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AN EXPLICIT FORMULA FOR THE SKOROKHOD MAP ON [0, a]
BY LUKASZ KRUK,1 JOHN LEHOCZKY,2 KAVITA RAMANAN3

AND STEVEN SHREVE4

Maria Curie-Sklodowska University and Carnegie Mellon University

The Skorokhod map is a convenient tool for constructing solutions to
stochastic differential equations with reflecting boundary conditions. In this
work, an explicit formula for the Skorokhod map �0,a on [0, a] for any
a > 0 is derived. Specifically, it is shown that on the space D[0,∞) of right-
continuous functions with left limits taking values in R, �0,a = �a ◦ �0,
where �a :D[0,∞) → D[0,∞) is defined by

�a(φ)(t) = φ(t) − sup
s∈[0,t]

[(
φ(s) − a

)+ ∧ inf
u∈[s,t]φ(u)

]

and �0 :D[0,∞) → D[0,∞) is the Skorokhod map on [0,∞), which is
given explicitly by

�0(ψ)(t) = ψ(t) + sup
s∈[0,t]

[−ψ(s)]+.

In addition, properties of �a are developed and comparison properties of
�0,a are established.

1. Introduction.

1.1. Background. In 1961 Skorokhod [13] considered the problem of con-
structing solutions to stochastic differential equations on the half-line R+ with
a reflecting boundary condition at 0. His construction implicitly used properties of
a deterministic mapping on the space C[0,∞) of continuous functions on [0,∞).
Anderson and Orey used this mapping more explicitly in their study of large devia-
tions properties of reflected diffusions on a half-space in R

N (see page 194 of [1]).
In particular, they exploited the fact that the mapping, which is now called the
Skorokhod map and is denoted here by �0, has the explicit representation

�0(ψ)(t) = ψ(t) + sup
s∈[0,t]

[−ψ(s)]+, ψ ∈ C[0,∞),(1.1)
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and is consequently Lipschitz continuous (with constant 2) with respect to the
uniform norm on C[0,∞). El Karoui and Chaleyat-Maurel [6] used �0 in a study
of local times.

Given any trajectory ψ in D[0,∞), the space of right-continuous functions
with left limits mapping [0,∞) into R, �0 can be extended using formula (1.1) to
map ψ to a “constrained version” φ = ψ + η of ψ that is restricted to take values
in [0,∞) by the minimal pushing term η(t)

.= sups∈[0,t][−ψ(s)]+. Minimality of
η follows from the fact that η increases only at times t when φ(t) = 0 (see De-
finition 1.1 below for a precise statement). A multidimensional extension of the
Skorokhod map was introduced by Tanaka [15]. Given any right-continuous func-
tion with left limits on [0,∞) taking values in R

N , Tanaka produced a correspond-
ing function taking values in a given convex domain by adding a constraining term
on the boundary that acts in the direction normal to the boundary. Tanaka then used
the solution to this Skorokhod problem to construct solutions of stochastic differ-
ential equations with normal reflection. In general, the Skorokhod map is a conve-
nient tool for constructing processes that are restricted to take values in a certain
domain by a constraining force that can push only along specified directions at the
boundary. The study of many properties of the constrained or “reflected” process
then reduces to the study of corresponding properties of the associated Skorokhod
map.

In this paper, we focus on the particular case when the domain is a bounded
interval in R. For simplicity, for most of the paper we choose this interval to be
[0, a] for some a > 0, and denote the associated Skorokhod map by �0,a . For
functions in D[0,∞), Chaleyat-Maurel, El Karoui and Marchal [4] posed and
solved a version of this Skorokhod problem, producing functions taking values
in [0, a]. However, in [4] the treatment of jumps across the boundary is different
from that of Tanaka and this paper because in [4] the constrained function really
“reflects” such jumps off the boundary, taking values in the interior of [0, a], rather
than being “constrained” to stay at the boundary. In contrast to [4], in this paper the
Skorokhod map �0,a maps a trajectory in D[0,∞) to a trajectory φ̄ in D[0,∞)

that is constrained to take values in [0, a] by a minimal pushing force η̄ that is
allowed to increase only when φ̄ is at the lower boundary 0 and decrease only
when φ̄ is at the upper boundary a (see Definition 1.2 for a precise description
of the Skorokhod map on [0, a]). Existence and uniqueness of solutions to this
Skorokhod problem for continuous functions as well as step functions in D[0,∞)

follow directly from Lemmas 2.1, 2.3 and 2.6 of Tanaka [15]. In fact, it is well
known that solutions to this Skorokhod problem exist for all functions in D[0,∞)

(see, e.g., [2]).
In this paper (see Theorem 1.4 and Remark 1.5 below) we provide an explicit

formula for the Skorokhod map on a bounded interval in R (sometimes referred to
as the two-sided reflection map). We first use this formula to provide direct proofs
of Lipschitz continuity of this Skorokhod map and existence and uniqueness of so-
lutions to the associated Skorokhod problem. In particular, our proofs do not rely
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on the existence and continuity results in [2] or [15], and also do not use approx-
imation arguments. We then use this formula to establish comparison properties
of �0,a (Theorem 1.7). This formula involves a new map, �a , defined by (1.11).
Properties of �a are developed in Proposition 1.3 and Corollary 1.6. In [5] a simi-
lar formula was obtained for the case when the “unconstrained” trajectory ψ is of
bounded variation. However, as elaborated in the next paragraph, in many appli-
cations of interest it is often important to understand the action of the two-sided
reflection map on paths of unbounded variation.

