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FINITE SIZE SCALING FOR THE CORE OF LARGE
RANDOM HYPERGRAPHS

BY AMIR DEMBO1 AND ANDREA MONTANARI2

Stanford University

The (two) core of a hypergraph is the maximal collection of hyperedges
within which no vertex appears only once. It is of importance in tasks such as
efficiently solving a large linear system over GF[2], or iterative decoding of
low-density parity-check codes used over the binary erasure channel. Similar
structures emerge in a variety of NP-hard combinatorial optimization and
decision problems, from vertex cover to satisfiability.

For a uniformly chosen random hypergraph of m = nρ vertices and n hy-
peredges, each consisting of the same fixed number l ≥ 3 of vertices, the size
of the core exhibits for large n a first-order phase transition, changing from
o(n) for ρ > ρc to a positive fraction of n for ρ < ρc, with a transition window
size �(n−1/2) around ρc > 0. Analyzing the corresponding “leaf removal”
algorithm, we determine the associated finite-size scaling behavior. In partic-
ular, if ρ is inside the scaling window (more precisely, ρ = ρc + rn−1/2),
the probability of having a core of size �(n) has a limit strictly between 0
and 1, and a leading correction of order �(n−1/6). The correction admits a
sharp characterization in terms of the distribution of a Brownian motion with
quadratic shift, from which it inherits the scaling with n. This behavior is
expected to be universal for a wide collection of combinatorial problems.

1. Introduction. The k-core of a nondirected graph G is the unique subgraph
obtained by recursively removing all vertices of degree less than k. In particular,
the 2-core, hereafter called the core of G, is the maximal collection of edges hav-
ing no vertex appearing in only one of them. With an abuse of language we shall
use the same term for the induced subgraph. The core of a hypergraph is analo-
gously defined and plays an important role in the analysis of many combinatorial
problems.

In the first of such applications, Karp and Sipser [24] (hereafter KS) considered
the problem of finding the largest possible matching (i.e., vertex disjoint set of
edges) in a graph G. They proposed an algorithm that recursively selects an edge
(i, j) ∈ G for which the vertex i has degree 1. If no such edge exists, the algo-
rithm declares a failure. Otherwise it includes it in the matching and removes it
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from the graph together with all the edges incident on j (that cannot belong to the
matching). Whenever the algorithm successfully matches all vertices, the resulting
matching can be proved to have maximal size. KS analyze the performance of such
an algorithm on uniformly random graphs with N vertices and M = �Nc/2� edges
as N → ∞, using the ODE asymptotic approximation for random processes, based
on [25] (cf. [2, 16] for recent contributions).

It is easy to realize that the algorithm is successful if and only if a properly
constructed hypergraph G̃ does not contain a core. The hypergraph G̃ includes a
node ẽ for each edge e in G, and a hyperedge ĩ for each vertex i of degree 2 or
more in G. The hyperedge ĩ is incident on ẽ in G̃ if and only if e is incident on i

in G.
A more recent application is related to the XOR-SAT problem, a simplified

version of satisfiability introduced in [11]. One is given a linear system over m

binary variables, composed of n equations modulo 2, each involving exactly l ≥ 3
variables. The authors of [12, 29] propose a simple “leaf removal” algorithm to
solve such a linear system. The algorithm recursively selects a variable that appears
in a single equation, and eliminates the corresponding equation from the system. In
fact, such an equation can be eventually satisfied by properly setting the selected
variable. If all the equations are removed by this procedure, a solution can be
constructed by running the process backward and fixing along the way the selected
variables.

A hypergraph G is associated to the linear system by including a vertex for each
variable, and a hyperedge for each equation. Hyperedge e is incident on vertex i

if and only if the corresponding equation involves the ith variable with nonzero
coefficient. It is easy to realize that the leaf removal algorithm is successful if and
only if the corresponding hypergraph G does not contain a core.

Uniformly random linear systems with n equations and m = ρn variables are
considered in [12, 29]. It is proved there that the algorithm is successful with high
probability if ρ is larger than a critical value ρc, and fails with high probability if
ρ < ρc. See Figure 1 for an illustration of this phenomenon. Further, it is shown
there that the structure of the set of solutions of the linear system changes dramat-
ically at ρc, exhibiting a “clustering effect” when ρ < ρc.

The same “solution clustering” phenomenon has been conjectured for a variety
of random combinatorial decision problems, on the basis of nonrigorous statistical
mechanics calculations. The most studied among these problems is the random
K-satisfiability, for which some indication of clustering is rigorously proved in
[5, 15]. Several authors suggest that the solution clustering phenomenon is related
to the poor performance of search algorithms on properly chosen ensembles of
random instances. Still within random K-satisfiability, the performance of certain
standard solution heuristics (such as the “pure-literal” rule) is also related to the
appearance of properly defined cores (see [28]).

We conclude with the application to the analysis of low-density parity-check
code ensembles, used for communication over the binary erasure channel, which
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FIG. 1. Probability that a random l = 3-hypergraph with m vertices and n = m/ρ hyperedges has
a nonempty 2-core estimated numerically for m = 100, . . . ,600. The vertical line corresponds to the
asymptotic threshold ρc ≈ 1.2218.

is the most relevant motivation for our work. The decoding of a noisy message
amounts in this case to finding the unique solution of a linear system over GF [2]
(the solution exists by construction, but is not necessarily unique, in which case
decoding fails). If the linear system includes an equation with only one variable,
we thus determine the value of this variable, and substitute it throughout the sys-
tem. Repeated recursively, this procedure either determines all the variables, thus
yielding the unique solution of the system, or halts on a linear subsystem each of
whose equations involves at least two variables. While such an algorithm is not
optimal (when it halts, the resulting linear subsystem might still have a unique so-
lution), it is the simplest instance of the widely used belief propagation decoding
strategy, that has proved extremely successful. For example, on properly optimized
code ensembles, this algorithm has been shown to achieve the theoretical limits for
reliable communication, that is, Shannon’s channel capacity (see [26]).

Once again, one can construct a hypergraph G by associating a hyperedge to
each variable, and a vertex to each equation (notice that this representation is
“dual” with respect to the one used for XOR-SAT). Decoding is successful (it finds
the unique solution) if and only if this hypergraph does not contain a core. For a
“reasonable” code ensemble the probability of this event approaches 1 (resp. 0)
when the noise level is smaller (larger) than a certain critical value. See [26] for an
explicit characterization of the critical noise value via an application of the ODE
method (based again on [25, 31]). Though this result has been successfully used for
code design, it is often a poor approximation for the moderate code block-length
(say, n = 102 to 105) that is relevant in practice.
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To overcome this problem, a finite-size scaling law is derived in [3], provid-
ing the probability of successfully decoding in the double limit of large size n,
and noise level approaching the critical value. In [3] the authors also conjecture
a “refined” law that describes how the finite-size scaling limit is approached, and
demonstrate empirically that this refined scaling formula is very accurate already
for short message lengths n ≈ 100, opening the way to an efficient code design
procedure (cf. [4]).

In this paper we resolve the conjecture by rigorously proving the refined scaling
law. To simplify the exposition we focus on a specific choice of the random ensem-
ble of equations, but our proof generalizes without much difficulty to a large vari-
ety of other cases, and in particular to all those mentioned in the conjecture of [3].
(In the coding language, the example we consider corresponds to LDPC ensembles
with regular left and Poisson right degree; it also coincides with the random XOR-
SAT ensemble introduced in [11] and treated in [12, 29].) In graph-theoretical
terms, we determine the probability that a uniformly random3 l-hypergraph (i.e.,
a hypergraph with hyperedges of size l) with n hyperedges and m = nρ vertices
has a nonempty core as n grows and ρ = ρ(n) approaches ρc. In the process of
establishing the refined scaling law we gain much insight about the core of such
random hypergraphs. For example, we determine the fluctuations in the size of
the core at criticality (see Remark 2.6), and show that if the hypergraph is built
one hyperedge at a time, then its core size jumps from zero to a positive fraction
of m at a random time nc, the distribution of which we explicitly determine (cf.
Remark 2.5).

Our proof strategy should apply without conceptual changes to other phase tran-
sitions within the same class, such as k-core percolation on random graphs (with
k ≥ 3), or the pure-literal rule threshold in random k-SAT (with k ≥ 3; cf. [17]).
Even beyond this family of closely related phenomena, the form of the refined
scaling law (in particular, the scaling with n of the scaling window and of the first
correction) are likely to be quite universal. For instance, in [3] it has been empir-
ically found to hold for iterative decoding of LDPC codes over general channels.
Within statistical physics, several core phase transitions have been studied as spe-
cial examples of “mean field dynamical glass transition” [33]. It is possible that
the refined finite-size scaling law generalizes to this (quite large) class as well.

Finite-size scaling has been the object of several investigations in statistical
physics and in combinatorics. Most of these studies estimate the size of the cor-
responding scaling window. That is, fixing a small value of ε > 0, they find the
amount of change in some control parameter which moves the probability of a rel-
evant event from ε to 1 − ε. A remarkably general result in this direction is the
rigorous formulation of a “Harris criterion” in [10, 35]. Under mild assumptions,

3Indeed, we work with a properly defined “configurational” model (somewhat similar to the one
introduced in [8]) to be defined in the next section.
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this implies that the scaling window has to be at least �(n−1/2) for a properly de-
fined control parameter (e.g., the ratio ρ of the number of nodes to hyper-edges in
our problem). A more precise result has recently been obtained for the satisfiable-
unsatisfiable phase transition for the random 2-SAT problem, yielding a window
of size �(n−1/3) [9]. Note, however, that statistical physics arguments suggest that
the phase transition we consider here is not from the same universality class as the
satisfiable-unsatisfiable transition for the random 2-SAT problem.

In contrast with the preceding, we provide a much sharper characterization,
yielding beyond the scaling window and the limiting scaling function, also the
asymptotic form of corrections to this limit. In this respect, our work is closer in
its level of precision to that for the scaling behavior in the emergence of the giant
component in Erdős–Rényi random graphs (for more on the latter, see [22] and the
references therein).

At the level of degenerate (or zero–one) fluid-limits, the asymptotic size of
k-core of random graphs is determined by [31] via the ODE method. See also [28]
for a general approach for deriving such results without recourse to ODE approx-
imations (using instead a method analogous to the “density evolution” technique
from coding theory).

Darling and Norris determine in [14] the asymptotic size of the 2-core of a
random hypergraph which is the “dual” of the model we consider here. Indeed,
the hyperedges in their model are of random, Poisson distributed, sizes, which
allows for a particularly simple Markovian description of the recursive algorithm
that constructs the core. Dealing as we do with random hypergraphs at the critical
point, where the asymptotic core size exhibits a discontinuity, they describe the
fluctuations around the deterministic limit via a certain linear SDE. In doing so,
they heavily rely on the powerful theory of weak convergence, in particular in the
context of convergence of Markov processes. For further results that are derived
along the same line of reasoning; see [13, 18, 19].

In contrast, as we outline in the next section, the focus of this paper is on correc-
tion terms and rates of convergence. These are beyond the scope of weak conver-
gence theory. In the context of our main result, Theorem 2.3, these only provide the
limit, as n → ∞ and ρn near its critical value, of the probability that a uniformly
chosen random hypergraph with n hyperedges over nρn vertices has a nonempty
2-core.

The need to estimate correction terms is why many steps in our proof involve
delicate coupling arguments, expanding and keeping track of the rate of decay of
approximation errors (in terms of n). Our technique can be extended to provide
rates of convergence (in the sup-norm) as n grows, for distributions of inhomoge-
neous Markov chains on Rd whose transition kernels Wt,n(xt+1 − xt = y|xt = x)

are approximately (in n) linear in x, and “strongly elliptic” of uniformly bounded
support with respect to y.
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2. Main result and outline of proof. We consider hypergraphs with n hy-
peredges over m = �nρ� vertices, ρ > 0. Each hyperedge is an ordered list of
l ≥ 3, not necessarily distinct vertices chosen independently and uniformly at ran-
dom with replacement. We are interested in the probability Pl(n,ρ) that a random
hypergraph from this ensemble has a nonempty 2-core (i.e., the existence of a non-
empty list of hyperedges such that, if a vertex appears in this list, then it does so at
least twice).

In the next section we construct an inhomogeneous Markov chain {	z(τ ) =
(z1(τ ), z2(τ )), n ≥ τ ≥ 0}, where z1(τ ) and z2(τ ) keep track, respectively, of the
number of vertices of degree 1 and of degree at least 2 after τ steps of the deci-
mation algorithm. As we show in Section 5, in the large n limit, this chain is well
approximated by a simpler chain with transition probabilities,

P̂n,ρ{	z(τ + 1) = 	z + (q1 − q0,−q1)|	z(τ ) = 	z}
(2.1)

=
(

l − 1
q0 − 1, q1, q2

)
p
q0−1
0 p

q1
1 p

q2
2 .

For 	x = 	z/n, θ = τ/n,

p0 = max(x1,0)

l(1 − θ)
, p1 = x2λ

2

l(1 − θ)(eλ − 1 − λ)
, p2 = x2λ

l(1 − θ)
,(2.2)

where for x2 > 0, we set λ as the unique positive solution of

f1(λ) ≡ λ(eλ − 1)

eλ − 1 − λ
= l(1 − θ) − max(x1,0)

x2
(2.3)

enforcing p0 + p1 + p2 = 1, while for x2 = 0, we instead set by continuity p1 = 0
and p2 = 1 − p0.

Further, we show in Lemma 4.4 that n−1	z(0) converges to the nonrandom vector

	y(0) = (
le−l/ρ, ρ(1 − e−l/ρ) − le−l/ρ).(2.4)

Since the chain (2.1) has bounded increments, and the corresponding probabilities
depend on the state only through the macroscopic variables 	x and θ , it is not hard
to verify that the scaled process n−1	z(θn) concentrates around the solution of the
ODE

d 	y
dθ

(θ) = 	F(	y(θ), θ),(2.5)

where 	F(	x, θ) = (−1 + (l − 1)(p1 − p0),−(l − 1)p1) is the mean of 	z(τ + 1) −
	z(τ ) under the transitions of (2.1); see, for instance, [12, 26, 29]. The solution of
this ODE will be denoted by 	y(θ, ρ), often using the shorthand 	y(θ) (where the
fixed value of ρ is clear from the context). From the solution, one finds that y1(θ)

remains strictly positive for all θ ∈ [0,1) if and only if ρ > ρc [see (4.3)]. As
shown in [26] this indicates that, with high probability, the algorithm successfully
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decimates the whole hypergraph without ever running out of degree 1 vertices
if ρ > ρc. Vice versa, for ρ < ρc, the solution 	y(θ) crosses the y1 = 0 plane;
this is shown to imply that the algorithm stops and returns a large core with high
probability. In the critical case ρ = ρc, the solution 	y(θ) touches the y1 = 0 plane
at the unique time θ = θc ∈ (0,1) (see Proposition 4.2). The principal conclusion
of Section 5 is that, near criticality, Pl(n,ρ) can be estimated by the probability
that 	z(τ ) is small in a neighborhood of τ = nθc. More precisely:

PROPOSITION 2.1. Let β ∈ (3/4,1), Jn = [nθc −nβ,nθc +nβ] and |ρ−ρc| ≤
nβ ′−1 with β ′ < 2β − 1. Then for εn = A logn,

P̂n,ρ

{
inf

τ∈Jn

z1(τ ) ≤ −εn

}
− δn ≤ Pl(n,ρ) ≤ P̂n,ρ

{
inf

τ∈Jn

z1(τ ) ≤ εn

}
+ δn,(2.6)

where δn ≡ Dn−1/2(logn)2.

At the critical point (i.e., for ρ = ρc and θ = θc) the solution of the ODE (2.5) is
tangent to the y1 = 0 plane and fluctuations in the y1 direction determine whether a
large core exists or not. Further, in a neighborhood of θc, we have y1(θ) 
 1

2 F̃ (θ −
θc)

2, for some F̃ > 0. In the same neighborhood, the contribution of fluctuations to

the change of z1 is approximately
√

G̃n(θ − θc), with G̃ > 0. Comparing these two

contributions we see that the relevant scaling is Xn(t) = n−1/3[z1(nθc + n2/3t) −
z1(nθc)], which for large n converges, by strong approximation, to X(t) = 1

2 F̃ t2 +√
G̃W(t), for a standard two-sided Brownian motion W(t) (see Lemma 6.1 for a

precise quantitative statement). Clearly,

F̃ ≡ d2y1

dθ2 (θc) = dF1

dθ
(	y(θc), θc) = ∂F1

∂θ
+ ∂F1

∂y2
F2.(2.7)

In the last expression we adopted the convention (to be followed hereafter) of
omitting the arguments whenever they refer to the critical point θ = θc, 	y = 	y(θc)

and the trajectory considered is the critical one, that is, ρ = ρc.
Fluctuations of 	z(nθc) around n	y(θc) are accumulated in nθc stochastic steps,

and are therefore of order
√

n. As shown in Section 6, the rescaled variable
(	z(nθ)− n	y(θ))/

√
n converges to a Gaussian random variable. Its covariance ma-

trix Q(θ, ρ) = {Qab(θ, ρ);1 ≤ a, b ≤ 2} is the symmetric positive definite solution
of the ODE:

dQ(θ)

dθ
= G(	y(θ), θ) + A(	y(θ), θ)Q(θ) + Q(θ)A(	y(θ), θ)†,(2.8)

where A(	x, θ) ≡ {Aab(	x, θ);1 ≤ a, b ≤ 2} for Aab(	x, θ) = ∂xb
Fa(	x, θ), and

G(	x, θ) is the covariance of 	z(τ + 1) − 	z(τ ) under the transitions (2.1), that is,
the nonnegative definite symmetric matrix with entries⎧⎪⎨⎪⎩

G11(	x, θ) = (l − 1)[p0 + p1 − (p0 − p1)
2],

G12(	x, θ) = −(l − 1)[p0p1 + p1(1 − p1)],
G22(	x, θ) = (l − 1)p1(1 − p1).

