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VARIANCE BOUNDING MARKOV CHAINS

BY GARETH O. ROBERTS AND JEFFREY S. ROSENTHAL1

Lancaster University and University of Toronto

We introduce a new property of Markov chains, called variance bound-
ing. We prove that, for reversible chains at least, variance bounding is
weaker than, but closely related to, geometric ergodicity. Furthermore, vari-
ance bounding is equivalent to the existence of usual central limit theorems
for all L2 functionals. Also, variance bounding (unlike geometric ergodic-
ity) is preserved under the Peskun order. We close with some applications to
Metropolis–Hastings algorithms.

1. Introduction. Markov chain Monte Carlo (MCMC) algorithms are widely
used in statistics, physics, and computer science. Measures of how good an MCMC
algorithm is include quantitative bounds on convergence to stationarity (e.g., [14,
15, 34, 35]), qualitative convergence rates such as geometric ergodicity (e.g., [21,
29, 32, 39, 40]), the existence of central limit theorems (e.g., [2, 3, 7, 10, 13, 21,
40]) and bounds on asymptotic variance of estimators (e.g., [7, 22, 41]).

In this paper we introduce a new notion, variance bounding. Roughly, a Markov
chain is variance bounding if the asymptotic variances for functionals with unit
stationary variance are uniformly bounded (precise definitions are given below).
We shall show that, for reversible chains at least, variance bounding is implied
by geometric ergodicity, and conversely, if P is variance bounding, then aI +
(1 − a)P is geometrically ergodic for all 0 < a < 1. More importantly, we shall
prove that a reversible Markov chain is variance bounding if and only if all L2

functionals satisfy a usual central limit theorem, indicating that variance bounding
is in some sense the “right” definition to use. We also prove that variance bounding
is preserved under the Peskun partial ordering ([26, 40]) on Markov chains. Finally,
applications to Metropolis–Hastings algorithms are presented.

2. Variance bounding. Given a Markov chain kernel P on a state space
(X,F ) with unique stationary distribution π(·), we let {Xn} follow the kernel
P in stationarity, so that P[Xn ∈ A] = π(A) for all A ∈ F and n ∈ N ∪ {0}, and
also P[Xn ∈ A | X0, . . . ,Xn−1] = P(Xn−1,A) for all A ∈ F and all n ∈ N. For a
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functional h :X → R (assumed throughout to be measurable), the stationary vari-
ance is given by Varπ(h) = E[(h(X0) − E[h(X0)])2], and the asymptotic variance
is given by

Var(h,P ) = lim
n→∞

1

n
Var

(
n∑

i=1

h(Xi)

)
.(1)

If the Markov chain P is to be used to estimate the stationary expected value of
h by 1

n

∑n
i=1 h(Xi), then Var(h,P ) is a measure of the Monte Carlo uncertainty

of the estimate. Thus, for MCMC algorithms, it is desirable to make Var(h,P ) as
small as possible (cf. [7, 22, 23, 40, 41]). This prompts the following definition.

DEFINITION. P is variance bounding if there is K < ∞ such that Var(h,P ) ≤
KVarπ(h) for all h :X → R. Equivalently, P is variance bounding if sup{Var(h,

P );h :X → R,Varπ(h) = 1} < ∞.

Note that in the case where Varπ(h) = ∞, the required inequality holds auto-
matically for all K .

Variance bounding is a natural property, in that it offers some control over the
asymptotic variances Var(h,P ). We study its relation to more traditional MCMC
properties below. For most of our results, we assume that P is reversible with
respect to π(·), that is, that∫

x∈A
π(dx)P (x,B) =

∫
x∈B

π(dx)P (x,A), A,B ∈ F .(2)

It follows from [16] (see also [3]) that, for reversible chains and L2 functionals,
the limit in equation (1) always exists, though it may be infinite.

