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TRACY–WIDOM LIMIT FOR THE LARGEST EIGENVALUE
OF A LARGE CLASS OF COMPLEX SAMPLE

COVARIANCE MATRICES1

BY NOUREDDINE EL KAROUI

University of California, Berkeley

We consider the asymptotic fluctuation behavior of the largest eigenvalue
of certain sample covariance matrices in the asymptotic regime where both
dimensions of the corresponding data matrix go to infinity. More precisely,
let X be an n × p matrix, and let its rows be i.i.d. complex normal vectors
with mean 0 and covariance �p . We show that for a large class of covariance
matrices �p , the largest eigenvalue of X∗X is asymptotically distributed (af-
ter recentering and rescaling) as the Tracy–Widom distribution that appears
in the study of the Gaussian unitary ensemble. We give explicit formulas for
the centering and scaling sequences that are easy to implement and involve
only the spectral distribution of the population covariance, n and p.

The main theorem applies to a number of covariance models found in ap-
plications. For example, well-behaved Toeplitz matrices as well as covariance
matrices whose spectral distribution is a sum of atoms (under some conditions
on the mass of the atoms) are among the models the theorem can handle. Gen-
eralizations of the theorem to certain spiked versions of our models and a.s.
results about the largest eigenvalue are given. We also discuss a simple corol-
lary that does not require normality of the entries of the data matrix and some
consequences for applications in multivariate statistics.

1. Introduction. Sample covariance matrices are a fundamental tool of mul-
tivariate statistics. In the classical setting, one starts with an n × p data matrix X

and studies asymptotic properties of S = (X − X̄)′(X − X̄)/(n − 1) when p is
fixed and n grows to infinity. The classic paper [1] answered most of the relevant
questions concerning the eigenvalues of S in the setting where the rows of X are
i.i.d. N (M,�). It was shown in [1] that, from an eigenvalue point of view, S was a
good estimator of �. A thorough account of the classical case can be found in [2],
Chapters 11 and 13.

Nowadays, statisticians are working with datasets of increasingly larger size and
the practical relevance of the assumption that p is fixed and n goes to infinity is
often doubtful. It might also be counterproductive in applications. A significant
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effort has therefore been made recently to try to understand the asymptotic behav-
ior of certain classical tools in multivariate analysis, such as the largest eigenvalue
of S, in the setting where p and n both grow to infinity.

Large-dimensional sample covariance matrices are also of interest in other fields
than statistics. Matrices X whose entries are complex-valued and their singular
values are also of interest in different fields of applications and in particular in
communications engineering. They are objects of great interest, for instance, in
wireless communications (see, e.g., [32] and [38]).

In the rest of the paper, the data matrix will always be called X. The eigenvalues
of X∗X will be denoted l1 ≥ l2 ≥ · · · ≥ lp . The population eigenvalues, that is, the
eigenvalues of �p will be called λ1 ≥ λ2 ≥ · · · ≥ λp .

To situate our paper in the current literature, let us recall a few results that have
been recently obtained. When the true covariance matrix is Id and the entries of X

are either standard complex or standard real normal distributed, results in [14, 24,
25] and [12] showed that

if n and p → ∞,
l1(X

∗X) − µn,p

σn,p

⇒ TW,

where µn,p and σn,p are explicit sequences (which do not depend on whether the
real or the complex case is under consideration), and the limiting law is a Tracy–
Widom distribution. When the entries are standard complex normal, the limiting
law is the Tracy–Widom distribution appearing in the study of the Gaussian unitary
ensemble (see [35]). When they are real normal, it is the one corresponding to the
Gaussian orthogonal ensemble (see [36]).

More recently, the paper [6] looked at finite-dimensional perturbations of the Id
covariance matrix. The authors considered so-called “spiked” covariance models,
advocated in [25], where a finite number—k—of eigenvalues are changed to a
value different from 1 and the remaining p − k eigenvalues are fixed at 1. They
discovered a very interesting phase transition phenomenon, with the behavior of l1
changing drastically depending on how far away λ1, the largest eigenvalue of �p ,
is from the bulk of the spectrum of �p . In their case, this bulk was of course
concentrated at 1.

In the course of their analysis, they develop powerful tools to analyze the prob-
lem. In particular, their Proposition 2.1 (for which they also give credit to K. Jo-
hansson), and the subsequent remarks are finite dimensional and valid whatever
the true covariance structure. We exploit in this paper the powerful representations
obtained in [6] to handle a much more general class of covariance matrices than
finite perturbations of the Id matrix.

The motivations for doing so are many. From a theoretical standpoint, it is some-
what unclear at this point what features, if any, of the covariance structure of the
random variables are responsible for the appearance of Tracy–Widom laws. One
might ask, for instance, if it is the fact that the bulk of the true eigenvalues is ex-
actly concentrated at one point. We will show that intuitively what seems needed
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is a weaker condition, the clumping of a fraction of eigenvalues close to the largest
one.

From an applications standpoint, many covariances appearing in different fields
of science are not finite-dimensional perturbations of the Id matrix. Block-diagonal
covariance matrices are of particular interest since they are accepted models for,
say, the correlation of genes in microarray analysis (a topic of intense statistical
research at the time being), or the correlation of the returns of stocks of compa-
nies in financial applications. Covariances that are sums of atoms, for example,
a% of the variables have variance λ1 and 1 − a% have variance λ2, are also of
interest, especially in light of Theorem 1.1b in [6]. We will come back to this in
Section 4. In other respects, covariance matrices that are also Toeplitz matrices are
very natural in the analysis of time-series data, since the covariance structure of a
stationary time-series is a Toeplitz matrix.

Before we state our main theorem, we need to introduce some terminology
and set some notation. We will be working with n × p matrices X, whose rows
{Xk}k=1,...,n are i.i.d. NC(0,�p). By definition, this means that Xk = Yk + iZk ,
where Yk and Zk are independent (real) N (0,�p/2). The matrix W = X∗X is then
called a complex Wishart matrix, with n degrees of freedom and covariance �p . It
will be abbreviated WC(�p,n).

We will call the eigenvalues of �p λi , with λ1 ≥ λ2 ≥ · · · ≥ λp . The eigenvalues
of WC(�p,n) will be denoted li , with the same ordering convention, that is, l1 is
the largest eigenvalue of X∗X.

It is well known in statistics that if Xk are i.i.d. NC(M,�p), then (X−X̄)∗(X−
X̄) is WC(�p,n − 1). For this reason, we will always assume that the Xk’s are
NC(0,�p).

We are now ready to state the main theorem.

THEOREM 1. Let us consider complex Wishart matrices WC(�p,n). Let λ1
be the largest eigenvalue of �p and let λp be the smallest one. Let Hp be the
spectral distribution of �p . Let c be the unique solution in [0,1/λ1(�p)) of the
equation

c = c(�p,n,p), c ∈ [
0,1/λ1(�p)

)
:
∫ (

λc

1 − λc

)2

dHp(λ) = n

p
.(1)

We assume that n/p ≥ 1 is uniformly bounded, lim supλ1 < ∞, lim infλp > 0 and
lim supλ1c < 1. We denote by G the class of models {(�p,n,p)} for which these
conditions hold. We call

µ = 1

c

(
1 + p

n

∫
λc

1 − λc
dHp(λ)

)
,(2)

σ 3 = 1

c3

(
1 + p

n

∫ (
λc

1 − λc

)3

dHp(λ)

)
.(3)
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Let l1 be the largest eigenvalue of WC(�p,n), that is, l1 = l1(X
∗X), where X is

an n × p matrix whose rows are i.i.d. NC(0,�p). Then we have, as n goes to ∞,

l1 − nµ

σn1/3 �⇒ TW2.

Moreover, if we denote by F0 the cumulative distribution function of TW2, we can
find ε > 0 and a continuous, nonincreasing function C (that may depend on the
models under consideration and ε) such that

∀s0 ∃N0 : s ≥ s0 and n ≥ N0 implies∣∣∣∣P(
l1 − nµ

n1/3σ
≤ s

)
− F0(s)

∣∣∣∣ ≤ C(s0)e
−εs/2

n1/3 .

Using these results, their proofs, and a little bit more work, we can prove the
following corollaries:

COROLLARY 1. In the setting of Theorem 1, if {(�p,n,p)} is in G, we have

l1

n
− µ → 0 a.s.

COROLLARY 2. In the setting of Theorem 1, if {(�p,n,p)} is in G, the
k-largest eigenvalues of X∗X, properly recentered and rescaled, converge to their
Tracy–Widom counterpart.

Before we proceed, let us remind the reader that the cumulative distribution
function of TW2 is known. After introducing the intermediary function q defined
by

q ′′(x) = xq(x) + 2q3(x),

q(x) ∼ Ai(x) as x → ∞,

F0 satisfies (see [35])

F0(s) = exp
(
−

∫ ∞
s

(x − s)q2(x) dx

)
.

We will discuss in greater detail the potential usage of the theorem in Section 4,
but we want to highlight sufficient conditions under which it applies and give a few
examples before we give the proof. More examples, additional results concerning
spiked versions of matrices in G and a remark about the fact that the bias of l1 is
(in some cases) independent of the distributional assumptions made on the entries
will be found in Section 4.

COROLLARY 3 (Sufficient conditions). When the following five conditions are
all satisfied, the theorem applies:
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1. n/p remains bounded and n ≥ p;
2. Hp ⇒ H∞, in the usual weak convergence sense;
3. λ1(�p) → λ1(∞) = sup supportH∞ < ∞;
4. λp(�p) → λ∞(∞) = inf supportH∞ > 0;
5. H∞ has a density h∞(λ) in a (left) neighborhood of λ1(∞), and in this neigh-

borhood, h∞(λ) ≥ B(λ1(∞) − λ) for some B > 0.

As a consequence we see that the result applies to:

• Symmetric Toeplitz matrices—with parameters a0, a1, . . .—for which∑
k|ak| < ∞, the function

a :a(ω) = a0 + 2
∞∑

k=1

ak cos(kω)

has a derivative that changes sign only a finite number of times on [0,2π], and
for which the distribution F of a does not have atoms (F(x) = 1

2π
Leb{ω ∈

[0,2π] :f (ω) ≤ x}).
• Covariances that have uniformly spaced eigenvalues on an interval [ζ, ξ ], as

long as ζ > 0 and ξ < ∞.

Also, as shown in Appendix A.3.1, if Hp has an atom of mass ν(p) at λ1(�p)

and lim infν(p) > 0, assuming that lim supλ1 < ∞, n/p remains bounded and
lim infλp(�p) > 0, the theorem holds.

Hence the Id case, which was investigated in [14, 24] and [25], is a special case
of our main theorem. Also, since spiked models with a “small” spike are in G (see
Section 4), the results of [6] showing convergence to TW2 are also a subcase of
our main result.

2. Framework. As is—almost—classical for this problem, one tries to repre-
sent the marginal distribution, P(l1/n ≤ x), as the determinant of I −Kn,p , where
Kn,p is a trace class operator acting on L2([x,∞)). It greatly simplifies the analy-
sis if one is able to represent Kn,p as the product of Hilbert–Schmidt operators,
say Hn,pJn,p . The problem is even more tractable if the kernels of those operators
have the property that Hn,p(x, y) = Hn,p(x + y), and similarly for Jn,p .

Let us mention before we proceed that we will be denoting the trace class norm
of an operator K by ‖K‖1. Its Hilbert–Schmidt norm will be denoted by ‖K‖2. An
introduction to these concepts can be found in [30], Section VI.6 or [16], Chapter 4.

2.1. Finite-dimensional representation of operators. Proposition 2.1 in [6]
and their remarks in (82)–(85) remarkably managed to obtain all the character-
istics of the representations we wished for in the case of completely general �p .
Since the authors of [6] credit Johansson for the very elegant proof they present, we
will call this theorem Baik–Ben Arous–Johansson–Péché. Here is what it states.
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THEOREM 2 (Baik–Ben Arous–Johansson–Péché). Let us consider an n × p

matrix X with rows i.i.d. NC(0,�p). Let us assume without loss of generality that
λp(�p) > 0. Let πi = 1/λi . Let q ∈ R be such that 0 < q < π1. Let Kn,p be the
operator on L2([s,∞)) with kernel

Kn,p(x, y) = n

(2πi)2

∫



dz

∫
�

dw

(4)

× exp
(−xn(z − q) + yn(w − q)

) 1

w − z

(
z

w

)n p∏
k=1

πk − w

πk − z
.

Here � (resp. 
) is a simple closed contour oriented counterclockwise and encir-
cling 0 (resp. π1, . . . , πp). Then, if we denote by l1 the largest eigenvalue of X∗X,
we have

P

(
l1

n
≤ s

)
= det

(
I − Kn,p|L2([s,∞))

)
.(5)

Moreover, Kn,p can be rewritten as

Kn,p(x, y) =
∫ ∞

0
Hn,p(x + u)Jn,p(u + y)du,(6)

with

Hn,p(x) = n

2π

∫



e−xn(z−q)zn
p∏

k=1

1

πk − z
dz,(7)

Jn,p(y) = n

2π

∫
�

eyn(w−q)w−n
p∏

k=1

(πk − w)dw.(8)

Note that � should be strictly to the left of 
.

We reproduce their Figure 2 as our Figure 1 for the convenience of the reader
to give a graphical representation of 
 and �. We refer the reader to Remark 2.1

FIG. 1. Graphical depiction of 
 and �.
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in [6] for a discussion of the meaning of q . For our purposes, it will be enough to
know that q is essentially a free parameter that regularizes the operators we deal
with.

2.2. Recentering, rescaling and classical operator theory arguments leading to
weak convergence. Once the very important representations mentioned in (6)–(8)
are obtained, the path to showing weak convergence is classical in this type of
problem. One needs to find centering and scaling sequences such that the recen-
tered and rescaled version of Kn,p converges in trace class norm to its limit. Trace
class norm plays an important role because the determinant det(I −·) is continuous
with respect to that norm.