The explicit formula for the Skorokhod map on [0,∞) has found application in
a variety of contexts, including queueing theory and finance (see, e.g., [7, 8, 16]).
More recently, it was used in [3] and [14] to derive various interesting distribu-
tional properties of quantities related to Brownian motion reflected on Brownian
motion, a process that arises in the study of true self-repelling motions. In a similar
fashion, the explicit formula for the Skorokhod map on a bounded interval in R is
likely to have several potential applications. Already in [10] this formula plays a
crucial role in the derivation of a diffusion approximation for the GI/G/1 queue
with earliest-deadline-first service and reneging by customers who become late.
In addition, in [9] the comparison properties of Theorem 1.7 are used to provide
bounds on transaction costs in an optimal consumption/investment model. In the
applications in both [9] and [10], the two-sided reflection map acts on paths of
Brownian motion, which are almost surely of unbounded variation.

The outline of the paper is as follows. In Section 1.2 we introduce notation and
recall the precise definitions and basic properties of �0 and �0,a . In Section 1.3,
we state the main results. Properties of �a are established in Section 2. The proofs
of Theorems 1.4 and 1.7 are presented in Sections 3 and 4 respectively. A technical
result is relegated to the Appendix.

1.2. Basic definitions. Let D+[0,∞), C[0,∞), I[0,∞) and BV[0,∞) de-
note the subspace of nonnegative, continuous, nondecreasing and bounded varia-
tion functions, respectively, in D[0,∞). For f ∈ BV[0,∞), |f |t denotes the total
variation of f on [0, t]. For f ∈ D[0, T ], ‖f ‖T denotes the supremum norm of
f on [0, T ]. Let R+ denote the set of nonnegative real numbers. Given a, b ∈ R,
denote a ∧ b

.= min{a, b}, a ∨ b
.= max{a, b}, and a+ .= a ∨ 0. We denote by IA

the indicator function of a set A.

DEFINITION 1.1 (Skorokhod map on [0,∞)). Given ψ ∈ D[0,∞) there ex-
ists a unique pair of functions (φ, η) ∈ D[0,∞)×I[0,∞) that satisfy the follow-
ing two properties:

1. For every t ∈ [0,∞), φ(t) = ψ(t) + η(t) ∈ R+;
2. η(0−) = 0, η(0) ≥ 0, and ∫ ∞

0
I{φ(s)>0} dη(s) = 0.(1.2)
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The map �0 :D[0,∞) → D+[0,∞) that takes ψ to the corresponding trajectory
φ is referred to as the one-sided reflection map or Skorokhod map on [0,∞). The
pair (φ, η) is said to solve the Skorokhod problem on [0,∞) for ψ .

Condition (1.2), often referred to as the complementarity condition, stipulates
that the constraining term η can increase only at times t when φ(t) = 0. As men-
tioned earlier, �0, the Skorokhod map on [0,∞), has an explicit representation
given by (1.1). The condition η(0−) = 0 is a convention by which we mean that
η(0) > 0 implies that η has a jump at zero and, according to (1.2), we must have
φ(0) = 0, in which case η(0) = −ψ(0). This can happen only if ψ(0) < 0. In the
event that ψ(0) ≥ 0, we have η(0) = 0. In either case,

η(0) = [−ψ(0)]+.(1.3)

In direct analogy with Definition 1.1 and the explicit representation (1.1) for �0,
it is easy to see that �a :D[0,∞) → D[0,∞) defined by

�a(ψ)(t)
.= ψ(t) − sup

s∈[0,t]
[ψ(s) − a]+(1.4)

takes ψ ∈ D[0,∞) to the unique corresponding trajectory φ ∈ D[0,∞) that satis-
fies φ(t) ∈ (−∞, a] for t ∈ [0,∞) and is such that η = ψ −φ is nondecreasing and
increases only at times t when φ(t) = a [i.e., such that

∫ ∞
0 I{φ(s)<a} dη(s) = 0]. In-

deed, it is straightforward to verify that given a > 0 and ψ ∈ D[0,∞),

�a(ψ) = a − �0(a − ψ).(1.5)

The subject of this paper is the Skorokhod map that constrains a process in
D[0,∞) to remain within [0, a], which is defined as follows.

DEFINITION 1.2 (Skorokhod map �0,a on [0, a]). Let a > 0 be given.
Given ψ ∈ D[0,∞) there exists a unique pair of functions (φ̄, η̄) ∈ D[0,∞) ×
BV[0,∞) that satisfy the following two properties:

1. For every t ∈ [0,∞), φ̄(t) = ψ(t) + η̄(t) ∈ [0, a];
2. η̄(0−) = 0 and η̄ has the decomposition η̄ = η̄� − η̄u as the difference of func-

tions η̄�, η̄u ∈ I[0,∞) satisfying∫ ∞
0

I{φ̄(s)>0} dη̄�(s) = 0 and
∫ ∞

0
I{φ̄(s)<a} dη̄u(s) = 0.(1.6)

We refer to the mapping �0,a :D[0,∞) → D[0,∞) that takes ψ to the corre-
sponding φ̄ as the two-sided reflection map or the Skorokhod map on [0, a]. The
pair (φ̄, η̄) is said to solve the Skorokhod problem on [0, a] for ψ .

Similarly to (1.3), the condition η̄(0−) = 0 coupled with the complementarity
conditions (1.6) implies that

η̄(0) = [−ψ(0)]+ − [ψ(0) − a]+.(1.7)



1744 KRUK, LEHOCZKY, RAMANAN AND SHREVE

In other words, φ̄(0) = π(ψ(0)), where π : R → [0, a] is the projection map

π(x) =



a, if x ≥ a,
x, if 0 ≤ x ≤ a,
0, if x ≤ 0.