3. Relation to geometric ergodicity. Recall that a Markov chain kernel P

with stationary distribution π(·) is geometrically ergodic if there is ρ < 1 and
M :X → [0,∞] π -a.e. finite [i.e., such that π{x ∈ X :M(x) < ∞} = 1], such
that |P n(x,A) − π(A)| ≤ M(x)ρn for all A ∈ F , n ∈ N, and x ∈ X. Geometric
ergodicity is an often studied property (e.g., [21, 29, 32, 39, 40]), which leads to
many useful results, such as central limit theorems (see next section).

However, geometric ergodicity is an overly strong notion in that it requires,
among other things, that the Markov chain be aperiodic. Since estimates of func-
tionals, and their variances Var(h,P ), are essentially unaffected by periodicity
considerations, it seems inappropriate to demand aperiodicity. And indeed, many
Markov chains are variance bounding despite being periodic (e.g., the Markov
chain P1 in Example 9 below).

We now explore the relation between geometric ergodicity and variance bound-
ing. We first show that, for reversible chains, variance bounding is strictly weaker
than geometric ergodicity. (Proofs of all theorems are deferred until Section 7.)
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THEOREM 1. If P is reversible and geometrically ergodic, then P is variance
bounding.

Next, we show that P is variance bounding if and only if any mixture of P with
the identity is geometrically ergodic. We write I for the identity kernel, that is, the
Markov chain which never moves, so that I (x, {x}) = 1 for all x ∈ X.

THEOREM 2. If P is reversible, then the following are equivalent:

(i) P is variance bounding.
(ii) aI + (1 − a)P is geometrically ergodic for all 0 < a < 1.

(iii) aI + (1 − a)P is geometrically ergodic for some 0 ≤ a < 1.

COROLLARY 3. If P is reversible, then for any fixed 0 ≤ a < 1, the following
are equivalent:

(i) P is variance bounding.
(ii) aI + (1 − a)P is variance bounding.

Section 6 below contains some applications of Theorems 1 and 2. We next note
that if P has holding probabilities uniformly bounded away from 0, then variance
bounding and geometrically ergodic are equivalent:

THEOREM 4. If P is reversible and infx∈X P(x, {x}) > 0, then P is variance
bounding if and only if P is geometrically ergodic.

As an application of Theorem 4, suppose P represents a random-walk Metropo-
lis or systematic-scan Metropolis-within-Gibbs algorithm on Rd , with proposal
increment densities positive in a neighborhood of 0, whose target density t is C1

with ‖∇ log t (x)‖ ≥ δ > 0 for all x ∈ X. It then follows as in [33] that the rejection
probabilities P(x, {x}) are uniformly bounded away from 0. Hence, by Theorem 4,
variance bounding is equivalent to geometric ergodicity in this case.

Similarly, the two notions are equivalent if the operator P is positive, that is, if
E[f (X0)f (X1)] ≥ 0 for all measurable f :X → R when {Xn} is in stationarity:

THEOREM 5. If P is reversible and positive, then P is variance bounding if
and only if P is geometrically ergodic.

As an application of Theorem 5, suppose P represents a data augmentation
algorithm, that is, the x-coordinate (only) of a two-variable Gibbs sampler. It fol-
lows from Lemmas 3-1 and 3-2 of [18] that P is reversible and positive. Hence, by
Theorem 5, variance bounding is equivalent to geometric ergodicity in this case as
well. (See also [11].)
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In particular, the slice sampler (e.g., [24, 25, 30]) can be viewed as the
x-coordinate of a two-variable Gibbs sampler. (This holds for product slice sam-
plers as well, since the multiple auxiliary variables are conditionally independent
and can be regarded as a single auxiliary vector.) So, for any slice sampler, vari-
ance bounding is equivalent to geometric ergodicity. For example, it is known [30]
that the slice sampler is geometrically ergodic whenever Q′(y)y1+1/α is nonin-
creasing near 0, for some α > 1, where Q(y) is the measure of the set where the
target density value is at least y. It follows immediately that the slice sampler is
also variance bounding under these conditions.