Since (6) shows that Kn,p = Hn,pJn,p , the problem reduces to showing conver-
gence in Hilbert–Schmidt norm of Hn,p and Jn,p (once again properly recentered
and rescaled) to their limit. This comes essentially from the fact that if A and B are
Hilbert–Schmidt operators, AB is trace class with ‖AB‖1 ≤ ‖A‖2‖B‖2 and some
elementary algebra.

The authors of [6], in their Section 2.2, prepare the rest of their paper by doing
recentering and scaling of the operators already specializing to the case of interest
to them, namely finite-dimensional perturbations of the Id matrix. We do it here
for general �p .

Let us be more explicit now that we have explained the basic ideas. Because (5)
is exact in finite dimension, one has

P

(
l1

n
≤ µn,p + σn,ps

)
= det

(
I − Kn,p|L2(µn,p+σn,ps)

) = det
(
I − Sn,p|L2(0,∞)

)
and Sn,p has kernel

Sn,p(x, y) = σn,pKn,p

(
µn,p + σn,p(x + s),µn,p + σn,p(y + s)

)
.

This is what we called earlier the recentered and rescaled operator. Because of the
representation given in (6), we see that

Sn,p(x, y) =
∫ ∞

0
H̃n,p(x + s + u)J̃n,p(y + s + u)du,

with

H̃n,p(x) = nσn,p

2π

∫



e−nσn,px(z−q)e−nµn,p(z−q)zn
p∏

k=1

1

πk − z
dz,

J̃n,p(x) = nσn,p

2π

∫
�

enσn,px(z−q)enµn,p(z−q) 1

zn

p∏
k=1

(πk − z) dz.

From an operator-theoretic standpoint, the three formulae above mean that

Sn,p = H̃n,pJ̃n,p,
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and we can now view them as operators acting on L2([s,∞)) with kernel, that is,
H̃n,p(x, y) = H̃n,p(x + y − s). Now, since πk = 1/λk , it is clear that

H̃n,p(x) = nσn,p

2π
det(�p)

∫



e−nσn,px(z−q)e−nµn,p(z−q)zn
p∏

k=1

1

1 − zλk

dz

and

J̃n,p(x) = nσn,p

2π det(�p)

∫
�

enσn,px(z−q)enµn,p(z−q) 1

zn

p∏
k=1

(1 − λkz) dz.

Being primarily interested in the product H̃n,pJ̃n,p and not the individual opera-
tors, we see (with [6]) that we have a little bit of choice in the operators we wish
to work with. In particular, we can choose to work with κn,pH̃n,p and J̃n,p/κn,p

for any nonzero sequence κn,p . So we can get rid of the det(�p) term appearing in
the previous display and work with

An,p(x) = −nσn,p

2πi

∫



e−nσn,px(z−q)e−nµn,p(z−q)zn
p∏

k=1

1

1 − zλk

dz,(9)

Bn,p(x) = nσn,p

2πi

∫
�

enσn,px(z−q)enµn,p(z−q) 1

zn

p∏
k=1

(1 − λkz) dz.(10)

We now have Sn,p = An,pBn,p and An,p and Bn,p are operators on L2([s,∞))

with kernels An,p(x, y) = An,p(x + y − s) and similarly for Bn,p . Since we are
aiming to show convergence to TW2, the Airy function will play a central role in
our analysis. We will denote it by Ai. Showing weak convergence of l1(X

∗X) to
the Tracy–Widom law reduces to finding κn,p and “good” A∞ and B∞ such that
‖κn,pAn,p − A∞‖2 → 0 and ‖Bn,p/κn,p − B∞‖2 → 0. Since, if we view the op-
erators as acting on L2([s,∞)), An,p(x, y) = An,p(x + y − s) and similarly for
the Airy operator, Ai(x, y) = Ai(x + y − s), this will essentially amount to just
showing that κn,pAn,p(x) − A∞(x) → 0 pointwise, A∞ being a simple modifica-
tion of the Airy function, and that both functions go to 0 fast enough (e.g., faster
than e−bx for some b > 0) at ∞.

The operator-theoretic arguments used to prove Theorem 2 have considerably
simplified the problem, at least conceptually: we have moved from the problem of
studying an integral in R

p to that of analyzing a function of one real variable. Note
that this was also the case with previous studies (see [25]), where arguments from
[37] and [41] (where some of the ideas behind Theorem 2 can be found) were used
to reduce the complexity of the problem to the same degree.

What is left to do now is very clear. We just need to find µn,p , σn,p , 
, � and
κn,p such that κn,pAn,p − A∞ and Bn,p/κn,p − B∞ go to 0 (in Hilbert–Schmidt
norm) when n,p go to ∞, for appropriate A∞ and B∞. More details on these
functions will be found in Propositions 1 and 2. The next section will be devoted
to doing all of this.
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3. Proof of the main result. A point of terminology before we proceed: we
will interchangeably call An,p either the operator whose kernel is An,p(x + y) or
the corresponding function. This simplifies the notation and the exposition. If there
is some ambiguity, we will say precisely if we refer to the operator, its kernel or
the function that defines the kernel.

The strategy of the proof is the same as that of [6]. Loosely speaking, the func-
tions An,p and Bn,p can be viewed as integrals depending on parameters going
to ∞. The functions to integrate contain elements of the type enfn,p(z). This is a
situation where one can try to use steepest descent analysis.

3.1. Focus of the analysis. The expression defining An,p in (9) is somewhat
involved, but we will concentrate mostly on

e−nµn,p(z−q)zn
p∏

k=1

1

1 − zλk

,

which can be rewritten as

f (z) � exp

(
−nµn,p(z − q) + n log(z) −

p∑
k=1

log(1 − zλk)

)
wherever this expression makes sense. [We use the principal branch of the log,
log(z) = log(|z|) + i arg(z),−π < arg(z) < π .] The sum appearing in the defin-
ition of f can be rewritten as an integral against the spectral distribution of �p ,
a distribution we call Hp , and we finally get

f (z) = −µn,p(z − q) + log(z) − p

n

∫
log(1 − zλ)dHp(λ).(11)

It is clear that f depends on �p , n and p but we choose to not highlight this
dependence here to avoid cumbersome notation.

3.2. Heuristic connection with work on a.s. convergence. Many results have
been obtained concerning the almost sure (a.s.) convergence of different spectral
characteristics of random covariance matrices, starting with the Marčenko–Pastur
equation (see [27] and [40]). The article [3] contains a thorough review and a nice
introduction to these problems.

Of particular interest to us are results concerning the behavior of the largest
eigenvalue in the case of non-Id covariance. Classical ([27], equation (1.15)) and
more recent results (see, e.g., [4, 31]) emphasize the role of the function

g∞(m) = − 1

m
+ p

n

∫
λ

1 + λm
dH∞(λ),

where H∞ is the limiting spectral distribution of �p , in obtaining almost sure
convergence properties of l1(X

∗X/n) and lp(X∗X/n) and determining the limit-
ing spectral distribution of X∗X/n. In particular, the points m where g′∞(m) = 0
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intuitively play a crucial role in determining its support. Note that doing asymp-
totic analysis at fixed spectral distribution and p/n would lead to considering the
equivalent of g∞ where Hp replaces H∞.

Now proceeding formally, we see that f ′(z) = −µn,p + gp(−z), where
gp(m) = − 1

m
+ p

n

∫
λ

1+λm
dHp(λ), and hence

f ′′(z) = −g′
p(−z).

Since we are essentially interested in the points where g′
p(z) = 0, the heuristic tells

us that for a large class of �p , the critical point of interest to us is going to be a
triple point of the function f (i.e., a saddle point of order 2).

3.3. Consequences: choice of c,µn,p and σn,p . So it is now clear that the
solutions of the equation

f ′′(z) = − 1

z2 + p

n

∫ (
λ

1 − λz

)2

dHp(λ) = 0

are likely candidates to play a central role in the problem.
Since we are focusing on largest eigenvalue problems, it is natural to consider

for c the unique solution in [0,1/λ1(�p)) of this equation. In other words,

c = c(�p,n,p), c ∈ [
0,1/λ1(�p)

)
:
∫ (

λc

1 − λc

)2

dHp(λ) = n

p
(12)

will play a crucial role in our analysis.
Note that, if a > 0, the function x �→ ax/(1 − ax) is continuous and (strictly)

increasing on (0,1/a). Hence h(x) = ∫
(λx)2/(1 − λx)2 dHp(λ) is increasing on

(0,1/λ1(�p)). It is also strictly convex, as a convex combination of strictly convex
functions. Since h goes from 0 to ∞ on [0,1/λ1(�p)), the equation h(x) = r has
exactly one solution on [0,1/λ1(�p)) for all r ∈ R+. Existence and uniqueness of
c(�p,n,p) are therefore proved.

For steepest descent reasons, we also naturally “require” that f ′(c) = 0 and
hence

µn,p = 1

c
+ p

n

∫
λ

1 − λc
dHp(λ) = 1

c

(
1 + p

n

∫
λc

1 − λc
dHp(λ)

)
.

Hindsight from the analysis (see Appendix A.2) makes clear that if the arguments
are to go through, we will have

f (3)(c) = 2σ 3
n,pn2 = 2

c3

(
1 + p

n

∫ (
λc

1 − λc

)3

dHp(λ)

)
.

While this discussion does not show anything, it provides heuristic reasons for
the not necessarily intuitive choice of the parameters c, µ and σ . What is left to
do is to find paths 
 and � on which we understand the behavior of f (z) and will
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allow us to show convergence of An,p and Bn,p to our target functions. Note that
the paths 
 and � we will choose are functions of �p , n and p. The fact that f is
real for real z as well as geometric properties of saddle points of order 2 (see [28],
page 137) makes natural the choice of lines crossing the real axis at angle π/3 and
2π/3 as starting points for 
 and � at c.

3.4. About 
. Because of a slight technical problem appearing in the operator
convergence analysis, we will not exhibit 
 immediately but rather a 
̃ which is
much more natural from the point of view of the analysis of the behavior of f .
Specifically, we will exhibit a curve 
̃+ on which f (z) is well understood. Then 
̃

will just be 
̃ = 
̃+ ∪ 
̃+, where the�denotes complex conjugation. The problem
is very graphical, so we will first show a drawing of 
̃+.

We will show the following lemma:

LEMMA 1. Under the assumptions of Theorem 1, �(f (z)) is decreasing for
z ∈ 
1 ∪ 
2 ∪ 
3 as �(z) increases. Also the length of 
̃+ is uniformly bounded.
Finally, there exists R1 > 0 such that maxz∈
4 �(f (z)) ≤ �(f (d)), where d =
d(�p,n,p) = c(1 + 2(−1 + 1/(λ1c))e

iπ/3).

R1 is uniform with respect to our models: given a family of models {(�p,n,

p)}∞n=1 in G, we get ᾱ1 = lim supλ1c, γ̄ 2 = lim supn/p, α∞ = lim infλp . R1 is
just a function of these parameters and not of the individual triplet (�p,n,p) we
will be dealing with.

Precise definitions of 
i’s will be given as they arise in the analysis. In particu-
lar, that of 
2 requires a significant amount of notation and we choose to postpone
it in the interest of clarity. Here is nonetheless a summary.

We temporarily call a the real part of z. The problem of finding 
̃+ is divided
into four parts. First, when a ≤ 1/λ1, we go along a line that makes an angle of π/3
with the real axis, starting at c. When 1/λ1 ≤ a ≤ 1/λp , we use a slightly more
complicated path described in Section 3.4.2. When 1/λp is crossed, we go along a
line that is parallel to the real axis until reaching a value R1. At this value R1, we
go down vertically to the real axis.

Hence we will show that one can follow, even in the general case, a path that
resembles that of Figure 4 in [6]. See Figure 2. There are two extra difficulties in
the general case: we have to take care of an arbitrary spectrum which significantly
increases the technical problems. Also, crossing the 1/eigenvalue zone is not a
simple problem when first encountered.

In all that follows, we will use the notation

α � cλ, α1 � cλ1, αp � cλp, γ 2 � n

p
, µ � µn,p.

We work under the assumptions of Theorem 1, hence 0 < c < 1/λ1, 0 < α < 1,
lim supα1 < ∞ and lim infαp > 0. Recall that

f (z) = −µ(z − q) + log(z) − p

n

∫
log(1 − zλ)dHp(λ).
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FIG. 2. The curve 
̃+.

3.4.1. Behavior on 
1. On 
1, we have z = c + teiπ/3.
We call t = xc and consider m(x) = �(f (c+xceiπ/3)). Note that “x increases”

is equivalent to “�(z) increases.” This reparametrization considerably simplifies
the computations. We have

m(x) = −µc[(1 + x/2) − q/c] + 1

2
log

(
c2(1 + x + x2)

)
− 1

2γ 2

∫
log

(
(1 − α)2 − xα(1 − α) + α2x2)

dHp(λ).

Recall that we want to show that m′(x) < 0, so that m decreases when we move
along 
1 with �(z) (or equivalently x) increasing. We have

m′(x) = −µc

2
+ 1

2

2x + 1

1 + x + x2 − 1

2γ 2

∫ 2α2x − α(1 − α)

(1 − α)2 − xα(1 − α) + α2x2 dHp(λ).

Now remark that

n

p
= γ 2 =

∫
α2

(1 − α)2 dHp(λ)

and

µcγ 2 = γ 2 +
∫

α

1 − α
dHp(λ)

=
∫ (

α2

(1 − α)2 + α

1 − α

)
dHp(λ)
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=
∫

α2 + α(1 − α)

(1 − α)2 dHp(λ)

=
∫

α

(1 − α)2 dHp(λ).

Therefore, m′(x)2γ 2 is equal to

−µcγ 2 + 2x + 1

1 + x + x2 γ 2 −
∫ 2α2x − α(1 − α)

(1 − α)2 − xα(1 − α) + α2x2 dHp(λ)

=
∫ (

− α

(1 − α)2 + 2x + 1

1 + x + x2

α2

(1 − α)2

− 2α2x − α(1 − α)

(1 − α)2 − xα(1 − α) + α2x2

)
dHp(λ)

=
∫

α

(1 − α)2

[
−1 + α(2x + 1)

1 + x + x2 − (1 − α)2(2αx − (1 − α))

(1 − α)2 − xα(1 − α) + α2x2

]
dHp(λ).