(1.8)

Furthermore, from the explicit expressions for �0 and �a given in (1.1) and (1.4),
respectively, it is clear (see, e.g., Section 2.3 of [7]) that η̄� and η̄u satisfy the
equations

η̄�(t) = sup
s∈[0,t]

[η̄u(s)−ψ(s)]+ and η̄u(t) = sup
s∈[0,t]

[ψ(s)+ η̄�(s)−a]+.(1.9)

Now consider ψ ∈ D[0,∞) and let η̄
.= �0,a(ψ) − ψ , which has the decompo-

sition η̄ = η̄� − η̄u into the difference of processes in I[0,∞) as in Definition 1.2.
Denote η̃

.= �0,a(a − ψ) − a + ψ , which has the corresponding decomposition
η̃ = η̃� − η̃u. In a similar fashion to (1.5), it follows immediately from the defini-
tion that �0,a(ψ) = a − �0,a(a − ψ) and, moreover, that

η̃� = η̄u and η̃u = η̄�.(1.10)

1.3. Main results. Our main result provides an explicit representation for the
Skorokhod map �0,a on [0, a] in terms of the mapping �a :D[0,∞) → D[0,∞)

defined by

�a(φ)(t)
.= φ(t) − sup

s∈[0,t]

[(
φ(s) − a

)+ ∧ inf
u∈[s,t]φ(u)

]
.(1.11)

For t ∈ [0,∞) and s ∈ [0, t], we will use the notation

Rt(φ)(s)
.= (

φ(s) − a
)+ ∧ inf

u∈[s,t]φ(u),(1.12)

in terms of which (1.11) may be written as �a(φ)(t)
.= φ(t) − sups∈[0,t] Rt(φ)(s).

We list properties of �a and then state our main result as Theorem 1.4.

PROPOSITION 1.3. �a maps D[0,∞) into D[0,∞), C[0,∞) into C[0,∞),
BV[0,∞) into BV[0,∞), and absolutely continuous functions to absolutely con-
tinuous functions.

The proof of Proposition 1.3 is the subject of Section 2.

THEOREM 1.4. Given a > 0, let �0 and �0,a be the Skorokhod maps on
[0,∞) and [0, a] respectively. Then

�0,a = �a ◦ �0.(1.13)
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REMARK 1.5. Consideration of the formula in [5] leads to a formula for �0,a

different from (1.13) that can be derived from (1.13), namely (see [11])

�0,a(ψ)(t) = ψ(t) −
[(

ψ(0) − a
)+ ∧ inf

u∈[0,t]ψ(u)

]

∨ sup
s∈[0,t]

[(
ψ(s) − a

) ∧ inf
u∈[s,t]ψ(u)

]
.

It is straightforward to generalize our results to the case where [0, a] is replaced
by [z, a] for −∞ < z < a < ∞. In this case, the corresponding one-sided Sko-
rokhod map �z is defined as in Definition 1.1, but with R+ replaced by [z,∞)

in property 1 and φ(s) > 0 replaced by φ(s) > z in equation (1.2), and the cor-
responding two-sided Skorokhod map �z,a is defined as in Definition 1.2, but
with [0, a] replaced by [z, a] in property 1 and φ(s) > 0 replaced by φ(s) > z

in equation (1.6). A straightforward extension of Theorem 1.4 then shows that
�z,a(ψ) = �z,a ◦ �z(ψ), where �z and �z,a mapping D[0,∞) into itself are de-
fined by �z(ψ)(t)

.= ψ(t) + sups∈[0,t][z − ψ(s)]+ and

�z,a(φ)(t)
.= φ(t) − sup

s∈[0,t]

[(
φ(s) − a

)+ ∧ inf
u∈[s,t]

(
φ(u) − z

)]
.(1.14)

Theorem 1.4 allows us to give concise proofs of the Lipschitz continuity of
the map �0,a in the uniform, J1 and M1 metrics. For this, we let d∞ denote the
uniform metric on [0, T ], d0 the standard J1 metric on D[0, T ] (see, e.g., defini-
tion (3.2) on page 79 of [16]), and d1 the standard M1 metric on D[0, T ] (see, e.g.,
definition (3.4) on page 82 of [16]), while d̄∞, d̄0 and d̄1 denote the corresponding
metrics on D[0,∞) (see, e.g., Section 12.9 of [16]).

COROLLARY 1.6. There exists a constant L such that for all T > 0 and
ψ1,ψ2 ∈ D[0, T ],

di

(
�a(ψ1),�a(ψ2)

) ≤ 2di(ψ1,ψ2) for i = 0,1,∞;(1.15)

di

(
�0,a(ψ1),�0,a(ψ2)

) ≤ Ldi(ψ1,ψ2) for i = 0,1,∞.(1.16)

Moreover, the six inequalities above continue to hold for ψ1,ψ2 ∈ D[0,∞) if d∞,
d0 and d1 are replaced by d̄∞, d̄0 and d̄1, respectively.

The proofs of Theorem 1.4 and Corollary 1.6 are given in Section 3. Continuity
of �0 and �0,a in the J1 and M1 metrics is due to [2]. For proofs of the inequal-
ities for �0,a in Corollary 1.6 that are different from the proofs in this paper, see
Section 14.8 of [16].

Lastly, in Theorem 1.7, we state comparison properties of the Skorokhod map
on [0, a]. The proof of this result is presented in Section 4.
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THEOREM 1.7. Given a > 0, c0, c
′
0 ∈ R and ψ,ψ ′ ∈ D[0,∞) with ψ(0) =

ψ ′(0) = 0, suppose (φ̄, η̄) and (φ̄′, η̄′) solve the Skorokhod problem on [0, a] for
c0 + ψ and c′

0 + ψ ′, respectively. Moreover, suppose η̄ = η̄� − η̄u is the decompo-
sition of η̄ into the difference of processes in I[0,∞) satisfying (1.6) and η̄′

� − η̄′
u

is the corresponding decomposition of η̄′. If there exists ν ∈ I[0,∞) such that
ψ = ψ ′ + ν, then the following four inequalities hold:

1. η̄� − [c′
0 − c0]+ ≤ η̄′

� ≤ η̄� + ν + [c0 − c′
0]+;

2. η̄′
u − [c′

0 − c0]+ ≤ η̄u ≤ η̄′
u + ν + [c0 − c′

0]+;
3. η̄ − [c′

0 − c0]+ ≤ η̄′ ≤ η̄ + ν + [c0 − c′
0]+;

4. [−[c0 − c′
0]+ − ν] ∨ [−a] ≤ φ̄′ − φ̄ ≤ [c0 − c′

0]+ ∧ a.