In general, if P is variance bounding, then a slight modification of P is geo-
metrically ergodic. Specifically, following [36], let P n be the binomial modifica-
tion of P , corresponding to doing an (independently chosen) random number Bn

of steps from P , where Bn ∼ Binomial(2n,1/2). Thus, P n = 2−2n ∑2n
i=0

(2n
i

)
P i .

Call P geometrically ergodic if, as usual, there is ρ < 1 and π -a.e. finite M :X →
[0,∞] such that |P n(x,A) − π(A)| ≤ M(x)ρn for all A ∈ F , n ∈ N, and x ∈ X.
Then we have the following.

THEOREM 6. If P is reversible, then P is variance bounding if and only if P

is geometrically ergodic.

REMARK. The stationary processes literature (e.g., [2, 12, 13]) defines many
other mixing conditions, such as α-mixing, β-mixing, ρ-mixing, φ-mixing, etc.
These conditions are related to usual Markov chain ergodicity conditions, for ex-
ample, φ-mixing is equivalent to uniform ergodicity, exponentially-fast β-mixing
is equivalent to geometric ergodicity, α-mixing is implied by Harris ergodicity,
etc. However, none of these mixing conditions is implied by variance bounding,
since the mixing conditions all require ergodicity, whereas periodic (and therefore
nonergodic) chains can still be variance bounding.

4. Relation to central limit theorems. An important issue in MCMC is the
existence of central limit theorems (e.g., [2, 3, 7, 10, 13, 40]). Where central limit
theorems are known to hold, they underpin practical MCMC strategies for Monte
Carlo error assessment (see, e.g., [8]).

Say that a functional h :X → R with π(|h|) < ∞ [where π(f ) = ∫
X f (x) ×

π(dx)] satisfies a usual central limit theorem (CLT) for a Markov chain P if,
as n → ∞, the distribution of n−1/2 ∑n

i=1[h(Xi) − π(h)] converges weakly to
N(0, v), where (with {Xn} in stationarity)

v = Var(X0) + 2
∞∑
i=1

Cov(X0,Xi) < ∞.(3)

(We say “usual” to distinguish this convergence from, e.g., convergence to other
distributions, or other normalizations besides n−1/2; see also [3, 7, 27, 37].)
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It is known ([12], Theorem 18.5.3; see also [3], [10]) that if P is geometrically
ergodic, then h satisfies a usual CLT, provided π(|h|2+δ) < ∞ for some δ > 0.
It was proven in [28], following [16], that if P is geometrically ergodic and re-
versible, then h satisfies a usual CLT whenever π(h2) < ∞. However, geometric
ergodicity is an overly strong assumption; for example, periodic Markov chains
can never be geometrically ergodic but they can still satisfy CLTs.

The following theorem shows that, for reversible Markov chains, variance
bounding is the “right” definition for CLTs, that is, variance bounding (unlike geo-
metric ergodicity) is the weakest property which still guarantees usual CLTs for
all L2 functionals. (We assume the stationary distribution for P is unique, to avoid
degenerate cases where the state space breaks up into multiple closed subsets.)

THEOREM 7. If P is reversible, with unique stationary distribution π(·), then
P is variance bounding if and only if every h :X → R with π(h2) < ∞ satisfies a
usual CLT for P .

REMARK. There are other results available (see, e.g., [3] and the references
therein) which guarantee CLTs for specific functionals, rather than for all L2 func-
tionals. However, often MCMC is used to generate samples from π(·) before it is
decided which functionals are of statistical interest. Thus, we find that it is most
useful having results like Theorem 7 which apply to all L2 functionals simultane-
ously.

5. Relation to the Peskun ordering. The following partial order on Markov
chain kernels was introduced by Peskun [26] for finite state spaces, and later by
Tierney [40] for general state spaces.

