

exp

{
λk

∣∣∣∣∣ 1

N

N∑
i=1

Yiθk(Xi) − P
(
Yθk(X)

)∣∣∣∣∣
− λ2

k

2N
V (Wθk

) + λ6
k

8N4

(∫ 1

0
(1 − β)2M3

(βλk/N)Wθk
(Wθk

)dβ

)2

+ log
ε

2m

}
≤ ε

and so:

P ⊗N

[
∀k ∈ {1, . . . ,m},

∣∣∣∣∣ 1

N

N∑
i=1

Yiθk(Xi) − P
(
Yθk(X)

)∣∣∣∣∣
≤ λk

2N
V (Wθk

) + λ5
k

8N4

(∫ 1

0
(1 − β)2M3

(βλk/N)Wθk
(Wθk

)dβ

)2

+ log(2m/ε)

λk

]
≥ 1 − ε.

Now, we put:

λk =
√

2N log(2m/ε)

V (Wθk
)

.

We obtain, with P ⊗N -probability at least 1 − ε, for any k ∈ {1, . . . ,m}:∣∣∣∣∣ 1

N

N∑
i=1

Yiθk(Xi) − P
(
Yθk(X)

)∣∣∣∣∣ ≤
√

2V (Wθk
) log(2m/ε)

N

+ log5/2(2m/ε)

NV (Wθk
)3

(∫ 1

0
(1 − β)2M3

(βλk/N)Wθk
(Wθk

)dβ

)2

.

For short, we take the notation of the theorem:

Iθk
(γ ) =

∫ 1

0
(1 − β)2M3

βγWθk
(Wθk

).

Now, dividing both sides by:

P
[
θk(X)2]

we obtain:

|α̂kCk −�αk| ≤ 1

P [θk(X)2]
[√

2V (Wθk
) log(2m/ε)

N
+ I 2

θk
(λk/N) log5/2(2m/ε)

NV (Wθk
)3

]
.
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In order to conclude, just remark that:

R(α̂kCkθk) − R(�αkθk) = |α̂kCk −�αk|2P
[
θk(X)2]. �

Proof of Theorem 2.5. Remark that, for any θ ∈ Θ :

V (Wθ) = P
(
W 2

θ

) − P(Wθ)
2,

we will deal with each term separately. For the first term, let us remark that we obtain the following result that is
obtained exactly as Lemma 5.1. For any θ ∈ Θ :

P exp
{
γ
[
P

(
W 2

θ

) − W 2
θ

] − η
} = exp

{
γ 2

2
V

(
W 2

θ

) + γ 3

2

∫ 1

0
(1 − β)2M3

γβW 2
θ

(
W 2

θ

)
dβ − η

}
.

Let us apply this result to every θk for k ∈ {1, . . . ,m}:

P ⊗N exp

{
λk

[
P

(
W 2

θk

) − 1

N

N∑
i=1

Y 2
i θk(Xi)

2

]
− ηk

}
= exp

{
λ2

k

2N
V

(
W 2

θk

) + λ3
k

2N
Jk

(
λk

N

)
− ηk

}
,

where:

Jθ (γ ) =
∫ 1

0
(1 − β)2M3

γβW 2
θk

(
W 2

θ

)
dβ.

Taking

ηk = λ2
k

2N
V

(
W 2

θk

) + λ3
k

2N2
Jθk

(
λk

N

)
+ log

2m

ε

and

λk =
√

2N log(2m/ε)

V (W 2
θk

)

we obtain that the following inequality is satisfied with P ⊗N -probability at least 1 − ε
2 , for any k:

P
(
W 2

θk

) ≤ 1

N

N∑
i=1

Y 2
i θk(Xi)

2 +
√

2V (W 2
θk

) log(2m/ε)

N
+ log(2m/ε)

NV (W 2
θk

)
Jθk

(√
2 log(2m/ε)

NV (W 2
θk

)

)

= 1

N

N∑
i=1

Y 2
i θk(Xi)

2 +Ak (5.1)

for short. Now, we try to upper bound the second term, −P(Wθ)
2. Remark that, for any θ :

(
1

N

N∑
i=1

Yiθ(Xi)

)2

− P(Wθ)
2 =

(
1

N

N∑
i=1

Yiθ(Xi) − P(Wθ)

)(
1

N

N∑
i=1

Yiθ(Xi) + P(Wθ)

)

≤
∣∣∣∣∣ 1

N

N∑
i=1

Yiθ(Xi) − P(Wθ)

∣∣∣∣∣
×

{
2

∣∣∣∣∣ 1

N

N∑
i=1

Yiθ(Xi)

∣∣∣∣∣ +
∣∣∣∣∣ 1

N

N∑
i=1

Yiθ(Xi) − P(Wθ)

∣∣∣∣∣
}

.
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Remember that in the proof of Theorem 2.4 we got the upper bound, with probability at least 1 − ε
2 , for any k:

∣∣∣∣∣ 1

N

N∑
i=1

Yiθk(Xi) − P
(
Yθk(X)

)∣∣∣∣∣ ≤
√

2V (Wθk
) log(4m/ε)

N
+ log5/2(4m/ε)

NV (Wθk
)3

Iθk

(√
2 log(4m/ε)

NV (Wθk
)

)2

,

that gives:

−P(Wθk
)2 ≤ −

(
1

N

N∑
i=1

Yiθk(Xi)

)2

+
{√

2V (Wθk
) log(4m/ε)

N
+ log5/2(4m/ε)

NV (Wθk
)3

Iθk

(√
2 log(4m/ε)

NV (Wθk
)

)2}

×
{

2

∣∣∣∣∣ 1

N

N∑
i=1

Yiθk(Xi)

∣∣∣∣∣ +
√

2V (Wθk
) log(4m/ε)

N
+ log5/2(4m/ε)

NV (Wθk
)3

Iθk

(√
2 log(4m/ε)

NV (Wθk
)

)2
}

= −
(

1

N

N∑
i=1

Yiθ(Xi)

)2

+Bk (5.2)

for short. Let us combine inequalities (5.1) and (5.2). We obtain that, with probability at least 1 − ε, for every k we
have:

V (Wθk
) = P

(
W 2

θk

) − P(Wθk
)2 ≤ 1

N

N∑
i=1

Y 2
i θk(Xi)

2 −
(

1

N

N∑
i=1

Yiθk(Xi)

)2

+Ak +Bk = V̂k +Ak +Bk.
�

Proof of Theorem 2.6. This proof is a variant of the proof of Theorem 2.4, the method it uses is due to Seeger [20].
Let us define, for any i ∈ {1, . . . ,N}:

Pi(·) = P ⊗N(·|Zi).