2. Proof of Proposition 1.3. Let φ ∈ D[0,∞) be given. For each θ1 ≥ 0 and
ε > 0, there exists θ2 > θ1 such that

sup
s,u∈[θ1,θ2)

|φ(s) − φ(u)| ≤ ε.(2.1)

Similarly, for each θ2 > 0 and ε > 0, there exists θ1 ∈ [0, θ2) such that (2.1) holds.
It is straightforward to use this observation and the following lemma to verify that
�a(φ) is right-continuous with left-hand limits, that is, that �a maps D[0,∞)

into D[0,∞).

LEMMA 2.1. Let φ ∈ D[0,∞) be given. For any 0 ≤ θ1 < θ2,

sup
t1,t2∈[θ1,θ2)

|�a(φ)(t1) − �a(φ)(t2)| ≤ 2 sup
s,u∈[θ1,θ2)

|φ(s) − φ(u)|.

PROOF. From the definition of Rt in (1.12), we see that for any t ≥ 0,(
φ(t) − a

)+ ∧ φ(t) ≤ sup
s∈[0,t]

Rt(φ)(s) ≤ φ(t).(2.2)

Let ε
.= sups,u∈[θ1,θ2)

|φ(s) − φ(u)| and let t1, t2 be in [θ1, θ2) with t1 ≤ t2. Then
Rt2(φ)(s) ≤ Rt1(φ)(s) for s ∈ [0, t1] and

sup
s∈(t1,t2]

Rt2(φ)(s) ≤ sup
s∈(t1,t2]

(
φ(s) − a

)+ ≤ (
φ(t1) − a

)+ + ε.

Therefore

sup
s∈[0,t2]

Rt2(φ)(s) = sup
s∈[0,t1]

Rt2(φ)(s) ∨ sup
s∈(t1,t2]

Rt2(φ)(s)

≤ sup
s∈[0,t1]

Rt1(φ)(s) ∨ [(
φ(t1) − a

)+ + ε
]

≤ sup
s∈[0,t1]

Rt1(φ)(s) + ε,
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where the last inequality uses the first inequality in (2.2). In turn, this yields

�a(φ)(t2) = φ(t2) − sup
s∈[0,t2]

Rt2(φ)(s)

≥ φ(t1) − ε − sup
s∈[0,t1]

Rt1(φ)(s) − ε(2.3)

= �a(φ)(t1) − 2ε.

The second inequality in (2.2) and the definition of ε imply that

sup
s∈[0,t1]

Rt1(φ)(s) − ε ≤ sup
s∈[0,t1]

Rt1(φ)(s) ∧ (
φ(t1) − ε

)

≤ sup
s∈[0,t1]

[
Rt1(φ)(s) ∧ inf

s∈(t1,t2]
φ(u)

]

= sup
s∈[0,t1]

Rt2(φ)(s)

≤ sup
s∈[0,t2]

Rt2(φ)(s).

From this we conclude that

�a(φ)(t2) = φ(t2) − sup
s∈[0,t2]

Rt2(φ)(s)

≤ φ(t1) + ε − sup
s∈[0,t1]

Rt1(φ)(s) + ε

= �a(φ)(t1) + 2ε.

Together with (2.3) and the definition of ε, this proves the lemma. �

REMARK 2.2. The proof of Lemma 2.1 also shows that the oscillation of
�a(φ) is bounded by the oscillation of φ on the closed interval [θ1, θ2], that is,

sup
t1,t2∈[θ1,θ2]

|�a(φ)(t1) − �a(φ)(t2)| ≤ 2 sup
s,u∈[θ1,θ2]

|φ(s) − φ(u)|.

Therefore �a maps C[0,∞) to C[0,∞).

COROLLARY 2.3. �a maps absolutely continuous functions to absolutely
continuous functions.

PROOF. Suppose φ ∈ D[0,∞) is absolutely continuous. We fix an arbi-
trary T > 0. By the definition of absolute continuity, there exists a function
vφ : (0,∞) → (0,∞) such that for every ε > 0 and every set of nonoverlapping
intervals (sj , tj ), j = 1, . . . , J , contained in [0, T ],

J∑
j=1

(tj − sj ) < vφ(ε) �⇒
J∑

j=1

|φ(tj ) − φ(sj )| < ε.(2.4)
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Define the function v�a(φ) : (0,∞) → (0,∞) by v�a(φ)(ε)
.= vφ(ε/2) for ε > 0.

We claim that (2.4) holds with φ replaced everywhere by �a(φ), thus showing that
�a(φ) is absolutely continuous. For the proof of the claim, fix ε > 0 and consider
any set of nonoverlapping intervals (sj , tj ), j = 1, . . . , J , such that

∑J
j=1(tj −

sj ) < v�a(φ)(ε). For j = 1, . . . , J , choose sj ≤ sj ≤ tj ≤ tj such that |φ(tj ) −
φ(sj )| = maxu,r∈[sj ,tj ] |φ(r) − φ(u)|. Remark 2.2 implies that �a(φ) ∈ C[0,∞)

and

J∑
j=1

|�a(φ)(tj ) − �a(φ)(sj )| ≤
J∑

j=1

max
u,r∈[sj ,tj ] |�a(φ)(r) − �a(φ)(u)|

≤ 2
J∑

j=1

max
u,r∈[sj ,tj ] |φ(r) − φ(u)|

= 2
J∑

j=1

|φ(tj ) − φ(sj )|

≤ ε,

where the last inequality is a consequence of (2.4) and the fact that
∑J

j=1(tj −
sj ) < v�(φ)(ε) = vφ(ε/2). �

To complete the proof of Proposition 1.3, it remains only to show that �a maps
BV[0,∞) to BV[0,∞). We do not use this fact in the present paper, and hence
can use any results in the remainder of the paper to establish it. Recall the definition
of Rt(φ) given in (1.12). For φ ∈ D[0,∞), it will be convenient to introduce the
function Cφ ∈ D[0,∞) defined for t ∈ [0,∞) by