DEFINITION. Let P1 and P2 be two Markov chain kernels on (X,F ), both
having invariant probability measure π . Then P1 dominates P2 off the diagonal,
written P1 � P2, if P1(x,A) ≥ P2(x,A) for all x ∈ X and A ∈ F with x /∈ A.

It was proved by Peskun [26] for finite state spaces, and then by Tierney [41]
(see also [22, 23]) for general state spaces, that if P1 � P2, and P1 and P2 are
reversible with respect to the same π(·), then Var(h,P1) ≤ Var(h,P2) for all
h :X → R. That is, P1 is “better” than P2, in the sense of being uniformly more
efficient for estimating expectations of functionals. Thus, it seems reasonable that
any Markov chain property designed to indicate good estimation should be pre-
served under the Peskun ordering. For the variance bounding property, that is in-
deed the case:

THEOREM 8. If P1 and P2 are both reversible with respect to π(·), and P1 �
P2, and P2 is variance bounding, then P1 is variance bounding.
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On the other hand, the corresponding property for geometric ergodicity does not
hold, indicating another advantage of variance bounding over geometric ergodic-
ity:

EXAMPLE 9. Let X = Z with π(m) = 2−|m|/3. Define P1 by P1(x, x − 1) =
2/3 and P1(x, x + 1) = 1/3 for x > 0, and P1(x, x − 1) = 1/3 and P1(x, x + 1) =
2/3 for x < 0, and P1(0,−1) = P1(0,1) = 1/2. Also, let P2 be the Metropo-
lis algorithm for π(·) with proposal distribution Q(x,x + 1) = Q(x,x − 1) =
1/2. [Thus, P2(x, x + 1) = P2(x, x) = 1/4 and P2(x, x − 1) = 1/2 for x > 0;
P2(x, x −1) = P2(x, x) = 1/4 and P2(x, x +1) = 1/2 for x < 0; and P2(0,−1) =
P2(0,1) = 1/4 and P2(0,0) = 1/2.] Then both P1 and P2 are reversible with re-
spect to π(·), and also P1 � P2. Furthermore, it follows as in Mengersen and
Tweedie [19] that P2 is geometrically ergodic, and hence variance bounding by
Theorem 1. On the other hand, P1 is periodic, and hence cannot be geometrically
ergodic, even though P1 � P2. (Of course, P1 is still variance bounding, by Theo-
rem 8.)

6. Application to Metropolis–Hastings algorithms. We now consider
Metropolis–Hastings algorithms ([9, 20]). We define a slight generalization, as
follows. Given a reference measure ν(·) on X, with respect to which π(dx) =
t (x)ν(dx), and a nonnegative (measurable) function q :X × X → R with∫
X q(x, y)ν(dy) ≤ 1 for all x ∈ X, the sub-Metropolis–Hastings algorithm is the

algorithm with transition kernel

Mq(x, dy) = α(x, y)q(x, y)ν(dy) + r(x)δx(dy),

where α(x, y) = min(1,
t (y)q(y,x)
t (x)q(x,y)

), and r(x) = 1 − ∫
X α(x, y)q(x, y)ν(dy) ≥ 0.

By construction, this algorithm is reversible with respect to π(·). It may be
described as follows. With probability

∫
X q(x, y)ν(dy), it performs the usual

Metropolis–Hastings algorithm with proposal density q(x, y)/
∫
X q(x, y)ν(dy).

Otherwise, with probability 1 − ∫
X q(x, y)ν(dy), it stays at its current state. If∫

X q(x, y)ν(dy) = 1, then Mq is the usual Metropolis–Hastings algorithm.
By direct inspection, noting that α(x, y)q(x, y) = min(q(x, y),

t (y)
t (x)

q(y, x)), we
see the following:

PROPOSITION 10. For fixed ν(·) and t , if q1(x, y) ≥ q2(x, y) for all x, y ∈ X
with x 
= y, then Mq1 � Mq2 . (Hence, by Theorem 8, if Mq2 is variance bounding,
then so is Mq1 .)