To simplify the problem, we note that the expression between the brackets can
be written ∑4

k=0 ckx
k

(1 + x + x2)((1 − α)2 − xα(1 − α) + α2x2)

= g(x,α)

(1 + x + x2)((1 − α)2 − xα(1 − α) + α2x2)
.

A simple computation shows the following simplification:

c0 = 0,

c1 = 0,

c2 = 2α(α − 1),

c3 = α(2α − 1),

c4 = −α2.

Hence

g(x,α) = −αx2(
2(1 − α) + (1 − 2α)x + αx2)

.

We want g(x,α) to be negative, so we just have to study the polynomial P(x,α) =
2(1 − α) + (1 − 2α)x + αx2. Recall that x ≥ 0. If α ≤ 1/2, all the coefficients are
positive so the polynomial is positive for all x ∈ R+. Now the roots, at α fixed, of
P(·, α) are

x± = (2α − 1) ± √
(2α − 1)2 − 8α(1 − α)

2α
.
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The polynomial under the square root can be rewritten h(α) = 12α2 − 12α + 1. Its
roots are 1/2 ± 1/

√
6, and it is negative between them.

Therefore, if α ≤ 1/2 + 1/
√

6 � 0.9, P(x,α) ≥ 0 for all x in R+. So we just
need to focus on α’s such that α ≥ 1/2 + 1/

√
6.

Remark that x+ and x− are both positive, because α ≥ 1/2. We potentially have
a problem (of sign) when crossing the smaller one of the two roots, which is of
course x−. Now note that x−(α) ≥ x−(α1).

As a matter of fact, we remark that x−(α) < 1 for all α’s under consideration.
Then, for u ≤ 1, P ′(u,α1) ≤ P ′(u,α), since P ′(u,α) = 1 + 2α(u − 1) and u ≤ 1.
Note also that P(0, α1) ≤ P(0, α) = 2(1 − α). So P(u,α1) ≤ P(u,α) for u ≤ 1.
Since P(x−(α1), α1) = 0, we see that x−(α1) ≤ x−(α), if α ≥ α1. So for u ≤
x−(α1), P(u,α) ≥ 0.

Now the only thing we need to verify to make sure that we can reach �(z) =
1/λ1 is that x−(α1) ≥ 2( 1

α1
− 1). Given that α1 > 0.5 + 1/

√
6, this is equivalent

to showing that
√

(2α1 − 1)2 − 8α1(1 − α1) ≤ 6α1 − 5, which is equivalent to 0 ≤
24(1 − α1)

2.
So we have shown that �(f (z)) decreases when the real part of z increases,

when going along the line intersecting the real axis at c and making an angle of
π/3 with it. If α1 ≤ 0.5 + 1/

√
6, we can cross the whole plane along this line and

�(f (z)) continues to decrease. If α1 > 0.5 + 1/
√

6, we are guaranteed that the
property holds until �(z) = 1/λ1.

Hence the claim we made about 
1 being a descent path of �(f ) is verified.

3.4.2. Behavior on 
2. As we saw in the previous subsection, this is only a
concern if α1 > 0.5 + 1/

√
6. So we suppose we are in this situation. Before we

proceed to exhibiting a path, we perform a preliminary computation that will prove
useful in both this subsection and the next one.

Independent computation. Suppose we write z = c(u + iv). We have

�(f (z)) = −µc(u − q/c) + 1

2
log

(
c2(u2 + v2)

)
− 1

2γ 2

∫
log

(
(1 − αu)2 + α2v2)

dHp(λ).

If we consider that v = v(u), we have �(f (z)) = g(u). The question of finding a
path along which �(f (z)) decreases when �(z) increases is equivalent to finding
v(u) such that g′(u) < 0. With this in mind, we observe that

g′(u) = −µc + 1

2

2u + 2vv′

u2 + v2 − 1

2γ 2

∫ 2α(αu − 1) + 2α2vv′

(1 − αu)2 + α2v2 dHp(λ).
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Let us call I (u) = u2 + v2 and β = u + vv′. Using the fact that µcγ 2 = ∫
α/(1 −

α)2 dHp(λ) and γ 2 = ∫
α2/(1 − α)2 dHp(λ), we get

γ 2g′(u) =
∫

α

(1 − α)2

[
−1 + α

β

I (u)
− (αβ − 1)(1 − α)2

(1 − αu)2 + v2

]
dHp(λ).(13)

Back to the topic of 
2. When 1/λ1 ≤ �(z) ≤ 1/λp , we have 1/α1 ≤ u ≤
1/αp . In this part of the plane, we propose to choose β = I (u). Then the expression
inside the brackets in equation (13) becomes

−1 + α − (αI (u) − 1)(1 − α)2

α2I (u) − 2αu + 1

= (α − 1)

[
1 − (α − 1)

αI (u) − 1

α2I (u) − 2αu + 1

]

= (α − 1)
α2I (u) − 2αu + 1 − α2I (u) + α + αI (u) − 1

α2I (u) − 2αu + 1

= (α − 1)α
I (u) − 2u + 1

α2I (u) − 2αu + 1

= (α − 1)α
(u − 1)2 + v2

(1 − αu)2 + v2 < 0.

Note that at the end of 
1 we arrived at u1 = 1/α1 and the corresponding v was

v1 =
√

3(1−α1)
α1

. Now the choice of β = I (u) can be reformulated as I ′(u) = 2I (u)

and hence I (u) = Ke2u. Simple algebra shows that finally

I (u) =
(

1

α1

)2(
1 + 3(1 − α1)

2)
e2u−2/α1 on 
2.

Note also that since u ≥ 1, I (u) = u2 + v2 > u and hence β = u + vv′ = I (u)

implies that v′ > 0, as we started with v1 > 0. So we will not cross the real axis by
following this path. In the original coordinates, if we call z = a + ib, the path is
such that

b2 =
(

1

λ1

)2(
1 + 3(1 − α1)

2)
e2(a−1/λ1)/c − a2,

with b > 0. For 
2, we follow this path until we reach a = 1/λp . Note that with our
assumptions about γ , lim supα1 and lim infαp , the length of this path is uniformly
bounded. We also remark that if αp → 0, the length of 
2 grows to ∞, which
causes problem for the control of the operator later on.
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3.4.3. Behavior on 
3. We revert to the notation z = c(u + iv). The point is
just to show that with v′ = 0 when u > 1/αp , �(f (z)) decreases. If we recall
(13), we realize that if αβ ≤ I (u) and αβ ≥ 1, then g′(u) ≤ 0. But when v′ = 0,
β = u. Now, if u ≥ 1/αp , αu = αβ ≥ αpβ ≥ 1. Also, since u ≤ I (u), and α ≤ 1,
αu ≤ I (u). Hence �(f (z)) is decreasing when moving along 
3.

3.4.4. Behavior of 
4. There, z = R1 + iy, where, with a slight abuse of no-
tation, 0 < y < 
2(1/αp). Now

�(f (z)) = −µ(R1 − q) + 1

2
log(R2

1 + y2)

− 1

2γ 2

∫
log

(
(λR1 − 1)2 + λ2y2)

dHp(λ)

so, since µ is bounded away from 0, if R1 → ∞, �(f (z)) → −∞, and we can
pick R1 so that, uniformly for our models,

�(f (z)) ≤ �(f (d)).

This is a simple consequence of the fact that �(f (d(�p,n,p))) is bounded below
under the assumptions of Theorem 1. (See Appendix A.1.1.)

There is of course a problem of definition of f at y = 0, because the ar-
gument of the logarithm is real and negative. Nevertheless the function h(z) =
e−nµn,p(z−q)zn ∏p

k=1(1 − zλk)
−1 is well defined and well behaved at z = R1, so

this definition problem will cause no harm in the analysis of the convergence of
the operators. As a matter of fact, it turns out that we will just be interested in
bounding |h(z)|. Since we can take the log of |h(z)| without any problems and it
leads to the same expression as the one for �(f (z)) we considered, we can safely
ignore the definition of f problem for all practical purposes.

3.5. About �. We use the same conventions as when we studied 
. Namely,
we will study the behavior of f on �, but we will first exhibit �̃, with �̃ = �̃+ ∪
�̃+. It turns out that the analysis is much simpler for this contour and we will be
able to follow the path used in [6], after doing some precise technical work.

Once again, the problem is very graphical. A drawing of �̃+ is shown in Fig-
ure 3.

What we will have to do in this case is to show that �(−f (z)) is decreasing
when we travel along �1 and �2, and �(z) is decreasing.

This time �1 is defined as a line making an angle of 2π/3 with the real axis
and crossing it at c. �2 is a line that runs parallel to the real axis, in the direction
of −∞.

The aim of this subsection is to show the following lemma:
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FIG. 3. The curve �̃+.

LEMMA 2. Under the assumptions of Theorem 1, �(−f (z)) is decreasing
for z ∈ �1 ∪ �2 as �(z) decreases. Also, the length of �̃+ is uniformly bounded.
Finally, there exists R2 > 0 such that maxz∈�3 �(−f (z)) ≤ �(−f (e)), where e =
e(�p,n,p) = ic

√
3.

3.5.1. Case of �1. Once again, we will consider everything on the c scale. We
define �1 as z = c + xcei2π/3. We have

φ1(x) � �(−f
(
c(1 + xei2π/3)

))
= �(−f

(
c
(
1 − x/2 + ix

√
3/2

)))
= µc(1 − x/2) − 1

2
log(1 − x + x2)

+ 1

2γ 2

∫
log

((
1 − α(1 − x/2)

)2 + 3α2x2/4
)
dHp(λ)

+ 1

2

(
1

γ 2 − 1
)

log(c2) + µq.
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Hence, we get

γ 2φ′
1(x) = −1

2
µcγ 2 − γ 2 2x − 1

2(1 − x + x2)

+ 1

2

∫ 2α2x + α(1 − α)

(1 − α)2 + xα(1 − α) + α2x2 dHp(λ).

Therefore, using the same equalities we used when studying 
, we have

2γ 2φ′
1(x) =

∫ −α

(1 − α)2 − 2x − 1

1 − x + x2

α2

(1 − α)2

+ 2α2x + α(1 − α)

α2x2 + α(1 − α)x + (1 − α)2 dHp(λ)

=
∫

α

(1 − α)2

(
−1 − α

2x − 1

1 − x + x2

+ (2αx + (1 − α))(1 − α)2

α2x2 + α(1 − α)x + (1 − α)2

)
dHp(λ).

As before, the expression that is within the parentheses can be written∑4
k=0 ckx

k

((1 − x/2)2 + 3x2/4)(α2x2 + α(1 − α)x + (1 − α)2)

and we know that the denominator is positive. A simple computation leads to

c0 = 0,

c1 = 0,

c2 = −2α + 2α2,

c3 = α − 2α2,

c4 = −α2,

and hence the numerator is

4∑
k=0

ckx
k = −x2α

(
αx2 + (2α − 1)x + 2(1 − α)

)
.

The same questions we asked when dealing with 
1 now come up. Note that our
x is positive, so if α ≥ 1/2, P(x,α) = (αx2 + (2α − 1)x + 2(1 −α)) ≥ 0. Also, at
α fixed the roots of P(·, α) are

x± = 1 − 2α ± √
12α2 − 12α + 1

2α
.
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As we saw before, we therefore have P(x,α) ≥ 0 on R+ × [1/2 − 1/
√

6,1]. Now
if α ≤ 1/2− 1/

√
6, we have to work a little harder. We remark that if α ∈ [0,0.5−

1/
√

6], it is easy to check that x−(α) ≥ 2. Hence we conclude that

P(x,α) ≥ 0 on [0,2] × [0,1].
Now z(2) = 0 + ic

√
3 = e. So we have shown that �(−f (z)) decreases when we

travel from c to e along �1.

3.5.2. Case of �2. On this part of the path we use the parametrization z =
−xc + i

√
3c, with x ≥ 0 and increasing. We have, if K is a constant (at �p , n and

p fixed),

�(f (z)) = µxc + 1

2
log(x2 + 3) − 1

2γ 2

∫
log

(
(1 + αx)2 + 3α2)

dHp(λ) + K.

Calling φ2(x) = �(−f (z)), we hence get

φ2(x) = −µxc − 1

2
log(x2 + 3) + 1

2γ 2

∫
log

(
(1 + αx)2 + 3α2)

dHp(λ) + K.

Using the same approach as before we find that

γ 2φ′
2(x) =

∫
α

(1 − α)2

[
−1 − α

x

x2 + 3
+ (1 + αx)(1 − α2)

(1 + αx)2 + 3α2

]
dHp(λ).

Once again what matters to us is the numerator of what is within the bracket. It is
a polynomial—let us denote it by Q(x,α)—of degree 4 in x, its coefficients being

c0 = −6α(1 − α),

c1 = −2α(2 + 3α),

c2 = −α(2 + 7α),

c3 = −α(1 + 2α),

c4 = −α2.

Hence it is clear that Q(x,α) ≤ 0 on R+ × [0,1]. Therefore, we have shown that
�(−f (z)) decreases as �(z) decreases and z travels on �2.

3.5.3. Case of �3. Here z = −R2 + iy, where 0 ≤ y ≤ c
√

3. It is easy to see
that �(−f (z)) can be made as small as we want, since µ is bounded away from 0.
We show in Appendix A.1.2 that �(−f (e)) is bounded. In particular, if we choose
R2 large enough,

max
z∈�3

�(−f (z)) ≤ �(−f (e)).

This holds uniformly with respect to our covariance models, if they are in G.
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3.6. Study of An,p . We give an outline of the key ideas and results that allow
us to then proceed to operator convergence issues. The proof is given in Appen-
dix B.

3.6.1. Definition of q and modification of 
̃ to get 
. At this point we still
have not set q and it is now time to do it. Let us pick an ε > 0. Then, set

q � q(�p,n,p) = c − ε

nσn,p

.(14)

Then, as in [6], we just have to modify the curve 
̃+ around c to obtain 
+. 
+ is
the same as 
̃+, except it starts by


0 =
{
c + ε

2nσn,p

eiθ :
π

3
≤ θ ≤ π

}
.