(2.9)
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Here again we use the convention Q(θ) ≡ Q(θ, ρ) when the value of ρ is clear
from the context. The positive definite initial condition Q(0) for (2.8) is computed
on the original graph ensemble, and given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Q11(0) = l

γ
γ e−2γ (eγ − 1 + γ − γ 2),

Q12(0) = − l

γ
γ e−2γ (eγ − 1 − γ 2),

Q22(0) = l

γ
e−2γ [(eγ − 1) + γ (eγ − 2) − γ 2(1 + γ )],

(2.10)

where γ = l/ρ (see Section 4.2 for details).
The parameter describing the fluctuations of z1(nθ) − z1(nθc) for θ near θc is

simply G̃ = G11(	y(θc), θc). As we show in Section 6, this analysis allows us to
approximate the probability that 	z(τ ) approaches the z1 = 0 plane, by replacing
{	z(τ )} by an appropriately constructed Gaussian process.

PROPOSITION 2.2. Let X(t) = 1
2 F̃ t2 + √

G̃W(t) where W(t) is a doubly in-
finite standard Brownian motion conditioned to W(0) = 0. Further, let ξ(r) be
a normal random variable of mean (

∂y1
∂ρ

)r and variance Q11 (both evaluated at
θ = θc and ρ = ρc), which is independent of W(t).

For some β ∈ (3/4,1), any η < 5/26, all A > 0, r ∈ R and n large enough, if
ρn = ρc + rn−1/2 and εn = A logn, then∣∣∣∣P̂n,ρn

{
inf

τ∈Jn

z1(τ ) ≤ ±εn

}
− P

{
n1/6ξ + inf

t
X(t) ≤ 0

}∣∣∣∣≤ n−η.(2.11)

We note in passing that within the scope of weak convergence, Aldous [1] pi-
oneered the use of Brownian motion with quadratic drift [à la X(t) of Proposi-
tion 2.2], to examine the near-critical behavior of the giant component in Erdös–
Rényi random graphs, and his method was extended by Goldschmidt [19] to the
giant set of identifiable vertices in Poisson random hypergraph models.

The key to the validity of Proposition 2.2 at the o(n−1/6) level of accuracy
relevant here, is the fact that within the critical time window Jn the Markov chain
of transition probabilities (2.1) is well approximated by the chain

	z′(τ + 1) = 	z′(τ ) + Ãτ

(
n−1	z′(τ ) − 	y(τ/n)

)+ �τ(2.12)

with Ãτ ≡ Iτ<τnA(	y(τ/n,ρ), τ/n) for τn ≡ �nθc − nβ�, and independent ran-
dom variables {�τ } of mean 	F(	y(τ/n), τ/n) and covariance G(	y(τ/n), τ/n) (cf.
Proposition 5.5). In particular, taking

B̃τ
σ ≡

(
I + 1

n
Ãτ

)
·
(

I + 1

n
Ãτ−1

)
· · ·

(
I + 1

n
Ãσ

)
,(2.13)
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FIG. 2. The numerical estimates for the core probabilities in Figure 1, plotted versus scaling vari-
ables r̃1, r̃2. On the left: r̃1 = √

n(ρ − ρc)/αl . On the right: r̃2 = √
n(ρ − ρc − δln

−2/3)/αl where
δl = αlβl�. According to Theorem 2.3, corrections to the asymptotic curve �(−r̃) (dashed) are
�(n−1/6) on the left, and O(n−5/26+ε) on the right.

for integers 0 ≤ σ ≤ τ (while B̃τ
σ ≡ I in case τ < σ ), we see that

	z′(τ ) = B̃τ−1
0 	z′(0) +

τ−1∑
σ=0

B̃τ−1
σ+1

(
�τ − Ãσ 	y(σ/n)

)
(2.14)

is a sum of (bounded) independent random variables, hence of approximately nor-
mal distribution. Further, the mean and covariance of 	z′(τ ) are given by discretized
versions of (2.5) and (2.8), hence are sufficiently close to the solutions 	y(θ, ρ) and
Q(θ, ρ) of these ODEs (cf. Lemma 4.3).

Combining Propositions 2.1 and 2.2, we are now able to estimate the desired
probability Pl(n,ρ) in terms of the distribution of the global minimum of the
process {X(t)} (i.e., a Brownian motion plus a quadratic shift). The latter has been
determined already in [20], yielding the following conclusion, which is our main
result. Figure 2 illustrates the accuracy of the finite-size scaling expression proved
below, by comparing it with numerical simulations.

THEOREM 2.3. Let l ≥ 3, and define αl = √
Q11(

∂y1
∂ρ

)−1, βl = 1√
Q11

G̃2/3 ×
F̃−1/3, ρn = ρc + rn−1/2. Then, for any η < 5/26

Pl(n,ρn) = �(−r/αl) + βl��′(−r/αl)n
−1/6 + O(n−η),(2.15)

where �(x) denotes the distribution function for a standard normal random vari-
able, the finite constant � is given by the integral

� ≡
∫ ∞

0
[1 − K(z)2]dz,(2.16)

where

K(z) ≡ 1

2

∫ ∞
−∞

Ai(iy)Bi(21/3z + iy) − Ai(21/3z + iy)Bi(iy)

Ai(iy)
dy,(2.17)
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and Ai(·), Bi(·) are the Airy functions (as defined in [6], page 446).

REMARK 2.4. The simulations in Figure 2 suggest that the approximation
of Pl(n,ρn) we provide in (2.15) is more accurate than the O(n−5/26+ε) cor-
rection term suggests. Our proof shows that one cannot hope for a better, er-
ror estimate than �(n−1/3) as we neglect the second-order term in expanding
�(−r/αl + Cn−1/6); see (2.18). We believe this is indeed the order of the next
term in the expansion (2.15). Determining its form is an open problem.

REMARK 2.5. It is of interest to consider the (time) evolution of the core for
the hypergraph process in which one hyperedge is added uniformly at random at
each time step. In other words, n increases with time, while the number of vertices
m is kept fixed. Let S(n) be the corresponding (random) number of hyperedges
in the core of the hypergraph at time n and nc ≡ min{n : S(n) ≥ 1} the onset of
a nonempty core. From Lemma 4.7 we have that for any ρ > 0 there exist κ > 0
and C < ∞ such that {S(n) : 0 ≤ n ≤ m/ρ} intersects [1,mκ] with probability at
most Cm1−l/2. Further, fixing ρ < ρc, the probability of an empty core, that is,
S(m/ρ) = 0, decays (exponentially) in m. We thus deduce that for large m most of
the trajectories {S(n)} jump from having no core to a linear (at least mκ) core size
at the well-defined (random) critical edge number nc. By the monotonicity of S(n)

we also know that Pm{nc ≤ m/ρ} = Pl(ρ,m/ρ). Therefore, Theorem 2.3 allows
us to determine the asymptotic distribution of nc. Indeed, expressing n in terms of
m in (2.15) we get that for each fixed x ∈ R,

P{nc ≤ mρ−1
c + m1/2ρ−3/2

c αlx} = �(x) + βl�ρ1/6
c �′(x)m−1/6 + O(m−η),

whence we read off that n̂c ≡ (nc − m/ρc)/(
√

mρ
−3/2
c αl) + βl�ρ

1/6
c m−1/6 con-

verge in distribution to the standard normal law [and the corresponding distribu-
tion functions converge pointwise to �(x) at rate which is faster than m−η for any
η < 5/26].

REMARK 2.6. Our techniques are applicable to many other properties of the
core in the “scaling regime” ρn = ρc + rn−1/2. For example, the distribution of
the number of hyperedges S in the core can be derived from the approxima-
tion of the trajectory of the decimation algorithm. Namely, as shown in Sec-
tion 6, for such ρn, near the critical time z1(t) 
 √

nξ(r) + Xn(t) for ξ(r) and
Xn(t) ≡ n1/3X(n−2/3(t −nθc)) as in Proposition 2.2. With EXn(t) = F̃

2n
(t −nθc)

2,
upon noting that n − S = min{t : z1(t) = 0}, we obtain that, conditional to the
existence of a nonempty core, (S − n(1 − θc))/n3/4 converges in distribution to
(4Q11/F̃

2)1/4Z with Z a nondegenerate random variable. Indeed, at the relevant
time window nθc ±O(n3/4) the contribution of Xn(·)− EXn(·) to the fluctuations
of S is negligible in comparison with that of

√
nξ(r). So, more precisely, based

on the explicit distribution of ξ(r) we have that Z
d=√

U − rb for b ≡ Q
−1/2
11

∂y1
∂ρ
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and U a standard normal random variable conditioned to U ≥ rb. In formulas, Z is
supported on R+ and admits there the probability density

pZ(z) = 2ze−(1/2)(rb+z2)2

√
2π [1 − �(rb)] .

Naively one expects the core size to have �(n1/2) fluctuations. This is indeed the
asymptotic behavior for a fixed ρ < ρc, but as usual in phase transitions, fluctua-
tions are enhanced near the critical point.

The distribution of the fractions of vertices with a given degree within the core
can be computed along the same lines.

REMARK 2.7. As already pointed out, our proof concerns a properly defined
configuration model whereby each edge might include the same vertex more than
once (“self-loop”), and two hyperedges might include the same vertices (“double
edge”). We expect a result similar to Theorem 2.3 to hold for a uniformly random
hypergraph, with forbidden self-loops and double edges.

The main difficulty in proving such a generalization would be the absence of
an explicit representation for the kernel of the leaf removal process. In the present
case, such an expression is known and provided by Lemma 3.1. Within the uniform
model, one should resort to graph enumeration formulas as the ones in [27]. This
would give rise to a new Markov chain that can nevertheless be coupled to the
one defined in (2.1). The thesis would follow by bounding the expected maximum
distance between the trajectories of the two chains.

PROOF OF THEOREM 2.3. Putting together Propositions 2.1 and 2.2, we get
that

Pl(n,ρn) = P

{
n1/6ξ + inf

t
X(t) ≤ 0

}
+ O(n−η).

By Brownian scaling, X(t) = F̃−1/3G̃2/3X̃(F̃ 2/3G̃−1/3t), where X̃(t) = 1
2 t2 +

W̃ (t) and W̃ (t) is also a two-sided standard Brownian motion. With Z = inft X̃(t),
and Y a standard normal random variable which is independent of X̃(t), we clearly
have that

Pl(n,ρn) = P

{
n1/6

(
∂y1

∂ρ

)
r + n1/6

√
Q11Y + F̃−1/3G̃2/3Z ≤ 0

}
+ O(n−η)(2.18)

= E

{
�

(
− r

αl

− βln
−1/6Z

)}
+ O(n−η).

The proof of the theorem is thus completed by a first-order Taylor expansion of
�(·) around −r/αl , as soon as we show that EZ = −�, and E|Z|2 is finite. To
this end, from [20], Theorem 3.1, we easily deduce that Z has the continuous
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distribution function FZ(z) = 1 − K(−z)2 for z < 0, while FZ(z) = 1 for z ≥ 0,
resulting after integration by parts with the explicit formula (2.16) for �. We note
in passing that taking c = 1/2 and s = 0 in [20], (5.2), provides the explicit formula
(2.17) for K(x), en-route to which [20] also proves the finiteness of the relevant
integral. Further, [20], Corollary 3.4, shows that the probability that the minimum
of X̃(t) is achieved as some t /∈ [−T ,T ] is at most A−1

0 e−A0T
3

for a positive
constant A0. With X̃(t) ≥ W̃ (t) we therefore have that

FZ(z) ≡ P{Z ≤ z} ≤ P

{
inf

t∈[−T ,T ] X̃(t) ≤ z

}
+A−1

0 e−A0T
3 ≤ e−z2/2T +A−1

0 e−A0T
3
.

Taking T = √
z we deduce that if z < 0, then FZ(z) < C−1 exp(−C|z|3/2) for

some C > 0, which yields the stated finiteness of each moment of Z (and in par-
ticular, of E|Z|2 and �). �

3. Ensembles and transition probabilities: exact expressions.

3.1. Model for the (initial) graph. Throughout the paper we follow the coding
literature and identify the hypergraph with a bipartite graph with two types of
nodes: v-nodes, corresponding to hyperedges, and c-nodes to vertices. A graph G

in the ensemble G = Gl(n,m) consists of a set of v-nodes V ≡ [n], a set of c-nodes
C ≡ [m] and an ordered list of edges, that is, couples (i, a) with i ∈ V and a ∈ C

E = [
(1, a1), (1, a2), . . . , (1, al); (2, al+1), . . . ; (n,a(n−1)l+1

)
, . . . , (n, anl)

]
,

where a couple (i, a) appears before (j, b) whenever i < j and each v-node i

appears exactly l times in the list, with l ≥ 3 a fixed integer parameter. The total
number of graphs in this ensemble is thus

|Gl(n,m)| = mnl = coeff[(ex)m,xnl](nl)!.(3.1)

The ensemble of graphs G is endowed with the uniform distribution. One way to
sample from this distribution is by considering the v-nodes in order, i = 1, . . . , n,
where for each v-node and for j = 1, . . . , l, we choose independently and uni-
formly at random a c-node a = a(i−1)l+j ∈ C and add the couple (i, a) to the
list E. An alternative way to sample from the same distribution is by first attribut-
ing l sockets to each v-node, with sockets (i − 1)l + 1, . . . , il attributed to the
ith v-node. Then, we attribute ka sockets to each c-node a, where ka’s are mutu-
ally independent Poisson(ζ ) random variables, conditioned upon their sum being
nl (these sockets are ordered using any pre-established convention). Finally, we
connect the v-node sockets to the c-node sockets according to a permutation σ of
{1, . . . , nl} that is chosen uniformly at random and independently of the choice of
ka’s.

Throughout the degree of a v-node i (or c-node a) will refer to the number of
edges (i, b) [resp. (j, a)] it belongs to. In the hypergraph description, this corre-
sponds to counting hyperedges, and vertices with their multiplicity.
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3.2. Model for the graph produced by the algorithm. The ensemble is charac-
terized by the nonnegative integers (z1, z2) ≡ 	z, τ and l ≥ 3, n,m and denoted 4

as G(	z, τ ). In order for G(	z, τ ) to be nonempty, we require either z2 ≥ 1 and
z1 + 2z2 ≤ (n − τ)l or z2 = 0 and z1 = (n − τ)l. An element in the ensemble
is a graph G = (U,V ;R,S,T ;E) where U,V are disjoint subsets of [n] with
U ∪ V = [n] and R,S,T are disjoint subsets of [m] with R ∪ S ∪ T = [m], hav-
ing the cardinalities |U | = τ , |V | = n − τ , |R| = m − z1 − z2, |S| = z1, |T | = z2.
Finally, E is an ordered list of (n − τ)l edges

E = [
(i1, a1), . . . , (i1, al); (i2, al+1), . . . ;(
in−τ , a(n−τ−1)l+1

)
, . . . , (in−τ , a(n−τ)l)

]
,

such that a couple (i, a) appears before (j, b) whenever i < j . Moreover, each
i ∈ V appears as the first coordinate of exactly l edges in E, while each j ∈ U

does not appear in any of the couples in E. Similarly, each a ∈ R does not appear
in E, each b ∈ S appears as the second coordinate of exactly one edge in E, and
each c ∈ T appears in at least two such edges. The total number of elements in
G(	z, τ ) is thus

h(	z, τ ) ≡ |G(	z, τ )| =
(

m

z1, z2, ·
)(

n

τ

)
coeff

[
(ex − 1 − x)z2,x(n−τ)l−z1

](
(n− τ)l

)!.
The ensemble G(	z, τ ) is endowed with the uniform distribution. In order to

sample from it, first partition [n] into U and V uniformly at random under the
constraints |U | = τ and |V | = (n − τ) [there are

(n
τ

)
ways of doing this], and inde-

pendently partition [m] to R ∪ S ∪ T uniformly at random under the constraints
|R| = m− z1 − z2, |S| = z1 and |T | = z2 [of which there are

( m
z1,z2,·

)
possibilities].

Then, attribute l v-sockets to each i ∈ V and number them from 1 to (n − τ)l ac-
cording to some pre-established convention. Attribute one c-socket to each a ∈ S

and ka c-sockets to each a ∈ T , where ka are mutually independent Poisson(ζ )
random variables conditioned upon ka ≥ 2, and further conditioned upon

∑
a∈T ka

being (n − τ)l − z1. Finally, connect the v-sockets and c-sockets according to a
uniformly random permutation on (n − τ)l objects, chosen independently of the
ka’s.

3.3. Transition probabilities. We consider the graph process {G(τ), τ ≥ 0},
defined as follows. The initial graph G(0) is a uniformly random element of
Gl(n,m). At each time τ = 0,1, . . . , if there is a nonempty set of c-nodes of
degree 1, one of them (let us say a) is chosen uniformly at random. The corre-
sponding edge (i, a) is deleted, together with all the edges incident to the v-node

4Since n, m and l do not vary during the execution of the algorithm, we leave them implicit in the
ensemble notation.
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i. The graph thus obtained is G(τ + 1). In the opposite case, where there are no
c-nodes of degree 1 in G(τ), we set G(τ + 1) = G(τ).

We define furthermore the process {	z(τ ) = (z1(τ ), z2(τ )), τ ≥ 0} on Z2+. Here
z1(τ ) and z2(τ ) are, respectively, the number of c-nodes in G(τ), having degree 1
or larger than 1, which necessarily satisfy that (n − τ̂ )l ≥ z1(τ ) + 2z2(τ ) for τ̂ ≡
min(τ, inf{τ ′ ≥ 0 : z1(τ

′) = 0}).