Now, suppose Mq2 is variance bounding, and that q1(x, y) ≥ cq2(x, y) for all
x 
= y, for some c > 0. We can assume [by replacing c with min(c,1) if necessary]
that c ≤ 1. Then Mcq2 = cMq2 + (1 − c)I . Hence, by Corollary 3 (with a = 1 − c),
Mcq2 is also variance bounding. It then follows from Proposition 10 that Mq1 is
also variance bounding. We conclude:
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COROLLARY 11. If q1(x, y) ≥ cq2(x, y) for all x, y ∈ X with x 
= y, for some
c > 0, and if Mq2 is variance bounding, then Mq1 is variance bounding.

Example 9 above shows that the analogous statement to Corollary 11 for geo-
metric ergodicity does not hold.

To continue, call a (measurable) function s :X → [0,∞) MT-good if it is
symmetric, positive and continuous, with exponentially bounded tails, and with∫ ∞
−∞ s(u) du = 1. Then a result of Mengersen and Tweedie [19] (see also [32]

for higher-dimensional analogs) says that a random-walk Metropolis algorithm on
X = R, with proposal density q(x, y) = s(y − x) for some MT-good s, is geomet-
rically ergodic provided the target density has exponentially bounded tails. This
is a very impressive result, but with the severe restriction that the proposal incre-
ments must correspond to a symmetric random walk. To improve this, we make
the following definition.

DEFINITION. A proposal density function q :X × X → R is a uniformly mi-
norized increment distribution (UMID) if there is c > 0 and MT-good s :X →
[0,∞) such that q(x, y) ≥ cs(y − x) for all x, y ∈ X.

Combining Theorem 1 and Corollary 11 with the result of [19] immediately
gives the following:

COROLLARY 12. Let t be a target density with exponentially bounded tails,
and let q be a UMID proposal density function. Then Mq is variance bounding.

Note that in Corollary 12, we do not need to assume that s has exponentially
bounded tails, since if not then we can simply replace s(x) by min(s(x), e−|x|)
without affecting the conclusion. Note also that Corollary 12 does not require the
proposal density q to be symmetric, nor to correspond to a random walk. (Similar
generalizations are also available for the multidimensional case, as in [32].)

As one application of Corollary 12, consider a Langevin (MALA) algorithm
(see [33]), with proposal density given by Q(x, ·) = N(x + 1

2δ∇ log t (x), δ2) for
some δ > 0. Now, if the target density t is C1 with tails that are precisely exponen-
tial, then ∇ log t (x) is a bounded function of x ∈ X, and it follows easily that q is
UMID. We conclude:

COROLLARY 13. A Langevin algorithm for a C1 target density on X = R
with exponential tails is variance bounding.

As a final application, we consider a Metropolis–Hastings algorithm for a den-
sity t supported on (0,∞), with proposal distribution given by Q(x, ·) = N(x, xb)

for some fixed b > 0. That is, the variance of the proposal increment depends on
the current state x ∈ X. (Related models were considered in [31].)
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If b > 2, then as x → ∞, the proposal values will be farther and farther out in
the tails, so limx→∞ P(x, {x}) = 1. It follows as in [32], or by a simple capacitance
argument (e.g., [17]), that the resulting Markov chain is neither geometrically er-
godic nor variance bounding. So, we do not consider that case further here. (On
the other hand, numerical simulations related to [31] indicate that if t is, e.g., a
Cauchy distribution, then values b ≈ 2.7 may give fastest numerical convergence,
which is a separate but related issue.)