Let us choose (i, k) ∈ {1, . . . ,N} × {1, . . . ,m′(N)}, for any λi,k = λi,k(Zi) > 0 and ηi,k = ηi,k(Zi) ≥ 0 we have:

Pi exp

{
λi,k

N − 1

∑
j �=i

[
Yj θi,k(Xj ) − P

(
Yθi,k(X)

)] − ηi,k

}

≤ exp

[
λi,k

2(N − 1)
V (Wθi,k

) + λ3
i,k

2(N − 1)2

∫ 1

0
(1 − β)2M3

(βλi,k/N−1)Wθi,k
(Wθi,k

)dβ − ηi,k

]

by the first equality of Lemma 5.1. In the same way, we obtain the reverse inequality and, combining both results, for
any (i, k) ∈ {1, . . . ,N} × {1, . . . ,m′(N)}, for any λi,k > 0 and ηi,k ≥ 0:

Pi exp

{
λi,k

∣∣∣∣ 1

N − 1

∑
j �=i

Yj θi,k(Xj ) − P
(
Yθi,k(X)

)∣∣∣∣ − ηi,k

}

≤ 2 exp

[
λ2

i,k

2(N − 1)
V (Wθi,k

) − ηi,k

]
cosh

[
λ3

i,k

2(N − 1)2
Ii,k

]

≤ 2 exp

[
λ2

i,k

2(N − 1)
V (Wθi,k

) − ηi,k + λ6
i,k

8(N − 1)4
I 2
i,k

]
,

where:

Ii,k =
∫ 1

0
(1 − β)2M3

(βλi,k/N)Wθi,k
(Wθi,k

)dβ



Iterative feature selection in least square regression estimation 71

for short. Now, let us choose ε > 0 and put:

ηi,k = λ2
i,k

2(N − 1)
V (Wθi,k

) + λ6
i,k

8(N − 1)4
I 2
i,k − log

ε

2Nm′(N)
.

We obtain:

P ⊗N
N∑

i=1

m′(N)∑
k′=1

exp

{
λi,k

∣∣∣∣ 1

N − 1

∑
j �=i

Yj θi,k(Xj ) − P
(
Yθi,k(X)

)∣∣∣∣
− λ2

i,k

2(N − 1)
V (Wθi,k

) − λ6
i,k

8(N − 1)4
I 2
i,k + log

ε

2Nm′(N)

}

= P ⊗N
N∑

i=1

m′(N)∑
k′=1

Pi exp

{
λi,k

∣∣∣∣ 1

N − 1

∑
j �=i

Yj θi,k(Xj ) − P
(
Yθi,k(X)

)∣∣∣∣
− λ2

i,k

2(N − 1)
V (Wθi,k

) − λ6
i,k

8(N − 1)4
I 2
i,k + log

ε

2Nm′(N)

}
≤ ε.

Now, we put:

λi,k =
√

2N log(2Nm′(N)/ε)

V (Wθi,k
)

,

and achieve the proof exactly as for Theorem 2.4. �

5.2. Proof of Theorems 3.1 and 3.2

Here again, the first thing to do is to prove a general deviation inequality. This one is a variant of the one given by
Catoni [6]. We go back to the notations of Theorem 3.1 and 3.2, with test sample of size N .

Definition 5.1. Let G denote the set of all functions:

g : (X × R)2N × R
2 → R,(

Z1, . . . ,Z2N,u,u′) �→ g
(
Z1, . . . ,Z2N,u,u′) = g

(
u,u′)

for the sake of simplicity, such that g is exchangeable with respect to its 2N first arguments.

Lemma 5.2. For any exchangeable probability distribution P on (Z1, . . . ,Z2N), for any measurable function η : (X ×
R)2N → R that is exchangeable with respect to its 2 × 2N arguments, for any measurable function λ : (X × R)2N →
R

∗+ that is exchangeable with respect to its 2 × 2N arguments, for any θ ∈ Θ and any g ∈ G:

P exp

(
λ

N

N∑
i=1

{
g
[
θ(Xi+N),Yi+N

] − g
[
θ(Xi), Yi

]} − λ2

cgN2

2N∑
i=1

g
[
θ(Xi), Yi

]2 − η

)
≤ P exp(−η)

and the reverse inequality:

P exp

(
λ

N

N∑
i=1

{
g
[
θ(Xi), Yi

] − g
[
θ(Xi+N),Yi+N

]} − λ2

cgN2

2N∑
i=1

g
[
θ(Xi), Yi

]2 − η

)
≤ P exp(−η),



72 P. Alquier

where we write:

η = η
(
(X1, Y1), . . . , (X2N,Y2N)

)
,

λ = λ
(
(X1, Y1), . . . , (X2N,Y2N)

)
for short, and:

cg =
{

2 if g is nonnegative,

1 otherwise.

Proof. In order to prove the first inequality, we write:

P exp

(
λ

N

N∑
i=1

{
g
[
θ(Xi+N),Yi+N

] − g
[
θ(Xi), Yi

]} − λ2

N2

2N∑
i=1

g
[
θ(Xi), Yi

]2 − η

)

=P exp

(
N∑

i=1

log cosh

{
λ

N
g
[
θ(Xi+N),Yi+N

] − λ

N
g
[
θ(Xi), Yi

]} − λ2

N2

2N∑
i=1

g
[
θ(Xi), Yi

]2 − η

)
.

This last step is true because P is exchangeable. We conclude by using the inequality:

∀x ∈ R, log coshx ≤ x2

2
.

We obtain:

log cosh

{
λ

N
g
[
θ(Xi+N),Yi+N

] − λ

N
g
[
θ(Xi), Yi

]} ≤ λ2

2N2

{
g
[
θ(Xi+N),Yi+N

] − g
[
θ(Xi), Yi

]}2

≤ λ2

cgN2
g
[
θ(Xi), Yi

]2
.

The proof for the reverse inequality is exactly the same. �

We can now give the proof of the theorems.

Proof of Theorem 3.1. From now on we assume that the hypothesis of Theorem 3.1 are satisfied. Let us choose
ε′ > 0 and apply Lemma 5.2 with η = − log ε′, and g such that g(u,u′) = uu′. We obtain: for any exchangeable
distribution P , for any measurable function λ: (X × R)2N → R

∗+ that is exchangeable with respect to its 2 × 2N

arguments, for any θ ∈ Θ :

P exp

(
λ

N

N∑
i=1

[
θ(Xi+N)Yi+N − θ(Xi)Yi

] − λ2

N2

2N∑
i=1

θ(Xi)
2Y 2

i + log ε′
)

≤ ε′

and the reverse inequality:

P exp

(
λ

N

N∑
i=1

[
θ(Xi)Yi − θ(Xi+N)Yi+N

] − λ2

N2

2N∑
i=1

θ(Xi)
2Y 2

i + log ε′
)

≤ ε′.