LEMMA 3.1. The process {	z(τ ) τ ≥ 0} is an inhomogeneous Markov process,
whose transition probabilities, denoted by

W+
τ (�	z|	z) ≡ P{	z(τ + 1) = 	z + �	z|	z(τ ) = 	z}

[here �	z ≡ (�z1,�z2)], are such that W+
τ (�	z|	z) = I(�	z = 0) in case z1 = 0,

whereas for z1 > 0,

W+
τ (�	z|	z) = h(	z′, τ + 1)

h(	z, τ )
(τ + 1)l!∑

D

(
m − z′

1 − z′
2

q0,p0, ·
)(

z′
1

q1

)(
z′

2
q2

)
q0

z1
(3.2)

× coeff[(ex − 1 − x)p0(ex − 1)q1+q2,xl−q0].
Here z′

1 = z1 + �z1, z′
2 = z2 + �z2. Also, using the notation z0 = m − z1 − z2

and z′
0 = m − z′

1 − z′
2, the collection D consists of all integers p0, q0, q1, q2 ≥ 0,

satisfying the equalities ⎧⎪⎨⎪⎩
z0 = z′

0 − q0 − p0,

z1 = z′
1 + q0 − q1,

z2 = z′
2 + p0 + q1,

(3.3)

and the inequalities (n−τ)l− (z1 +2z2) ≥ l− (2p0 +q0 +q1) ≥ q2, q0 +p0 ≤ z′
0,

q1 ≤ z′
1 (equivalently, q0 ≤ z1), q2 ≤ z′

2 (equivalently, p0 + q1 + q2 ≤ z2).
Moreover, conditional on {	z(τ ′),0 ≤ τ ′ ≤ τ }, the graph G(τ) is uniformly dis-

tributed over G(	z, τ̂ ), that is,

P
{
G(τ) = G|{	z(τ ′),0 ≤ τ ′ ≤ τ }}= 1

h(	z, τ̂ )
I
(
G ∈ G(	z, τ̂ )

)
.(3.4)

PROOF. Fixing τ , 	z = 	z(τ ) such that z1 > 0, 	z′ = 	z(τ + 1) and G′ ∈ G(	z′,
τ + 1), let N(G′|	z, τ ) count the pairs of graphs G ∈ G(	z, τ ) and choices of the
deleted c-node from S that result with G′ upon applying a single step of our algo-
rithm. Obviously, G and G′ must be such that R ⊂ R′, S ⊆ R′ ∪ S′ and T ′ ⊆ T .
So, let q0 ≥ 0 denote the size of R′ ∩ S, p0 ≥ 0 the size of R′ ∩ T , and q1 ≥ 0
the size of S′ ∩ T . We have q0 + p0 ≤ m − z′

1 − z′
2, q1 ≤ z′

1, and the equali-
ties of (3.3) follow as well. Let T ∗ denote the set of c-nodes a ∈ T ′ for which
ka > k′

a , and denote the size of T ∗ by q2 ≤ z′
2. Observe that of the l edges of

the v-node i deleted by the algorithm in the move from G to G′, exactly one
edge hits each of the nodes in R′ ∩ S, at least one edge hits each of the nodes in
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S′ ∩ T , and each of the nodes in T ∗, while at least two edges hit each of the nodes
in R′ ∩ T . Consequently, 2p0 + q0 + q1 + q2 ≤ l. Since z1 > 0, we know that
τ̂ = τ and further, (n − τ − 1)l ≥ z′

1 + 2z′
2, which in view of (3.3) is equivalent to

(n − τ)l − (z1 + 2z2) ≥ l − (2p0 + q0 + q1) ≥ q2 as claimed.
To count N(G′|	z, τ ) we first select the v-node i to add to G′ from among the

τ + 1 elements of U ′, and the order (permutation) of the l sockets of i that we
use when connecting it to the c-nodes for creating G ∈ G(	z, τ ). Summing over the
set D of allowed values of p0, q0, q1, q2, for each such value we have

(m−z′
1−z′

2
q0,p0,·

)
ways to select the nodes of R′ that are assigned to S, T and R, then

(z′
1

q1

)
ways to

select those of S′ that are assigned to T and
(z′

2
q2

)
ways to select those of T ′ that are

assigned to T ∗. We further have coeff[(ex − 1 − x)p0(ex − 1)q1+q2,xl−q0] ways to
select the precise number of edges (≥ 2) from i that we are to connect to each of
the p0 nodes in R′ ∩ T , and the precise number of edges (≥ 1) from i that we are
to connect to each of the q1 nodes in S′ ∩ T and to each of the q2 nodes in T ∗,
while allocating in this manner exactly l −q0 edges out of i (the remaining q0 then
used to connect to nodes in R′ ∩ S). Finally, noting that for each of the graphs G

thus created we have exactly q0 ways to choose the deleted node from S while still
resulting with the graph G′, we conclude that

N(G′|	z, τ ) = (τ + 1)l!∑
D

(
m − z′

1 − z′
2

q0,p0, ·
)(

z′
1

q1

)(
z′

2
q2

)
× q0 coeff[(ex − 1 − x)p0(ex − 1)q1+q2,xl−q0].

We start at τ = 0 with a uniform distribution of G(0) within each possible en-
semble G(	z(0),0). Since N(G′| 	ω, τ) depends on G′ only via 	ω′, it follows by
induction on τ = 1,2, . . . that this property, namely (3.4), is preserved as long as
τ̂ = τ , since if z1(τ ) > 0, then

P
{
G(τ + 1) = G′|{	z(τ ′),0 ≤ τ ′ ≤ τ }}= 1

z1

N(G′|	z(τ ), τ )

h(	z(τ ), τ )

is the same for all G′ ∈ G(	z +�	z, τ + 1). Since there are exactly h(	z +�	z, τ + 1)

graphs in this ensemble, we thus recover also (3.2). Finally, noting that G(τ) =
G(τ̂ ) and 	z(τ ) = 	z(τ̂ ) we deduce that (3.4) holds also when τ̂ < τ . �

4. Asymptotic expressions.

4.1. Properties of the ordinary differential equations. We derive here the
properties of solutions of the ODEs (2.5) and (2.8) that are needed for our analysis.
This is based on the continuity of (	x, θ) �→ pa(	x, θ), a = 0,1,2 on the following
compact subsets of R2 × R+:

q̂(ε) ≡ {(	x, θ) :−l ≤ x1;0 ≤ x2; θ ∈ [0,1 − ε];0 ≤ (1 − θ)l − max(x1,0) − 2x2},
and q̂+(ε) = q̂(ε) ∩ {x1 ≥ 0}, as stated in
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LEMMA 4.1. For any ε > 0, the functions (	x, θ) �→ pa(	x, θ), a = 0,1,2
are [0,1]-valued, Lipschitz continuous on q̂(ε). Further, on q̂+(ε) the functions
(	x, θ) �→ pa(	x, θ) have Lipschitz continuous partial derivatives.

PROOF. Fixing ε > 0, the stated Lipschitz continuity holds for p0(	x, θ) since
both max(x1,0) and 1/(1 − θ) are Lipschitz continuous and bounded on q̂(ε).
Further, p0(	x, θ) ∈ [0,1] throughout q̂(ε). Setting f1(0) = 2, note that f1 : R+ →
[2,∞) of (2.3) is a monotone increasing, twice continuously differentiable func-
tion, with f ′

1(λ) = [(eλ − 1)2 − λ2eλ]/(eλ − 1 − λ)2 strictly positive and bounded
away from zero throughout R+. Consequently, the inverse mapping f −1

1 is well
defined and twice continuously differentiable on [2,∞), from which we deduce
that for each δ > 0 the nonnegative function λ(	x, θ) is well defined, bounded and
continuously differentiable on the compact set q̂(ε) ∩ {(	x, θ) :x2 ≥ δ}. Though
λ(	x, θ) ↑ ∞ as x2 ↓ 0, note that p2 = (1 − p0)(1 − g(λ)) for g(λ) ≡ λ/(eλ − 1).
In particular, since p2 = 1 − p0 in case x2 = 0, it follows that p2(	x, θ) is continu-
ous throughout q̂(ε). Since p0(	x, θ) is Lipschitz continuous on q̂(ε), the Lipschitz
continuity of p2 follows by showing that, for x1 �= 0, g(λ(	x, θ)) has bounded deriv-
atives as x2 ↓ 0. By letting 	ξ ≡ (	x, θ) ∈ q̂(ε), we have ∂ξi

g(λ) = g′(λ)∂ξi
λ. Using

the definition (2.3), and recalling that f ′
1(λ) is bounded away from zero, it follows

that |∂ξi
λ| ≤ Cx−2

2 as x2 ↓ 0. On the other hand, |g′(λ)| ≤ Ce−λ ≤ Ce−C′/x2 in the
same limit thus implying that ∂ξi

g(λ) is bounded.
Further, the identity (2.3) is equivalent to p0 + p1 + p2 = 1, which thus implies

that p1 is also Lipschitz continuous on q̂(ε). Finally, since both λ(	x, θ) and x2 are
nonnegative throughout q̂(ε), the same applies for p1 and p2, and consequently,
pa ∈ [0,1] for a = 0,1,2.

Considering for the remainder of the proof 	ξ = (	x, θ) ∈ q̂+(ε), we replace
max(x1,0) by x1 in the definition of (p0,p1,p2). The stated regularity of p0 is
then obvious and as before the regularity of p1 = 1 − p0 − p2 follows from that
of p2 = (1 − p0)(1 − g(λ)). To this end, we see that it suffices to show that
∂ξi

g(λ) = g′(λ)∂ξi
λ, are Lipschitz continuous in 	ξ on the compact set q̂+(ε). As

seen already λ �→ g′(λ) is bounded and Lipschitz continuous on R+, and ∂ξi
λ(	ξ)

is bounded and has bounded derivatives on q̂+(ε) ∩ {	ξ :x2 ≥ δ}. The proof is com-
pleted by showing that ∂ξj

[g′(λ)∂ξi
λ] = g′′(λ)∂ξi

λ∂ξj
λ + g′(λ)∂ξi

∂ξj
λ converges

to zero as x2 → 0. This is proved similarly to what was already done for the first-
order derivatives. Indeed, the first and second derivatives of λ �→ f1(λ) as well as
	ξ �→ ∂ξi

[x2f1(λ)] and its partial derivatives are all bounded, hence |∂ξi
λ| ≤ Cx−2

2
and |∂ξi

∂ξj
λ| ≤ Cx−4

2 as x2 → 0, which since λ → ∞ inversely proportional to
x2 → 0, is more than compensated by the exponential decay in λ of g′ and g′′. �

Setting hρ(u) ≡ u− 1 + exp(−lul−1/ρ) and the finite and positive critical den-
sity

ρc ≡ inf{ρ > 0 :hρ(u) > 0 ∀u ∈ (0,1]},
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we have the following properties of the ODEs.

PROPOSITION 4.2. For any ρ > 0, the ODE (2.5) admits a unique solution 	y
subject to the initial conditions (2.4), and the ODE (2.8) admits a unique, positive
definite, solution Q subject to the initial conditions (2.10), such that:

(a) For any ε > 0, θ < 1 − ε, we have that (	y(θ, ρ), θ) is in the interior of
q̂(ε), with both functions (θ, ρ) �→ 	y and θ �→ Q Lipschitz continuous on (θ, ρ) ∈
[0,1 − ε) × [ε,1/ε].

(b) Let u(θ) ≡ (1 − θ)1/l and θ−(ρ) ≡ inf{θ ≥ 0 :hρ(u(θ)) < 0} ∧ 1. Then, for
θ ∈ [0, θ−(ρ)]

y1(θ, ρ) = lu(θ)l−1[u(θ) − 1 + e−γ u(θ)l−1]
,(4.1)

y2(θ, ρ) = l

γ

[
1 − e−γ u(θ)l−1 − γ u(θ)l−1e−γ u(θ)l−1]

(4.2)

(where γ = l/ρ). In particular, (θ, ρ) �→ 	y is infinitely continuously differentiable
and (θ, ρ) �→ Q is Lipschitz continuous on {(θ, ρ) : θ ≤ min(θ−(ρ),1 − ε), ε ≤
ρ ≤ 1/ε}.

(c) Let θ∗(ρ) ≡ inf{θ ≥ 0 :hρ(u(θ)) ≤ 0}. Then, θ∗(ρ) = sup{θ ≤ 1 :y1(θ
′,

ρ) > 0 for all θ ′ ∈ [0, θ)} and the critical density is such that

ρc = inf{ρ > 0 : θ∗(ρ) = 1} = inf{ρ > 0 :y1(θ, ρ) > 0 ∀θ ∈ [0,1)}.(4.3)

(d) The critical time θc ≡ θ∗(ρc) is in (0,1), whereas θ−(ρc) = 1. For ρ = ρc
the infinitely continuously differentiable function θ �→ y1(θ) is positive for θ �= θc,
θ �= 1, with y1(θc) = y′

1(θc) = 0, and y′′
1 (θc) > 0, while y1(1 − δ) = lδ + o(δ) for

any δ > 0.

PROOF. (a) For any ρ > 0 the initial condition 	y(0) of (2.4) is such that
(	y(0),0) is in the interior of q̂(ε). Further, fixing ε > 0, by Lemma 4.1 we have that
	F(	x, θ) is bounded and Lipschitz continuous on q̂(ε). Consequently, for θ ∈ [0, θε]

there exists a unique solution 	y(θ) of the ODE (2.5) [i.e., d 	y
dθ

= 	F(	y, θ)], starting
at this initial condition, where θε = inf{θ > 0 : (	y(θ), θ) /∈ q̂(ε)} is strictly positive,
and (	y(θε), θε) is necessarily on the boundary of q̂(ε). We proceed to verify that
θε = 1 − ε by showing that:

(i) y1(θε) > −l. Indeed, since y1(0) > 0 and F1(	y(θ), θ) ≥ −l, we have
y1(θε) ≥ −lθε > −l.

(ii) y2(θε) > 0. In fact x2 = 0 implies p1(	x, θ) = 0, and therefore F2(	x, θ) = 0.
By the Lipschitz continuity of F2 on q̂(ε) it follows that F2(	x, θ) ≥ −Cx2 for some
finite C and all x2 in q̂(ε). Therefore, y2(θε) ≥ y2(0)e−Cθε > 0.

(iii) v(θε) > 0, where v(θ) = w(	y(θ), θ) for w(	x, θ) = l(1−θ)−max(x1,0)−
2x2. Indeed, note that v(0) > 0 and

dv

dθ
= [−l + 2(l − 1)p1(	y, θ)]I(y1(θ) ≤ 0

)− (l − 1)p2(	y, θ)I
(
y1(θ) > 0

)
.
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Further, recall that if w(	x, θ) = 0, then p2(	x, θ) = 0, and if in addition x1 ≤ 0,
then also p1(	x, θ) = 1. Hence, by the Lipschitz continuity of p1(·, ·) and p2(·, ·) on
q̂(ε) we have that p2(	x, θ) ≤ 2Cw(	x, θ) and p1(	x, θ) ≥ (1 − Cw(	x, θ))I(x1 ≤ 0)

for some finite C > 0, throughout q̂(ε). Since l ≥ 2, it follows that dv
dθ

≥ −2(l −
1)Cv(θ) for all θ ∈ [0, θε], resulting with v(θε) ≥ v(0)e−2(l−1)Cθε > 0.

Lemma 4.1 further implies that for any a, b ∈ {1,2} both Aab(	x, θ) ≡ ∂xb
Fa(	x, θ)

and Gab(	x, θ) are uniformly bounded over q̂(ε). The linear ODE (2.8) has these
functions as its coefficients, for 	x = 	y(θ). We thus deduce that there exists a unique
solution Q(θ) of the initial value problem for this ODE at least for θ ∈ [0, θε]. With
θε = 1 − ε and ε > 0 arbitrarily small we established the existence of a unique
solution (	y,Q) for θ ∈ [0,1).

It also follows from the above discussion that θε = 1−ε and 	y(θ, ρ) is Lipschitz
continuous in θ on [0,1 − ε] × [ε,1/ε]. Further, applying Gronwall’s lemma, the
Lipschitz continuity of 	F(	x, θ) implies that the solution 	y(θ) of the ODE is then
also Lipschitz continuous with respect to the initial condition 	y(0), with a uni-
form in θ ≤ 1 − ε bound on the corresponding Lipschitz norm. Clearly, 	y(0) of
(2.4) is differentiable in ρ with a uniformly bounded derivative when ρ ∈ [ε,1/ε].
Consequently, we arrive at the stated Lipschitz continuity of (θ, ρ) �→ 	y(θ, ρ).