Cφ(t)
.= sup

s∈[0,t]
[Rt(φ)(s)] = sup

s∈[0,t]

[(
φ(s) − a

)+ ∧ inf
u∈[s,t]φ(u)

]
.(2.5)

Note that then �a(φ) = φ−Cφ for every φ ∈ D[0,∞). According to Theorem 3.4
below, the function Cφ given by (2.5) has bounded variation. If φ also has bounded
variation, then �a(φ) = φ − Cφ does as well.

3. Proof of Theorem 1.4. An intuitive way of constructing φ̄
.= �a(φ) from

φ
.= �0(ψ) is to first create two increasing sequences of times {σk}∞k=0 and {τk}∞k=1

so that on each interval of the form [σk−1, τk), there is only pushing of φ from
above and on each interval of the form [τk, σk), there is only pushing of φ from
below. In this section we execute that construction and thereby obtain the decom-
position in (3.24) below of the bounded variation process Cφ defined by (2.5) into
the difference of two nondecreasing processes. For this construction, we assume
that φ is in D+[0,∞). We have in mind that φ = �0(ψ) for some ψ ∈ D[0,∞).
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For φ ∈ D+[0,∞) and a > 0, we set τ0
.= 0,

σ0
.= min{t ≥ 0|φ(t) − a ≥ 0},(3.1)

and for k ≥ 1, we set

τk
.= min

{
t ≥ σk−1

∣∣∣φ(t) ≤ sup
s∈[σk−1,t]

φ(s) − a

}
,(3.2)

σk
.= min

{
t ≥ τk

∣∣∣φ(t) − a ≥ inf
u∈[τk,t]

φ(u)

}
.(3.3)

The minima in (3.1)–(3.3) over t are obtained (or are +∞) because of the right-
continuity of φ. In particular, for k ≥ 1,

sup
s∈[σk−1,u]

φ(s) − a < φ(u) ∀u ∈ [σk−1, τk),(3.4)

sup
s∈[σk−1,τk]

φ(s) − a ≥ φ(τk),(3.5)

φ(s) − a < inf
u∈[τk,s]

φ(u) ∀s ∈ [τk, σk),(3.6)

φ(σk) − a ≥ inf
u∈[τk,σk]

φ(u).(3.7)

Furthermore,

φ(σ0) − a ≥ 0.(3.8)

We have 0 = τ0 ≤ σ0 < τ1 < σ1 < τ2 < σ2 < · · ·.
PROPOSITION 3.1. As k → ∞, we have τk ↑ ∞ and σk ↑ ∞.

PROOF. Assume the proposition is false. Then there is a number θ < ∞ such
that τk ↑ θ and σk ↑ θ . Relation (3.5) implies the existence of ρk ∈ [σk−1, τk] such
that φ(ρk) ≥ φ(τk) + a

2 . Since ρk ↑ θ , φ does not have a left-hand limit at θ . This
contradicts the membership of φ in D+[0,∞). �

PROPOSITION 3.2. For k ≥ 1, Cφ(t) = sups∈[σk−1,t](φ(s) − a)+ for all t ∈
[σk−1, τk).

PROOF. Let t ∈ (σk−1, τk) and ρ ∈ (σk−1, t] be given. Let {ρn}∞n=1 be a se-
quence in (σk−1, ρ) satisfying ρn ↑ ρ. By definition, Cφ(t) ≥ (φ(ρn) − a)+ ∧
infu∈[ρn,t] φ(u), and letting n → ∞, we obtain

Cφ(t) ≥ (
φ(ρ−) − a

)+ ∧ φ(ρ−) ∧ inf
u∈[ρ,t]φ(u), σk−1 < ρ ≤ t < τk.(3.9)

Now let t ∈ [σk−1, τk) be given. Then there exists ρt such that either

ρt ∈ [σk−1, t] and sup
s∈[σk−1,t]

φ(s) = φ(ρt ),(3.10)
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or else

ρt ∈ (σk−1, t] and sup
s∈[σk−1,t]

φ(s) = φ(ρt−).(3.11)

If (3.11) is the case, which can happen only if t > σk−1, then for u ∈ [ρt , t],
sups∈[σk−1,u] φ(s) = φ(ρt−) and so (3.4) implies

φ(ρt−) − a = (
φ(ρt−) − a

) ∧ sup
s∈[σk−1,u]

(
φ(s) − a

) ≤ φ(ρt−) ∧ φ(u),

which yields φ(ρt−)−a ≤ φ(ρt−)∧ infu∈[ρt ,t] φ(u). This inequality together with
(3.9) and (3.11) shows that

Cφ(t) ≥ (
φ(ρt−) − a

)+ = sup
s∈[σk−1,t]

(
φ(s) − a

)+
.(3.12)

If, on the other hand, (3.10) is the case, then (3.4) implies

φ(ρt ) − a = sup
s∈[σk−1,u]

φ(s) − a < φ(u) ∀u ∈ [ρt , t],

and hence φ(ρt ) − a ≤ infu∈[ρt ,t] φ(u). This shows that

Cφ(t) ≥ (
φ(ρt ) − a

)+ ∧ inf
u∈[ρt ,t]

φ(u) = (
φ(ρt ) − a

)+ = sup
s∈[σk−1,t]

(
φ(s) − a

)+
.