Let us denote:

f
(
θ, ε′, λ

) = λ

∣∣∣∣∣ 1

N

N∑
i=1

[
θ(Xi+N)Yi+N − θ(Xi)Yi

] − λ2

N2

2N∑
i=1

θ(Xi)
2Y 2

i

∣∣∣∣∣ + log ε′.
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The previous inequalities imply that: for any exchangeable P , for any measurable function λ : (X × R)2N → R
∗+

that is exchangeable with respect to its 2 × 2N arguments, for any θ ∈ Θ :

P expf
(
(Z1, . . . ,Z2N), θ, ε′, λ

) ≤ 2ε′. (5.3)

Now, let us introduce a new conditional probability measure:

�P = 1

(2N)!
∑

σ∈S2N

δ(Xσi
,Yσi

)i∈{1,...,2N} .

Remark that P2N being exchangeable, we have, for any bounded function h : (X × R)2N → R,

P2Nh = P2N(�Ph).

The measure �P is exchangeable, so we can apply Eq. (5.3). For any values of Z1, . . . ,Z2N we have:

∀θ ∈ Θ, �P expf
(
(Z1, . . . ,Z2N), θ, ε′, λ

) ≤ 2ε′.

In particular, we can choose θ = θ(Z1, . . . ,Z2N) as an exchangeable function of (Z1, . . . ,Z2N), because we will
have:

1

(2N)!
∑

σ∈S2N

expf
(
(Zσ(1), . . . ,Zσ(2N)), θ(Zσ(1), . . . ,Zσ(2N)), ε

′, λ
)

= 1

(2N)!
∑

σ∈S2N

expf
(
(Zσ(1), . . . ,Zσ(2N)), θ(Z1, . . . ,Z2N), ε′, λ

) ≤ ε′.

Here, we choose as functions θ the members of Θ0: θ1, . . . , θm (remember that we choose this indexation in such
a way that for any k, θk is an exchangeable function of (Z1, . . . ,Z2N)). We have, for any λ1, . . . , λm that are m

exchangeable functions of (Z1, . . . ,Z2N):

P2N

[∃k ∈ {1, . . . ,m}, f (
(Z1, . . . ,Z2N), θk, ε

′, λk

)
> 0

]
= P2N

[
m⋃

k=1

{
f

(
(Z1, . . . ,Z2N), θk, ε

′, λk

)
> 0

}]

≤ P2N

[
m∑

k=1

1
(
f

(
(Z1, . . . ,Z2N), θk, ε

′, λk

)
> 0

)]

= P2N
�P
[

m∑
k=1

1
(
f

(
(Z1, . . . ,Z2N), θk, ε

′, λk

)
> 0

)]

= P2N

m∑
k=1

�P [
1
(
f

(
(Z1, . . . ,Z2N), θk, ε

′, λk

)
> 0

)]

≤ P2N

m∑
k=1

�P expf
(
(Z1, . . . ,Z2N), θk, ε

′, λk

)
.

Now let us apply inequality (5.3), we obtain:

P2N

[∃k ∈ {1, . . . ,m}, f (
(Z1, . . . ,Z2N), θk, ε

′, λk

)
> 0

] ≤ P2N

m∑
k=1

2ε′ = 2ε′m = ε
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if we choose:

ε′ = ε

2m
.

From now, we assume that the event:{
∀k ∈ {1, . . . ,m}, f

(
(Z1, . . . ,Z2N), θk,

ε

2m
,λk

)
≤ 0

}

is satisfied. It can be written, for any k ∈ {1, . . . ,m}:∣∣∣∣∣ 1

N

N∑
i=1

[
θk(Xi+N)Yi+N − θk(Xi)Yi

]∣∣∣∣∣ ≤ λk

N2

2N∑
i=1

θk(Xi)
2Y 2

i + log(2m/ε)

λk

.

Let us divide both inequalities by:

1

N

2N∑
i=N+1

θk(Xi)
2.

We obtain, for any k ∈ {1, . . . ,m}:
∣∣αk

2 − Ckαk
1

∣∣ ≤ (λk/N
2)

∑2N
i=1 θk(Xi)

2Y 2
i + (log(2m/ε))/λk

(1/N)
∑2N

i=N+1 θk(Xi)2
.

It is now time to choose the functions λk . We try to optimize the right-hand side with respect to λk , and obtain a
minimal value for:

λk =
√

N log(2m/ε)

(1/N)
∑2N

i=1 θk(Xi)2Y 2
i

.

This choice is admissible because it is exchangeable with respect to (Z1, . . . ,Z2N).
So we have, for any k ∈ {1, . . . ,m}:

∣∣Ckαk
1 − αk

2

∣∣ ≤ 2

√
(1/N2)

∑2N
i=1[θk(Xi)2Y 2

i ] log(2m/ε)

(1/N)
∑2N

i=N+1 θk(Xi)2
.

Finally, remark that:

∣∣Ckαk
1 − αk

2

∣∣ =
√√√√ r2[(Ckαk

1)θk] − r2(α
k
2θk)

(1/N)
∑2N

i=N+1 θk(Xi)2
,

which leads to the conclusion that for any k ∈ {1, . . . ,m}:

r2
[(
Ckαk

1

)
θk

] − r2
(
αk

2θk

) ≤ 22 (1/N2)
∑2N

i=1[θk(Xi)
2Y 2

i ] log(2m/ε)

(1/N)
∑2N

i=N+1 θk(Xi)2
.

This ends the proof. �

Proof of Theorem 3.2. We write:

1

N

2N∑
i=1

θk(Xi)
2Y 2

i = 1

N

N∑
i=1

θk(Xi)
2Y 2

i + 1

N

2N∑
i=N+1

θk(Xi)
2Y 2

i
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and try to upper bound the second term. We apply Lemma 5.2, but this time with g such that g(u) = (uu′)2 that is
nonnegative, and obtain, for any ε, for any (exchangeables) θ and λ:

1

N

2N∑
i=N+1

θk(Xi)
2Y 2

i ≤ 1

N

N∑
i=1

θk(Xi)
2Y 2

i + λ

2N

(
1

N

) 2N∑
i=1

θk(Xi)
4Y 4

i + log ε

λ
.

We choose:

λ =
√

2N log ε

(1/N)
∑2N

i=1 θk(Xi)4Y 4
i

,

we apply this result to every θ ∈ Θ0, and combine it with Theorem 3.1 by a union bound argument to obtain the
result. �

5.3. Proof of Theorem 3.3

First of all, we give the following obvious variant of Lemma 5.2:

Lemma 5.3. For any exchangeable probability distribution P on (Z1, . . . ,Z2N), for any measurable function η : (X ×
R)2N → R that is exchangeable with respect to its 2 × 2N arguments, for any measurable function λ : (X × R)2N →
R

∗+ that is exchangeable with respect to its 2 × 2N arguments, for any θ ∈ Θ :

P exp

(
λ

N

N∑
i=1

{[
θ(Xi+N)Yi+N − α(θ)θ(Xi+N)2] − [

θ(Xi)Yi − α(θ)θ(Xi)
2]}

− λ2

N2

2N∑
i=1

[
θ(Xi)Yi − α(θ)θ(Xi)

2]2 − η

)
≤ P exp(−η)

and the reverse inequality, where:

α(θ) = arg min
α∈R

r1,2(αθ).