The same argument shows that the initial conditions (2.10) for the ODE (2.8)
are bounded in ρ ∈ [ε,1/ε]. Further, 	y(θ, ρ) stays in q̂(ε) and with the coefficients
of the linear ODE (2.8) uniformly bounded on [0,1−ε]×[ε,1/ε], its solution Q is
also Lipschitz continuous in θ . Suppressing the dependence of the various matrices
on ρ, set B

ζ
ζ = I and, for θ ≥ ζ

dBθ
ζ

dθ
= A(	y(θ), θ)Bθ

ζ .(4.4)

It is easy to check that the unique solution of (2.8) is given by

Q(θ) = Bθ
0Q(0)(Bθ

0)
† +

∫ θ

0
Bθ

ζ G(	y(ζ ), ζ )(Bθ
ζ )

† dζ,(4.5)

for the nonnegative definite matrix G(	x, θ) of (2.9). In particular, starting from the
symmetric, positive definite Q(0) of (2.10), this implies that Q(θ) is nonnegative
definite. Further, since det B0

0 = 1 and

d(det Bθ
0)

dθ
= (det Bθ

0)Trace(A(	y(θ), θ)),

with the entries of A(	x, θ) uniformly bounded, it follows that det Bθ
0 > 0, hence

the solution Q(θ) of (2.8) is positive definite.
(b) Though this is a special case of a result of [26], we provide its short proof

for the reader’s convenience. We first check that 	y(θ, ρ) of (4.1) and (4.2) is the
unique solution of the ODE (2.5) for θ ∈ [0, θ−(ρ)]. To this end, first note that
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for θ = 0 the functions 	y(θ, ρ) of (4.1) and (4.2) satisfy the initial condition (2.4).
Further, the function y1(θ, ρ) of (4.1) is nonnegative for θ ∈ [0, θ−(ρ)]. Hence,
upon substituting y1(θ, ρ) for max(x1,0) and y2(θ, ρ) for x2 on the right-hand
side of (2.3), and noticing that (1 − θ) = u(θ)l , it is not hard to verify that this
equation is satisfied by λ(	y(θ), θ) = γ u(θ)l−1. Using this value of λ yields after
some algebra that F1(	y(θ), θ) = −1 − (l−1)

u
(u− 1 + e−γ ul−1 −γ ul−1e−γ ul−1

) and

F2(	y(θ), θ) = −γ (l − 1)ul−2e−γ ul−1
. With du

dθ
= −u1−l/ l, it is then immediate to

verify that the functions given by (4.1) and (4.2) indeed satisfy (2.5) as long as θ ≤
θ−(ρ). Clearly, 	y(θ, ρ) of (4.1) and (4.2) is infinitely continuously differentiable
on [0,1−ε]× [ε,1/ε]. With Q(θ, ρ) Lipschitz continuous in θ [by (a)], it remains
only to show that this function is Lipschitz continuous with respect to ρ ∈ [ε,1/ε].
Since the ODE (2.8) is linear and of bounded coefficients, with initial condition
Q(0) of (2.10) that is Lipschitz continuous in ρ ∈ [ε,1/ε] it suffices to show that
the coefficients Aab(	x, θ) and Gab(	x, θ), are Lipschitz continuous in 	x on q̂+(ε).
We deduce the latter property from Lemma 4.1 upon noting that these coefficients
are smooth bounded functions of pa and ∂xb

pa .
(c) We turn to verify that ρc satisfies (4.3). We have already seen that the solution

of (2.5) starting at 	y(0) of (2.4) is given for θ ≤ θ∗(ρ) ≤ θ−(ρ) by (4.1) and (4.2),
and in particular is such that y1(θ, ρ) > 0 for all θ < θ∗(ρ). Further, ρ �→ θ∗(ρ) is
monotone nondecreasing, and since u(1) = 0, we see that θ∗(ρ) ≤ 1 for all ρ > 0.
Thus, to complete the proof it suffices to assume that for some positive δ and ρ0
the solution of the ODE (2.5) is such that y1(θ, ρ0) > 0 for all θ ∈ [0, θ∗(ρ0) + δ]
and arrive at a contradiction. To this end, note that for ρ = ρ0 and θ ≤ θ∗(ρ0) + δ,
the solution of (2.5) must also satisfy the modified ODE

d 	y
dθ

(θ) = 	F ∗(	y(θ), θ),(4.6)

where 	F ∗(	x, θ) = (−1 + (l − 1)(p∗
1 − p∗

0),−(l − 1)p∗
1) and p∗

a are obtained by
replacing max(x1,0) in (2.2) and (2.3) with x1. Modifying the set q̂(ε) in the same
manner, it is easy to verify that the statement and proof of Lemma 4.1 remain
valid for p∗

a(	x, θ) (apart from the fact that the latter are not [0,1] valued). We also
find that θε = 1 − ε for the ODE (4.6), from which we can deduce that the latter
ODE also admits a unique solution subject to the initial condition (2.4). Further,
the preceding computations show that for every ρ > 0 the solution of (4.6) starting
at (2.4) is given by (4.1) and (4.2). In particular, at ρ = ρ0 this is also the solution
of the ODE (2.5) on [0, θ∗(ρ0) + δ]. However, by definition of θ∗(ρ), necessarily
y1(θ, ρ0) of (4.1) is nonpositive for some θ ∈ (θ∗(ρ0), θ∗(ρ0) + δ), resulting with
the desired contradiction.

(d) Simple calculus shows that either u �→ hρ(u) is monotone increasing and
positive on (0,∞), which happens for all ρ large enough, or h′

ρ(u) = 0 has ex-
actly two positive solutions, u1 = u1(ρ) corresponding to a local maximum of hρ

and u2 = u2(ρ) > u1 corresponding to a local minimum of hρ . With hρ(0) = 0
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and hρ(·) positive on [1,∞), while hρ(u2(ρ)) < 0 for all ρ > 0 small enough,
it follows from the definition of ρc that hρc(u2) = 0 at u2 = u2(ρc) ∈ (0,1) and
hρc(u) is positive at any positive u �= u2. Hence, by definition θ−(ρc) = 1 while
θ∗(ρc) = 1 − u2(ρc)

l ∈ (0,1). From part (b) of the proposition we thus have
that at ρ = ρc the function y1(θ) is infinitely continuously differentiable, with
y1(θ) = h(u(θ)) for h(u) = lul−1hρc(u) [cf. (4.1)]. In particular, y1(θ) is then
zero when θ = θc or θ = 1 and positive elsewhere (per the preceding analysis of
hρc ). Further, at θ = θc we have u(θ) = u2(ρc), an isolated minimizer of h(u), and
as u′(θc) > 0, it follows by elementary calculus that y′

1(θc) = 0 and y′′
1 (θc) > 0.

Also, h(u) = lul(1 +O(ul−2)) for small u, hence y1(1 − δ) = lδ + o(δ) at ρ = ρc.
�

We conclude this section by showing that the discrete recursions corresponding
to the mean and covariance of the process 	z′(·) of (2.12) are near the solution of
the relevant ODEs (at least for ρ near ρc and up to time τn ≡ �nθc − nβ�). More
precisely, for Ãτ ≡ Iτ<τnA(	y(τ/n,ρ), τ/n), let

	y∗(τ + 1) = 	y∗(τ ) + n−1Ãτ

(	y∗(τ ) − 	y(τ/n)
)+ n−1 	F(	y(τ/n), τ/n),(4.7)

starting at 	y∗(0) ≡ 	y(0, ρ) and consider the positive definite matrices

Qτ = B̃τ−1
0 Q(0, ρ)(B̃τ−1

0 )† +
τ−1∑
σ=0

B̃τ−1
σ+1G(	y(σ/n), σ/n)(B̃τ−1

σ+1)
†(4.8)

for B̃τ
σ of (2.13). Then:

LEMMA 4.3. Fixing β ∈ (3/4,1) and β ′ < 2β − 1, we have for all n large
enough and |ρ − ρc| ≤ nβ ′−1∣∣∣∣n1/2y∗

1 (τn) − F̃

2
n2β−3/2 − n1/2(ρ − ρc)

∂y1

∂ρ
(θc, ρc)

∣∣∣∣≤ Cn3β−5/2,(4.9)

the matrices {B̃τ
σ :σ, τ ≤ n} and their inverses are uniformly bounded with respect

to the L2-operator norm (denoted ‖ · ‖), and

‖Qτn − Q(θc, ρc)‖ ≤ Cnβ−1,(4.10)

for some finite C = C(β,β ′) and all n.

PROOF. Recall part (a) of Proposition 4.2 that 	y(θ, ρ) ∈ q̂(ε) for θ ≤ 1 − 2ε

and ρ ∈ [ε,1/ε]. Thus, fixing β , β ′ and 0 < ε < (1 − θc)/2, it follows that the
operator norm of Ãτ is uniformly bounded over τ ≤ τn, |ρ − ρc| ≤ nβ ′−1 and
n ≥ n0 (hereafter ni and ci , i = 0,1, . . . , are two nondecreasing sequences of finite
constants, each depending only on l, β , β ′ and ε). Consequently, the matrices B̃τ

σ

of (2.13) and their inverses are also uniformly bounded with respect to the L2
operator norm for n ≥ n1, σ , τ and ρ as before.
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We proceed to show that {	y∗(τ ), τ ≤ τn} is close to the solution 	y(·, ρ) of the
ODE (2.5). To this end, let D∗

n(τ ) ≡ 	y∗(τ ) − 	y(τ/n,ρ), noting that by definition
D∗

n(τ + 1) = (I + n−1Ãτ )D
∗
n(τ ) + 	ξn(τ ) for τ ≥ 0, with D∗

n(0) = 0 and

	ξn(τ ) =
∫ (τ+1)/n

τ/n
[ 	F(	y(τ/n), τ/n) − 	F(	y(θ), θ)]dθ.

By the Lipschitz continuity of (θ, ρ) �→ 	y on [0,1 − ε] × [ε,1/ε] (see Propo-
sition 4.2), we know that ‖	y(θ) − 	y(τ/n)‖ ≤ c0/n for some finite c0, all θ ∈
[τ/n, τ/n + 1/n] and any τ < (1 − ε)n. Further, since ‖ 	F(	x, θ)‖ ≤ 2l and
(	x, θ) �→ 	F = (−1 + (l − 1)(p1 − p0),−(l − 1)p1) is Lipschitz continuous on
q̂(ε) (see Lemma 4.1), we deduce that for some finite constant C∗ = C∗(l, ε), all
n, τ < (1 − ε)n and ρ ∈ [ε,1/ε],

‖	ξn(τ )‖ ≤ 1

n
sup

θ∈[τ/n,τ/n+1/n]
‖ 	F(	y(θ), θ) − 	F(	y(τ/n), τ/n)‖ ≤ C∗n−2.(4.11)

Since D∗
n(τ ) = ∑τ−1

σ=0 B̃τ−1
σ+1

	ξn(σ ), and ‖B̃τ
σ‖ are uniformly bounded, we deduce

that

sup
n≥n2

sup
|ρ−ρc|≤nβ′−1

sup
τ≤τn

n‖	y∗(τ ) − 	y(τ/n,ρ)‖ ≤ c1 < ∞.(4.12)

Let θn ≡ τn/n, �θn ≡ θn −θc = −nβ−1 and �ρ ≡ ρ −ρc. Note that y1(θ, ρc) ≥
c(�θn)

2 for some c > 0, all n and θ ∈ [0, θn] [see part (d) of Proposition 4.2]. Fur-
ther, recall that |�ρ| ≤ nβ ′−1 = o((�θn)

2) by our choice of β ′ < 2β − 1. The
Lipschitz continuity of ρ �→ 	y(θ, ρ) for θ ≤ θ−(ρ) thus implies that both (θc, ρc)

and (θn, ρ) for n ≥ n4 and |ρ − ρc| ≤ nβ ′−1 are in the set Aε ≡ {(θ, ρ) : θ ≤
min(θ−(ρ),1 − ε), ε ≤ ρ ≤ 1/ε} where (θ, ρ) �→ 	y is infinitely continuously dif-
ferentiable [see part (b) of Proposition 4.2]. Hence, by Taylor expanding y1(·)
around (θc, ρc) where y1 = ∂y1

∂θ
= 0, we obtain that for some c′

2, c2 and all n,∣∣∣∣y1(θn, ρ) − �ρ
∂y1

∂ρ
− 1

2
(�θn)

2 ∂2y1

∂θ2

∣∣∣∣
(4.13)

≤ c′
2(|�ρ| + |�θn|)(|�ρ| + (�θn)

2)≤ c2n
3(β−1)

[with all partial derivatives evaluated at (θc, ρc)]. Recall that F̃ ≡ ∂2y1
∂θ2 , so the left-

hand side of (4.9) is bounded above by

n1/2‖	y∗(τn) − 	y(τn/n,ρ)‖ + n1/2
∣∣∣∣y1(θn, ρ) − �ρ

∂y1

∂ρ
− 1

2
(�θn)

2 ∂2y1

∂θ2

∣∣∣∣.
Thus, controlling the first term via (4.12) and the second term via (4.13) yields the
bound of (4.9).

Turning now to the proof of (4.10), recall that the solution Q(·) of (2.8) is Lip-
schitz continuous in (θ, ρ) on the set Aε [see part (b) of Proposition 4.2]. As both
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(θc, ρc) and (θn, ρ), n ≥ n4 are in this set, it follows that for some finite c′
3, c3 and

all n,

‖Q(θn, ρ) − Q(θc, ρc)‖ ≤ c′
3(|�θn| + |�ρ|) ≤ c3n

β−1

(recall that β ′ < 2β − 1 < β). Further, Q(θ, ρ) is given by (4.5), where the ma-
trices G(	y(ζ ), ζ ) are bounded and Lipschitz continuous in ζ (with respect to the
L2 operator norm) uniformly in n ≥ n4 and ζ ≤ θn. The same uniform bound-
edness applies for Q(0, ρ) and Bθ

ζ , 0 ≤ ζ ≤ θ ≤ 1 − ε [see proof of part (a) of
Proposition 4.2]. Hence, comparing (4.5) and (4.8) we thus deduce that (4.10) is
an immediate consequence of

sup
0≤ζ≤θn

∥∥B̃τn−1
�nζ� − B

θn

ζ

∥∥≤ c4n
−1,(4.14)

holding for some finite c4 and all n. To this end, let Dn(σ, τ ) ≡ ‖B̃τ−1
σ − B

τ/n
σ/n‖,

noting that by the definition of Bθ
ζ and B̃τ

σ we have that Dn(σ,σ ) = 0 and for all
τ ≥ σ ,

Dn(σ, τ + 1)
(4.15)

≤ Dn(σ, τ ) + n−1 sup
θ∈[τ/n,(τ+1)/n]

‖Ãτ B̃τ−1
σ − A(	y(θ, ρ), θ)Bθ

σ/n‖.

As (	y(θ, ρ), θ), θ ≤ θn and n ≥ n4 are in the set q̂+(ε) in which (	x, θ) �→ A(	x, θ)

is bounded and Lipschitz continuous (for the operator norm), it follows that for
some c5 finite and all n,

sup
τ<τn

sup
θ∈[τ/n,(τ+1)/n]

‖Ãτ − A(	y(θ, ρ), θ)‖ ≤ c5n
−1.(4.16)

Further, with ‖A(	y(θ, ρ), θ)‖ bounded uniformly in (θ, ρ), we have from (4.4) the
existence of c6 finite, such that

‖Bθ
ζ − Bθ ′

ζ ′‖ ≤ c6(|θ − θ ′| + |ζ − ζ ′|),(4.17)

for any ρ ∈ [ε,1/ε], 0 ≤ ζ ≤ θ ≤ 1 − ε, and 0 ≤ ζ ′ ≤ θ ′ ≤ 1 − ε. So, with Ãτ ,
B

τ/n
σ/n and A(·) uniformly bounded, by the Lipschitz properties (4.16) and (4.17)

we have that

‖Ãτ B̃τ−1
σ − A(	y(θ), θ)Bθ

σ/n‖ ≤ c7Dn(σ, τ ) + c8n
−1,

for some c7, c8 finite and all n, σ ≤ τ ≤ τn and θ ∈ [τ/n, (τ +1)/n]. Plugging this
bound in (4.15) we have that Dn(σ, τ + 1) ≤ (1 + c7n

−1)Dn(σ, τ ) + c8n
−2, from

which we deduce that for some c9 finite and all n,

max
0≤σ≤τ≤τn

Dn(σ, τ ) ≤ c9n
−1.

By (4.17), this yields the bound (4.14), hence completing the proof of (4.10) and
that of the lemma. �
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4.2. Asymptotic enumeration of the graph ensemble. Here we show that the
initial distribution of the Markov chain 	z(·) of Section 3 is well approximated
by a multivariate Gaussian law of mean n	y(0) and positive definite covariance
matrix nQ(0), with the rescaled mean 	y(0) and covariance Q(0) given by the initial
condition of the corresponding ODE’s, namely, (2.4) and (2.10), respectively.

LEMMA 4.4. For 	x ∈ Rd and a positive definite d-dimensional matrix A, let
Gd(·|	x;A) denote the d-dimensional normal density of mean 	x and covariance A.
Further, let 	z = (z1, z2) denote the number of c-nodes of degree 1 and of degree
strictly greater than 1 in a random graph from the Gl(n, �nρ�) ensemble. Then, for
any ε > 0 there exist finite, positive constants κ0, κ1, κ2 and κ3, such that for all n,
r , and ρ ∈ [ε,1/ε],

‖E	z − n	y(0)‖ ≤ κ0,(4.18)

P{‖	z − E	z‖ ≥ r} ≤ κ1e
−r2/κ2n,(4.19)

sup
	u∈R2

sup
x∈R

∣∣∣∣P{	u · 	z ≤ x} −
∫

	u·	z≤x
G2(	z|n	y(0);nQ(0)) d	z

∣∣∣∣≤ κ3n
−1/2.(4.20)

PROOF. Set m = �nρ� and γ = l/ρ. Recall that the description of the ensem-
ble Gl(n,m) in Section 3.1 provides the following expression for the probability
P(	z) of having exactly z1 c-nodes of degree 1 and z2 c-nodes of degree strictly
greater than 1:

P(	z) = h(	z,0)

mnl
= Pγ {	Sm = (z1, z2, nl)}

Pγ {S(3)
m = nl} ,(4.21)

where 	Sm = ∑m
i=1

	Xi for 	Xi = (INi=1, INi≥2,Ni) ∈ Z3+ and Ni that are i.i.d.
Poisson(γ ) random variables. Consequently,

Ez1 = mPγ {N1 = 1}Pγ {S(3)
m−1 = nl − 1}

Pγ {S(3)
m = nl} ,

Ez2 = m − Ez1 − mPγ {N1 = 0}Pγ {S(3)
m−1 = nl}

Pγ {S(3)
m = nl} .

With |ρn − m| ≤ 1 and 	y(0) of (2.4) such that n	y(0) = nρ(Pγ {N1 = 1},Pγ {N1 ≥
2}), we easily get (4.18) upon using the fact that S

(3)
k is a Poisson(kγ ) random

variable and the sequence m|e(1 − 1
m

)m − 1| is uniformly bounded.
By (4.18), in deriving (4.19) we may and shall replace E	z by m

ρ
	y(0) =

(ES
(1)
m ,ES

(2)
m ). In view of (4.21), the stated bound (4.19) is then merely

Pγ

{∣∣S(1)
m − ES(1)

m

∣∣2 + ∣∣S(2)
m − ES(2)

m

∣∣2 ≥ r2|S(3)
m = nl

}≤ κ1e
−r2/κ2n,
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which is an immediate consequence of Hoeffding’s inequality for the partial sums
(S

(1)
m , S

(2)
m ) and the uniform lower bound Pγ {S(3)

m = nl} ≥ cn−1/2 with c > 0 de-
pending only on ε and l.