If b = 2, then the distribution Q(x, ·) equals the distribution of x + xZ, where
Z ∼ N(0,1). Taking logarithms (cf. [31]) gives rise to an equivalent chain which
is an ordinary random-walk Metropolis algorithm, with modified target density
t̃ (y) = eyt (ey), and with increment density f (u) equal to the density of log(1+Z)

where Z ∼ N(0,1). This increment distribution is clearly UMID; indeed, we can
simply let cs(u) = min(f (u), f (−u)). Hence, by Corollary 12, the transformed
chain—and hence, also the original chain—is variance bounding, provided that t̃

has exponentially bounded tails.
Finally, suppose that 0 < b < 2. Then Q(x, ·) is the distribution of x + xb/2Z,

where Z ∼ N(0,1). Instead of logarithms, consider the transformation X �→ Xa ,
where a = 1 − b/2 (so 0 < a < 1). Then the proposal increment from x ∈ X
transforms from xb/2Z to W = h(Z) ≡ [x +xb/2Z]a −xa = xa(1+x−aZ)a −xa .
Inverting this, Z = h−1(W) = xa((1 + Wx−a)1/a − 1). Now, the density of Z is
g(z) = (2π)−1/2e−z2/2. Hence, for the transformed chain, the proposal increment
W has density

g(h−1(w))

(dw/dz)
= e−h−1(w)2/2

√
2πa(1 + x−az)a−1

.

We compute that, as x → ∞, this expression converges to (2π)−1/2a−1e−(w/a)2/2,
that is, to the density function of the N(0, a2) distribution. [Intuitively, this is be-
cause ( d

dx
xa)2xb = a2x2a−2xb = a2 is constant, so the increment variance of the

transformed chain is approximately stabilized.] Hence, for large enough x, and
thus for all x by positivity and continuity, the proposal density is UMID. There-
fore, by Corollary 12, the transformed and original chains are variance bounding,
provided that the transformed target density has exponentially bounded tails.

7. Spectra and theorem proofs. We now proceed to the proofs of the theo-
rems. We begin by recalling some standard notation. Let P be a Markov chain
kernel with stationary distribution π(·) on a state space (X,F ). For measur-
able f,g :X → R, write 〈f,g〉 = ∫

X f (x)g(x)π(dx), and ‖f ‖ = 〈f,f 〉1/2. Let
L2

0(π) = {f :X → R;π(f ) = 0, π(f 2) < ∞}, and regard P as an operator acting
on L2

0(π), by (Pf )(x) = ∫
X f (y)P (x, dy). Write σ(P ) for the spectrum of the

operator P acting on L2
0(π) (see, e.g., [4, 36]). If P is a reversible Markov chain,

then P is a self-adjoint operator with respect to 〈·, ·〉, and also σ(P ) ⊆ [−1,1]
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(cf. [1, 7]). Theorem 2 of [28] says that if P is reversible, then P is geometrically
ergodic if and only if there is r < 1 with σ(P ) ⊆ [−r, r].

We have the following.

THEOREM 14. If P is reversible, then P is variance bounding if and only if
sup(σ (P )) < 1.

PROOF. Suppose first that sup(σ (P )) ≡ 
 < 1. Then by Proposition 1 of [36],
Var(h,P ) ≤ 2(1−
)−1 Varπ(h) for all h :X → R. Hence, P is variance bounding
with constant K = 2(1 − 
)−1 < ∞.

Conversely, suppose sup(σ (P )) = 1. Let E be the spectral measure for P (see,
e.g., [4, 7, 28, 36, 38]), and let r < 1. Then E((r,1]) is nonzero, so there is
h ∈ L2

0(π) in range of E((r,1]). It follows similarly to Proposition 1 of [36] (cf.
[7, 16]) that Var(h,P ) ≥ 1

1−r
Varπ(h). Since this holds for any r < 1, it follows

that suph∈L2
0(π)[Var(h,P )/Varπ(h)] ≥ supr<1

1
1−r

= ∞. Hence, P is not variance
bounding. �

PROOF OF THEOREM 1. If P is reversible and geometrically ergodic, then
there is r < 1 with σ(P ) ⊆ [−r, r]. In particular, sup(σ (P )) ≤ r < 1, so P is
variance bounding by Theorem 14. �

PROOF OF COROLLARY 2. (i) �⇒ (ii): Suppose P is variance bounding,
and 0 < a < 1. Then by Theorem 14, sup(σ (P )) < 1, that is, there is c < 1 with
σ(P ) ⊆ [−1, c]. On the other hand,

σ
(
aI + (1 − a)P

) = {
λ ∈ R s.t.