Proof. This is actually just an application of Lemma 5.2, we just need to remark that α(θ) is an exchangeable function
of (Z1, . . . ,Z2N), and so we can take in Lemma 5.2:

g
(
u,u′) = uu′ − u2α(θ),

that means that:

g
[
θ(Xi), Yi

] = θ(Xi)Yi − α(θ)θ(Xi)
2. �

Proof of Theorem 3.3. Proceeding exactly in the same way as in the proof of Theorem 3.1, we obtain the following
inequality with probability at least 1 − ε:

r2
(
Ckαk

1θk

) − r2
(
αk

2θk

) ≤ 4

[
(1/N)

∑2N
i=1[θk(Xi)Yi − αk

1,2θk(Xi)
2]2

(1/N)
∑2N

i=N+1 θk(Xi)2

]
log(2m/ε)

N
. (5.4)

This proves the theorem. �
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Before giving the proof of the next theorem, let us see how we can make the first-order term observable in this
theorem. For example, we can write:[

θk(Xi)Yi − αk
1,2θk(Xi)

2]2 = [
θk(Xi)Yi − αk

1θk(Xi)
2]2 + [

αk
1 − αk

1,2

]2
θk(Xi)

4

+ 2
[
θk(Xi)Yi − αk

1θk(Xi)
2][αk

1 − αk
1,2

]
θk(Xi)

2.

Remark that it is obvious that:∣∣αk
1 − αk

1,2

∣∣ ≤ ∣∣αk
1 − αk

2

∣∣,
and so:[

θk(Xi)Yi − αk
1,2θk(Xi)

2]2 ≤ [
θk(Xi)Yi − αk

1θk(Xi)
2]2 + [

αk
1 − αk

2

]2
θk(Xi)

4

+ 2
∣∣θk(Xi)Yi − αk

1θk(Xi)
2
∣∣∣∣αk

1 − αk
2

∣∣θk(Xi)
2.

Now, just write:

αk
1 − αk

2 = (
1 − Ck

)
αk

1 − (
Ckαk

1 − αk
2

)
and so we get:[

θk(Xi)Yi − αk
1,2θk(Xi)

2]2 ≤ [
θk(Xi)Yi − αk

1θk(Xi)
2]2 + [

Ckαk
1 − αk

2

]2
θk(Xi)

4

+ 2
∣∣Ckαk

1 − αk
2

∣∣∣∣(1 − Ck
)
αk

1

∣∣θk(Xi)
4 + (

1 − Ck
)2(

αk
1

)2
θk(Xi)

4

+ 2
∣∣θk(Xi)Yi − αk

1θk(Xi)
2
∣∣∣∣Ckαk

1 − αk
2

∣∣θk(Xi)
2

+ 2
∣∣θk(Xi)Yi − αk

1θk(Xi)
2
∣∣∣∣(Ck − 1

)
αk

1

∣∣θk(Xi)
2.

So finally, Eq. (5.4) left us with a second degree inequality with respect to |Ckαk
1 − αk

2 | or r2(Ckαk
1θk) − r2(α

k
2θk) that

we can solve to obtain the following result: with probability at least 1 − ε, as soon as we have:[
1

N

2N∑
i=N+1

θk(Xi)
2

]2

>

[
1

N

2N∑
i=1

θk(Xi)
4

]
4 log(2m/ε)

N
,

which is always true for large enough N , the quantity |Ckαk
1 − αk

2 | belongs to the interval:

[
2 log(2m/ε)

N

b ±
√

b2 + a((N/log(2m/ε))[(1/N)
∑2N

i=N+1 θk(Xi)2]2 − (4/N)
∑2N

i=1 θk(Xi)4)

[(1/N)
∑2N

i=N+1 θk(Xi)2]2 − (4 log(2m/ε)/N)[(1/N)
∑2N

i=1 θk(Xi)4]

]

with the following notations:

a = 1

N

2N∑
i=1

[∣∣θk(Xi)Yi − αk
1θk(Xi)

2
∣∣ + ∣∣α1

k

(
1 − Ck

)∣∣θk(Xi)
2]2

,

b = 1

N

2N∑
i=1

2θk(Xi)
2[∣∣α1

k

(
1 − Ck

)∣∣θk(Xi)
2 + ∣∣θk(Xi)Yi − αk

1θk(Xi)
2
∣∣].

Remark that only one of the bounds of the interval is positive. So we obtain the following result: with P2N -probability
at least 1 − ε, as soon as:[

1

N

2N∑
i=N+1

θk(Xi)
2

]2

>

[
1

N

2N∑
i=1

θk(Xi)
4

]
4 log(2m/ε)

N
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we have:

∀k ∈ {1, . . . ,m},
r2

[(
Ckαk

1

)
θk

] − r2
(
αk

2θk

)
≤ 4 log2(2m/ε)

N2

[
1

N

2N∑
i=1

θk(Xi)
2

]

×
[

b +
√

b2 + a((N/ log(2m/ε))[(1/N)
∑2N

i=N+1 θk(Xi)2]2 − (4/N)
∑2N

i=1 θk(Xi)4)

[(1/N)
∑2N

i=N+1 θk(Xi)2]2 − ((4 log(2m/ε))/N)[(1/N)
∑2N

i=1 θk(Xi)4]

]2

.

We can notice that this bound may be written:

r2
[(
Ckαk

1

)
θk

] − r2
(
αk

2θk

) ≤ 8a log(2m/ε)

N
+ O

([
log(m/ε)

N

]3/2)

= 8 log(2m/ε)

N

[
1

N

2N∑
i=1

(
θk(Xi)Yi − αk

1θk(Xi)
2)2

]
+ O

([
log(m/ε)

N

]3/2)
.

The next step would be now to replace the bound by an observable quantity, by getting a bound like:

1

N

2N∑
i=1

(
θk(Xi)Yi − αk

1θk(Xi)
2)2 ≤ 2

N

N∑
i=1

(
θk(Xi)Yi − αk

1θk(Xi)
2)2 + O

(
log(m/ε)

N

)

with high probability. This can be done very simply, using Lemma 5.2 with this time:

g
(
u,u′) = (

uu′ − u2α(θ)
)2

.

We obtain the bound:

r2
[(
Ckαk

1

)
θk

] − r2
(
αk

2θk

) ≤ 16 log(4m/ε)

N

[
1

N

N∑
i=1

(
θk(Xi)Yi − αk

1θk(Xi)
2)2

]
+ O

([
log(m/ε)

N

]3/2)
.

5.4. Proof of Theorem 3.4

The proof is exactly similar, we just use a new variant of lemma 5.2, that is based on an idea introduced by Catoni [8]
in the context of classification.