Observe next that 	Xi are nondegenerate lattice random variables on R3, having
minimal lattice Z3, finite moments of all orders and such that

cov( 	Xi) ≡ V =
⎛⎝p1(1 − p1) −p1p≥2 p1(1 − γ )

−p1p≥2 p≥2(1 − p≥2) γ − p1 − γp≥2

p1(1 − γ ) γ − p1 − γp≥2 γ

⎞⎠ ,

with p1 = Pγ (Ni = 1) = γ e−γ and p≥2 = Pγ (Ni ≥ 2) = 1 − e−γ − γ e−γ . Thus,
upon bounding (1 + ‖	u‖3)P1(−G3(·|	0,V) : {ξν})(	u) for the correction term P1 of
[7], (7.19) (with {ξν} denoting the cumulants of the law of 	X1), uniformly in γ ∈
[ε′,1/ε′] and 	u ∈ R3, it follows from Corollary 22.3 of [7] (with s = 3 there), that
for some finite c = c(ε′), any such γ , all m and 	z ∈ Z2,∣∣Pγ {	Sm = 	ze} − G3(	ze|m	xe;mV)

∣∣≤ cm−2

1 + m−3/2‖	ze − m	xe‖3 ,(4.22)

where 	ze = (	z,nl) and 	xe ≡ ρ−1(	y(0), l) = Eγ
	X1. Applying the same argument

for S
(3)
m ∈ R1, and possibly enlarging c(ε′) as needed we further have that∣∣Pγ

{
S(3)

m = nl
}− G1(nl|mγ ;mV33)

∣∣≤ cm−1.(4.23)

Next, summing the bound of (4.22) over 	z ∈ Z2, we deduce that for some finite
c′ = c′(ε) any γ and m,∑

	z∈Z2

∣∣Pγ {	Sm = 	ze} − G3(	ze|m	xe;mV)
∣∣≤ c′m−1.(4.24)

Further, Pγ {S(3)
m = nl} = ∑

	z Pγ {	Sm = 	ze}, hence we get from (4.21) and the
bounds of (4.23) and (4.24) that for some finite κ = κ(ε′) and any γ and m,∑

	z∈Z2

∣∣∣∣P(	z) − G3(	ze|m	xemV)

G1(nl|mγ ;mV33)

∣∣∣∣≤ cm−1 + c′m−1

G1(nl|mγ ;mV33)
≤ κn−1/2(4.25)

[with the rightmost inequality due to the uniform lower bound on m1/2G1(nl|mγ ;
mV33) for |nl − mγ | ≤ l/ε′]. The ratio G3(· · ·)/G1(· · ·) appearing in (4.25) is the
conditional distribution of (z1, z2), given z3 = nl, under the (joint) law G3(· · ·),
which is thus a Gaussian distribution of mean n′ 	y(0) and the positive definite co-
variance matrix n′Ṽ, with n′ ≡ m/ρ and the entries of the two-dimensional matrix
Ṽ given by Ṽij = ρ[Vij − Vi3Vj3/V33]. Upon substituting the expressions for p1

and p≥2, we see that Ṽ coincides with Q(0) of (2.10).
So, it follows from (4.25) that

sup
	u∈R2

sup
x∈R

∣∣∣∣∣P{	u · 	z ≤ x} − ∑
	u·	z≤x

G2(	z|n′ 	y(0);n′Q(0))

∣∣∣∣∣≤ κn−1/2.
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We thus arrive at (4.20) upon observing first that

sup
h≤1

sup
	u∈R2

sup
x∈R

1

h

∣∣∣∣∣ ∑	u·	z≤x

G2(	z|h−2 	y(0);h−2Q(0))

−
∫

	u·	z≤x
G2(	z|h−2 	y(0);h−2Q(0)) d	z

∣∣∣∣∣
is uniformly bounded in γ by the Euler–MacLaurin sum formula (cf. Theo-
rem A.4.3 of [7] for the Schwartz function G2(·|	0;Q(0)), where the correction in
�1(	x) of [7], (A.4.20), to the Gaussian distribution is then at most κ ′h for a finite
κ ′(ε), all 	x ∈ R2 and γ ), then noting that

√
n sup	u supx |G(	u,x;n) − G(	u,x;n′)|

is bounded in γ , n and |n′ − n| ≤ 1/ε for the Gaussian distribution function
G(	u,x; r) ≡ ∫

	u·	z≤x G2(	z|r 	y(0); rQ(0)) d	z. �

4.3. Asymptotic transition probabilities. We next prove an approximated for-
mula for the transition probabilities W+

τ (�	z|	z), that we often use in the sequel.
This formula is valid throughout Q+(ε) ≡ Q(ε) ∩ {z1 ≥ 1} ⊆ Z3, where for each
ε > 0,

Q(ε) ≡ {(	z, τ ) :−nl + nε ≤ z1;nε ≤ z2;
0 ≤ τ ≤ n(1 − ε);nε ≤ (n − τ)l − max(z1,0) − 2z2}

is a finite subset of Z3. As many of our approximations involve the rescaled vari-
ables 	x ≡ n−1	z and θ ≡ τ/n, we note in passing that if (	z, τ ) ∈ Q(ε), then nec-
essarily (	x, θ) is in the set q̂(ε) of Lemma 4.1 and if further (	z, τ ) ∈ Q+(ε), then
also (	x, θ) ∈ q̂+(ε).

LEMMA 4.5. For each θ ∈ [0,1) let Kθ : R2 → Kθ denote the projection onto
the convex set Kθ ≡ {	x ∈ R2+ : x1 + 2x2 ≤ l(1 − θ)}. Recall that each θ ∈ [0,1)

and 	x ∈ Kθ specifies by (2.2) a well-defined probability vector (p0,p1,p2). For
such θ , 	x define the transition kernel

Ŵθ (�	z|	x) ≡
(

l − 1
q0 − 1, q1, q2

)
p
q0−1
0 p

q1
1 p

q2
2 ,(4.26)

where q0 = −�z1 − �z2 ≥ 1, q1 = −�z2 ≥ 0, q2 = l + �z1 + 2�z2 ≥ 0. For any
	x ∈ R2, set Ŵθ (·|	x) ≡ Ŵθ (·|Kθ(	x)). That is, �z1 = −1− q̃0 +q1 and �z2 = −q1,
with (q̃0, q1, q2) having the multinomial law of parameters l − 1, p0, p1, p2 that
correspond to the projection of 	x onto Kθ .

Then, there exists a positive constant C = C(l, ε), such that, for any ρ ∈
[ε,1/ε], (	z, τ ) ∈ Q+(ε), �z1 ∈ {−l, . . . , l−2}, �z2 ∈ {−(l−1), . . . ,0}, and all n,∣∣W+

τ (�	z|	z) − Ŵτ/n(�	z|n−1	z)∣∣≤ C

n
.
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PROOF. Following the notation of Lemma 3.1, for each 	q = (p0, q0, q1,

q2) ∈ D , let

cl(	q) =
(

p0 + q1 + q2
p0, q1, q2

)
coeff[(ex − 1 − x)p0(ex − 1)q1+q2,xl−q0],(4.27)

and for 	z = (z1, z2) let

gl(	z) = ∑
	q∈D

(
z1 − 1
q0 − 1

)(
z2

p0 + q1 + q2

)
cl(	q).

Using the identities z0 = z′
0 − q0 − p0, z′

1 − q1 = z1 − q0 and z′
2 − q2 = z2 − p0 −

q1 − q2 of (3.3), it follows after elementary algebra that gl(	z) equals the sum over
D in (3.2) times the term

( m
z0,z1,z2

)
/
( m
z′

0,z
′
1,z

′
2

)
.

Next note that for any λ > 0, and integers t, s ≥ 1,

pλ(t, s) = coeff[(ex − 1 − x)t ,xs]λs(eλ − 1 − λ)−t(4.28)

is precisely

pλ(t, s) = Pλ

{
t∑

i=1

Ni = s

}
,

where {Ni} are i.i.d. random variables, with Pλ(N1 = k) = P(Nλ = k|Nλ ≥ 2)

and Nλ a Poisson random variable of parameter λ > 0. It is not hard to explicitly
compute

f1(λ) = Eλ(N1) = λ(eλ − 1)

eλ − 1 − λ
,

f2(λ)2 = Varλ(N1) = λ

(eλ − 1 − λ)2 [(eλ − 1)2 − λ2eλ],

and the normalized kth moment fk(λ) = Eλ(N1 − f1(λ))k/f2(λ)k , k ≥ 3.
The behavior of f1 was already considered in the proof of Lemma 4.1. Moreover

f2 : R+ → R+ is bounded away from zero and infinity when λ is bounded away
from zero and infinity, respectively, resulting with fk(λ) that are also bounded
away from infinity for each k.

Using (4.28) and writing explicitly the remaining terms in the expression (3.2),
it is not hard to verify that

W+
τ (�	z|	z) = nl−1

(
l(n − τ) − 1

l − 1

)−1

(4.29)

× λl+�z1(eλ − 1 − λ)�z2
pλ(z

′
2, (n − τ − 1)l − z′

1)

pλ(z2, (n − τ)l − z1)
ĝl(	z),

where z′
1 = z1 + �z1, z′

2 = z2 + �z2 and ĝl(	z) ≡ gl(	z)/n(l−1).
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Let ξ ≡ ((n − τ)l − z1)/z2. Since (n − τ)l ≥ z1 + 2z2 we have that ξ ≥ 2,
and there exists a unique nonnegative solution of f1(λ) = ξ . Further, as long as
(	z, τ ) ∈ Q+(ε) we get that 2 + (ε/ρ) ≤ ξ ≤ l/ε and hence ε2 ≤ λ ≤ l/ε (for ρ ≤
1/ε). We show in the sequel that this implies that there exists a positive constant
C̃ = C̃(l, ε), such that, for any �z1 ∈ {−l, . . . , l − 2} and �z2 ∈ {−(l − 1), . . . ,0},∣∣∣∣pλ(z2 + �z2, (n − τ)l − z1 − l − �z1)

pλ(z2, (n − τ)l − z1)
− 1

∣∣∣∣≤ C̃

n
.(4.30)

Further, the positive term λl+�z1(eλ − 1 − λ)�z2 does not depend on n, whereas
elementary calculus implies that

nl−1
(

(n − τ)l − 1
l − 1

)−1
= (l − 1)!

[l(1 − θ)]l−1 (1 + Rn),(4.31)

where |Rn| ≤ C̄(l)/(nε) in Q+(ε).
We turn to the asymptotic of ĝl(	z) for (	z, τ ) ∈ Q+(ε). To this end, note that

the condition 2p0 + q0 + q1 + q2 ≤ l implies that the set D is at most of size
l4 and that the nonnegative coefficients cl(	q) of (4.27) are bounded, uniformly in
	q by some K = K(l) < ∞ that is independent of z1 and z2 (hence independent
of n). On Q+(ε) the contribution to ĝl(	z) of the term indexed by 	q is at most
Kn−(l−1)(nl)p0+q0+q1+q2−1. As 2p0 + q0 + q1 + q2 ≤ l, the sum over terms with
either p0 > 0 or q2 < l − q0 − q1 is at most Kll−p0+3n−1.

Consider now 	q with p0 = 0 and q2 = l−q0 −q1, in which case q1 = −�z2 and
q0 = −�z1 − �z2 ≥ 1 are uniquely determined by �	z. Note that cl(	q) = (l−q0

q1

)
for these choices of p0 and q2, resulting with

ĝl(	z) = n−(q0−1) (z1 − 1)!
(z1 − q0)!

1

(l − 1)!x
l−q0
2

(
l − 1

q0 − 1, q1, q2

)
+ R̃n,(4.32)

for some |R̃n| ≤ K̃(l, ε)/n. Since

x
q0−1
1

(
1 − l2

n

)
≤ n−(q0−1) (z1 − 1)!

(z1 − q0)! ≤ x
q0−1
1 ,

replacing n−(q0−1)(z1 − 1)!/(z1 − q0)! in (4.32) by x
q0−1
1 and collecting together

(4.29), (4.30), (4.31) and (4.32), results with the statement (4.26) of the lemma
(note that 2q1 + q2 = l + �z1).

We complete the proof of the lemma by showing that (4.30) is a consequence of
a local CLT for the sum Sk of i.i.d. lattice random variables Xi = (Ni − ξ)/f2(λ).
Indeed, Xi have zero mean, unit variance and for some finite Ck we have that
|E(Xk

1)| = |fk(λ)| ≤ Ck for all (	z, τ ) ∈ Q+(ε). Further, pλ(z2, (n − τ)l − z1) =
P(Sk = 0) and pλ(z2 + �z2, (n − τ)l − z1 − l − �z1) = P(Sk′ = η) for k = z2,
k′ − k = �z2 ∈ {−(l − 1), . . . ,0} and η = −(l + �z1 + ξ�z2)/f2(λ). Note that
η is uniformly bounded by some c1 = c1(l, ε) on Q+(ε) and in the lattice of span
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b = f2(λ)−1 of possible values of Sk′ . Thus, for some finite c2 = c2(l, ε), all η and
k′ as above, we have by Theorem 5.4 and (5.27) of [21] that∣∣∣∣f2(λ)

√
k′P(Sk′ = η) − φ

(
η√
k′

)
+ f3(λ)

6
√

k′ φ
(3)

(
η√
k′

)∣∣∣∣≤ c2

k′ ,

where φ(u) = e−u2/2/
√

2π and φ(3)(u) denotes its third derivative. The same ap-
plies for k and η = 0, yielding that∣∣f2(λ)

√
kP(Sk = 0) − φ(0)

∣∣≤ c2

k
.

In particular, with k ≥ nε, we see that P(Sk = 0) ≥ c3/
√

n for some c3 > 0 and
all n ≥ n0, both depending only upon l and ε. As φ(u) is an even function with
uniformly bounded derivatives of any order, k, k′ ≥ εn, |η| ≤ c1 and |k − k′| ≤ l, it
follows that for some finite c4 = c4(l, ε),∣∣∣∣

√
k√
k′ φ

(
η√
k′

)
− φ(0) −

√
kf3(λ)

6k′ φ(3)

(
η√
k′

)∣∣∣∣≤ c4

n
,

from which (4.30) now directly follows. �

We often rely on the following regularity property of (	x, θ) �→ Ŵθ (·|	x) for the
transition kernels of (4.26).

LEMMA 4.6. With ‖ · ‖TV denoting the total variation norm and ‖ · ‖ the
Euclidean norm in R2, there exist positive constants L = L(l, ε) such that for any
θ, θ ′ ∈ [0,1 − ε] and 	x, 	x′ ∈ R2,

‖Ŵθ ′(·|	x′) − Ŵθ (·|	x)‖TV ≤ L(‖	x′ − 	x‖ + |θ ′ − θ |).(4.33)

PROOF. With (	x, θ) �→ Kθ(	x) Lipschitz continuous, given that one finite set
supports the kernels Ŵθ (·|	x) for all (	x, θ) and that Ŵθ (�	z|	x) of (4.26) is a smooth
function of (p0,p1,p2) for 	x ∈ Kθ , we get (4.33) out of the Lipschitz continuity
of (p0,p1,p2) on q̂(ε), proved in Lemma 4.1. �

4.4. Absence of small cores. A considerable simplification of our analysis
comes from the observation that a typical large random hypergraph does not have a
nonempty core of size below a certain threshold. For the convenience of the reader,
we next adapt a result of [30] (and its proof) to the context of our graph ensemble.

LEMMA 4.7. A subset of v-nodes of a hypergraph is called a stopping set if
the restriction of the hypergraph to this subset has no c-node of degree 1. For l ≥ 3
and any ε > 0 there exist κ(l, ε) > 0 and C(l, ε) finite such that for any m ≥ εn the
probability that a random hypergraph from the ensemble Gl(n,m) has a stopping
set of less than mκ(l, ε) v-nodes is at most C(l, ε)m1−l/2.
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REMARK 4.8. Since the core is the stopping set including the maximal num-
ber of v-nodes, the lemma implies that for m ≥ εn the probability that a random
hypergraph from the ensemble Gl(n,m) has a nonempty core of size less than
mκ(l, ε) is at most C(l, ε)m1−l/2. With n ≤ m/ε, upon changing κ to κ/ε and in-
creasing C as needed, it further follows that the probability of having a nonempty
core with less than nκ v-nodes is at most Cn1−l/2.

PROOF. Let N(s, r) denote the number of stopping sets in our random hyper-
graph which involve exactly s v-nodes and r c-nodes. Then, necessarily r ≤ �ls/2�
and

EN(s, r) =
(

n

s

)(
m

r

)
1

msl
coeff[(ex − 1 − x)r ,xsl](sl)!

(multiply the number of sets of s v-nodes and r c-nodes by the probability that
such a set forms a stopping set, with coeff[(ex − 1 − x)r ,xsl](sl)! counting the
number of ways of connecting the s v-nodes to these r c-nodes so as to form a
stopping set, while msl is the total number of ways of connecting the s v-nodes in
our graph ensemble). It is easy to see that for any integers r, t ≥ 1,

coeff[(ex − 1 − x)r ,xt ] ≤ (ex − 1 − x)r |x=1≤ 1.

Hence, for some ζ = ζ(l, ε) finite, any m ≥ εn, sl ≤ m and r ≤ �ls/2�,

EN(s, r) ≤
(

n

s

)(
m

r

)
(sl)!
msl

≤ ns

s!
m�sl/2�

�sl/2�!
(sl)!
msl

≤ ns

s!
(

sl

m

)�sl/2�
≤
[
ζ

(
s

m

)l/2−1]s

.