When 
0 reaches 
1, we follow 
1, and then follow 
2, 
3 and 
4 to create 
+.
Then 
 = 
+ ∪ 
+. Of course, in the end, the contour 
 is oriented counterclock-
wise. A depiction of 
+ can be found in Figure 4.

3.6.2. Arguments needed for the operator analysis to go through. The method
of proof is similar to that of [6], once the difficulties stemming from the fact that
we are considering a much more general case are understood.

The issue we will face is to find a sequence κn,p such that κn,pAn,p →
e−εxAi(x) and κn,pAn,p goes to zero exponentially fast at infinity.

The analysis will rely on four key points. They are:

FIG. 4. The curve 
+.
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1. The length of 
 is uniformly bounded with respect to our models. We will
justify in Appendix B.1 why this is the case in the situation we are considering.

2. One needs to be able to find δ > 0 such that

∀s : |s − c| < δ �⇒ |f (4)(s)|
4! δ <

σ 3

6
.

δ has of course to be uniform with respect to our models.
3. We also need

∀s : |s − c| < δ �⇒ lim sup sup
|f (4)(s)|

4! = � < ∞.

4. Finally, δ has to be chosen small enough that the disc of center c and radius δ

should encompass neither d(�p,n,p) nor e(�p,n,p).

We will explain in Appendix B.1 why these conditions are fulfilled under the as-
sumptions of Theorem 1 and then prove in Appendix B.2 the following proposi-
tion:

PROPOSITION 1. In the definition [see (9)] of An,p , let µn,p be equal to µ

in (2) and σn,p = n−2/3σ , with σ defined in (3). When the four conditions above
are fulfilled, we have

∀s0 ∈ R,∃C(s0) ∈ R+ and N0 ∈ N such that

|κn,pAn,p(s) − e−εsAi(s)| ≤ C(s0)e
−εs/2

n1/3

if s ≥ s0 and n ≥ N0. Here κn,p = e−nf (c).
As a function of s0, C can be chosen to be continuous and nonincreasing.

3.7. Study of Bn,p . Here also, �̃ needs to be modified. We start by �0,
an arc of a circle centered at c and with radius 3ε/(nσn,p). Formally, �0 =
c + 3ε/(nσn,p)ei(π−θ), with 0 ≤ θ ≤ π/3. When �0 intersects �1, we follow �1,
and so on. A depiction of �+ can be found in Figure 5.

We then have:

PROPOSITION 2. In the definition [see (10)] of Bn,p , let µn,p be equal to
µ in (2) and σn,p = n−2/3σ , with σ defined in (3). When the four conditions in
Section 3.6.2 are fulfilled,

∀s0 ∈ R,∃C(s0) ∈ R+ and N0 ∈ N such that

|Bn,p(s)/κn,p − eεsAi(s)| ≤ C(s0)e
−εs/2

n1/3

if s ≥ s0 and n ≥ N0. Here κn,p = e−nf (c), the same as in Proposition 1.
As a function of s0, C can be chosen to be continuous and nonincreasing.

Explanations are postponed to Appendix B.3.
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FIG. 5. The curve �+.

3.8. Operator convergence issues. We will mostly rely on two key properties
in this subsection: the relationship between trace class and Hilbert–Schmidt norms
and the fact that the determinant det(I − ·) of trace class operators is a locally
Lipschitz function with respect to trace class norm.

More precisely, recall (see [16], Section IV.7) that if O and P are Hilbert–
Schmidt operators, then OP is a trace class operator and

‖OP‖1 ≤ ‖O‖2‖P‖2.

Also, it is well known (see [16], Theorem IV.5.2, and Theorem II.4.1 and Corol-
lary II.4.2 both due to Seiler–Simon) that if Q and R are trace class operators,

|det(I + Q) − det(I + R)| ≤ ‖Q − R‖1e
‖Q‖1+‖R‖1+1.(Lip)

This section is now devoted to proving two lemmas that allow us to prove Theo-
rem 1.

Let us call E the multiplication operator by e−x and Ais the operator on
L2([s,∞)) with kernel Ai(x + y − s).
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LEMMA 3. Using the conclusions of Propositions 1 and 2, we have, if we view
all the operators as operators on L2([s,∞)):

∀s0 ∈ R,∃B ∈ R+ and N0 ∈ N such that

‖An,pBn,p − EAi2sE
−1‖1 ≤ C(s0)e

−εs/2

n1/3 ,

if s ≥ s0 and n ≥ N0. C, as a function of s0, can be chosen to be continuous and
nonincreasing.

PROOF. Recall the following fact: according to [28], page 394, for x > 0,
Ai(x) ≤ exp(−2x3/2/3)/(2π1/2x1/4). Hence it is clear that the operator P with
kernel P(x, y) = P(x + y − s) = Ai(x + y − s) exp(ε(x + y − s)) is Hilbert–
Schmidt on L2([s,∞)), and similarly for O that has kernel O(x,y) = O(x + y −
s) = Ai(x + y − s) exp(−ε(x + y − s)).

More precisely, since these kernels are as functions of (x, y) square integrable
on [s,∞) × [s,∞), Theorem VI.23 in [30] applies and we see that, for instance,
if we view O as an operator on L2([s,∞)),

‖O‖2
2 =

∫ ∫
[s,∞)2

(
O(x + y − s)

)2
dx dy

=
∫ ∫

[0,∞)2

(
O(x + y + s)

)2
dx dy

=
∫ ∞
x=s

∫ ∞
y=0

(
O(x + y)

)2
dx dy.

It is clear that this is a continuous, nonincreasing function of s having limit 0 at ∞.
The same analysis and conclusion apply to P .

Now let us denote Ãn,p = κn,pAn,p and B̃n,p = Bn,p/κn,p . From the previ-
ous analyses we conclude that we can find a continuous, nonincreasing func-
tion C such that, if we view all the operators as operators on L2([s,∞)), with
s ≥ s0, ‖Ãn,p‖2 ≤ C(s0), ‖P‖2 ≤ C(s0), and similarly for B̃n,p and O , as long as
n ≥ N0(s0). For instance, C(s) could be 2(‖O‖2(s) + ‖P‖2(s)), where we have
highlighted the dependence of the Hilbert–Schmidt norm of O and P on s.

Since An,pBn,p − OP = Ãn,p(B̃n,p − P) + (Ãn,p − O)P , we have

‖An,pBn,p − OP ‖1 ≤ ‖Ãn,p‖2‖B̃n,p − P ‖2 + ‖Ãn,p − O‖2‖P‖2.

Using the estimates obtained in Propositions 1 and 2, we have shown that if we
view An,pBn,p − OP as an operator on L2([s,∞)) with s ≥ s0, we have

‖An,pBn,p − OP‖1 ≤ C(s0) exp(−εs/2)

n1/3 ,

if n ≥ N0(s0), for yet another continuous, nonincreasing function C. Finally, OP

and EAi2sE
−1 have the same kernel, so Lemma 3 is proved. �
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Let us call F0 the cumulative distribution function of the Tracy–Widom distribu-
tion arising in the study of the Gaussian unitary ensemble. Recall that, as explained
in [35], formula (4.5) and page 166, F0(s) = det(I − Ai2s ), where Ai2s is viewed as
an operator on L2([s,∞)). Note that since EAis and AisE−1 are clearly Hilbert–
Schmidt on L2([s,∞)), det(I −EAisAisE−1) = det(I −AisE−1EAis) = det(I −
Ai2s ).

We also have

P

(
l1 − nµ

σn1/3

)
= det(I − An,pBn,p).

The continuity of the determinant det(I − ·) with respect to trace class norm
implies that ∣∣∣∣P(

l1 − nµ

n1/3σ
≤ s

)
− F0(s)

∣∣∣∣ → 0.

The convergence part of Theorem 1 is therefore proved.
We now turn to proving the rate of convergence part of Theorem 1. In other

words, we want to show that:
We can find a function C (continuous and nonincreasing if we wish) such that

∀s0,∃N0:

s ≥ s0 and n ≥ N0 implies∣∣∣∣P(
l1 − nµ

n1/3σ
≤ s

)
− F0(s)

∣∣∣∣ ≤ C(s0)e
−εs/2

n1/3 .

PROOF. First, it is clear that since, in the notation of the previous proof, Ãn,p

and B̃n,p are Hilbert–Schmidt operators and converge to, respectively, O and P ,
we have, when considering our operators as operators on L2([s,∞)),

∀s ≥ s0 and n large enough ‖An,pBn,p‖1 ≤ ‖Ãn,p‖2‖B̃n,p‖2 ≤ 2‖O‖2‖P‖2.

This last quantity is less than C(s), where C is a continuous, nonincreasing func-
tion, going to 0 when s tends to ∞.

Hence, for s ≥ s0, if n > N0(s0), ‖An,pBn,p‖1 + ‖OP‖1 ≤ 3C(s0), for yet an-
other continuous, nonincreasing function C. In view of equation (Lip) and the
estimate we already have for ‖An,pBn,p − OP ‖1, the statement is shown, because
|P((l1 − nµ)/(n1/3σ) ≤ s) − F0(s)| = |det(I − An,pBn,p) − det(I − OP)|.

Since the C’s appearing in Propositions 1 and 2 may depend on the models
under consideration, so may C. �

Hence the rate of convergence part of Theorem 1 is proved.
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4. Simulations, related issues and conclusion. We will discuss in this sec-
tion some practical consequences of Theorem 1 as well as some of the questions it
raises. To simplify the discussion, we recall that we denote by G the class of (co-
variance) models for which Theorem 1 applies. We will often abuse the notation
and say that a covariance matrix is in G to mean that the corresponding model is
in G.

4.1. Finite perturbation of a covariance matrix that is in G. In this subsection,
we discuss some immediate consequences of the analysis we made to the case of a
finite perturbation of a covariance matrix that is in G. By this we mean that we are

now considering data matrices X that are n × (p + k), and Xi
i.i.d.∼ NC(0, �̃p+k),

where k(p) < K , K ∈ N, and we add to {λ1(�p), . . . , λp(�p)} k eigenvalues
larger than λ1(�p). In other words, λk+1(�̃p+k) = λ1(�p). This is of course a
generalization of spiked covariance models considered in [6], where the bulk co-
variance is not restricted to be Id but rather a matrix for which Theorem 1 applies.

We will discuss two cases. First, we will assume that there exists χ > 0 such
that λ1(�̃p+k) < −χ + 1/c(�p,n,p). We will see in that case that Theorem 1
applies. Then we will discuss the case where λ1(�̃p+k) = 1/c(�p,n,p) and the
situation when the multiplicity of this eigenvalue is k0.

FACT 1. In the spiked situation described above, if there exists χ > 0 such
that

λ1(�̃p+k) < −χ + 1/c(�p,n,p),

Theorem 1 applies to {(�̃p+k, n,p + k)}.
The proof is elementary and is given in Appendix A.4.1. Intuitively this

means that if we perturb a model for which Theorem 1 applies by adding a few
leading eigenvalues that are not too large [and too large means larger than
1/c(�p,n,p) − χ for some χ > 0], then Theorem 1 applies to the perturbed
model.

In light of [6], another natural question is to understand what happens when we
spike the model by adding k eigenvalues at exactly 1/c(�p,n,p). We have the
following result in this case:

THEOREM 3. Let us assume that a model in G is spiked by adding k eigenval-
ues at

λ1(�̃p+k) = · · · = λk(�̃p+k) = 1/c(�p,n,p).

The value of k is fixed and is not allowed to change with n or p. Then calling Fi ’s
the distribution functions defined in Definition 1.1 of [6], we have

P

(
l1 − nµ

n1/3σ
≤ x

)
→ Fk(x).



688 N. EL KAROUI

As in Theorem 1, we have

µ = 1

c

(
1 + p

n

∫
λc

1 − λc
dHp(λ)

)
,

σ 3 = 1

c3

(
1 + p

n

∫ (
λc

1 − λc

)3
dHp(λ)

)
.

Note that c, µ and σ refer to the nonspiked model.

A justification is given in Appendix B. So we have extended Theorem 1.1(a)
in [6] to models in the class G. More information about the Fk’s can be found in
[5], [6] and Appendix B.1.4.

4.2. Statistical considerations.

4.2.1. Isolated largest eigenvalue vs. largest eigenvalue with a small mass.
One of the many very interesting results obtained in [6] was their Theorem 1.1(b).
It basically says that if an Id matrix is spiked with eigenvalues that are larger than
1/c(�p,n,p) + χ , χ > 0, l1 has a completely different type of limiting distrib-
ution, and that centering and scaling should be changed. In particular the scaling
should be adjusted from n1/3 to n1/2. The question of knowing if and how this
happens for matrices of the class G is currently under investigation by the author
of this article. As an aside, let us remark that n1/2 is the rate obtained through
elementary concentration of measure arguments. We refer to Appendix A.5 and
references therein for more details.

Let us go back to our discussion and call this large spike λ̃1. If instead of chang-
ing one eigenvalue we had a small mass ν(p) [with lim infν(p) > 0] at λ̃1, then
Theorem 1 would apply. Hence the centering, scaling and limiting distribution of
l1 would differ drastically from the case where λ̃1 is isolated. In practice (and in
statistical applications), one cannot tell from the data if there is one eigenvalue (out
of say 100) that is much larger than the rest of them, or if 1% of the eigenvalues are
clearly separated from the bulk. One will therefore have to specify precisely what
models are considered if the results presented in this paper and those in [6] are used
for statistical inference. Note that asymptotics done at fixed spectral distribution
lead to Tracy–Widom limits.

For instance, in a hypothesis testing context, the power of tests based on these
“large p, large n” asymptotics will depend greatly on the specified alternatives.

4.2.2. Classical asymptotics or limn/p < ∞ asymptotics? An interesting sta-
tistical aspect of Theorem 1 is that we see, in µ, the effect the whole spectrum of
the covariance matrix has on the largest eigenvalue of the empirical covariance
matrix. This is very different from the classical situation (i.e., p fixed and n goes
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to ∞) where (at least in the real case and when all the eigenvalues of �p have
multiplicity 1)

√
n

(
l1

n
− λ1

)
⇒ N (0,2λ2

1).