Definition 5.2. Let us write:

Tθ (Zi) = θ(Xi)Yi

for short. We also introduce a conditional probability measure:

P(2) = 1

N !
∑

σ∈SN

δ(Z1,...,ZN ,ZN+σ(1),...,ZN+σ(N)).

Remark that, because P is exchangeable, we have, for any function h:

Ph =P
[
P(2)h

]
.
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Lemma 5.4. For any exchangeable probability distribution P on (Z1, . . . ,Z2N), for any measurable function η : (X ×
R)2N → R that is exchangeable with respect to its 2 × 2N arguments, for any measurable function λ : (X × R)2N →
R

∗+ which is such that, for any i ∈ {1, . . . ,2N}:
λ(Z1, . . . ,Z2N) = λ(Z1, . . . ,Zi−1,Zi+N,Zi+1, . . . ,Zi+N−1,Zi,Zi+N+1, . . . ,Z2N),

for any θ ∈ Θ :

P exp

{
P(2)λ

N

N∑
i=1

[
Tθ (Zi) − Tθ (Zi+N)

] −P(2)

[
λ2

2N2

1

N

N∑
i=1

[
Tθ (Zi) − Tθ (Zi+N)

]2

]
− η

}
≤P exp(−η)

and the reverse inequality.

Proof. Let Lhs denote the left-hand side of Lemma 5.4. For short, let us put:

s(θ) = 1

N

N∑
i=1

[
θ(Xi+N)Yi+N − θ(Xi)Yi

]2 = 1

N

N∑
i=1

[
Tθ (Zi) − Tθ (Zi+N)

]2
.

Then we have:

Lhs = P2N expP (2)

(
λ

N

N∑
i=1

[
Tθ (Zi) − Tθ (Zi+N)

] − λ2

2N
s(θ) − η

)

≤ P2NP (2) exp

(
λ

N

N∑
i=1

[
Tθ (Zi) − Tθ (Zi+N)

] − λ2

2N
s(θ) − η

)
,

by Jensen’s conditional inequality. Now, we can conclude as in Lemma 5.2:

Lhs = P2N exp

(
N∑

i=1

log cosh

{
λ

N

[
Tθ (Zi) − Tθ (Zi+N)

]} − λ2

2N
s(θ) − η

)

≤ P2N exp

(
λ2

2N2

N∑
i=1

[
Tθ (Zi) − Tθ (Zi+N)

]2 − λ2

2N
s(θ) − η

)

= P2N exp(−η). �

Proof of Theorem 3.4. We apply both inequalities of Lemma 5.4 to every θk, k ∈ {1, . . . ,m}, and we take:

λ =
√

2N log(2m/ε)

s(θ)
.

We obtain, for any k ∈ {1, . . . ,m}:

P exp

{
P(2)λ

N

N∑
i=1

[
Tθ (Zi) − Tθ (Zi+N)

] − log
2m

ε
− η

}
≤ ε.

Or, with probability at least 1 − ε, for any k:

1

N

N∑
i=1

[
Tθ (Zi) − Tθ (Zi+N)

] ≤
√

2 log(2m/ε)

N

[
P(2)

(
s(θ)−1/2)]−1

,
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so: [
1

N

N∑
i=1

Tθ (Zi) − 1

N

2N∑
i=N+1

Tθ (Zi)

]2

≤ 2 log(2m/ε)

N
P(2)s(θ).

We end the first part of the proof by noting that:

P(2)s(θ) = V1(θ) + V2(θ) +
[

1

N

N∑
i=1

Tθ (Zi) − 1

N

2N∑
i=N+1

Tθ (Zi)

]2

.

Now, let us see how we can obtain the second part of the theorem. Note that:

V2(θ) = 1

N

2N∑
i=N+1

Tθ (Zi)
2 −

(
1

N

2N∑
i=N+1

Tθ (Zi)

)2

.

We upper bound the first term by using Lemma 5.2 with g(θ(Xi), Yi) = θ(Xi)
2Y 2

i = Tθ (Zi)
2, so with probability at

least 1 − ε, for any k:

1

N

2N∑
i=N+1

Tθ (Zi)
2 ≤ 1

N

N∑
i=1

Tθ (Zi)
2 +

√
2 log(m/ε)(1/N)

∑2N
i=1 Tθ (Zi)4

N
.

For the second-order term, we use both inequalities of Lemma 5.2 with g(θ(Xi), Yi) = θ(Xi)Yi = Tθ (Zi), so with
probability at least 1 − ε, for any k:(

1

N

N∑
i=1

Tθ (Zi)

)2

−
(

1

N

2N∑
i=N+1

Tθ (Zi)

)2

≤
∣∣∣∣∣ 1

N

N∑
i=1

Tθ (Zi) − 1

N

2N∑
i=N+1

Tθ (Zi)

∣∣∣∣∣
∣∣∣∣∣ 1

N

2N∑
i=1

Tθ (Zi)

∣∣∣∣∣
≤ 2

√
(1/N)

∑2N
i=1 Tθ (Zi)2 log(2m/ε)

N

1

N

2N∑
i=1

∣∣Tθ (Zi)
∣∣.

Putting all pieces together (and replacing ε by ε/3) ends the proof. �

5.5. Proof of Theorem 3.5

Proof of Theorem 3.5. We introduce the following conditional probability measures, for any i ∈ {1, . . . ,N}:

Pi = 1

(k + 1)!
×

∑
σ∈Sk+1

δ(Z1,...,Zi−1,ZN(σ(1)−1)+i ,Zi+1,...,ZN+i−1,ZN(σ(2)−1)+i ,ZN+i+1,...,...,ZkN+i−1,ZN(σ(k+1)−1)+i ,ZkN+i+1,...,Z(k+1)N ).

and

P =
N⊗

i=1

Pi

and, finally, remember that:

P = 1

(k + 1)N

(k+1)N∑
i=1

δZi
.
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Note that, by exchangeability, for any nonnegative function

h : (X × R)(k+1)N → R

we have, for any i ∈ {1, . . . ,N}:
P(k+1)N Pih(Z1, . . . ,Z2N) = P(k+1)Nh(Z1, . . . ,Z2N).

Lemma 5.5. Let χ be a function R → R. For any exchangeable functions λ, η : (X × R)(k+1)N → R+ and θ : (X ×
R)(k+1)N → Θ we have:

P exp

{
λ

[
1

kN

(k+1)N∑
i=N+1

χ
[
θ(Xi)Yi

] − 1

N

N∑
i=1

χ
[
θ(Xi)Yi

]] − η

}

≤ exp(−η) exp

{
λ2(1 + k)2

2Nk2
P
{[

χ
(
θ(X)Y

) − Pχ
(
θ(X)Y

)]2}

+ λ3(1 + k)3

6N2k3

[
sup

i∈{1,...,(k+1)N}
χ

(
θ(Xi)Yi

) − inf
i∈{1,...,(k+1)N}χ

(
θ(Xi)Yi

)]3
}
,

where we put λ = λ(Z1, . . . ,Z(k+1)N ), θ = θ(Z1, . . . ,Z(k+1)N ) and η = η(Z1, . . . ,Z(k+1)N ) for short. We have the
reverse inequality as well.