We again have the lower bound (3.12).
To obtain the reverse of inequality (3.12), we consider separately the cases k = 1

and k ≥ 2. If k = 1, then (φ(s) − a)+ = 0 for s ∈ [0, σ0) and for t ∈ (σ0, τ1),

Cφ(t)
.= sup

s∈[0,t]

[(
φ(s) − a

)+ ∧ inf
u∈[s,t]φ(u)

]
≤ sup

s∈[σ0,t]
(
φ(s) − a

)+
,

as desired. If k ≥ 2, we may write Cφ(t) = S1 ∨ S2 ∨ S3, where

S1 = sup
s∈[0,τk−1]

[(
φ(s) − a

)+ ∧ inf
u∈[s,t]φ(u)

]
,(3.13)

S2 = sup
s∈(τk−1,σk−1)

[(
φ(s) − a

)+ ∧ inf
u∈[s,t]φ(u)

]
,(3.14)

S3 = sup
s∈[σk−1,t]

[(
φ(s) − a

)+ ∧ inf
u∈[s,t]φ(u)

]
.(3.15)

We show that each of the terms Si is dominated by sups∈[σk−1,t](φ(s)−a)+. For S3,
this is obvious. For S1, we use (3.7) and the fact that t ≥ σk−1 to write

S1 ≤ sup
s∈[0,τk−1]

inf
u∈[s,t]φ(u) ≤ inf

u∈[τk−1,σk−1]
φ(u)

(3.16)
≤ φ(σk−1) − a ≤ sup

s∈[σk−1,t]
(
φ(s) − a

)+
.
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Finally, for s ∈ (τk−1, σk−1), (3.6) implies φ(s)−a < infu∈[τk−1,s] φ(u), and hence

S2 ≤ sup
s∈(τk−1,σk−1)

[
inf

u∈[τk−1,s]
φ(u) ∧ inf

u∈[s,t]φ(u)

]

= inf
u∈[τk−1,t]

φ(u)

≤ inf
u∈[τk−1,σk−1]

φ(u).

We conclude as in (3.16). �

PROPOSITION 3.3. We have Cφ(t) = 0 for t ∈ [0, σ0). For k ≥ 1, Cφ(t) =
infu∈[τk,t] φ(u) for all t ∈ [τk, σk).

PROOF. Since φ ≥ 0, it follows immediately from (2.5) that Cφ(t) = 0 for
t ∈ [0, σ0). Now let k ≥ 1 and t ∈ [τk, σk) be given. By definition,

Cφ(t) = sup
s∈[0,τk]

[(
φ(s) − a

)+ ∧ inf
u∈[s,t]φ(u)

]
(3.17)

∨ sup
s∈[τk,t]

[(
φ(s) − a

)+ ∧ inf
u∈[s,t]φ(u)

]
.

It is obvious that

sup
s∈[0,τk]

[(
φ(s) − a

)+ ∧ inf
u∈[s,t]φ(u)

]
≤ sup

s∈[0,τk]
inf

u∈[s,t]φ(u) = inf
u∈[τk,t]

φ(u).

In addition, (3.6) implies

sup
s∈[τk,t]

[(
φ(s) − a

)+ ∧ inf
u∈[s,t]φ(u)

]

≤ sup
s∈[τk,t]

[
inf

u∈[τk,s]
φ(u) ∧ inf

u∈[s,t]φ(u)

]

= inf
u∈[τk,t]

φ(u).

We have obtained the upper bound

Cφ(t) ≤ inf
u∈[τk,t]

φ(u).(3.18)

For the reverse inequality, we observe that there exists ρ such that either

ρ ∈ [σk−1, τk] and sup
s∈[σk−1,τk]

φ(s) = φ(ρ),(3.19)

or else

ρ ∈ (σk−1, τk] and sup
s∈[σk−1,τk]

φ(s) = φ(ρ−).(3.20)
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In either case, we have from (3.4) that for u ∈ [ρ, τk),

φ(u) > sup
s∈[σk−1,u]

φ(s) − a = sup
s∈[σk−1,τk]

φ(s) − a,

and hence, by (3.5),

inf
u∈[ρ,τk)

φ(u) ≥ sup
s∈[σk−1,τk]

φ(s) − a ≥ φ(τk).(3.21)

In the case (3.19), we write

Cφ(t) ≥ (
φ(ρ) − a

)+ ∧ inf
u∈[ρ,τk)

φ(u) ∧ inf
u∈[τk,t]

φ(u)

and use (3.19), (3.5), and (3.21) to conclude that

Cφ(t) ≥ inf
u∈[τk,t]

φ(u).(3.22)

In the case (3.20), we choose a sequence {ρn}∞n=1 in (σk−1, ρ) with ρn ↑ ρ and
write

Cφ(t) ≥ (
φ(ρn) − a

)+ ∧ inf
u∈[ρn,τk)

φ(u) ∧ inf
u∈[τk,t]

φ(u).(3.23)

Letting n → ∞, we obtain

Cφ(t) ≥ (
φ(ρ−) − a

)+ ∧ φ(ρ−) ∧ inf
u∈[ρ,τk)

φ(u) ∧ inf
u∈[τk,t]

φ(u)

≥ (
φ(ρ−) − a

)+ ∧ inf
u∈[ρ,τk)

φ(u) ∧ inf
u∈[τk,t]

φ(u).