(See [2], Theorem 13.5.1.)
In other words, in the classical case, a test based on the largest eigenvalue of

the empirical covariance matrix is not sensitive to the whole covariance structure
but just to the value of the true largest eigenvalue. Under the asymptotics we are
considering, such a test does—implicitly—take into account the whole structure of
the spectrum. This is of course very interesting, for instance, for tests of sphericity.

4.2.3. On Theorem 2 and other random matrices of interest. The joint distri-
bution of the eigenvalues of other random matrices with complex Gaussian entries
is also known. A good reference is, for instance, [23], Section 8. Note that they
all involve so-called hypergeometric functions of two matrix arguments. An inter-
esting characteristic of these functions (which since we are dealing with complex
entries have to do with the unitary group) is that they have representations in terms
of determinants. We refer to, for instance, Section 4 in [20] for explanations and in
particular to their Theorem 4.2.

The Harish–Chandra–Itzykson–Zuber formula, which is a preliminary to the
proof of Theorem 2, is a subcase of Theorem 4.2 of [20], specialized to the case of
the exponential function. A natural question is therefore to know whether one can
obtain the same type of representation as the one obtained by Baik–Ben Arous–
Johansson–Péché in Theorem 2 in the case of the more general distributions de-
scribed in [23], Section 8.

In other respects, let us also note the interesting recent developments found in
[9] and [15] concerning problems that are close to the one we studied. For more
statistical considerations, in the case of spiked models, see [29].

4.3. Concluding remarks. The problem of convergence of the joint distrib-
ution of the k-largest eigenvalues of X∗X requires other tools than the one we
discussed in the main body of the paper. We therefore refer the reader to Appen-
dix A.6 for the proof of Corollary 2. In this subsection, we will keep discussing
some properties of the largest eigenvalue of X∗X.

4.3.1. Convergence in probability and a.s. convergence. In this part of the text
only, we highlight the fact that µ depends on �p , n and p by calling it µ(�p,n,p).
Using Slutsky’s lemma, it is clear that in the setting of Theorem 1 or 3, for models
in G,

l1

n
− µ(�p,n,p) → 0 in probability.
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Since µ(�p,n,p) > 1/c(�p,n,p) and lim supλ1c < 1, we see that l1/n is always
an inconsistent estimator of λ1 for models in the class G. Note that Theorem 1
allows us to quantify (l1/n) − λ1 and explore how this quantity is affected by
changes in �p , n and p. In particular, elementary computations show that, at �p

fixed, (l1/n) − λ1 is, unsurprisingly, a decreasing function of n/p. We explain
in Appendix A.5 that, as announced in Corollary 1, through Theorem 1 or 3 and
concentration of measure arguments, we can show that, when the theorems apply,

l1

n
− µ(�p,n,p) → 0 a.s.

In other respects, we have the following fact.

FACT 2. Let {Yi,j } be i.i.d. random variables, real or complex, with
E(Yi,j ) = 0, E(|Yi,j |2) = 1 and E(|Yi,j |4) < ∞. Let the n × p matrix X be such

that X = Y�
1/2
p , where Y is an n × p matrix whose entries are the Yi,j . Sup-

pose the model {(�p,n,p)} is in G and moreover Hp ⇒ H∞, n/p → ρ and
λ1(�p) → sup supportH∞. Then

l1

n
− µ(�p,n,p) → 0 a.s.,

where µ(�p,n,p) is defined in (2).

It is a simple consequence of Theorem 1.1 and its corollary in [4], once we
realize that all the limiting quantities involved in that statement are independent
of the distributional assumptions made on the Yi’s. Hence the limit in the case of
complex Wishart matrices is the same as the limit in the “general” situation. In
particular, this covers the case of real Wishart matrices, that is, data matrices with
real normal entries.

4.3.2. Some simulations. It was remarked in [25] that the quality of the Tracy–
Widom approximation to the marginal distribution of l1 is very good, especially
in the right tail of the distribution. This is one of the remarkable properties of this
approximation. We refer to [25], Table 1, page 302 for examples. As an aside,
we note that the simulation mentioned there was not done with complex Wishart
matrices, but rather with real random variables. Nevertheless the same observations
hold in the case of complex Wishart matrices with Id covariance. We refer to [11]
for theoretical considerations that help understand why this is happening and some
simulations in the complex Wishart case.

We made a few simulations to show that the same phenomenon seems to occur
in the more involved setting we treat in this paper. Note that numerically solv-
ing (1), (2), (3) and getting approximations for c, µ and σ takes a fraction of a
second on modern computers. We present some results of our experiments in this
discussion. See Tables 1 and 2.
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TABLE 1
Toeplitz covariance matrix example

TW quantiles TW 100 × 50 400 × 50 2* SE

−3.73 0.01 0.004 0.007 0.002
−3.20 0.05 0.033 0.041 0.004
−2.90 0.10 0.072 0.089 0.006
−2.27 0.30 0.269 0.292 0.009
−1.81 0.50 0.479 0.497 0.010
−1.33 0.70 0.691 0.702 0.009
−0.60 0.90 0.901 0.908 0.006
−0.23 0.95 0.953 0.956 0.004

0.48 0.99 0.991 0.992 0.002

The simulation mechanism was as follows. We generated 10,000 random ma-
trices X of size n × p (using Matlab). The rows of these matrices were i.i.d.
NC(0,�p). For each individual X, we computed l1(X∗X)/n and recentered
and rescaled it according to Theorem 1. After simulating 10,000 times we ob-
tained an empirical distribution F̂ for (l1 − µ)/(σn1/3). The columns of the
matrix show the value of F̂ at the quantiles of the Tracy–Widom distribution
(courtesy of Professor Iain Johnstone), given in the leftmost column. If the ap-
proximation were “perfect,” the third and fourth columns would be equal to the
second one.

Here we picked �p = Toeplitz(1,0.2,0.3), p = 50. For the first column, n =
100, µ = 3.7297, σ = 3.9271. For the second column, n = 400, µ = 2.6559,
σ = 4.4288.

TABLE 2
Sum of atoms example

TW quantiles TW 100 × 50 400 × 50 2* SE

−3.73 0.01 0.006 0.008 0.002
−3.20 0.05 0.036 0.045 0.004
−2.90 0.10 0.079 0.092 0.006
−2.27 0.30 0.283 0.292 0.009
−1.81 0.50 0.490 0.496 0.010
−1.33 0.70 0.700 0.697 0.009
−0.60 0.90 0.896 0.902 0.006
−0.23 0.95 0.949 0.951 0.004

0.48 0.99 0.991 0.992 0.002

The simulation mechanism is similar to the one described previously. We again
did 10,000 repetitions of the experiment.

Here p = 100. �p has λ1 = · · · = λ30 = 10 and λ31 = · · · = λ100 = 1. In the
case n = 100, µ = 24.703 and σ = 21.871. In the case n = 400, µ = 16.417
and σ = 21.257.



692 N. EL KAROUI

We also did some simulations with real Wishart matrices instead of complex
ones. In the setting of Theorem 1, we obtained a very reasonable agreement be-
tween the empirical distribution of l1(X

′X) and a Tracy–Widom approximation,
this time using the Tracy–Widom law appearing in the study of GOE, but keeping
the c, µ and σ obtained in Theorem 1.

We would finally like to point out that Theorem 1 is essentially explicit if one
has access to a computer. Then the eigenvalues of �p are numerically computable
and so are c, µ and σ . This is of course a very important property for the relevance
of the theorem in applications.

APPENDIX A

A.1. Uniform control of �(f (d(�p,n,p))) and �(−f (e(�p,n,p))).

A.1.1. Case of �(f (d(�p,n,p))). Recall that we want to show that
�(f (d(�p,n,p))) is bounded below so as to guarantee that R1, which appears
in Lemma 1, is uniformly bounded. In the notation of Section 3.4.1 this is equiva-
lent to showing that

m
(
2(1/α1 − 1)

)
is bounded below.

We clearly have

m
(
2(1/α1 − 1)

)
≥ −µc(1/α1 − q/c)

− 1

2γ 2

∫
log

(
(1 − α)2 − 2(1/α1 − 1)α(1 − α)

+ α24(1/α1 − 1)2)
dHp(λ).

It is clear that ((1 − α)2 − 2(1/α1 − 1)α(1 − α) + α24(1/α1 − 1)2) ≤ 1 +
α2

14(1/α1 − 1)2. Note that this quantity is bounded. Note also that the same is
true of 1/γ 2, µ (because lim supα1 < 1), and hence −µcα1 is bounded below. All
these arguments together show that m(2(1/α1 −1)) is bounded below and we have
the control we need.

A.1.2. Case of �(−f (e(�p,n,p))). We now want to show that the quantity
�(−f (e(�p,n,p))) is bounded below so that R2 (see Lemma 2) is bounded. In
the notation of Section 3.5.1, we need to show φ1(2) is bounded below. This quan-
tity is equal to

φ1(2) = −1

2
log(3) + 1

2γ 2

∫
log(1 + α2) dHp(λ) + 1

2

(
1

γ 2 − 1
)

log(c2) + µq.

Now | log(c2)| is bounded, since c is bounded away from 0 (see Appendix B.1.1)
and c < 1/λ1 ≤ 1/λp and we assume that lim infλp > 0. Therefore, φ1(2) is
bounded below and the needed control is shown.
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A.2. About n1/3 scaling and its connection to having a saddle point of or-
der 2. We want to stress that n1/3 is the “natural” rate for convergence to Tracy–
Widom limits, as there is a connection between Airy functions and saddle points
of order 2. The few lines that follow are the natural heuristic explanations of steep-
est descent analysis. Similar arguments are given after (112) in [6] but we thought
it was important to mention them again (and highlight the key parts) since they
intuitively explain the connection between having f ′′(c) = 0, an n1/3 scaling in
Theorem 1 and a Tracy–Widom limit. In another context, the same connections
were observed in [17].

Recall that

An,p(x) = −nσn,p

2πi

∫



e−nσn,px(z−q)e−nµn,p(z−q)zn
p∏

k=1

1

1 − zλk

dz

= −nσn,p

2πi

∫



e−nσn,px(z−q)enf (z) dz.

Now because f ′(c) = f ′′(c) = 0, we have around c, f (z) � f (c) + f (3)(c)(z −
c)3/6. The point of the steepest descent analysis is to show that we then have
(rigorously and up to precision we control)

An,p(x) � −nσn,p

2πi

∫



e−nσn,px(z−q)en(f (c)+f (3)(c)(z−c)3/6) dz.

Since we picked f (3)(c) = 2σ 3
n,pn2, we have

e−nσn,px(z−q)en(f (c)+f (3)(c)(z−c)3/6)

= e−nσn,px(c−q)enf (c) exp
(
−xnσn,p(z − c) + n3σ 3

n,p(z − c)3

3

)
.

A key point is that the Airy function can be written for an appropriately chosen
contour L (see, e.g., [28], page 53):

Ai(x) = 1

2πi

∫
L

exp
(
−xv + v3

3

)
dv.

So the change of variable a = τ(z) = nσn,p(z − c) becomes natural and our inte-
gral can be rewritten as

An,p(x) � −enf (c)

2πi
e−nσn,px(c−q)

∫
τ(
)

exp
(
−xa + a3

3

)
da.

Picking q = c − ε
nσn,p

as in (14), we finally see that

An,p(x) � −enf (c)

2πi
e−εx

∫
τ(
)

exp
(
−xa + a3

3

)
da,
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and the problem is finally to pick a “good” 
 on which to analyze f and such
that τ(
) is an appropriate path from the point of view of the definition of the Airy
function. What is on the right-hand side now looks very much like e−εxAi(x)/κn,p

in the notation of Proposition 1. (The minus is of course not a problem since it is
an artifact of the orientation of our contours.)

A.3. Proof of Corollary 3 and examples of models belonging to G. In this
subsection, we show that under assumptions that are both reasonable from an ap-
plications standpoint and relatively easy to check, Theorem 1 holds. As in The-
orem 1 we assume that 1 ≤ n/p, lim supn/p < ∞, lim supλ1(�p) < ∞ and
lim infλp(�p) > 0. As seen in Appendix B.1.1, these three assumptions imply
that lim inf c > 0 and lim infλpc > 0. Our only problem will therefore be to check
that

lim supλ1c < 1.

We will use the notation α = λc, α1 = λ1c and γ 2 = n/p.
We consider covariance matrices �p with spectral distribution Hp . We will treat

two cases: when Hp has an atom of mass ν(p) at λ1, and the case where Hp weakly
converges to a limit and the endpoints of its support converge to the endpoints of
the limiting support.

A.3.1. Case of Hp having an atom of mass ν(p) at λ1. We assume that
lim infν(p) > 0. Note that λ1(�p) can vary in the analysis that follows. It just
needs to be bounded. Since

γ 2 =
∫

α2

(1 − α)2 dHp ≥ ν(p)

(
α1

1 − α1

)2

,

simple algebra shows that

α1 ≤ 1√
ν(p)/γ + 1

.

Recall that we assume that lim infν(p) > 0 and lim supn/p < ∞, so it is clear that
lim inf

√
ν(p)/γ > 0 and hence

lim supα1 < 1

in this situation. Therefore Theorem 1 applies.

A.3.2. Case of weak convergence of Hp with conditions on its support. We
assume that:

1. Hp ⇒ H∞ in the usual weak convergence sense.
2. λ1(�p) → sup supportH∞ � λ1(∞). We assume that lim supλ1(�p) < ∞, so

λ1(∞) < ∞.
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3. λp(�p) → inf supportH∞ � λ∞(∞) and λ∞(∞) > 0.
4. In a (left) neighborhood of λ1(∞), dH∞(λ) has the property that dH∞(λ) ≥

B(λ1(∞) − λ)dλ, for some B > 0.