Before giving the proof, let us introduce the following useful notations.

Definition 5.3. We put, for any θ ∈ Θ , for any function χ :

χθ
i = χ

(
Yiθ(Xi)

)
,

and

χθ = χ
(
Yθ(X)

)
that means that:

Pχθ = 1

(k + 1)N

(k+1)N∑
i=1

χθ
i .

We also put:

Sχ (θ) = sup
i∈{1,...,(k+1)N}

χθ
i − inf

i∈{1,...,(k+1)N}χ
θ
i .

Proof of the Lemma 5.5. Remark that, for any exchangeable functions λ, η : (X × R)(k+1)N → R+ and θ : (X ×
R)kN → Θ we have:

P exp

{
λ

[
1

kN

(k+1)N∑
i=N+1

g
[
θ(Xi)Yi

] − 1

N

N∑
i=1

g
[
θ(Xi)Yi

]] − η

}

= exp(−η)

N∏
i=1

Pi exp

{
λ

kN

k∑
j=1

χθ
i+jN − λ

N
χθ

i

}

= exp(−η)

N∏
i=1

exp

{
λ

kN

k∑
j=0

χθ
i+jN

}
N∏

i=1

Pi exp

{
−λ(1 + k)

kN
χθ

i

}
,
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where we put λ = λ(Z1, . . . ,ZkN), θ = θ(Z1, . . . ,ZkN) and η = η(Z1, . . . ,ZkN) for short.
Now, we have:

log
N∏

i=1

Pi exp

{
−λ(1 + k)

kN
χθ

i

}
=

N∑
i=1

log Pi exp

{
−λ(1 + k)

kN
χθ

i

}
,

and, for any i ∈ {1, . . . ,N}:

log Pi exp

{
−λ(1 + k)

Nk
χθ

i

}

= −λ(1 + k)

Nk
Piχ

θ
i + λ2(1 + k)2

2N2k2
Pi

[(
χθ

i − Piχ
θ
i

)2]

−
∫ λ(1+k)/(Nk)

0

1

2

(
λ(1 + k)

Nk
− β

)2 1

Pi exp[−βχθ
i ]Pi

[(
χθ

i − Pi{χθ
i exp[−βχθ

i ]}
Pi exp[−βχθ

i ]
)3

exp
(−βχθ

i

)]
dβ.

Note that, for any β ≥ 0:

1

Pi exp[−βχθ
i ]Pi

[(
χθ

i − Pi{χθ
i exp[−βχθ

i ]}
Pi exp[−βχθ

i ]
)3

exp
(−βχθ

i

)] ≤
[

sup
j∈{1,...,k}

χθ
i+(j−1)N − inf

j∈{1,...,k}χ
θ
i+(j−1)N

]3
,

and so:

log
N∏

i=1

Pi exp

{
−λ(1 + k)

Nk
χθ

i

}
≤ − 1

N

N∑
i=1

λ(1 + k)

k
Piχ

θ
i + 1

N

N∑
i=1

λ2(1 + k)2

2Nk2
Pi

[(
χθ

i − Piχ
θ
i

)2]

+ λ3(1 + k)3

6N2k3

[
sup

i∈{1,...,(k+1)N}
χθ

i − inf
i∈{1,...,(k+1)N}χ

θ
i

]3
.

Note that:

Piχ
θ
i = 1

k + 1

k∑
j=0

χθ
i+jN

and so:

1

N

N∑
i=1

Piχ
θ
i = 1

(k + 1)N

(k+1)N∑
i=1

χθ
i = Pχθ ;

remark also that:

1

N

N∑
i=1

Pi

[(
χθ

i − Piχ
θ
i

)2] ≤ 1

(k + 1)N

(k+1)N∑
i=1

[
χθ

i −
(

1

(k + 1)N

(k+1)N∑
j=1

χθ
j

)]2

= P
[(

χθ − Pχθ
)2]

,

we obtain:

P exp

{
λ

[
1

kN

(k+1)N∑
i=N+1

θ(Xi)Yi − 1

N

N∑
i=1

θ(Xi)Yi

]
− η

}

= exp(−η) exp

{
λ2(1 + k)2

2Nk2
P
[(

χθ − Pχθ
)2] + λ3(1 + k)3

6N2k3

[
sup

i∈{1,...,(k+1)N}
χθ

i − inf
i∈{1,...,(k+1)N}χ

θ
i

]3
}
.
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The proof of the reverse inequality is exactly the same. �

Let us choose here again χ such that χ(u) = u, namely: χ = id . By the use of a union bound argument on elements
of Θ0 we obtain, for any ε > 0, for any exchangeable function λ : (X ×R)(k+1)N → R+, with probability at least 1−ε,
for any h ∈ {1, . . . ,m}:

1

kN

(k+1)N∑
i=N+1

θh(Xi)Yi − 1

N

N∑
i=1

θh(Xi)Yi

≤ λ(1 + 1/k)2

2N
P
[(

χθh − Pχθh
)2] + λ2(1 + 1/k)3

6N2
Sid (θh)

3 + log(m/ε)

λ
.

Let us choose, for any h ∈ {1, . . . ,m}:

λ =
√

2N log(m/ε)

(1 + 1/k)2P[(χθh − Pχθh)2] ,

the bound becomes:

1

kN

(k+1)N∑
i=N+1

θh(Xi)Yi − 1

N

N∑
i=1

θh(Xi)Yi

≤
(

1 + 1

k

)[
2

√
P[(χθh − Pχθh)2] log(m/ε)

2N
+ Sid (θh)

3 log(m/ε)

3NP[(χθh − Pχθh)2]
]
.

We use the reverse inequality exactly in the same way, we then combine both inequality by a union bound argument
and obtain the following result. For any ε > 0, with P(k+1)N probability at least 1− ε we have, for any h ∈ {1, . . . ,m}:

r2
(
Chαh

1 θh

) − r2
(
αh

2 θh

) ≤ (1 + 1/k)2

(1/(kN))
∑(k+1)N

i=N+1 θh(Xi)2

[
2Vθh

log(2m/ε)

N

+ 2(log(2m/ε))3/2Sid (θh)
3

3N3/2V
1/2
θh

+ (log(2m/ε))2Sid (θh)
6

9N2V
2
θh

]
, (5.5)

remember that:

Vθ = P
{[(

θ(X)Y
) − P

(
θ(X)Y

)]2}
.

We now give a new lemma.

Lemma 5.6. Let us assume that P is such that, for any h ∈ {1, . . . ,m}:
∃βh > 0, ∃Bh ≥ 0, P exp

(
βh

∣∣θh(X)Y
∣∣) ≤ Bh.