Thus, fixing 0 < κ < 1/l (so sl ≤ m whenever s ≤ κm), for l ≥ 3, the probability
that a random hypergraph from the ensemble Gl(n,m) has a stopping set of size at
most mκ is bounded above by

E

[
mκ∑
s=1

�ls/2�∑
r=1

N(s, r)

]
≤ ζm1−l/2

∞∑
s=1

sl(ζκl/2−1)s−1 ≤ 4ζ lm1−l/2,

provided ζκl/2−1 ≤ 1/2. �

5. Auxiliary processes and proof of Proposition 2.1. In this section we pro-
vide relations between two auxiliary inhomogeneous Z2-valued Markov processes
whose distributions are denoted, respectively, as Pn,ρ(·) and P̂n,ρ(·). In both cases,
we denote the process as {	z(τ ) = (z1(τ ), z2(τ )),0 ≤ τ ≤ n}, and use for both the
same initial condition

Pn,ρ

(	z(0) = 	z)= P̂n,ρ

(	z(0) = 	z)= PGl (n,m)

(	z(G) = 	z)= h(	z,0)

mnl
,
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if 	z ∈ Z2+ is such that z1 + 2z2 ≤ nl, and Pn,ρ(	z(0) = 	z) = P̂n,ρ(	z(0) = 	z) = 0 oth-
erwise. Here PGl (n,m)(·) is the uniform distribution on the graph ensemble Gl(n,m)

and m ≡ �nρ�.
Turning to specify the transition kernels, recall the triangles Kθ ≡ {	x ∈

R2+ :x1 + 2x2 ≤ l(1 − θ)}, θ ∈ [0,1), and set

Wτ(�	z|	z) =
{

W+
τ (�	z|	z), if z1 ≥ 1, n−1	z ∈ Kτ/n,

Ŵτ/n(�	z|n−1	z), otherwise,

for W+
τ (·|·) of (3.2) and the simpler kernel Ŵθ (·|·) of (4.26). The transition prob-

abilities are then

Pn,ρ

(	z(τ + 1) = 	z + �	z|	z(τ ) = 	z)= Wτ(�	z|	z),(5.1)

P̂n,ρ

(	z(τ + 1) = 	z + �	z|	z(τ ) = 	z)= Ŵτ/n(�	z|n−1	z),(5.2)

for τ = 0,1, . . . , n − 1. While the Markov process of Lemma 3.1 describing the
evolution under the decimation algorithm has n−1	z(τ ) ∈ Kτ/n, this is not nec-
essarily the case for the two auxiliary processes we consider here. Nevertheless,
the Markov process of Lemma 3.1 coincides with the one associated with Pn,ρ(·)
up to the first time τ at which z1(τ ) = 0, that is, when the decimation algorithm
terminates at the core of the hypergraph.

We next provide a coupling that keeps the process of distribution Pn,ρ(·) “very
close” to its “approximation” by the process of distribution P̂n,ρ(·) as long as the
former belongs to Q(η) for some η > 0. We shall see in Corollary 5.4 that up to
an exponentially small probability (as n → ∞), this is indeed the case for τ ≤
(1 − ε)n, allowing us to focus on the properties of the simpler distribution P̂n,ρ(·).

LEMMA 5.1. There exist finite C∗ = C∗(l, ε) and positive λ∗ = λ∗(l, ε), and

a coupling between {	z(τ )} d=Pn,ρ(·) and {	z′(τ )} d= P̂n,ρ(·), such that for any n,
ρ ∈ [ε,1/ε] and r > 0,

P

{
sup
τ≤τ∗

‖	z(τ ) − 	z′(τ )‖ > r

}
≤ C∗e−λ∗r ,(5.3)

where τ∗ ≤ n denotes the first time such that (	z(τ∗), τ∗) /∈ Q(ε).

PROOF. To construct the coupling between the two processes, start with
	z′(0) = 	z(0), which is possible since 	z(0) and 	z′(0) are identically distributed.
Then, for τ = 0,1, . . . , n − 1, with 	z(τ ) = 	z and 	z′(τ ) = 	z′, set 	z(τ + 1) = 	z + �	z
and 	z′(τ + 1) = 	z′ + �	z′, where the joint distribution (coupling) of (�	z,�	z′) is
chosen such that

P(�	z �= �	z′|	z, 	z′) = ‖Wτ(·|	z) − Ŵτ/n(·|n−1	z′)‖TV.(5.4)



FINITE SIZE SCALING FOR THE CORE OF LARGE RANDOM HYPERGRAPHS 2023

Clearly, it suffices to show that �n(λ∗) ≤ C∗ for some λ∗ > 0 and C∗ < ∞ that
depend only on l and ε, where

Z(τ) ≡ sup
σ≤τ∧τ∗

‖	z(σ ) − 	z′(σ )‖, �τ (λ) ≡ E
[
eλZ(τ)],

for τ = {0, . . . , n} and λ ≥ 0. To this end, note first that by our definition of
Wτ(·|	z), we have from Lemma 4.5 that for some finite c̃ = c̃(l, ε), any (	z, τ ) ∈
Q(ε), and all n,

‖Wτ(·|	z) − Ŵτ/n(·|n−1	z)‖TV ≤ c̃

n
(5.5)

[since the kernels Wτ(·|	z) and Ŵτ/n(·|n−1	z) are nonzero for at most 2l2 points].
Further, with ‖�	z‖ ≤ 2l and ‖�	z′‖ ≤ 2l, we have that for any 0 ≤ λ ≤ 1/(4l) (so
e4lλ ≤ 1 + 8lλ), σ = 0,1, . . . , n − 1 and realizations of the two processes,

eλZ(σ+1) ≤ {
1 + 8lλI{�	z(σ ) �=�	z′(σ ),σ<τ∗}

}
eλZ(σ).

As τ∗ is a stopping time and our coupling satisfies (5.4), upon considering the
expectation of the preceding inequality we get that

�σ+1(λ) ≤ �σ(λ)
(5.6)

+ 8lλE
{‖Wσ(·|	z(σ )) − Ŵσ/n(·|n−1	z′(σ ))‖TVIσ<τ∗e

λZ(σ)}.
Recall that as long as (	z(σ ), σ ) ∈ Q(ε), by (5.5) and Lemma 4.6

‖Wσ(·|	z(σ )) − Ŵσ/n(·|n−1	z′(σ ))‖TV ≤ c̃

n
+ L

n
‖	z(σ ) − 	z′(σ )‖.(5.7)

Since ‖	z(σ ) − 	z′(σ )‖Iσ<τ∗ ≤ Z(σ), combining the bounds of (5.6) and (5.7), we
deduce that

�σ+1(λ) ≤ [1 + 8lc̃n−1λ]E{(1 + n−18lLλZ(σ)
)
eλZ(σ)}

(5.8)
≤ [1 + 8lc̃n−1λ]�σ

(
λ(1 + 8lLn−1)

)
.

Since �0(λ) = 1, taking λ = λ∗ = exp(−8lL)/(4l) ≤ 1/(4l), and applying the
inequality (5.8) for the monotone increasing sequence {λσ ,σ ≥ 0} with λ0 = λ∗
and λσ+1 = λσ (1+8lLn−1), such that λn = λ∗(1+8lL/n)n ≤ 1/(4l), we get that

�n(λ∗) ≤
n−1∏
σ=0

(1 + 8lc̃n−1λσ ) ≤ exp

{
8lc̃n−1

n−1∑
σ=0

λσ

}
≤ exp{8lc̃λn} ≤ exp{2c̃},

completing the proof of the lemma. �

We turn to establish some of the asymptotic (in n → ∞) properties of our ap-
proximating processes [of distribution P̂n,ρ(·)].
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LEMMA 5.2. For any l ≥ 3 and ε > 0 there exist positive, finite constants
η ≤ ε, and C0,C1,C2,C3, such that, for any n, ρ ∈ [ε,1/ε] and τ ∈ {0, . . . , �n(1−
ε)�},

(a) 	z(τ ) is exponentially concentrated around its mean

P̂n,ρ{‖	z(τ ) − E	z(τ )‖ ≥ r} ≤ 4e−r2/C0n.(5.9)

(b) 	z(τ ) is close to the solution of the ODE (2.5),

E‖	z(τ ) − n	y(τ/n)‖ ≤ C1

√
n logn.(5.10)

(c) (	z(τ ), τ ) ∈ Q(η) with high probability; more precisely,

P̂n,ρ{(	z(τ ), τ ) /∈ Q(η)} ≤ C2e
−C3n.(5.11)

PROOF. (a) For τ = 0, upon taking C0 large enough, this is an immediate con-
sequence of (4.19). Turning to the general case, applying the Azuma–Hoeffding
inequality for Doob’s martingale

Z(σ) = E[	z(τ )|	z(0), . . . , 	z(σ )], σ ∈ {0, . . . , τ },
we see that for some c0 = c0(ε) finite, any n, r > 0, τ = 1, . . . , n(1 − ε) and
ρ ∈ [ε,1/ε],

P̂n,ρ{‖	z(τ ) − E[	z(τ )|	z(0)]‖ ≥ r} ≤ 4 exp(−r2/(2c2
0τ)),(5.12)

provided ess sup‖Z(σ) − Z(σ − 1)‖ ≤ c0 for all 1 ≤ σ ≤ τ . To this end, with 	z(·)
a Markov process, we have the bound

ess sup‖Z(σ) − Z(σ − 1)‖
(5.13)

≤ sup
	z(1),	z(2)

∥∥E[	z(τ )|	z(σ ) = 	z(1)]− E
[	z(τ )|	z(σ ) = 	z(2)]∥∥,

where the preceding supremum is over all 	z(1), 	z(2) such that some trajectories
{	z(0) . . . 	z(σ − 1), 	z(σ ) = 	z(1)} and {	z(0) . . . 	z(σ − 1), 	z(σ ) = 	z(2)} are both of
positive probability. In particular, ‖	z(1) − 	z(2)‖ ≤ 4l. Fixing such 	z(1) and 	z(2),
let 	z(1)(ν) and 	z(2)(ν) denote the realizations of two Markov processes of same
transition kernels Ŵθ (·|·), starting at 	z(1)(σ ) = 	z(1) and 	z(2)(σ ) = 	z(2), respec-
tively, where for ν = σ, . . . , τ − 1 the joint distribution (coupling) of �	z(1)(ν) ≡
	z(1)(ν + 1) − 	z(1)(ν) and �	z(2)(ν) ≡ 	z(2)(ν + 1) − 	z(2)(ν) is chosen such that

P
(
�	z(1)(ν) �= �	z(2)(ν)|	z(1)(ν), 	z(2)(ν)

)
= ∥∥Ŵν/n

(·|n−1	z(1)(ν)
)− Ŵν/n

(·|n−1	z(2)(ν)
)∥∥

TV.

With �(ν) ≡ E‖	z(1)(ν) − 	z(1)(ν)‖, the right-hand side of (5.13) is upper-bounded
by the supremum of �(τ) over all possible pairs of initial conditions such that
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�(σ) = ‖	z(1) − 	z(2)‖ ≤ 4l. Further, due to the Markov property of 	z and the pre-
ceding coupling, for σ ≤ ν < τ we have by (4.33) that

�(ν + 1) ≤ E
∥∥	z(1)(ν) − 	z(2)(ν)

∥∥+ E
{
E
[∥∥�	z(1)(ν) − �	z(2)(ν)

∥∥|	z(1)(ν), 	z(2)(ν)
]}

≤ �(ν) + 4lE
{∥∥Ŵν/n

(·|n−1	z(1)(ν)
)− Ŵν/n

(·|n−1	z(2)(ν)
)∥∥

TV

}
≤
(

1 + 4lL

n

)
�(ν).

With τ ≤ n, it thus follows that �(τ) ≤ exp(4lL)�(σ) ≤ 4l exp(4lL) =: c0, as
claimed.

Further, the preceding argument shows that ψ(	z) ≡ E[	z(τ )|	z(0) = 	z] is a uni-
formly Lipschitz continuous function of 	z, of Lipschitz constant ‖ψ‖L = exp(4lL)

that is independent of τ , n and ρ. Hence, from (4.19) we have that

P{‖ψ(	z(0)) − ψ(E	z(0))‖ ≥ r‖ψ‖L} ≤ P{‖	z(0) − E	z(0)‖ ≥ r} ≤ κ1e
−r2/κ2n.

Integrating this over r ≥ 0, we have that ‖Eψ(	z(0))−ψ(E	z(0))‖ ≤ c
√

n for some
finite constant c depending only on ε and l, yielding that

P̂n,ρ{‖E[	z(τ )|	z(0)] − E[	z(τ )]‖ ≥ r}
= P{‖ψ(	z(0)) − Eψ(	z(0))‖ ≥ r} ≤ C′

1e
−r2/c′

2n,

for some C′
1 and c′

2 which depend only on ε and l, which, together with (5.12),
concludes the proof of (5.9).

(b) Since ‖	z(τ )‖ ≤ 2nl, choosing r = √
C0n logn in (5.9) we find that

E‖	z(τ ) − E	z(τ )‖ ≤ c1

√
n logn,(5.14)

for some finite c1(ε). Denote by �m(τ) ≡ ‖E	z(τ ) − n	y(τ/n)‖ the error made
in replacing the expectation of the process 	z(τ ) of distribution P̂n,ρ(·) with the
(rescaled) solution of the ODE. Then, fixing τ ≤ n(1 − ε), we have by the Markov
property of 	z(·) that

�m(τ + 1)

= ‖E	z(τ ) − n	y(τ/n) + E{E[�	z(τ )|	z(τ )]} − n[	y(τ/n + 1/n) − 	y(τ/n)]‖.
Recall that for θ ≤ 1 − ε,

d 	y
dθ

= 	F(	y, θ) =∑
�	z

Ŵθ (�	z|	y)�	z,

so by the triangle inequality we get that

�m(τ + 1) ≤ �m(τ) +
∥∥∥∥∥E
{∑

�	z
[Ŵτ/n(�	z|n−1	z(τ )) − Ŵτ/n(�	z|n−1E	z(τ ))]�	z

}∥∥∥∥∥
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+
∥∥∥∥∥E
{∑

�	z
[Ŵτ/n(�	z|n−1E	z(τ )) − Ŵτ/n(�	z|	y(τ/n)]�	z

}∥∥∥∥∥
+ n

∥∥∥∥∥
∫ τ/n+1/n

τ/n
[ 	F(	y(θ), θ) − 	F(	y(τ/n), τ/n)]dθ

∥∥∥∥∥
≡ �m(τ) + δ(0)

m (τ ) + δ(1)
m (τ ) + δ(2)

m (τ ).

Recall as in (4.11) that δ
(2)
m (τ ) ≤ C∗n−1. Since ‖�	z‖ ≤ 4l, we have by (4.33) that

δ(1)
m (τ ) ≤ 4lE‖Ŵτ/n(�	z|n−1E	z(τ )) − Ŵτ/n(�	z|	y(τ/n))‖TV

≤ 4lL

n
‖E	z(τ ) − n	y(τ/n)‖ = 4lL

n
�m(τ).

Similarly, by (4.33) and (5.14), for some c2 = c2(ε) finite,

δ(0)
m (τ ) ≤ 4lL

n
E‖	z(τ ) − E	z(τ )‖ ≤ c2

√
logn

n
,

so putting these estimates together, we obtain the inequality

�m(τ + 1) ≤
(

1 + 4lL

n

)
�m(τ) + c3

√
logn

n
.

Further, recall (4.18) of Lemma 4.4 that �m(0) is bounded in n and m = �ρn�,
provided ρ ∈ [ε,1/ε]. Thus, we easily get (5.10) upon applying the preceding re-
cursion for τ = 0, . . . , n − 1.

(c) In the course of proving part (a) of Proposition 4.2 we have seen that there
exists η = η(ε, l) > 0 such that if ρ ∈ [ε,1/ε] and θ ≤ (1 − ε), then y1(θ) ≥ −l +
2η, y2(θ) ≥ 2η and (1 − θ)l − max(y1(θ),0)− 2y2(θ) ≥ 2η. Consequently, taking
η ≤ ε, for such ρ and τ ∈ {0, . . . , �n(1 − ε)�}, if ‖	z(τ ) − n	y(τ/n)‖ ≤ nη/3, then
clearly (	z(τ ), τ ) ∈ Q(η). We thus get (5.11) upon considering (5.9) and (5.10) for
r = nη/6 and n such that C1

√
n logn ≤ nη/6. �

The first consequence of Lemma 5.2 is the existence of “critical time window.”
That is, for ρ near ρc a typical trajectory {	z(τ );0 ≤ τ ≤ (1−ε)n} does not traverse
the z1 = 0 plane if τ is not near nθc.

COROLLARY 5.3. Fixing β ∈ (3/4,1), β ′ < 2β − 1 and ε > 0, let In ≡
[0, nθc − nβ] ∪ [nθc + nβ,n(1 − ε)]. Then, for some C4 finite, η positive, all n

and |ρ − ρc| ≤ nβ ′−1,

P̂n,ρ

{
min
τ∈In

z1(τ ) ≤ nβ ′
}

≤ C4e
−nη

.
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PROOF. From part (d) of Proposition 4.2, we have that ny1(τ/n,ρc) ≥ cn2β−1

for some c > 0, all n and τ ∈ In. Since ρ �→ 	y(θ, ρ) is Lipschitz continuous [by
Proposition 4.2, part (a)], there exists a finite constant c′ such that ‖	y(θ, ρ) −
	y(θ, ρc)‖ ≤ c′nβ ′−1 for any θ ∈ [0,1 − ε] and |ρ − ρc| ≤ nβ ′−1.

By part (b) of Lemma 5.2, we thus get that for β ′ < 2β − 1, β > 3/4, some
positive C = C(β,β ′) and all n large enough, if τ ∈ In and |ρ − ρc| ≤ nβ ′−1, then

Ez1(τ ) ≥ ny1(τ/n,ρ) − C1

√
n logn

≥ ny1(τ/n,ρc) − c′nβ ′ − C1

√
n logn ≥ 2Cn2β−1.

Applying now Lemma 5.2, part (a), we see that for any η < (4β − 3)/2, some
C ′ = C′(β,β ′, η) finite and all n large enough

P̂n,ρ{z1(τ ) ≤ nβ ′ } ≤ P̂n,ρ{‖	z(τ ) − E	z(τ )‖ ≥ Cn2β−1} ≤ C′e−n2η

,

whenever τ ∈ In and |ρ − ρc| ≤ nβ ′−1. To conclude, recall that there are at most n

integers τ ∈ In. �

The second consequence of Lemma 5.2 is that with high probability also the
process {	z(τ )} of distribution Pn,ρ(·) belongs to the set Q(η) as long as τ/n is
bounded away from 1.