Hence the only property we have to show is that lim supλ1c < 1.
Now suppose Hp ⇒ H∞ and H∞ has a density. Note that for all x ∈ [0,−χ +

1/λ1(∞)], for some χ > 0,

t (λ) =
(

λx

1 − λx

)2

is a bounded continuous function of λ, for λ ∈ [0, χ/2 + λ1(∞)]. Hence, if we
denote

fp(x) =
∫

(λx)2

(1 − λx)2 dHp(λ),

we have

fp(x) → f∞(x) =
∫

(λx)2

(1 − λx)2 dH∞(λ),

since for p large enough, both Hp and H∞ are supported in [0, χ/2 + λ1(∞)].
Now suppose there exist B > 0 and λB such that dH∞(λ)/dλ ≥ B(λ1(∞) − λ) in
[λB,λ1(∞)]. Then of course

f∞(x) =
∫

(λx)2

(1 − λx)2 dH∞(λ) ≥
∫ λ1(∞)

λB

λ2

(1/x − λ)2 dH∞(λ)

≥ Bλ2
B

∫ λ1(∞)

λB

λ1(∞) − λ

(1/x − λ)2 dλ.

Note that

υ(x) �
∫ λ1(∞)

λB

λ1(∞) − λ

(1/x − λ)2 dλ = log
(

1/x − λB

1/x − λ1(∞)

)
− 1 + 1/x − λ1(∞)

1/x − λB

.

Elementary manipulations show that υ is a continuous, increasing function of x on
(0,1/λ1(∞)), going from 0 to ∞.

The definition of f∞ implies that it is a continuous, nondecreasing function of
x on the interval [0,1/λ1(∞)). Since

f∞(x) ≥ Bλ2
Bυ(x),

we see that limx→λ1(∞) f∞(x) = +∞. Therefore, we can find b such that f∞(b) =
2(1 + supn/p) and b is bounded away from 1/λ1(∞).

Now recall that fp is a continuous, increasing function of x. Since fp(c) = n/p,
when p is large enough, c ≤ b, since fp(b) → 2(1 + supn/p). But, for p large
enough, λ1c ≤ λ1b → λ1(∞)b < 1. Hence lim supλ1c < 1.



696 N. EL KAROUI

A.3.3. Some simple examples of matrices for which Theorem 1 applies. We
now justify the claims made after the statement of Corollary 3. We assume that
lim supλ1(�p) < ∞, lim infλp(�p) > 0, n ≥ p and n/p is bounded.

Sums of atoms. Suppose �p has a largest eigenvalue of multiplicity k(p) and
that in the models under consideration lim infk(p)/p > 0. Then we just saw that
Theorem 1 applies.

Equally spaced eigenvalues on an interval. Suppose the covariance matrices
�p in our models have eigenvalues that are equally spaced on a fixed interval
[ζ, ξ ]. Suppose also that n/p is bounded. Then it is clear that the conditions under
which we worked in Appendix A.3.2 are satisfied, as long as ζ > 0 and ξ < ∞.
Hence Theorem 1 applies.

A.3.4. The case of Toeplitz matrices. Since we are working with covariance
matrices, our matrices �p have to be symmetric and positive definite. Let us de-
note the parameters defining the Toeplitz matrix by a0, a1, . . . . Not aiming for the
greatest generality, we assume that∑

k|ak| < ∞.

Then the function

a(ω) = a0 + 2
∞∑

k=1

ak cos(kω)

is C1 on [0,2π]. Hence it is bounded and continuous. This function plays an im-
portant role in the understanding of the limiting distribution of Hermitian Toeplitz
matrices. The results concerning Toeplitz matrices we need are very well known
and classical. They can be found in [19], Chapter 5, [18], Chapter 4, and [8], Sec-
tion 5.5.

Let us denote by F the measure defined on the Borel sets of R by the following
relation: if E ⊂ R is a Borel set,

F(E) = 1

2π
Leb{ω ∈ [0,2π] :a(ω) ∈ E},

where Leb denotes Lebesgue measure.
As before, we call Hp the spectral measure of �p , which is now a p×p Toeplitz

matrix. We call λ1(∞) = sup supportF and λ∞(∞) = inf supportF .
Here is a collection of some interesting and relevant properties of symmetric

Toeplitz matrices. Since a is bounded on [0,2π], we have, using Corollary 5.12
in [8], Hp ⇒ F . a is also piecewise continuous, so limλp(�p) → λ∞(∞) and
limλ1(�p) → λ1(∞), using, for example, Theorem 5.14 in [8] or Lemma 4.2
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in [18]. Finally, it is known ([18], Corollary 4.1 or [8], page 141) that if F does
not have any atoms, then its cumulative distribution function D satisfies

D(x) = F
(
(−∞, x]) = 1

2π

∫
a(ω)≤x

dω.

Recall our assumptions: a is bounded away from 0, C1 and its derivative
changes sign only a finite number of times in [0,2π]. Also, F is assumed to not
have atoms. Then we of course have

0 < inf[0,2π ]a(ω) = λ∞(∞) and sup
[0,2π ]

a(ω) = λ1(∞) < ∞.

Also, we can split [0,2π] into, say, m intervals where a is monotonic. Calling the
intervals Ik and their endpoints pk (with I1 < I2 < · · · and I1 = [p1,p2]), we have

D(x) =
m∑

k=1

1

2π

∫
ω∈Ik : a(ω)≤x

dω.

The function a is invertible on Ik . Also, λ1(∞) is reached and so there is at least
one k, say k0, for which a(pk0+1) = λ1(∞). Further, we can assume without loss
of generality that a is nondecreasing on Ik0 . We call ak0 the restriction of a to Ik0 .
ak0 is an invertible function. Now, assuming that a(pk0+1) ≥ x ≥ a(pk0), we have

Dk0(x) =
∫
ω∈Ik0 : a(ω)≤x

dω = a−1
k0

(x) − pk0 .

Since ak0 is C1, Dk0 has a derivative in (a(pk0), a(pk0+1)) and we have

D′
k0

(x) = 1

a′
k0

(a−1
k0

(x))
.

We immediately see that on this interval

D′
k0

(x) ≥ 1

sup[0,2π ] |a′(ω)| > 0

since a is C1.
Hence, after we rewrite D as a sum of Dk’s, we see that under our assump-

tions D has a density except at a finite number of points where the derivative of a

changes sign. The density tends to ∞ at these points. So the assumptions put forth
in Appendix A.3.2 hold and Theorem 1 applies to the class of Toeplitz covariance
matrices we considered.

In general, if a is a Lebesgue integrable function on (−π,π) whose Fourier
coefficient coincides with the ai ’s, and if ess supa = Ma < ∞ and ess infa =
ma > 0, Theorem 1 holds for such a Toeplitz matrix if

T (x) =
∫ π

−π

(
a(u)x

1 − a(u)x

)2

du
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is a continuous function of x on [0,1/Ma) that is increasing and tends to ∞ as
x → 1/Ma . (Note that since a ≥ 0 a.e., T is nondecreasing in x.) This is a sim-
ple consequence of the so-called First (or Weak) Szegö limit theorem (see [19],
pages 64–65) and of the fact that the eigenvalues of the corresponding (truncated)
Toeplitz matrices are between ma and Ma in this situation.

A.4. Justification of results for spiked models with a small spike. Here we
are considering “spiked” models of covariance. Namely, we start with a model
{�p,n,p}n,p∈N that is in G. In other words, Theorem 1 applies to this model.
When we say that we are considering the spiked version of this model, we mean

that we are now focusing on data matrices X that are n × (p + k), and Xi
i.i.d.∼

NC(0, �̃p+k), where k(p) < K , K ∈ N, and we add to {λ1(�p), . . . , λp(�p)}
k eigenvalues larger than λ1(�p). In other words, λk+1(�̃p+k) = λ1(�p).

A.4.1. Proof of Fact 1. The statement we want to prove is the following: In
the “spiked” situation described above, if there exists χ > 0 such that

λ1(�̃p+k) < −χ + 1/c(�p,n,p),

Theorem 1 applies to �̃p+k .

PROOF. In order to simplify the notation we will use in this proof the shortcuts

c̃ � c(�̃p+k, n,p + k),

c � c(�p,n,p),

λ̃1 � λ1(�̃p+k).

It is clear that the only thing we have to check is that

lim supλ1(�̃p+k)c(�̃p+k, n,p + k) < 1.

We of course have c < 1/λ̃1. Now let us call

ρ(x) =
∫ (

λx

1 − λx

)2

dH̃p+k where ρ is defined on [0,1/λ̃1).

The equation that defines c̃ is

ρ(c̃) = n

p + k
with c̃ ∈ [0,1/λ̃1).

We have seen that ρ is an increasing function of x. Now since c(�p,n,p) < 1/λ̃1,
we can compute ρ(c). Note that we have, if we denote by λ̃i’s the eigenvalues we
have added to �p to create �̃p+k ,

ρ(x) = 1

p + k

k∑
j=1

(
λ̃j x

1 − λ̃j x

)2

+ p

p + k

∫ (
λx

1 − λx

)2

dHp(λ).
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Now recall that by definition,∫ (
λc

1 − λc

)2

dHp(λ) = n

p
.

Hence

ρ(c) = 1

p + k

k∑
j=1

(
λ̃j c

1 − λ̃j c

)2

+ n

p + k
>

n

p + k
.

Since ρ is an increasing function of x this implies that

c̃ < c

and therefore

λ̃1c̃ < λ̃1c < 1 − χc.

Since lim inf c > 0 because {�p,n,p} ∈ G, we have shown

lim sup λ̃1c̃ < 1

and Theorem 1 applies to �̃p+k . �

A.5. Issues of convergence in probability and a.s. convergence. We will
explain in this subsection why, when Theorem 1 or 3 applies, we have

l1

n
− µ(�p,n,p) → 0 in probability

and
l1

n
− µ(�p,n,p) → 0 a.s.

The convergence in probability part is an immediate application of Slutsky’s
lemma (see [39], Lemma 2.8), so we will not belabor this point. The only thing
we have to show is therefore the almost sure convergence part. We use concentra-
tion of measure arguments to show that l1/n − µ(�p,n,p) → 0 a.s.

FACT. If Theorem 1 or Theorem 3 applies,

l1

n
− µ(�p,n,p) → 0 a.s.

PROOF. Let us first recall that the application that takes a matrix M and returns
its ordered singular values is 1-Lipschitz with respect to Euclidean norms (see,
e.g., statement 7.3.8 in [22]). In other words, if we call {σi} and {τi} the ordered
singular values of two n × p matrices A and B , we have

p∑
k=1

(σk − τk)
2 ≤ ∑

i,j

|ai,j − bi,j |2.
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In particular, that shows that the application that takes a vector of dimension 2np,
turns it into matrices M and N and returns the ordered singular values of M + iN

is 1-Lipschitz with respect to Euclidean norms. So is any 1-Lipschitz (for Euclid-
ean norms) R

p → R function of the ordered singular values, and in particular
the projection that returns σ1 from (σ1, σ2, . . . , σp). Hence, by a fairly standard
concentration of measure argument (see, e.g., [13], pages 34–38, and references
therein, especially [21]), if we call m(�p,n,p) a median of s1 = √

l1(X∗X)/n,
and λ̄1 = supλ1(�p) < ∞, we have, in the setting of Theorem 1 or 3,

∀r > 0, P
(|s1 − m(�p,n,p)| > r

) ≤ 2 exp(−nr2/λ̄1).

Note that the fact that the rows of our matrices are NC(0,�p) plays a crucial role
here, for we know the concentration function of Gaussian random variables and
we also know that it has the so-called dimension-free concentration property. We
refer the reader to [26], page 99, for more information about it. Let us just say
that, for quite general distributions, the interplay between log-Sobolev inequalities
and concentration of product measures is the gist of the argument that leads to
the previous inequality. In the Gaussian case, we can also use the fact that the joint
distribution of the entries of the 2np vector has a density of the type exp(−U) with
Hessian(U) ≥ 2Id/λ1. [Recall that since we are working with complex standard
entries, the rows of M and N are i.i.d. N (0,�p/2).] Hence Theorem 2.8 in [26]
applies and the concentration function for this measure is exp(−r2/λ1).

Combining it with the first Borel–Cantelli lemma (recall that n is going to ∞),
we see that

s1 − m(�p,n,p) → 0 a.s.

Since we know that µ(�p,n,p) is uniformly bounded when Theorem 1 or Theo-

rem 3 applies, we conclude that in this situation
√

µ(�p,n,p) is, too.
Now because s1 − m(�p,n,p) → 0 a.s., s1 − m(�p,n,p) → 0 in probability.

But we also know that l1/n−µ(�p,n,p) → 0 in probability. Therefore,
√

l1/n−√
µ(�p,n,p) → 0 in probability, because, for instance, µ(�p,n,p) is bounded

below. And so m(�p,n,p) −
√

µ(�p,n,p) → 0.
Hence, there exists K > 0 such that 0 ≤ s1 ≤ K a.s. Hence s1 is (a.s.) uniformly

bounded. So is m(�p,n,p) and hence(
s1 − m(�p,n,p)

)(
s1 + m(�p,n,p)

) = s2
1 − m(�p,n,p)2

= l1

n
− m(�p,n,p)2 → 0 a.s.

We know that m(�p,n,p)2 − µ(�p,n,p) → 0, because µ(�p,n,p) is bounded
above, so we have shown

l1

n
− µ(�p,n,p) → 0 a.s. �
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A.6. Determinantal character of the point process and consequences. In
this section, we explain that when viewed as a point process on the real line, the
eigenvalues of X∗X form a determinantal point process. The main consequence is

that when the rows Xi
i.i.d.∼ N (0,�p) and the covariance models are in the class G,

the joint distribution of the k-largest eigenvalues of X∗X (k fixed) converges to its
Tracy–Widom counterpart.

The fact that the point process is determinantal is an easy consequence of a well-
known result that seems to first appear in [7], Section 2, and that directly applies to
the situation we are considering, given the form of the density of the eigenvalues of
X∗X, when Xi are n i.i.d. NC(0,�p). Proposition 2.1 in [6] shows that the kernel
of this determinantal point process is Kn,p , where Kn,p is defined in (4). We can
now turn to the issue of the convergence of the joint distribution.

A.6.1. Convergence of the joint distribution. Let Bj be disjoint, bounded be-
low Borel sets of R and let NBj

denote the number of eigenvalues of X∗X that are
in Bj . As explained in Theorem 2 in [33] (see also (2.44) in [34]), the generating
function of the probability distribution of NBj

can be written as the determinant of

an operator. In our case, if we call L = ∑k
j=1(zj − 1)1Bj

, we have

E

(
k∏

j=1

z
NBj

j

)
= det(Id + Kn,pL).