This is for example the case if θh(Xi)Yi is subgaussian, with any βh > 0 and

Bh = 2 exp

{
β2

h

2
P

[(
θh(X)Y

)2]}
.

Then we have, for any ε ≥ 0:

P(k+1)N

{
sup

1≤i≤(k+1)N

θh(Xi)Yi ≤ 1

βh

log
(k + 1)NBh

ε

}
≥ 1 − ε.
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Proof. We have:

P(k+1)N

(
sup

1≤i≤(k+1)N

θh(Xi)Yi ≥ s
)

= P(k+1)N

(∃i ∈ {
1, . . . , (k + 1)N

}
, θh(Xi)Yi ≥ s

)

=
(k+1)N∑

i=1

P 1θh(Xi)Yi≥s

≤ (k + 1)NP exp
(
βh

∣∣θh(Xi)Yi − s
∣∣) ≤ (k + 1)NBh exp(−βhs).

Now, let use choose:

s = 1

βh

log
(k + 1)NBh

ε
,

and we obtain the lemma. �

As a consequence, using a union bound argument, we have, for any ε ≥ 0, with probability at least 1 − ε, for any
h ∈ {1, . . . ,m}:

Sid (θh) = sup
i∈{1,...,(k+1)N}

θh(Xi)Yi − inf
i∈{1,...,(k+1)N} θh(Xi)Yi ≤ 2

βh

log
2(k + 1)mNBh

ε
.

By plugging the lemma into Eq. (5.5) we obtain the theorem. �

5.6. Proof of Theorem 2.1: integration of the transductive results

Actually, the proof is quite direct now: instead of using the techniques given in the section devoted to the inductive
case, we use a result valid in the transductive case and integrate it with respect to the test sample. This idea is quite
classical in learning theory, and was actually one of the reason for the introduction of the transductive setting (see
[22] for example). There are several ways to perform this integration (see for example [6]), here we choose to apply a
result obtained by Panchenko [17] that gives a particularly simple result here.

Lemma 5.7 ([17], Corollary 1). Let us assume that we have i.i.d. variables T1, . . . , TN (with distribution P and
values in R) and an independent copy T ′ = (T ′

1, . . . , T
′
N) of T = (T1, . . . , TN). Let ξj (T ,T ′) for j ∈ {1,2,3} be three

measurables functions taking values in R, and ξ3 ≥ 0. Let us assume that we know two constants A ≥ 1 and a > 0
such that, for any u > 0:

P ⊗2N
[
ξ1

(
T ,T ′) ≥ ξ2

(
T ,T ′) +

√
ξ3

(
T ,T ′)u] ≤ A exp(−au).

Then, for any u > 0:

P ⊗2N
{
P ⊗2N

[
ξ1

(
T ,T ′)|T ] ≥ P ⊗2N

[
ξ2

(
T ,T ′)|T ] +

√
P ⊗2N

[
ξ3

(
T ,T ′)|T ]

u
} ≤ A exp(1 − au).

Proof of Theorem 2.1. A simple application of the first inequality of Lemma 5.2 (given as a tool for the proof of the
transductive results) with ε > 0, any k ∈ {1, . . . ,m}, g = id , η = 1 + log 2m

ε
and:

λk =
√

Nη

(1/N)
∑2N

i=1 θk(Xi)2Y 2
i

leads us to the following bound, for any k:

P ⊗2N exp

[√
Nη

(1/N)
∑N

i=1[θk(Xi)Yi − θk(Xi+N)Yi+N ]√
(1/N)

∑2N
i=1 θk(Xi)2Y 2

i

− 2η

]
≤ exp(−η),
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or:

P ⊗2N

[
1

N

N∑
i=1

[
θk(Xi)Yi − θk(Xi+N)Yi+N

] ≥
√√√√ 4η

N2

2N∑
i=1

θk(Xi)2Y 2
i

]
≤ exp(−η) = ε

2k exp(1)
.

We now apply Panchenko’s lemma with:

Ti = θk(Xi)Yi, T ′
i = θk(Xi+N)Yi+N,

ξ1
(
T ,T ′) = 1

N

N∑
i=1

Ti, ξ2
(
T ,T ′) = 1

N

N∑
i=1

T ′
i ,

ξ3
(
T ,T ′) = 2

N2

2N∑
i=1

θk(Xi)
2Y 2

i ≥ 0,

and A = a = 1. We obtain:

P ⊗2N

[
1

N

N∑
i=1

[
θk(Xi)Yi − P

[
θk(X)Y

]] ≥
√√√√ 4η

N2

N∑
i=1

[
θk(Xi)2Y 2

i + P
[
θk(X)2Y 2

]]] ≤ exp(1 − η) = ε

2k
.

Remark finally that:

P
[
θk(X)2Y 2] ≤ P

[
θk(X)2](B2 + σ 2).

We proceed exactly in the same way with the reverse inequalities for any k and combine the obtained 2m inequalities
to obtain the result:

P ⊗N

{
∃k ∈ {1, . . . ,m}, 1

N

N∑
i=1

∣∣θk(Xi)Yi − P
[
θk(X)Y

]∣∣

≥
√√√√4 + 4 log(2m/ε)

N2

N∑
i=1

{
θk(Xi)2Y 2

i + P
[
θk(X)2

](
B2 + σ 2

)}}

= P ⊗2N

{
∃k ∈ {1, . . . ,m}, 1

N

N∑
i=1

∣∣θk(Xi)Yi − P
[
θk(X)Y

]∣∣

≥
√√√√4 + 4 log(2m/ε)

N2

N∑
i=1

{
θk(Xi)2Y 2

i + P
[
θk(X)2

](
B2 + σ 2

)}} ≤ ε

that ends the proof. �

5.7. Proof of Theorems 4.1 and 4.2: Theorem 2.3 used as an oracle inequality

Proof of Theorem 4.1. Let us begin the proof with a general m and ε, the reason of the choice m = N and ε = N−2

will become clear. Let us also call E(ε) the event satisfied with probability at least 1 − ε in Theorem 2.1. We have:

P ⊗N
[∥∥Π

F ,m
P θ̂ − f

∥∥2
P

] = P ⊗N
[
1E(ε)

∥∥Π
F ,m
P θ̂ − f

∥∥2
P

] + P ⊗N
[
(1 − 1E(ε))

∥∥Π
F ,m
P θ̂ − f

∥∥2
P

]
.
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First of all, it is obvious that:

P ⊗N
[
(1 − 1E(ε))

∥∥Π
F ,m
P θ̂ − f

∥∥2
P

] ≤ 2P ⊗N
[
(1 − 1E(ε))

(∥∥Π
F ,m
P θ̂

∥∥2
P

+ ‖f ‖2
P

)]
≤ 2ε

(
B2m + B2) = 2ε(m + 1)B2.