We now use (3.20), (3.5), and (3.21) to conclude (3.22). �

In summary, Propositions 3.2 and 3.3 imply that Cφ(t) given by (2.5) has the
form

Cφ(t) =




0, if 0 ≤ t < σ0,
sup

s∈[σk−1,t]
(
φ(s) − a

)+
, if σk−1 ≤ t < τk, k ≥ 1,

inf
u∈[τk,t]

φ(u), if τk ≤ t < σk, k ≥ 1.
(3.24)

The inequalities (3.5) and (3.7) imply sups∈[σk−1,τk] φ(s) = sups∈[σk−1,τk)
φ(s) and

infu∈[τk,σk] φ(u) = infu∈[τk,σk) φ(u). Moreover, when combined with (3.24) and the
fact that φ ≥ 0, these inequalities show that for k ≥ 1,

Cφ(τk−) = sup
s∈[σk−1,τk)

(
φ(s) − a

)+ ≥ φ(τk) = Cφ(τk),(3.25)

Cφ(σk−) = inf
u∈[τk,σk)

φ(u) ≤ φ(σk) − a = Cφ(σk).(3.26)

We define Cφ(0−) = 0 and we have

Cφ(σ0−) = 0 ≤ Cφ(σ0) = (
φ(σ0) − a

)+ = φ(σ0) − a,(3.27)
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where the last equality holds due to (3.8). In particular, Cφ is increasing on each
interval [σk−1, τk), with a possible upward jump at σk−1, and Cφ is decreasing on
each interval [τk, σk), with a possible downward jump at τk .

THEOREM 3.4. Let φ ∈ D+[0,∞) be given, define Cφ by (2.5), and set φ̄ =
φ − Cφ . Then Cφ ∈ BV[0,∞), φ̄ ∈ D[0,∞), and φ̄ takes values only in [0, a].
Furthermore,

|Cφ|(t) =
∫ t

0
I{φ̄(s)=0 or φ̄(s)=a} d|Cφ|(s),(3.28)

Cφ(t) = −
∫ t

0
I{φ̄(s)=0} d|Cφ|(s) +

∫ t

0
I{φ̄(s)=a} d|Cφ|(s).(3.29)

PROOF. From (3.24) we see that Cφ ∈ BV[0,∞). From its definition (2.5),
we see that Cφ further satisfies (φ − a)+ ≤ Cφ ≤ φ, and hence

0 ≤ φ̄ ≤ a ∧ φ.(3.30)

Moreover, the rightmost equalities in the relations (3.25)–(3.27) show that

φ̄(τk) = 0 and φ̄(σk−1) = a, k ≥ 1.(3.31)

Since Cφ = 0 on [0, σ0), we only need to consider t ≥ σ0 in what follows.
Define the set

A
.= {t ≥ σ0 : φ̄(t) ∈ (0, a)}.(3.32)

We show below that
∫
A d|Cφ| = 0, so that (3.28) holds. We further show that for

t ≥ σ0,

φ̄(t) = 0 �⇒ t ∈ [τk, σk) for some k,(3.33)

whereas

φ̄(t) = a �⇒ t ∈ [σk−1, τk) for some k.(3.34)

We can then conclude that Cφ does not increase on {t ≥ 0|φ̄(t) = 0} (the positive
variation of Cφ assigns zero measure to this set) and Cφ does not decrease on the
set {t ≥ 0|φ̄(t) = a} (the negative variation of Cφ assigns zero measure to this set).
This together with (3.28) will imply (3.29).

We first establish (3.33) and (3.34). Suppose t ∈ [σk−1, τk) for some k. Then
(3.4) and either (3.7) or (3.8) imply

φ(t) > sup
s∈[σk−1,t]

φ(s) − a ≥ φ(σk−1) − a ≥ 0.

From this and (3.24) we have

Cφ(t) = sup
s∈[σk−1,t]

(
φ(s) − a

)+ = sup
s∈[σk−1,t]

φ(s) − a < φ(t).
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Therefore, φ̄(t) = φ(t) − Cφ(t) > 0. This is the contrapositive of (3.33). Sim-
ilarly, suppose t ∈ [τk, σk) for some k. Then (3.24) and (3.6) imply Cφ(t) =
infu∈[τk,t] φ(u) > φ(t) − a, so that φ̄(t) = φ(t) − Cφ(t) < a. This is the contra-
positive of (3.34).

We next show that
∫
A d|Cφ| = 0. For t ∈ A, define

α(t)
.= inf{s ∈ [σ0, t]|(s, t] ⊂ A}, β(t)

.= sup{s ∈ [t,∞)|[t, s) ∈ A}.
Because of the right-continuity of φ̄, we have β(t) /∈ A, whereas α(t) might
or might not be in A. We also have α(t) ≤ t < β(t), and so the open interval
(α(t), β(t)) is nonempty. It follows that A is the countable union of such disjoint
open intervals together with a countable set of left endpoints, that is,

A =
(⋃

i∈I

(αi, βi)

)
∪ {αj |j ∈ J },

where I is a countable index set and J ⊂ I .
As a first step in showing

∫
A d|Cφ| = 0, we show that if j ∈ J , so αj ∈ A, then

Cφ is continuous at αj . From (3.31) we see that αj is in the interior of an interval
of the form (τk, σk) or of the form (σk−1, τk). By the definition of αj , there is a
sequence of points {γn}∞n=1 in (0, αj ) ∩ Ac such that γn ↑ αj .

We consider first the case that φ̄(γn) = a, or equivalently, Cφ(γn) = φ(γn) − a,
for infinitely many values of n. From (3.34), we see that γn ∈ [σk−1, τk) for some k.
By choosing n sufficiently large, we may assume that k does not depend on n and
αj ∈ (σk−1, τk). We have

a = φ(γn) − Cφ(γn) = φ(γn) − sup
s∈[σk−1,γn]

(
φ(s) − a

)+
≤ φ(γn) − (

φ(γn) − a
)+ = φ(γn) ∧ a

≤ a.

Therefore, the above inequalities must be equalities and we conclude that

0 ≤ φ(γn) − a = Cφ(γn) = sup
s∈[σk−1,γn]

(
φ(s) − a

)+
.

Letting n → ∞, we see that

0 ≤ φ(αj−) − a = Cφ(αj−) = sup
s∈[σk−1,αj )

(
φ(s) − a

)+
.