Using Lemma 2 in [34], if we can show that det(Id + An,pBn,pL) → det(Id +
Ai2L), we will have shown the convergence of the joint distribution of the k-largest
eigenvalues of X∗X (properly recentered and rescaled) to their Tracy–Widom
counterpart. (The argument is similar to the one given in the proof of Theorem 1,
pages 1047–1048 in [34].)

Now recall that we showed that An,pBn,p → EAi2E−1 in trace class norm in
the notation of Lemma 3. Our only problem is therefore to show that det(Id +
EAi2E−1L) = det(Id + Ai2L). Note that since L and E−1 are multiplication
operators, they commute. Also, recall that EAi and AiE−1 are Hilbert–Schmidt
operators. Since L is bounded, AiLE−1 is Hilbert–Schmidt. Recall also that for
Hilbert–Schmidt operators F and G, det(Id + FG) = det(Id + GF). Hence,

det(Id + EAi2E−1L) = det(Id + EAi2LE−1) = det
(
Id + (AiLE−1)(EAi)

)
= det(Id + AiLAi) = det(Id + Ai2L).

We refer to [35] and [10] for information about the limiting distributions of
l2, . . . , lk .

APPENDIX B: CONVERGENCE OF OPERATORS

In this section, we will prove Proposition 1 (which deals with the convergence of
An,p) and sketch the proof of Proposition 2 (which does the same thing for Bn,p).
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The method of proof is similar to what is done for the proof of Proposition 3.1
in [6]. It might look a little simpler because we worked in the beginning of this
paper with more complicated functions f than [6] did. So, from the point of view
of this analysis, the efforts are in some sense balanced differently.

At this point, what we have to do is adapt the proof found in [6]; the difficult
conceptual and technical problems we had to solve that required fresh ideas and a
new look are found earlier in the paper. Now we principally need to rephrase parts
of the work of [6] in a more general context, once the gist of the argument is under-
stood in this general context. Note that our paths are slightly different from theirs,
and there are a few other things to check. (In particular, we state Proposition 1 with
an exp(−εs/2) in the upper bound, independent of the interval [−s0,∞) on which
we work. We need to show that one can adapt the proof given in [6] to do this and
not have b(s0), possibly dependent on s0, instead of ε.)

We decided to include the full proof for three reasons. A sequence of references
to various equations in [6] and modifications to make to those would have made
for a very difficult reading. It would also have assumed that the reader had an
enormous familiarity with [6]. So we decided to include this analysis for the con-
venience of the reader. Also, given the somewhat technical nature of the problem,
having a completely spelled out proof reduces considerably the risk of errors.

Nevertheless, because of the length of the proofs, we will only give a complete
proof for the convergence of κn,pAn,p to its limit. We will just sketch the corre-
sponding proof for Bn,p/κn,p .

B.1. Preliminary remarks. We first recall the assumptions satisfied by mod-
els in G. We assume:

1. n/p is uniformly bounded and greater than or equal to 1.
2. lim supλ1(�p) < ∞.
3. lim infλp(�p) > 0.
4. lim supλ1c < 1.

Recall also that f , whose dependence on (�p,n,p) we choose to not highlight, is
defined as

f (z) = −µ(z − q) + log(z) − p

n

∫
log(1 − zλ)dHp(λ).

Before we explain why the proof of Proposition 3.1 in [6] can be adapted to our
problem under these assumptions, we need to show an intermediary result: the fact
that under the above assumptions, lim inf c > 0.

B.1.1. About lim inf c. The fact that λ1 � lim supλ1 < ∞ implies that
lim inf c > 0. As a matter of fact we have

1 ≤ n

p
=

∫ (
λc

1 − λc

)2

dHp(λ) ≤
(

λ1c

1 − λ1c

)2
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and hence
1

2λ1
≤ c.

This of course implies that

lim inf c(�p,n,p) > 0

since we assume lim supλ1 < ∞.

B.1.2. Key properties needed for the proof to go through. As explained in
Section 3.6.2, there are four crucial points that will allow us to carry out the proof.

The first one is the fact that the lengths of 
 and � are uniformly bounded when
the (nonspiked) covariance models are in G. It is clear that this is implied by the
condition lim infλpc > 0 (which is equivalent to lim infλp > 0, since c is bounded
below) and the fact that �(f (d)) and �(−f (e)) are bounded below under our
assumptions (which implies that R1 and R2 are bounded).

The second very important point is that one needs to be able to find δ > 0 such
that

∃δ > 0,∀s |s − c| < δ �⇒ |f (4)(s)|
4! δ <

σ 3

6
.

The importance of this property will become clear in the proof. Of course, this has
to be uniform with respect to our models. In our context, calling

lim supλ1c = α1 and δ = ηc,

it is easy to see that this is implied by

η

4c3

[
1

(1 − η)4 + p

n

(
α1

1 − (1 + η)α1

)4]
<

1

c3

or

η

[
1

(1 − η)4 + p

n

(
α1

1 − (1 + η)α1

)4]
< 4.

Since by assumption α1 < 1 and p/n ≤ 1 it is clear that we can find η > 0 such
that the inequality appearing in the previous display is verified.

Therefore, δ = lim infηc is bounded away from 0, since η and c both are. The
assumptions lim supλ1c < 1, p/n ≤ 1 and the fact that lim inf c > 0 imply that
both µ and σ [defined by (2) and (3)] are bounded, which insures that for the
same δ

∀s |s − c| < δ �⇒ lim sup sup
|f (4)(s)|

4! = � < ∞.

Finally, note that since α1 < 1, we can guarantee that the δ we pick is small
enough that the disc of center c and radius δ never encloses d(�p,n,p). [For
obvious symmetry reasons, it also means that δ can be chosen small enough that
e(�p,n,p) is not enclosed either.]
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B.1.3. On Theorem 3. In this situation, we consider the case where a covari-
ance model {�p,n,p} in G is spiked with k eigenvalues at 1/c(�p,n,p) (k = 0 is
a possibility).

Using notation similar to what we used earlier, we will need to analyze the
function

A�̃p+k,n,p+k(x) = −nσn,p

2πi

∫



e−nσn,px(z−q)e−nµn,p(z−q)zn
p∏

k=1

1

1 − zλk

ck

(c − z)k
dz

= −nσn,p

2πi

∫



e−nσn,px(z−q)e−nfn,p(z) ck

(c − z)k
dz,

where fn,p is the function that appears in the analysis of A�p,n,p . We used the
index (n,p) to remove any ambiguity.

Similarly, we will have to study

B�̃p+k,n,p+k(x)

= nσn,p

2πi

∫
�

enσn,px(z−q)enµn,p(z−q) 1

zn

p∏
k=1

(1 − λkz)(c − z)k/ck dz.

What we will show is that after proper scaling, these functions converge to limiting
functions H̃∞,k and J̃∞,k , defined thereafter (and appearing first in (120) and (122)
in [6]).

Theorem 3 is a generalization of Theorem 1.1(a) in [6] in the sense that it
shows that the same limiting distributions Fk’s appear if we spike the covariance
matrix at the “critical” eigenvalue. Note nevertheless that we do not recover ex-
actly the same critical eigenvalue. We could have if we looked at a model of
the type {�p+k+r , n,p + k + r}, with r eigenvalues such that for some χ > 0,
lk+1, . . . , lr ∈ [χ,1/c(�p,n,p) − χ ]. This would have added a little bit of techni-
cal difficulty to the proof we give later without the benefit of understanding since
we already saw that the model {�p+r , p + r, n} (corresponding to � and those r

“extra” eigenvalues) is in G.

B.1.4. Limiting functions and limiting distributions. It seemed to us that
slight (essentially “cosmetic”) modifications of the functions introduced in [6],
(120)–(122), were the most natural way to define them, especially when consider-
ing existing literature on Tracy–Widom limits. So we call

H∞,k(x) = − 1

2πi

∫

∞

exp(−ax + a3/3)
da

ak
.(15)

Here if we call ε the positive real introduced earlier in the text, 
∞ goes from
∞eiπ/3 to ∞e−iπ/3, goes through the real axis on the left of 0, stays in the re-
gion �(z + ε) > 0 and is symmetric about the real axis. It is oriented counter-
clockwise. In subsequent analysis, we will take 
∞ to be the union of the straight
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line teiπ/3, ∞ > t ≥ ε/2, the arc of circle of center 0 and radius ε/2, for an-
gles θ ∈ [π/3,5π/3], and the straight line te−iπ/3 for ε ≤ t < ∞. Note that when
k = 0, H∞,0(x) = Ai(x).

Similarly, let

J∞,k(x) = 1

2πi

∫
�∞

exp(ax − a3/3)ak da.(16)

Here, the contour �∞ is restricted to the region �(z+ε) < 0, goes from ∞e−i2π/3

to ∞ei2π/3 and is symmetric about the real axis. It is also oriented counterclock-
wise. In subsequent analysis, we will take it to be the union of the line te−i2π/3,
3ε < t < ∞, the arc of circle, 3εeiθ , θ ∈ [2π/3,4π/3] and the line tei2π/3,
3ε < t < ∞.

Note that �∞ is strictly to the left of 
∞.
Finally, using (206) in [6], it is clear that |e−εxH∞,k(x)| ≤ Ke−εx/2, for some

K > 0. Using (205) there, we get similarly that eεxJ∞,k(x) = O(e−εx/2) on
[s0,∞), for all s0 > ∞.

Hence, if we call H̃∞,k(x) = e−εxH∞,k(x) and J̃∞,k(x) = eεxJ∞,k(x), we see
that the operators on L2([0,∞)) with kernel K(x,y) = H̃∞,k(x + y + s) and
k(x, y) = J̃∞,k(x + y + s) are Hilbert–Schmidt, for any fixed s. Hence their prod-
uct is trace class.

The cumulative distribution functions Fk’s mentioned in Theorem 3 are con-
nected to H̃∞,k and J̃∞,k in the following manner. If we call, by a slight abuse
of notation, H̃∞,k the operator with kernel H̃∞,k(x + y + s) on L2[0,∞) and
similarly J̃∞,k the operator with kernel J̃∞,k(x + y + s) on the same space, then

Fk(s) = det(I − H̃∞,kJ̃∞,k).

Note that as explained in [6], this quantity is well defined and independent of ε. ε

is just here to ensure that H̃∞,k is Hilbert–Schmidt.

B.2. Convergence of An,p . We work in the general case where there is a root
of multiplicity k at c(�p,n,p). We nevertheless will not highlight this dependence
on k to simplify the notation.

Denoting by f the function defined in (11) and corresponding to {�p,n,p}, we
call κn,p = exp(−nf (c))/(−σn1/3c)k and, since we are in the case where σn,p =
σ/n−2/3,

A�̃p+k,n,p+k(s) = An,p(s) = −n1/3σ

2πi

∫



e−n1/3s(z−q)enf (z) ck dz

(c − z)k
.

Hence,

An,p � κn,pAn,p(s) = − 1

2πi

1

(σn1/3)k−1

∫



e−n1/3σs(z−q)en(f (z)−f (c)) dz

(z − c)k
.

The aim of this subsection is to show the following lemma.
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LEMMA B.1. Let f satisfy Lemma 1. Suppose

∃δ > 0 :∀s |s − c| < δ ⇒
∣∣∣∣f (4)(s)

4!
∣∣∣∣δ ≤ σ 3

6
.

Then

∀s0 ∈ R,∃C(s0),∃N0(s0) : s > s0, n > N0

⇒ |κn,pAn,p(s) − exp(−εs)H∞,k(s)| ≤ C(s0) exp(−εs/2)

n1/3 .

We now turn to proving Lemma B.1.

B.2.1. Notation. We call C the circle of center c and radius δ. We call D the
corresponding disc. We split 
 into 
 = G(1) ∪ G(2), where G(1) is the part of 


that is inside D (see Figure 4). Note that under our assumptions about δ and d , the
intersection of 
 and C is on 
1 ∪ 
1, that is, on a section of 
 where this contour
is parametrized as c + te±iπ/3, t ∈ R.

We call 

(1)∞ the image of G(1) under the map z �→ σn1/3(z − c). Of course,

everything has been done so that this is a subset of 
∞. Let us denote 

(2)∞ =


∞ \ 

(1)∞ .

Recall that we called An,p(x) = κn,pAn,p(x). Let An,p(x) = A(1)
n,p(x) +

A(2)
n,p(x), where the superscript indicates that A(i)

n,p(x) is the contribution of the
integral defining An,p(x) over G(i).

We similarly split H∞,k into H∞,k = H
(1)
∞,k +H

(2)
∞,k where now the superscripts

refer to the contribution of the integrals over 

(1)∞ and 


(2)∞ .

B.2.2. Preliminary computations. Recall that σ is uniformly bounded (away
from 0 and ∞) for models in the class G. Since we supposed that |f (4)(s)/4!|δ ≤
σ 3/6 and δ is bounded away from 0, it is clear that there exists 0 < � < ∞ such
that sup|s−c|≤δ |f (4)(s)/4!| ≤ �, uniformly for our models.

We now turn to bounding a quantity that is key in the analysis. We have, for any
complex number z, |�(z)| ≤ |z|. Therefore, since f has two 0 derivatives at c, we
have by Taylor’s theorem, for z’s such that |z − c| ≤ δ,∣∣∣∣�(

f (z) − f (c) − f (3)(c)

6
(z − c)3

)∣∣∣∣ ≤
∣∣∣∣f (z) − f (c) − f (3)(c)

6
(z − c)3

∣∣∣∣,
≤

(
sup

|s−c|≤δ

|f (4)(s)|
4!

)
|z − c|4,

≤
(

sup
|s−c|≤δ

|f (4)(s)|
4!

)
δ|z − c|3,

≤ σ 3

6
|z − c|3,



LARGEST EIGENVALUE OF WISHART MATRICES 707

because |z − c| ≤ δ. Recall that f (3)(c) = 2σ 3. Hence when z ∈ D ,

�(
f (z) − f (c)

) ≤ σ 3

6

(
2�(

(z − c)3) + |z − c|3)
.