(
aI + (1 − a)P − λI

)
is not invertible

}
=

{
λ ∈ R s.t. (1 − a)

(
P − λ − a

1 − a
I

)
is not invertible

}

=
{
λ ∈ R s.t.

λ − a

1 − a
∈ σ(P )

}

= {(
a + (1 − a)y

)
s.t. y ∈ σ(P )

}
,

where the last equality follows by solving for λ in the equation y = λ−a
1−a

. Hence,
since σ(P ) ⊆ [−1, c], it follows that

σ
(
aI + (1 − a)P

) ⊆ [a + (1 − a)(−1), a + (1 − a)c]
= [2a − 1, a + (1 − a)c] ⊆ [−r, r],

where r = max(|2a − 1|, a + (1 − a)c) < 1. Hence, by Theorem 2 of [28], aI +
(1 − a)P is geometrically ergodic.

(ii) �⇒ (iii): Immediate.
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(iii) �⇒ (i): If aI + (1 − a)P is geometrically ergodic, then there is r < 1 with
σ(aI + (1 − a)P ) ⊆ [−r, r]. But from the above,

σ
(
aI + (1 − a)P

) =
{
λ ∈ R s.t.

λ − a

1 − a
∈ σ(P )

}
,

so it follows that σ(P ) ⊆ [−r−a
1−a

, r−a
1−a

]. In particular, sup(σ (P )) ≤ r−a
1−a

< 1, so P

is variance bounding. �

PROOF OF THEOREM 3. We see from the proof of Theorem 2 that

sup
(
σ

(
aI + (1 − a)P

)) = a + (1 − a) sup(σ (P )).

It follows that for 0 ≤ a < 1, sup(σ (aI + (1 − a)P )) < 1 if and only if
sup(σ (P )) < 1. The result then follows from Theorem 14. �

PROOF OF THEOREM 4. If P is reversible and geometrically ergodic, then
P is variance bounding by Theorem 1. Conversely, suppose P is reversible
and variance bounding, with δ ≡ infx∈X P(x, {x}) > 0. Let S(x,A) = (1 −
δ)−1(P (x,A) − δ1x∈A). Then S is another Markov chain kernel on X, and
P = δI + (1 − δ)S. It follows that infσ(P ) ≥ δ + (1 − δ)(−1) = 2δ − 1 > −1.
Also supσ(P ) < 1 by Theorem 14. Hence, there is r < 1 with σ(P ) ⊆ [−r, r], so
P is geometrically ergodic. �

PROOF OF THEOREM 5. Note that E[f (X0)f (X1)] = 〈f,Pf 〉, so positivity
is equivalent to 〈f,Pf 〉 ≥ 0 for all f ∈ L2

0(π). This implies that λ ≥ 0 for all
λ ∈ σ(P ). Hence, using Theorem 14,

P is geometrically ergodic ⇐⇒ sup{|λ| :λ ∈ σ(P )} < 1

⇐⇒ sup{λ :λ ∈ σ(P )} < 1

⇐⇒ P is variance bounding. �

PROOF OF THEOREM 6. Note that we can write P n = [1
2(I + P)]n. Hence,

the result follows immediately from Theorem 2 (with a = 1/2). �

PROOF OF THEOREM 7. If P is variance bounding, then 
 ≡ sup(σ (P )) < 1.
Let E be the spectral measure for P , and let Eh be the induced measure defined by

Eh(S) =
∫
X

h(x)(E(S)h)(x)π(dx).