For the other term, just remark that, for any m′ ≤ m:∥∥Π
F ,N
P θ̂ − f

∥∥2
P

= ∥∥Π
F ,m
P Π

m,ε
P · · ·Π1,ε

P 0 − f
∥∥2

P
≤ ∥∥Π

m,ε
P · · ·Π1,ε

P 0 − f
∥∥2

P
≤ ∥∥Π

m′,ε
P · · ·Π1,ε

P 0 − f
∥∥2

P

≤
m′∑

k=1

4[1 + log(2m/ε)]
N

[
1

N

N∑
i=1

θk(Xi)
2Y 2

i + B2 + σ 2

]
+ ‖�θm′ − f ‖2

P .

This is where Theorem 2.3 has been used as an oracle inequality: the estimator that we have, with m ≥ m′, is better
than the one with the “good choice” m′. We also have:

P ⊗N
[
1E(ε)

∥∥Π
F ,m
P θ̂ − f

∥∥2
P

] ≤ P ⊗N

[
m′∑

k=1

4[1 + log(2m/ε)]
N

[
1

N

N∑
i=1

θk(Xi)
2Y 2

i + B2 + σ 2

]]
+ (

m′)−2β
C

≤ m′ 8[1 + log(2m/ε)]
N

[
B2 + σ 2].

So finally, we obtain, for any m′ ≤ m:

P ⊗N
[∥∥Π

F ,m
P θ̂ − f

∥∥2
P

] ≤ m′ 8[1 + log(2m/ε)]
N

[
B2 + σ 2] + (

m′)−2β
C + 2ε(m + 1)B2.

The choice of:

m′ =
(

N

logN

)1/(2β+1)

leads to a first term of order N−2β/(2β+1) log m
ε
(logN)2β/(2β+1) and a second term of order N−2β/(2β+1) ×

(logN)2β/(2β+1). The choice of m = N and ε = N−2 gives a first and a second term of the desired order
N−2β/(2β+1)(logN)2β/(2β+1) while keeping the third term at order N−1. This proves the theorem. �

Proof of Theorem 4.2. Here again let us write E(ε) the event satisfied with probability at least 1 − ε in Theorem 2.1.
We have:

P ⊗N
[∥∥Π

F ,m
P θ̂ − f

∥∥2
P

] = P ⊗N
[
1E(ε)

∥∥Π
F ,m
P θ̂ − f

∥∥2
P

] + P ⊗N
[
(1 − 1E(ε))

∥∥Π
F ,m
P θ̂ − f

∥∥2
P

]
.

For the first term we still have:∥∥Π
F ,m
P θ̂ − f

∥∥2
P

≤ 2(m + 1)B2.

For the second term, let us write the expansion of f into our wavelet basis:

f = αφ +
∞∑

j=0

2j∑
k=1

βj,kψj,k,

and

θ̂ (x) = α̃φ +
J∑

j=0

2j∑
k=1

β̃j,kψj,k
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the estimator θ̂ . Let us put J = 2�(logN)/log 2�.

∥∥Π
F ,m
P θ̂ − f

∥∥2
P

≤ ‖θ̂ − f ‖2
P = ∥∥Π

m,ε
P · · ·Π1,ε

P 0 − f
∥∥2

P

= (α̃ − α)2 +
J∑

j=0

2j∑
k=1

(β̃j,k − βj,k)
2 +

∞∑
j=J+1

2j∑
k=1

β2
j,k

≤ (α̃ − α)2 +
J∑

j=0

2j∑
k=1

(β̃j,k − βj,k)
21

(|βj,k| ≥ κ
) +

J∑
j=0

2j∑
k=1

β2
j,k1

(|βj,k| < κ
) +

∞∑
j=J+1

2j∑
k=1

β2
j,k

for any κ ≥ 0, as soon as E(ε) is satisfied (here again we used Theorem 2.3 as an oracle inequality). Now, we follow
the technique used in [11] and [12] (see also the end of the third chapter in [7]). As soon as E(ε) is satisfied we have:

J∑
j=0

2j∑
k=1

(β̃j,k − βj,k)
21

(|βj,k| ≥ κ
) ≤ 8(B2 + σ 2) log(2m/ε)

N

J∑
j=0

2j∑
k=1

1
(|βj,k| ≥ κ

)

≤ 8(B2 + σ 2) log(2m/ε)

N

J∑
j=0

2j∑
k=1

( |βj,k|
κ

)2/(2s+1)

= 8(B2 + σ 2) log(2m/ε)

N
κ−2/(2s+1)

J∑
j=0

2j∑
k=1

|βj,k|2/(2s+1).

In the same way, we have:

J∑
j=0

2j∑
k=1

β2
j,k1

(|βj,k| < κ
) ≤ κ2−2/(1+2s)

J∑
j=0

2j∑
k=1

|βj,k|2/(1+2s).

So we have to give an upper bound on the quantity:

J∑
j=0

2j∑
k=1

|βj,k|2/(2s+1).

By Hölder’s inequality we have, as soon as p ≥ 2
2s+1 :

J∑
j=0

2j∑
k=1

|βj,k|2/(2s+1) ≤
J∑

j=0

[
2j (1+1/2−1/p)

2j∑
k=1

|βj,k|p
]2/(1+2s)

≤ ‖f ‖2/(1+2s)
s,p,q J (1−2/((1+2s)q))+ ,

let us put C′ = ‖f ‖2/(1+2s)
s,p,q . Finally, note that we have, for p ≥ 2:

∞∑
j=J+1

2j∑
k=1

β2
j,k ≤

∞∑
j=J+1

(
2j∑

k=1

β
p
j,k

)2/p

2j (1−2/p).

As f ∈ Bs,p,q ⊂ Bs,p,∞ we have:

(
2j∑

k=1

β
p
j,k

)2/p

≤ C′2−2j (s+1/2−1/p)
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for some C′′ and so:

∞∑
j=J+1

2j∑
k=1

β2
j,k ≤ C′′′2−2J s

for some C′′′. In the case where p < 2 we use (see [12], for s > 1
p

− 1
2 ):

Bs,p,q ⊂ Bs−1/p+1/2,2,q

to obtain:

∞∑
j=J+1

2j∑
k=1

β2
j,k ≤ C′′′′2−2J (s+1/2−1/p) ≤ C′′′′2−J .

So we have:

P ⊗Nd2(f̃ , f ) ≤ 2(m + 1)ε
(
B2 + σ 2) + 8(B2 + σ 2) log(2m/ε)

N

(
1 + C′κ−2/(1+2s)J (1−2/((1+2s)q))+)

+ C′κ2−2/(1+2s)J (1−2/((1+2s)q))+ + C′′′(2−J
)2s + C′′′′2−J .

Let us remember that:

N

2
≤ m = 2J ≤ N

and that ε = N−2, and take:

κ =
√

logN

N

to obtain the desired rate of convergence. �
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