COROLLARY 5.4. For any ε > 0, there exists η > 0 and positive, finite con-
stants C5,C6 such that if ρ ∈ [ε,1/ε], then

Pn,ρ{(	z(τ ), τ ) ∈ Q(η)∀0 ≤ τ ≤ n(1 − ε)} ≥ 1 − C5e
−C6n.(5.15)

PROOF. From part (c) of Lemma 5.2 we have that for some η′ ∈ (0, ε), positive
and finite c5 and c6,

P̂n,ρ{(	z(τ ), τ ) ∈ Q(η′)∀0 ≤ τ ≤ n(1 − ε)} ≥ 1 − c5e
−c6n.(5.16)

Applying the coupling of Lemma 5.1 with η = η′/4 for the value of ε in the state-
ment of this lemma, we also have that

P

{
sup
τ≤τf

‖	z(τ ) − 	z′(τ )‖ > ηn

}
≤ c7e

−c8n,(5.17)

where τf ≤ n denotes the first time such that (	z(τ ), τ ) /∈ Q(η). Further, if τf ≤
n(1 − ε) and supτ≤τf

‖	z(τ ) − 	z′(τ )‖ ≤ ηn, then necessarily (	z′(τ ), τ ) /∈ Q(4η) =
Q(η′) for τ = τf ≤ n(1 − ε), an event whose probability is at most c5e

−c6n [by
(5.16)]. Combining the latter bound with (5.17) we find that

Pn,ρ{τf ≤ n(1 − ε)} ≤ c5e
−c6n + c7e

−c8n,

yielding (5.15) for C5 = c5 + c7 and C6 = min(c6, c8), both finite and positive.
�
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PROOF OF PROPOSITION 2.1. For {	z(τ ); τ ≥ 0} distributed according to
Pn,ρ(·) let τ∗∗ denote the first time at which z1(τ ) ≤ 0. Since by construction (and
using Lemma 3.1), the sequence {z1(τ );0 ≤ τ ≤ τ∗∗} is distributed as the number
of c-nodes of the graphs G(τ) having degree 1 under the decimation algorithm, we
see that Pl(n,ρ) = Pn,ρ{τ∗∗ ≤ n − 1}.

Further, the core of the initial graph G(0) includes at most n − τ∗∗ vertices.
Consequently, by Lemma 4.7 (cf. Remark 4.8), we can choose D < ∞ and 0 <

κ < 1 − θc such that

Pn,ρ{τ∗∗ ≤ n(1 − κ)} ≤ Pl(n,ρ) ≤ Pn,ρ{τ∗∗ ≤ n(1 − κ)} + 1
4δn,

for |ρ − ρc| ≤ nβ ′−1 and δn ≡ Dn−1/2(logn)2.
By Corollary 5.4, there exist 0 < η ≤ ε < κ and finite, positive C5,C6, such that

{	z(τ ),0 ≤ τ ≤ n(1 − ε)} ⊆ Q(η) with probability at least 1 − C5e
−C6n, for all n.

Hence, we have that

Pn,ρ

{
min

0≤τ≤τ∗
z1(τ ) ≤ 0

}
≤ Pl(n,ρ) ≤ Pn,ρ

{
min

0≤τ≤τ∗
z1(τ ) ≤ 0

}
+ C5e

−C6n + 1
4δn,

for

τ∗ = n(1 − κ) ∧ min{τ : (	z(τ ), τ ) /∈ Q(η)}.
By Lemma 5.1, there exist A > 0, and a coupling of the process {	z(τ )} with

a process {	z′(τ )} of distribution P̂n,ρ(·), such that, with probability larger than
1 − 1/2n, up to time τ∗ the distance between these two processes is at most εn ≡
A logn. Therefore, enlarging D if necessary, we have that

P

{
min

0≤τ≤τ∗
z′

1(τ ) ≤ −εn

}
− 1

n
≤ Pl(n,ρ) ≤ P

{
min

0≤τ≤τ∗
z′

1(τ ) ≤ εn

}
+ 1

n
+ 1

4
δn.

We have seen that τ∗ < n(1 − κ) with probability of at most C5e
−C6n. Hence,

enlarging D once more, we find that

P̂n,ρ

{
min

0≤τ≤n(1−κ)
z1(τ ) ≤ −εn

}
− 1

2δn ≤ Pl(n,ρ)

≤ P̂n,ρ

{
min

0≤τ≤n(1−κ)
z1(τ ) ≤ εn

}
+ 1

2δn.

With θc < (1−κ), the set [0, n(1−κ)] is the disjoint union of Jn as in the statement
of the proposition and a set of the form In of Corollary 5.3. Thus, bounding the
probability of the event minτ∈In z1(τ ) ≤ εn via the latter corollary yields the thesis
of the proposition [enlarging D as needed for absorbing the term C4 exp(−nη)

into δn]. �

Let Pn,ρ(·) denote the law of the R2-valued Markov chain {	z′(τ )} of (2.12),
where 	z′(0) has the uniform distribution PGl (n,m)(·) on the graph ensemble
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Gl(n,m) for m ≡ �nρ�, and

Pn,ρ

(	z′(τ + 1) = 	z′(τ ) + �τ + Ãτ

(
n−1	z′(τ ) − 	y(τ/n)

)|	z′(τ ) = 	z′)
= Ŵτ/n(�τ |	y(τ/n)).

We conclude this section by providing a coupling that keeps the process {	z′(·)}
“sufficiently close” to {	z(·)} of distribution P̂n,ρ(·) throughout the time interval Jn

of interest to us.

PROPOSITION 5.5. Fixing β ∈ (3/4,1) and β ′ < 2β − 1, for any δ > β − 1/2
there exist finite constants α, c and a coupling of the processes {	z(·)} of distribution
P̂n,ρ(·) and {	z′(·)} of distribution Pn,ρ(·) such that for all n and |ρ − ρc| ≤ nβ ′−1,

P

{
sup
τ∈Jn

‖	z(τ ) − 	z′(τ )‖ ≥ cnδ

}
≤ α

4n
.(5.18)

The key to Proposition 5.5 is the following elementary martingale concentration
property.

LEMMA 5.6. Consider an Rd -valued discrete-time martingale (Zs,Fs) with
Z0 = 0 and Us = Zs+1 − Zs such that for some finite � and a stopping time τ∗ for
Fs

E[‖Us‖2eλ·Us | Fs] ≤ �E[eλ·Us | Fs] < ∞
(5.19)

whenever s < τ∗,‖λ‖ < 1.

Then, for any 0 ≤ a < t�
√

d ,

P
{∥∥Zmin(t,τ∗)

∥∥≥ a
}≤ 2d exp

{
− a2

2d�t

}
.

PROOF. Recall that for real-valued variable V , if E[V ] = 0 and
E[V 2 exp(uV )] ≤ κE[exp(uV )] < ∞ for all u ∈ [0,1], then E[exp(V )] ≤
exp(κ/2) (bound the value of φ(1) for φ(u) ≡ log E[exp(uV )] using φ(0) =
φ′(0) = 0 and φ′′(u) ≤ κ). In the special case of d = 1 and τ∗ = ∞, we have
from (5.19) that the preceding assumptions hold for κ = �λ2, ‖λ‖ < 1 and V

having the law of λUs conditional on Fs . Consequently, then E[exp(λUs)|Fs] ≤
exp(�λ2/2), implying that E[Mt ] ≤ E[M0] = 1 for the supermartingale Ms =
exp(λZs − �λ2s/2). Considering a ∈ [0, t�) and λ = a/(�t), we thus deduce
that P{Zt ≥ a} ≤ exp{−a2/(2�t)} in case Zs is a real-valued martingale for Fs

and (5.19) holds for all s < ∞. The stated bound for Rd -valued martingale Zt

of coordinates Zt,i follows upon noting that the event {‖Zt‖ ≥ a} is contained
in the union of the events {uZt,i ≥ a/

√
d} for u = −1,1 and i = 1, . . . , d , with

uZs,i real-valued martingales. Finally, we get the thesis in the general case, where
P(τ∗ < ∞) > 0, upon considering the (stopped) martingale Zmin(s,τ∗). �
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PROOF OF PROPOSITION 5.5. We couple the processes {	z′(·)} d=Pn,ρ(·), and

{	z(τ )} d= P̂n,ρ(·) in a joint Markov process, by letting 	z′(0) = 	z(0) and for τ =
0,1,2, . . . , n − 1,

P
(
�	z(τ ) �= �τ |Fτ

)= ‖Ŵτ/n(·|n−1	z(τ )) − Ŵτ/n(·|	y(τ/n))‖TV,

where �	z(τ ) ≡ 	z(τ + 1) − 	z(τ ) and Fτ denotes the σ -algebra generated by
{	z(σ ), 	z′(σ ), σ ≤ τ }.

Fixing ε < (1 − θc)/2, let τ∗ ≤ n denote the first value of τ such that ‖	z(τ ) −
n	y(τ/n)‖ > K

√
n logn, with a finite K = K(ε) such that by parts (a) and (b) of

Lemma 5.2, for any n and ρ ∈ [ε,1/ε],
P̂n,ρ{τ∗ ≤ n(1 − ε)} ≤ n−1.

Fix β ∈ (3/4,1), β ′ and δ > β − 1/2. With at most n values for τ in Jn we thus
obtain (5.18) once we show that some c < ∞, all n large enough

sup
τ∈Jn

P{τ < τ∗,‖	z′(τ ) − 	z(τ )‖ ≥ cnδ} ≤ n−2.(5.20)

To this end, consider Doob’s decomposition of the adapted process Ns ≡
(B̃s−1

0 )−1(	z′(s) − 	z(s)) as the sum of an Fs -martingale {Zs}, null at zero, and
the predictable sequence

Vτ+1 =
τ∑

s=0

�Vs ≡
τ∑

s=0

E[Ns+1 − Ns |Fs].

It follows from our coupling that �Vs = (B̃s−1
0 )−1 	R(n−1	z(s), 	y(s/n), s/n), where

	R(	x′, 	x, θ) ≡ 	F(	x, θ) + Iθ<θnA(	x, θ)[	x′ − 	x] − 	F(	x′, θ)

(with θn ≡ τn/n = �nθc − nβ�/n), and that for �∗
t ≡ �t − �	z(t),

Ut ≡ Zt+1 − Zt = (B̃t−1
0 )−1{�∗

t − E[�∗
t |Ft ]}.(5.21)

Since Aab(	x, θ) = ∂xb
Fa(	x, θ) with 	F(	x, θ) having Lipschitz continuous deriv-

atives on q̂+(ε), it follows that ‖ 	R(	x′, 	x, θ)‖ ≤ c0‖	x′ − 	x‖2 for some c0 = c0(ε)

finite, provided θ < θn and both (	x, θ) and (	x′, θ) are in q̂+(ε). By the Lipschitz
continuity of 	F(	x, θ) we also have that ‖ 	R(	x′, 	x, θ)‖ ≤ c0‖	x′ − 	x‖ in case θ ≥ θn,
as soon as (	x, θ) and (	x′, θ) are in q̂(ε).

Recall Lemma 4.3 that for some finite n0 and κ we have that ‖(B̃τ−1
0 )−1‖ ≤ κ

for all τ , ρ ∈ [ε,1/ε] and n ≥ n0. In the course of proving part (a) of Proposi-
tion 4.2 we have seen that the distance of (	y(θ, ρ), θ) from the complement of
q̂(ε) is bounded away from zero, uniformly in θ ≤ 1 − 2ε and ρ ∈ [ε,1/ε]. Fur-
ther, y1(θ, ρ) ≥ κ ′n2(β−1) for some κ ′ > 0, all n, |ρ − ρc| ≤ nβ ′−1, and θ ≤ θn

(cf. proof of Corollary 5.3). Consequently, for some finite n1 = n1(K, ε) and all
n ≥ n1, the event {s < τ∗} implies that both (n−1	z(s), s/n) and (	y(s/n), s/n) are
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in q̂(ε) when s ≤ nθc + nβ , and in case s < τn they are also in q̂+(ε). We deduce
that if n ≥ n1 and {s < τ∗}, then

‖�Vs‖ ≤ c0‖(B̃s−1
0 )−1‖‖n−1	z(s) − 	y(s/n)‖2 ≤ c0κK2n−1 logn,

when s < τn, whereas ‖�Vs‖ ≤ c0κKn−1/2(logn)1/2 for s ∈ Jn. Hence, for
some finite c1 and all n ≥ n1, the event {τ < τ∗} implies for τ ∈ Jn that
‖Vτ‖ ≤ c1n

β−1/2(logn)1/2. Fixing η ∈ (1/4, β − 1/2), since ‖	z′(τ ) − 	z(τ )‖ ≤
‖B̃τ−1

0 ‖[‖Vτ‖ + ‖Zτ‖] and ‖B̃τ−1
0 ‖ are bounded uniformly in n, τ and ρ, we thus

get (5.20) by considering Lemma 5.6 at τ ∈ Jn and a = nη, provided we show that
for some c2 finite, the martingale differences Ut of (5.21) satisfy the inequality
(5.19) with � = c2n

−1/2(logn)1/2 (as indeed nη ≤ τn�
√

d for all n large enough
and n2η/2d�n → ∞). To this end, note first that by the total variation bound of
Lemma 4.6 and the definition of τ∗, for t < τ∗ our coupling of (	z, 	z′) results with

P(�∗
t �= 0|Ft ) ≤ L‖n−1	z(t) − 	y(t/n)‖ ≤ LKn−1/2(logn)1/2 ≡ un.

Further, the bounded support of Ŵθ (·|	x) implies that ‖�∗
t ‖ ≤ 4l, so for t < τ∗ also

‖E[�∗
t |Ft ]‖ ≤ 4lP(�∗

t �= 0|Ft ) ≤ 4l min(un,1).

From the preceding estimates we deduce that Ut of (5.21) is such that ‖Ut‖ ≤ 8lκ

and when t < τ∗, also

P
(‖Ut‖ > 4lκ min(un,1)|Ft

)≤ P(�∗
t �= 0|Ft ) ≤ un.

These two facts easily imply that if ‖λ‖ ≤ 1 and t < τ∗, then the inequality (5.19)
holds for � = 2(8lκ)2e16lκun which as we have already seen, completes the proof
of the proposition. �

6. Gaussian approximation and proof of Proposition 2.2. This section is
devoted to the proof of Proposition 2.2. Specifically, building on Proposition 5.5,
in Section 6.1 we approximate the Markov process {	z(τ )} of distribution P̂n,ρ(·)
by a Brownian motion with a quadratic shift, when τ is within the window Jn

around the critical time. Then, in Section 6.2 we show how the one-sided Brownian
motion with quadratic shift can be replaced by a two-sided motion, once its initial
condition is appropriately mapped to the distribution of the two-sided motion at
the critical time. Finally, in Section 6.3 we show that this distribution [which a
priori depends on the law of 	z(0)] is also well approximated by a Gaussian law
and complete the proof of Proposition 2.2.

6.1. Local approximation by a Brownian motion with quadratic shift. Our
goal here is to approximate the probabilities of interest to us in terms of the mini-
mal value of the Brownian motion with quadratic shift

Xn(τ) ≡ n1/3[X(n−2/3(τ − 0.5 − nθc)
)− X

(
n−2/3(τn − 0.5 − nθc)

)]
,(6.1)
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within Jn ≡ [nθc − nβ,nθc + nβ], for the process {X(t)} of Proposition 2.2. As
stated in the following lemma, while doing this we also approximate the law of
z1(τn) by that of the sum of 	un · [	z(0) − n	y(0)], where 	un denotes the first row of
B̃

τn−1
0 , and an independent normal random variable of mean ny∗

1 (τn) and variance
n[(Qτn)11 − 	u†

nQ(0, ρ)	un].
LEMMA 6.1. Fixing β ∈ (3/4,1) and A > 0, set β ′ < 2β − 1, εn = A logn

as in Proposition 2.1 and Yn ≡ inft∈Jn Xn(t) for Xn(·) of (6.1). Then, for any δ >

3β − 2, there exist positive, finite constants α and C such that for any n and |ρ −
ρc| ≤ nβ ′−1,

P{ξ∗
n + ξn + Yn ≤ −Cnδ} − α

n
≤ P̂n,ρ

{
min
τ∈Jn

z1(τ ) ≤ ±εn

}
≤ P{ξ∗

n + ξn + Yn ≤ Cnδ} + α

n
,

where ξn ≡ 	un · [	z(0) − n	y(0)], the normal random variable ξ∗
n of mean ny∗

1 (τn)

and variance n[(Qτn)11 − 	u†
nQ(0, ρ)	un], and Xn(·), are mutually independent.

PROOF. The strategy we follow is to progressively simplify the process {	z(τ )}
of distribution P̂n,ρ(·) until obtain the stated bounds of the lemma, where each
simplification is justified by a coupling argument. The first and most important step
of this program has already been done in Proposition 5.5. Since the chain {	z′(·)}
of law Pn,ρ(·) has independent increments for τ ≥ τn, we can apply Sakhanenko’s
refinement of the Hungarian construction, to [22, 32] for the uniformly bounded
(by 4l) independent increments ξi = z′

1(τn + i) − z′
1(τn + i − 1). We then deduce

the existence of a real-valued Gaussian process bn(τ ), independent of z′
1(τn), such

that bn(τn) = 0; its independent increments �bn(τ) ≡ bn(τ + 1) − bn(τ ) have
mean and variance

E�bn(τ) = F1(	y(τ/n,ρ), τ/n), Var�bn(τ) = G11(	y(τ/n,ρ), τ/n)

[matching the corresponding moments of z′
1(τ + 1) − z′

1(τ )], such that for some
finite c0, α and all n, ρ,

P

{
sup
τ∈Jn

|z′
1(τ ) − z′

1(τn) − bn(τ )| ≥ c0 logn

}
≤ α

4n
(6.2)

(the latter follows by Chebyshev’s inequality from [32]; see, e.g., [34], Theo-
rem A).