Then it follows (cf. [7]) that

σ 2 ≡
∫ 1

−1

1 + λ

1 − λ
Eh(dλ) ≤ 1 + 


1 − 

< ∞.
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It then follows from Kipnis and Varadhan [16] (see also [3]) that h satisfies a usual
CLT for P .

Conversely, if P is not variance bounding, then 
 = 1. It follows as in the
proof of Theorem 14 that E((r,1]) is nonzero for every r < 1. Since P has unique
stationary distribution, 1 /∈ σ(P ), so there must be infinitely many m ∈ N such
that E((1 − 2−m,1 − 2−m−1]) is nonzero. Let m1 < m2 < · · · (so mi ≥ i) with
E((1 − 2−mi ,1 − 2−mi−1]) bee nonzero. Let gi ∈ L2

0(π) be in the range of E((1 −
2−mi ,1 − 2−mi−1]), with ‖gi‖ = 1. Then spectral theory implies that the {gi} are
orthonormal, and furthermore, Cov(gi,Pgi) = 〈gi,Pgi〉 ≥ 1 − 2−mi . Finally, let
h = ∑∞

i=1 2−i/2gi . Then by orthonormality,

Varπ(h) = ‖h‖2 =
∞∑
i=1

(2−i/2)2 = 1 < ∞.

On the other hand, with {Xn} in stationarity, again using orthonormality,

Cov(h(X0), h(Xn)) =
∞∑
i=1

2−iCov(gi,P
ngi)

≥
∞∑
i=1

2−i (1 − 2−mi )n

≥
∞∑
i=1

2−i (1 − 2−i )n.

Hence,

∞∑
n=0

Cov(h(X0), h(Xn)) ≥
∞∑
i=1

2−i
∞∑

n=0

(1 − 2−i )n

=
∞∑
i=1

2−i[1 − (1 − 2−i )]−1

=
∞∑
i=1

2−i2i =
∞∑
i=1

(1) = ∞.

It follows that v in (3) is infinite, so h does not satisfy a usual CLT for P . �

PROOF OF THEOREM 8. Lemma 3 of Tierney [41] says that since P1 � P2,
therefore P2 − P1 is a positive operator. It follows that sup(σ (P2)) ≥ sup(σ (P1)).
Hence, using Theorem 14 twice, if P2 is variance bounding, then sup(σ (P2)) < 1,
so sup(σ (P1)) < 1, so P1 is variance bounding. [Alternatively, by Theorem 4
of [41], Var(h,P1) ≤ Var(h,P2) ≤ KVarπ(h).] �



1212 G. O. ROBERTS AND J. S. ROSENTHAL

REMARK 1. The above theorems have all been proven for reversible chains
only. However, it seems likely that analogs of some of them (e.g. Theorem 1)
carry over in some form to nonreversible chains, about which various facts about
convergence are known (see, e.g., [5, 6, 18, 23]). We leave this as an open problem
for future work.

8. Summary. This paper defined a Markov chain to be variance bounding
if the asymptotic variances for functionals with unit stationary variance are uni-
formly bounded. For reversible chains, we proved that this property is weaker than
geometric ergodicity, but equivalent to aI + (1 − a)P being geometrically ergodic
for all 0 < a < 1. Furthermore, in contrast to geometric ergodicity, the variance
bounding property: allows for periodicity; is equivalent to all L2 functionals satis-
fying a usual central limit theorem; and is preserved under the Peskun [26] partial
ordering on Markov chains. We also presented some applications to Metropolis–
Hastings MCMC algorithms, and showed how variance bounding could apply
more easily and more generally than geometric ergodicity.

Overall, we view these results as indicating that as a property to use in the study
of MCMC algorithms, variance bounding is similar to, but more convenient than,
geometric ergodicity. We hope that the notion of variance bounding can be used to
further understand Markov chains and MCMC algorithms in other contexts.

Acknowledgments. We thank the anonymous referee for many very helpful
comments.
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