In particular, when z ∈ D and z = c + te±iπ/3, �(f (z)) ≤ f (c) − t3σ 3/6.
Now recall that because �(f ) is decreasing on 
1 and since d /∈ D , f (d) ≤
f (c + δeiπ/3). If z is in G(2), either it is on 
1 or �(z) ≥ �(d). In the latter
case, �(f (d)) ≥ �(f (z)) because f satisfies Lemma 1. In the former, we can
use the fact that �(f (z)) is decreasing on 
1 to finally get that for z ∈ G(2),
�(f (z)) ≤ �(f (c + δeiπ/3)) ≤ f (c) − σ 3δ3/6.

We will now split the analysis into three parts corresponding to different regions
of 
.

B.2.3. Behavior of our functions on G(2) and 

(2)∞ . Let us first focus on

A(2)
n,p(x). By definition,

A(2)
n,p(x) = − 1

2πi

1

(σn1/3)k−1

∫
G(2)

e−n1/3σx(z−q)en(f (z)−f (c)) dz

(z − c)k
.

Hence,∣∣A(2)
n,p(x)

∣∣ ≤ 1

2π(σn1/3)k−1

∫
G(2)

e−n1/3σx�(z−q)en�(f (z)−f (c)) |dz|
|c − z|k .

Now on G(2), |c− z| ≥ δ and �(f (z)−f (c)) ≤ −σ 3δ3/6. So we only have to pay
close attention to n1/3σx�(z − q).

Suppose x ∈ [−s0,∞), with s0 > 0. If x > 0, then −σx�(z − q) ≤ −σxδ/2 ≤
σs0R1 − σxδ/2. If x < 0, then −σx�(z − q) ≤ σs0R1, because �(q) > 0 and
we saw that R1 can be chosen to be independent of our models (i.e., uniform with
respect to them). We of course also have −σx�(z − q) ≤ σs0R1 − σxδ/2 when
x < 0.

So, since the length of G(2), LG(2) , is uniformly bounded, because that of 
,
L
 , is, ∣∣A(2)

n,p(x)
∣∣ ≤ L


2π(σn1/3)k−1δk
e−nσ 3δ3/6en1/3σ(s0R1−(xδ/2)).

We deduce from this that for all x in [−s0,∞), s0 > 0,∣∣A(2)
n,p(x)

∣∣ ≤ C(−s0)e
−xε/2e−nσ 3δ3/12,

when n is large enough. Note also that C(s0) can be chosen to be a continuous
nonincreasing function of s0.

We now turn to H
(2)
∞,k . Note that if a ∈ 


(2)∞ , a = te±iπ/3, and t ≥ δσn1/3. Recall
that

H
(2)
∞,k(x) = − 1

2πi

∫



(2)∞

e−xa+a3/3

ak
da.
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Hence,

∣∣H(2)
∞,k(x)

∣∣ ≤ 1

2π

∫



(2)∞

e−x�(a)+�(a3)/3

|a|k |da| ≤ 1

π

∫ ∞
δσn1/3

e−xt/2−t3/3

tk
dt.

Now note that for s0 > 0, x ≥ −s0 and t > ε, e−xt/2 ≤ es0t/2−xε/2. We conclude
from the last display that, when n is large enough,∣∣ exp(−εx)H

(2)
∞,k(x)

∣∣ ≤ C(−s0)e
−σ 3δ3n/6e−xε/2

where again C(y) can be chosen to be a nonincreasing continuous function of y.
As an aside, let us go back to the point we raised in the main text about f not

being defined when we cross the real axis. What we just did is to take the modulus
of the quantity that appears inside the integral taken over G(2). When we worked
on �(f ), we essentially focused on these quantities, since �(log(z)) = log(|z|),
when the log is defined. So the analysis we did for �(f ) applies to the situation
when we first take the modulus of the quantity of interest, and hence we are rid of
the problem created by the fact that the log is not defined when we cross the real
axis at R1.

B.2.4. Behavior of the difference of our functions on G(1). We first note that
after changing variables through a = σn1/3(z − c), 


(1)∞ is transformed into G(1).
In other words, after doing this change of variables,

H
(1)
∞,k(x) = −σn1/3

2πi

∫
G(1)

e−σn1/3x(z−c)+nσ 3(z−c)3/3 dz

(n1/3σ(z − c))k
.

We also have exp(−εx) = exp(n1/3σ(q − c)x), and therefore,

exp(−εx)H
(1)
∞,k(x) = −σn1/3

2πi

∫
G(1)

e−σn1/3x(z−q)+nσ 3(z−c)3/3 dz

(n1/3σ(z − c))k
.

Hence we have∣∣A(1)
n,p(x) − exp(−εx)H

(1)
∞,k(x)

∣∣
≤ σn1/3

2π

∫
G(1)

e−σn1/3x�(z−q) |en(f (z)−f (c)) − enσ 3(z−c)3/3|
|n1/3σ(z − c)|k |dz|.

• The case z ∈ 
0.

Recall that if z ∈ 
0, z − c = eiθ ε/(2σn1/3), θ ∈ [π/3,5π/3].
We call

I
0(x) = σn1/3

2π

∫
G(1)∩
0

e−σn1/3x�(z−q) |en(f (z)−f (c)) − enσ 3(z−c)3/3|
|n1/3σ(z − c)|k |dz|.
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Note that for u, v ∈ C, |eu − ev| ≤ max(|eu|, |ev|)|u − v|. This is easily seen
if we write γ (t) = v + (u − v)t and note that eu − ev = ∫ 1

0 eγ (t)γ ′(t) dt . Then,
|eγ (t)| = exp(�(v) + t�(u − v)) and the result follows.

Hence, using the computations made in Section B.2.2,∣∣en(f (z)−f (c)) − enσ 3(z−c)3/3∣∣
≤ max

(∣∣en(f (z)−f (c))
∣∣, ∣∣enσ 3(z−c)3/3∣∣)n∣∣∣∣f (z) − f (c) − σ 3

3
(z − c)3

∣∣∣∣
≤ enσ 3(2�((z−c)3)+|z−c|3)/6n�|z − c|4.

We also have σn1/3(z − c) = eiθ ε/2, and therefore

enσ 3(2�((z−c)3)+|z−c|3)/6n�|z − c|4 ≤ eε3/16 �ε4

16σ 4n1/3 .

In other respects, �(z−q)σn1/3 = σn1/3(�(z−c)+�(c−q)) = ε(1+cos(θ)/2).

We also note that the length of 
0 is 4πε/(6σn1/3). Therefore, we conclude that∫
G(1)∩
0

e−σn1/3x�(z−q) |en(f (z)−f (c)) − enσ 3(z−c)3/3|
|n1/3σ(z − c)|k |dz|

≤ C(−s0) exp(−εx/2)
4πε

6σn1/3

(
ε

2

)(−k)

eε3/16 �ε4

16σ 4n1/3 ,

where C can be chosen to be a continuous nonincreasing function. In other words,
for x ∈ [−s0,∞), when n is large enough,

I
0(x) ≤ C(−s0) exp(−xε/2)

n1/3 .

• The case z ∈ 
1.

When z ∈ 
1 ∩ G(1), z = c + te±iπ/3, ε/(2σn1/3) ≤ t ≤ δ.
We call

I
1(x) = σn1/3

2π

∫
G(1)∩
1

e−σn1/3x�(z−q) |en(f (z)−f (c)) − enσ 3(z−c)3/3|
|n1/3σ(z − c)|k |dz|.

Going through the same steps as before, we find that∣∣en(f (z)−f (c)) − enσ 3(z−c)3/3∣∣ ≤ enσ 3(2�((z−c)3)+|z−c|3)/6n�|z − c|4

≤ e−nσ 3t3/6�nt4.

In other respects, σn1/3�(z − q) = tn1/3σ/2 + ε. Therefore, for x ∈ [−s0,∞),
with s0 > 0, we have −xσn1/3�(z − q) ≤ s0(tn

1/3σ/2 + ε) − εx. Hence,

I
1(x) ≤ σn1/3

2π
es0εe−εx

∫ δ

ε/(2σn1/3)
es0tn

1/3σ/2 e−nσ 3t3/6�nt4

(n1/3σ t)k
dt.
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After changing variables to v = σn1/3t , we get

I
1(x) ≤ �es0εe−εx

2πσ 4n1/3

∫ ∞
ε/2

es0v/2e−v3/6v4−k dv.

Hence, here again, we can find a continuous nondecreasing function C such that
for x ≥ −s0, s0 > 0 and for n large enough,

I
1(x) ≤ C(−s0)e
−xε/2

n1/3 .

B.2.5. Conclusion. The expression |κn,pAn,p − e−εxH∞,k(x)| was our initial
center of interest. We have the simple bound

|κn,pAn,p − e−εxH∞,k(x)|
≤ ∣∣A(1)

n,p(x) − exp(−εx)H
(1)
∞,k(x)

∣∣ + ∣∣A(2)
n,p(x)

∣∣ + exp(−εx)
∣∣H(2)

∞,k(x)
∣∣

≤ I
0(x) + I
1(x) + ∣∣A(2)
n,p(x)

∣∣ + ∣∣ exp(−εx)H
(2)
∞,k(x)

∣∣
≤ C(−s0)e

−εx/2

n1/3 ,

for C a nonincreasing continuous function. This bound is valid if x ∈ [−s0,∞),
s0 > 0 and when n is large enough.

So Lemma B.1 is shown.

B.3. Convergence of Bn,p . We again work in the general case where there is
a root of multiplicity k at c(�p,n,p). With notation similar to the ones above, we
have

B�̃p+k,n,p+k(s) = Bn,p(s) = n1/3σ

2πi

∫
�

en1/3σ(z−q)e−nf (z) (c − z)k

ck
dz.

Hence,

Bn,p(x) � Bn,p(s)/κn,p = (σn1/3)k+1

2πi

∫
�

en1/3σs(z−q)e−n(f (z)−f (c))(z − c)k dz.

The aim of this subsection is to show the following lemma.

LEMMA B.2. Let f satisfy Lemma 2. Suppose

∃δ > 0 :∀s |s − c| < δ ⇒
∣∣∣∣f (4)(s)

4!
∣∣∣∣δ ≤ σ 3

6
.

Then

∀s0 ∈ R,∃C(s0),∃N0(s0) : s > s0, n > N0

⇒ |Bn,p(s)/κn,p − eεsJ∞,k(s)| ≤ C(s0) exp(−εs/2)

n1/3 .

We now turn to proving Lemma B.2.
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B.3.1. Notation and preliminary computations. Recall that we denote by C
the circle of center c and radius δ. We call D the corresponding disc. We split �

into � = X(1) ∪ X(2), where X(1) is the part of � that is inside D . Note that under
our assumptions about δ and e, the intersection of � and C is on �1 ∪ �1, that is,
on a section of � where this contour is parametrized as c + te±2iπ/3, t ∈ R.

We call �
(1)∞ the image of X(1) under the map z �→ σn1/3(z − c). Of course,

everything has been done so that this is a subset of �∞. Let us denote �
(2)∞ =

�∞ \ �
(1)∞ .

Let us call Bn,p(x) = Bn,p(x)/κn,p and Bn,p(x) = B(1)
n,p(x) + B(2)

n,p(x), where

the subscript indicates that B(i)
n,p(x) is the contribution of the integral defining

Bn,p(x) over X(i).

We similarly split J∞,k into J∞,k = J
(1)
∞,k +J

(2)
∞,k where now the subscripts refer

to the contribution of the integrals over �
(1)∞ and �

(2)∞ .
Note that using the same arguments as before, we have, inside D ,

�(
f (c) − f (z)

) ≤ σ 3

6

(−2�(
(z − c)3) + |z − c|3)

.

So for z = c + te±i2π/3, �(f (c) − f (z)) ≤ −σ 3t3/6. Also, by arguments similar
to the ones we used before, we have

max
z∈�

(2)∞
�(−f (z)) ≤ �(

f (c + δe2iπ/3)
) ≤ −f (c) − σ 3

6
δ3.

B.3.2. Behavior of our functions on X(2) and �
(2)∞ . We first focus on B(2)

n,p(x).
Note that for z ∈ X(2), we have |z − c| ≤ √

3c2 + (R2 + c)2 and −(R2 + c) ≤
�(z − q) ≤ −ε/(2σn1/3). The second inequality comes from the fact that �0 is a
circle of radius 3ε/(σn1/3). Now we have

∣∣B(2)
n,p(x)

∣∣ ≤ (σn1/3)k+1

2π

∫
�

(2)∞
en1/3σx�(z−q)en�(f (c)−f (z))|z − c|k|dz|.

Because for x in [−s0,∞), x�(z−q) ≤ −xε/(2σn1/3)+s0(R2 +c), we conclude
using the results put forth in the previous subsection, that∣∣B(2)

n,p(x)
∣∣ ≤ C(−s0)e

−σ 3δ3n/12e−εx/2.

On the other hand, since �
(2)∞ is parametrized as z = te±i2π/3, with δσn1/3 ≤

t < ∞, we obtain along the lines of the proof done for H
(2)
∞,k that

J
(2)
∞,k(x) ≤ e−3εx/2e−σ 3δ3n/6C(s0).
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B.3.3. Behavior of the difference of our functions on X(1). Here again, by the
change of variables a = n1/3σ(z− c), �

(1)∞ is mapped to X(1). Hence we can write∣∣B(1)
n,p(x) − eεxJ

(1)
∞,k(x)

∣∣
≤ σn1/3

2π

∫
X(1)

eσn1/3x�(z−q)|σn1/3(z − q)|k

× ∣∣en(f (c)−f (z)) − e−nσ 3(z−c)3/3∣∣|dz|.
Splitting the problem into first �0 and then �1, and repeating the approach used
in the study of A(1) together with the new estimates of f (c) − f (z), we get∣∣B(1)

n,p(x) − eεxJ
(1)
∞,k(x)

∣∣ ≤ C(−s0)e
−εx/2/n1/3.

The combination of this bound and those for J
(2)
∞,k and B(2)

n,p(x) shows Lemma B.2.
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