Considering the representation (2.14) for 	z′(τn) we see that z′
1(τn) − ξn is the

sum of the uniformly bounded real-valued independent variables (B̃
τn−1
σ+1 �σ)1, σ =

0, . . . , τn −1 plus a nonrandom constant. Hence, similarly to the derivation of (6.2)
we obtain that for some finite c0, α and all n, ρ,

P{|z′
1(τn) − ξn − ξ∗

n | ≥ c0 logn} ≤ α

4n
,(6.3)
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where ξ∗
n is a normal random variable, independent of ξn and bn(·), whose mean

and variance match those of z′
1(τn)− ξn. It is not hard to verify that the latter mean

and variance are indeed ny∗
1 (τn) and n[(Qτn)11 − 	u†

nQ(0, ρ)	un], as stated.
We clearly have the representation

bn(τ ) =
τ−1∑
σ=τn

E�bn(σ) + B

(
τ−1∑
σ=τn

Var�bn(σ)

)
,

for a standard Brownian motion B(·). Further, the real-valued Gaussian process
{Xn(t), t ≥ τn} of (6.1) admits the representation

Xn(t) = F̃

∫ t−0.5

τn−0.5
(σ/n − θc) dσ + B

(
G̃(t − τn)

)
,

for the same standard Brownian motion B(·), where G̃ = G11 and F̃ = dF1
dθ

, both
evaluated at θ = θc and 	y = 	y(θc, ρc) [so F̃ is as defined in (2.7)]. Combining
(5.18), (6.2) and (6.3) we establish the thesis of the lemma upon showing that the
preceding coupling of bn(·) and Xn(·) is such that for some α, c1 finite and all n,

P

{
sup
t∈Jn

|bn([t]) − Xn(t)| ≥ 3c1n
δ

}
≤ α

4n
.(6.4)

The sup in (6.4) is taken over all real-valued t ∈ Jn = [nθc − nβ,nθc + nβ], while
in the sequel we use τ ∈ Jn to denote an integer in the same interval.

With {Xn(τ + t) − Xn(τ) : t ∈ [0,1]} having the same law as {B(G̃t) +
an,τ (t) : t ∈ [0,1]} for nonrandom an,τ (t) which are bounded uniformly in t ∈
[0,1], n and τ ∈ Jn, we obviously get (6.4) upon showing that

sup
τ∈Jn

P{|bn(τ ) − Xn(τ)| ≥ 2c1n
δ} ≤ n−2.(6.5)

Inequality (6.5) is a direct consequence of having a finite κ such that, for
�Xn(τ) = Xn(τ + 1) − Xn(τ),

e1(τ ) ≡ |Var�bn(τ) − Var�Xn(τ)| = |G11(	y(τ/n,ρ), τ/n) − G̃| ≤ κnβ−1,

e2(τ ) ≡ |E�bn(τ) − E�Xn(τ)|
= |F1(	y(τ/n,ρ), τ/n) − (τ/n − θc)F̃ | ≤ κn2(β−1),

for all τ ∈ Jn and |ρ − ρc| ≤ nβ ′−1. Indeed, since δ > β + 2(β − 1) > 1 − β and
the interval Jn is of length 2�nβ�, taking c1 large enough so c1n

δ ≥ κn2(β−1)|Jn|
for all n, the stated bound on e2(·) guarantees that |Ebn(τ ) − EXn(τ)| ≤ c1n

δ for
all τ ∈ Jn, whereas the corresponding bound on e1(·) guarantees that Var(bn(τ ) −
Xn(τ)) ≤ c1n

δn1−β , leading (by standard Gaussian tail estimates) to (6.5).
Turning to bound e1(τ ) and e2(τ ), recall that τ ∈ Jn and |ρ − ρc| ≤ nβ ′−1 im-

ply that (τ/n,ρ) ∈ [0,1 − ε) × [ε,1/ε], so |	y(τ/n,ρ) − 	y(τ/n,ρc)| ≤ C1|ρ −
ρc| for some constant C1 = C1(ε) by the Lipschitz continuity of ρ �→ 	y(θ, ρ)
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[see part (a) of Proposition 4.2]. Further, then (	y(τ/n,ρ), τ/n) ∈ q̂(ε), so by
Lemma 4.1 we have the Lipschitz continuity of ρ �→ F1(	y(τ/n,ρ), τ/n) and
ρ �→ G11(	y(τ/n,ρ), τ/n). That is, for some constant C2 = C2(ε) and all such
τ , ρ, n,

e1(τ ) ≤ |G11(	y(τ/n,ρc), τ/n) − G11(	y(θc, ρc), θc)| + C2|ρ − ρc|,(6.6)

e2(τ ) ≤ |F̂1(τ/n) − (τ/n − θc)F̃ | + C2|ρ − ρc|,(6.7)

where F̂1(θ) ≡ F1(	y(θ, ρc), θ). Similarly, the Lipschitz continuity of θ �→ 	y(θ, ρc)

on [0,1 − ε) [from part (a) of Proposition 4.2] together with that of (	x, θ) �→
G11(	x, θ) on q̂(ε) (by Lemma 4.1) result in

|G11(	y(τ/n,ρc), τ/n) − G11(	y(θc, ρc), θc)| ≤ C3|τ/n − θc| ≤ C3n
β−1,

for some C3 = C3(ε) and all τ ∈ Jn. Thus, with β ′ − 1 < 2(β − 1), we get from
(6.6) that e1(τ ) ≤ κnβ−1 for all τ ∈ Jn and |ρ − ρc| ≤ nβ ′−1, as stated. As for
bounding e2(τ ), recall that θ �→ 	y(θ, ρc) is infinitely continuously differentiable
on [0,1 − ε] [cf. parts (b) and (d) of Proposition 4.2]. Further, as (	y(θ, ρc), θ) ∈
q̂+(ε) for all θ ∈ [0,1 − ε] [by (a) and (d) of Proposition 4.2], from Lemma 4.1 we
have that F̂1(·) is differentiable on [0,1−ε] with a Lipschitz continuous derivative.
Recall that dy1/dθ = 0 at θ = θc and ρ = ρc [see part (d) of Proposition 4.2].
Hence, F̂1(θc) = 0 [in view of the ODE (2.5)], and with F̃ = F̂ ′

1(θc) we deduce
that for some C4 = C4(ε) and all θ ∈ [0,1 − ε],

|F̂1(θ) − (θ − θc)F̃ | ≤ C4|θ − θc|2.
Combining (6.7) with the latter bound (for θ = τ/n and τ ∈ Jn, so |θ − θc| ≤
nβ−1), we conclude that e2(τ ) ≤ κn2(β−1) for all τ ∈ Jn and |ρ − ρc| ≤ nβ ′−1, as
stated. �

6.2. Brownian computations. We show in the sequel that for large s and u the
distribution of

Vs,u = inf
t∈[−s,u]X(t) − X(−s)

is well approximated by that of V∗ − X̃(−s) for V∗ ≡ inft∈R X(t) and {X̃(t)} an
independent copy of {X(t)}. More precisely, we prove:

LEMMA 6.2. With the preceding definitions, for 0 < ϕ < 4(1 − ψ)/3 − 1, all
s, u large enough and any nonrandom v,

P{V∗ − X̃(−s) ≥ v + 2s−ψ } − 5e−sϕ ≤ P{Vs,u ≥ v}
≤ P{V∗ − X̃(−s) ≥ v − 2s−ψ } + 5e−(s∧u)ϕ .
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PROOF. Conditioning upon the value of X(−s) we have on account of the
independence of {X(−t) : t ≥ 0} and {X(t) : t ≥ 0} that

P{Vs,u ≥ v} = E
[
ps

(
v + X̃(−s), X̃(−s)

)
q−u,0

(
v + X̃(−s)

)]
,

where for s > θ ≥ 0 and any a, b,

ps(a, b) ≡ P

{
inf−s≤t≤0

X(t) ≥ a
∣∣∣X(−s) = b

}
,

q−s,−θ (a) ≡ P

{
inf−s≤t≤−θ

X(t) ≥ a

}
.

Recall that the law of {X(t) :−s ≤ t ≤ 0} conditional upon {X(−s) = b} is merely
the law of {Xb,s(t) ≡ X(t) − t

s
(b − X(−s)) :−s ≤ t ≤ 0}. Thus, in particular,

P{Vs,u ≥ v} = E
[
p

(s)
−s,0

(
v + X̃(−s), X̃(−s)

)
q−u,0

(
v + X̃(−s)

)]
,(6.8)

where

p
(c)
−s,−θ (a, b) ≡ P

{
inf−s≤t≤−θ

Xb,c(t) ≥ a

}
.

Similarly,

P{V∗ − X̃(−s) ≥ v} = E
[
q−∞,0

(
v + X̃(−s)

)2]
.(6.9)

Fixing 0 < ϕ < 4(1−ψ)/3−1, choose (ϕ+1)/2 < κ < 2(1−ψ)/3. Then, setting
ρ = 1 −ψ − κ and θ = sρ (so s−ψ = θ

s
sκ ), it follows that if |b − 1

2 F̃ s2| ≤ sκ , then
for all s large enough

P

{
sup

−θ≤t≤0
|Xb,s(t) − X(t)| ≥ 2s−ψ

}
(6.10)

≤ P
{∣∣X(−s) − 1

2 F̃ s2∣∣≥ sκ}≤ e−sϕ

.

Consequently, for any value of a,

q−θ,0(a + 2s−ψ) − e−sϕ ≤ p
(s)
−θ,0(a, b) ≤ q−θ,0(a − 2s−ψ) + e−sϕ

.(6.11)

Relying upon these bounds we next show that if |b − 1
2 F̃ s2| ≤ sκ , then for s large

enough and all a,

q−∞,0(a + 2s−ψ) − 3e−sϕ ≤ p
(s)
−s,0(a, b) ≤ q−∞,0(a − 2s−ψ) + 3e−sϕ

.(6.12)

Indeed, with Xb,s(0) = X(0) = 0, clearly (6.12) holds for a > 0 [as then
q−∞,0(a) = p

(s)
−s,0(a, b) = 0]. Next recall that for c ≥ s ≥ θ ≥ 0 and any a, b,

p
(c)
−θ,0(a, b) − [

1 − p
(c)
−s,−θ (a, b)

]
(6.13)

≤ p
(c)
−s,0(a, b) ≤ p

(c)
−θ,0(a, b),

q−∞,0(a) ≤ q−θ,0(a) ≤ q−∞,0(a) + [1 − q−∞,−θ (a)].(6.14)
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Combining these with the monotonicity in a of the functions p(c) and q , we thus
get (6.12) also for a ≤ 0 out of (6.11) as soon as we show that for θ = sρ and all
large s

1 − q−∞,−θ (2sκ) = P

{
inf

t≤−θ
X(t) < 2sκ

}
≤ e−sϕ

,(6.15)

1 − p
(s)
−s,−θ (0, b) = P

{
inf−s≤t≤−θ

Xb,s(t) < 0
}

≤ 2e−sϕ

.(6.16)

Now, since 2ρ > κ > ϕ, it follows by standard Gaussian tail estimates that for
θ = sρ and s large

P

{
inf

t≤−θ
X(t) < 2sκ

}

≤
∞∑

τ=�θ�

[
P

{√
G̃W(τ) ≤ − F̃

6
τ 2
}

+ P

{√
G̃ inf

0≤t≤1
[W(τ + t) − W(τ)] ≤ − F̃

6
τ 2
}]

≤ 3
∞∑

τ=�θ�
e−F̃ 2τ 2/(72G̃) ≤ e−sϕ

,

thus establishing (6.15). Further, as |Xb,s(t)−X(t)| ≤ |X(−s)− F̃
2 s2|+|b− F̃

2 s2|,
we deduce from (6.10) that if |b − 1

2 F̃ s2| ≤ sκ , then

P

{
sup

−s≤t≤0
|Xb,s(t) − X(t)| ≥ 2sκ

}
≤ e−sϕ

,

which together with (6.15) implies the bound (6.16).
We now apply in (6.8) standard Gaussian tail estimates for |X̃(−s) − 1

2 F̃ s2| >

sκ , and the bounds of (6.12) otherwise. With the [0,1]-valued p
(c)
−s,0(a, b) and

q−s,0(a) monotone in s and a, this results in

E
[
q−∞,0

(
v + X̃(−s) + 2s−ψ )2]− 4e−sϕ

≤ P{Vs,u ≥ v}(6.17)

≤ E
[
q−∞,0

(
v + X̃(−s) − 2s−ψ )q−u,0

(
v + X̃(−s) − 2s−ψ )]+ 4e−sϕ

.

Finally, if a > 0, then q−u,0(a) = q−∞,0(a) = 0, whereas for a ≤ 0, taking θ = u

in (6.14) we find by (6.15) and the monotonicity of q−∞,−u(a) that q−u,0(a) ≤
q−∞,0(a) + exp(−uϕ) for u large. Combining this upper bound on q−u,0 with
(6.9) and (6.17) provides the thesis of the lemma. �
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Since Yn of Lemma 6.1 has the same law as n1/3Vs,u for s = s(n) = n−2/3[nθc +
0.5−τn] and u = u(n) = n−2/3[nβ −0.5], we have the following immediate corol-
lary of Lemmas 6.1 and 6.2.

COROLLARY 6.3. Fixing β ∈ (3/4,1) and A > 0, set Jn = [nθc − nβ,nθc +
nβ] and β ′ < 2β − 1, εn = A logn as in Proposition 2.1. Let {X̃(t)} denote an
i.i.d. copy of the process {X(t)} of Proposition 2.2. Then, for any ν < min(7/3 −
3β,β/4 − 1/6), there exist c finite such that for all n and |ρ − ρc| ≤ nβ ′−1,

P

{
ξ̃n + inf

t
X(t) ≤ −n−ν

}
− c

n
≤ P̂n,ρ

{
min
τ∈Jn

z1(τ ) ≤ ±εn

}
≤ P

{
ξ̃n + inf

t
X(t) ≤ n−ν

}
+ c

n
,

where ξ̃n ≡ n−1/3(ξn + ξ∗
n ) − X̃(−nβ−2/3) [and ξn and ξ∗

n of Lemma 6.1 are inde-
pendent of both {X(·)} and {X̃(·)}].

PROOF. Fixing ν < min(7/3 − 3β,β/4 − 1/6), set δ > 3β − 2 of Lemma 6.1
and ψ ∈ (0,1/4) of Lemma 6.2 such that ν < 1/3−δ and ν < ψ(β −2/3). Condi-
tioning on the values of ξn and ξ∗

n we apply Lemma 6.2 for the values of s = s(n)

and u = u(n) indicated above, taking there v(n) = n−1/3[±Cnδ − ξn − ξ∗
n ] for the

finite constant C of Lemma 6.1. With s(n) ∧ u(n) ≥ nβ−2/3 − 2 and β > 2/3, the
error terms 5 exp(−(s(n) ∧ u(n))ψ) are accommodated within c/(2n) for some fi-
nite c and all n. Further, enlarging c if needed, with |s(n) − nβ−2/3| ≤ 2n−2/3 and
ν < 2

3(β − 2/3) < 1/3, it is easy to see that for all n,

P

{
|X̃(−s(n)) − X̃(−nβ−2/3)| ≥ 1

2
n−ν

}
≤ c

2n
.

Our choice of ψ and δ is such that Cnδ−1/3 + 2s(n)−ψ ≤ 1
2n−ν for all n ≥ n0,

so adding to c the constant α of Lemma 6.1 and making sure that c ≥ 2n0, upon
taking the expectation over ξn and ξ∗

n our thesis follows from the latter lemma. �

6.3. Proof of Proposition 2.2. Fixing β ∈ (3/4,1), r ∈ R and β ′ < 2β − 1,
we have that |ρn − ρc| ≤ nβ ′−1 for ρn = ρc + rn−1/2 and all n large enough.
Further, taking β = 10/13 ∈ (3/4,1) which maximizes the bound ν0 ≡ min(5/2 −
3β,β/4) − 1/6 on ν in Corollary 6.3 leads to ν0 = 5/26 − 1/6 > 0. Thus, fixing
A > 0, the statement (2.11) of the proposition is a consequence of Corollary 6.3,
once we show that for any 1/6 < η < ν + 1/6 < 5/26 and all n large enough,∣∣∣∣P{ξ̃n + inf

t
X(t) ≤ ±n−ν

}
− P

{
n1/6ξ(r) + inf

t
X(t) ≤ 0

}∣∣∣∣≤ n−η,

where ξ(r) denotes a normal random variable of mean (
∂y1
∂ρ

)r and variance Q11

(both evaluated at θ = θc and ρ = ρc), independent of X(·). Conditioning on ξ̃n
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and ξ(r), by the independence of {X(t) : t ≥ 0} and {X(t) : t ≤ 0}, this is equivalent
to

|E[q(±n−ν − ξ̃n)
2] − E[q(−n1/6ξ(r))2]| ≤ n−η,(6.18)

where q(a) ≡ P(inft≤0 X(t) ≥ a). With q2(a) a [0,1]-valued monotone nonin-
creasing function that approaches zero as a → ∞, we have that for any random
variables Y,Z and nonrandom v,

|E[q(vZ)2] − E[q(vY )2]| ≤ sup
x

|P(Z ≤ x) − P(Y ≤ x)|.

Applying this for v = −n1/6, Z = n−1/6ξ̃n ± n−(ν+1/6) and Y = ξ(r) of bounded
density, we deduce that (6.18) holds for all n large enough, thus completing the
proof of Proposition 2.2 as soon as we show that for η < 5/2 − 3β and all n large
enough,

sup
x∈R

∣∣P(n−1/6ξ̃n ≤ x) − P
(
ξ(r) ≤ x

)∣∣≤ n−η.(6.19)

To this end, recall that n−1/6ξ̃n = n−1/2ξn + n−1/2ξ∗
n − n−1/6X̃(−nβ−2/3), where

the latter three random variables are independent of each other. Hence, in view of
(4.20) we have that

sup
x∈R

|P(n−1/6ξ̃n ≤ x) − P(ζn ≤ x)| ≤ κ3n
−1/2

where ζn is obtained upon replacing ξn with a normal random variable of zero
mean and variance n	u†

nQ(0, ρn)	un [for the positive definite initial condition

Q(0, ρ) of the ODE (2.8) at ρ = ρn]. With Eζn = n1/2y∗
1 (τn) − F̃

2 n2β−3/2, it fol-
lows from (4.9) that |Eζn − Eξ(r)| ≤ Cn3β−5/2. Similarly, it follows from (4.10)
that for some C finite and all n,

|Var(ζn) − Var(ξ(r))| = |(Qτn)11 + G̃nβ−1 − Q11(θc, ρc)|
≤ Cnβ−1 ≤ Cn3β−5/2.

With Var(ξ(r)) > 0 independent of n, our thesis (6.19) easily follows from these
bounds on the difference in the mean and variance of the normal random variables
ζn and ξ(r).
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