On the other hand, Cφ(αj ) = sups∈[σk−1,αj ](φ(s)−a)+. This shows that Cφ(αj ) ≥
Cφ(αj−). Furthermore, Cφ(αj ) > Cφ(αj−) implies Cφ(αj ) = φ(αj ) − a. But in
this case, φ̄(αj ) = a. This contradicts the membership of αj in A and establishes
the continuity of Cφ at αj .

If φ̄(γn) = a does not hold for infinitely many values of n, then φ̄(γn) = 0,
or equivalently, Cφ(γn) = φ(γn), must hold for infinitely many values of n.
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From (3.33), we see that γn ∈ [τk, σk) for some k. By choosing n sufficiently large,
we may assume that k does not depend on n and αj ∈ (τk, σk). We have

0 = φ(γn) − Cφ(γn) = φ(γn) − inf
u∈[τk,γn]φ(u) ≥ 0.

Therefore, the above inequality must be an equality and we conclude that

φ(γn) = Cφ(γn) = inf
u∈[τk,γn]φ(u).

Letting n → ∞, we see that

φ(αj−) = Cφ(αj−) = inf
u∈[τk,αj )

φ(u).

On the other hand, Cφ(αj ) = infu∈[τk,αj ] φ(u). This shows that Cφ(αj ) ≤
Cφ(αj−). Furthermore, Cφ(αj ) < Cφ(αj−) implies Cφ(αj ) = φ(αj ). But in this
case, φ̄(αj ) = 0. This contradicts the membership of αj in A, which establishes
the continuity of Cφ at αj .

To establish
∫
A d|Cφ| = 0, it remains only to show that

∫
(αi ,βi)

d|Cφ| = 0 for

every i ∈ I . Because φ̄ is strictly between 0 and a on (αi, βi), (3.31) shows that
(αi, βi) must be entirely contained in an interval of the form (τk, σk) or of the form
(σk−1, τk). We consider the latter case; the former case is analogous. It suffices to
show that Cφ is constant on [ai, bi] whenever αi < ai < bi < βi , where

Cφ(t) = sup
s∈[σk−1,t]

(
φ(s) − a

)+ ∀t ∈ (αi, βi).

Define

ρ = inf{t ∈ [ai, bi]|Cφ(t) > Cφ(ai)}.
Assume ρ < ∞. Because Cφ is right-continuous, we must have Cφ(t) = Cφ(ai)

for all t ∈ [ai, ρ) and either Cφ(ρ) = φ(ρ) − a > C(ai) or else Cφ(ρ) =
φ(ρ) − a = Cφ(ai). In either case, φ̄(ρ) = a, contradicting the definition of A.
Therefore, ρ = ∞ and Cφ is constant on [ai, bi]. �

PROOF OF THEOREM 1.4. Let ψ ∈ D[0,∞) be given and define φ = �0(ψ).
Then η

.= φ − ψ ∈ I[0,∞) satisfies [see (1.2)]

η(t) =
∫ t

0
I{φ(s)=0} dη(s),

∫ t

0
I{φ(s)>0} dη(s) = 0 ∀t ≥ 0.(3.35)

With Cφ defined by (2.5), set

φ̄ = �a(φ) = φ − Cφ = ψ + η − Cφ.
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Theorem 3.4 implies η − Cφ ∈ BV[0,∞), φ̄ ∈ D[0,∞), and φ̄ takes values only
in [0, a]. It remains to show that for all t ≥ 0,

|η − Cφ|(t) =
∫ t

0
I{φ̄(s)=0 or φ̄(s)=a} d|η − Cφ|(s),(3.36)

η(t) − Cφ(t) =
∫ t

0
I{φ̄(s)=0} d|η − Cφ|(s) −

∫ t

0
I{φ̄(s)=a} d|η − Cφ|(s).(3.37)

Because {s|φ(s) = 0} ⊂ {s|φ̄(s) = 0} [see (3.30)] and Cφ is decreasing on this
set [see (3.29)], (3.35) implies |η − Cφ| = η + |Cφ|. Equations (3.36) and (3.37)
follow from (3.35), (3.28) and (3.29). �

We now present the proof of Corollary 1.6.

PROOF OF COROLLARY 1.6. We first prove (1.15) for i = ∞. For φ1, φ2 ∈
D[0, T ], we have

‖�a(φ1) − �a(φ2)‖T ≤ ‖φ1 − φ2‖T + ‖Cφ1 − Cφ2‖T .(3.38)

For t ∈ [0, T ], because (a1 ∧ b1) − (a2 ∧ b2) ≤ (a1 − a2) ∨ (b1 − b2), we have

Cφ1(t) − Cφ2(t)

≤ sup
s∈[0,t]

[Rt(φ1)(s) − Rt(φ2)(s)]

≤ sup
s∈[0,t]

[∣∣(φ1(s) − a
)+ − (

φ2(s) − a
)+∣∣ ∨ ∣∣∣∣ inf

u∈[s,t]φ1(u) − inf
u∈[s,t]φ2(u)

∣∣∣∣
]

≤ sup
s∈[0,t]

[
|φ1(s) − φ2(s)| ∨ sup

u∈[s,t]
|φ1(u) − φ2(u)|

]

≤ ‖φ1 − φ2‖T .

Taking the supremum over t ∈ [0, T ] and interchanging φ1 and φ2, we get

‖Cφ1 − Cφ2‖T ≤ ‖φ1 − φ2‖T .(3.39)

From (3.38) and (3.39), we obtain (1.15) for i = ∞.
Now let M be the class of strictly increasing continuous functions λ of [0, T ]

onto itself. Then for any λ ∈ M, the scaling property

�a(φ ◦ λ) = �a(φ) ◦ λ(3.40)

is easily deduced directly from the definition of �a . Moreover, by the definition
of d0, given any φ1, φ2 ∈ D[0, T ], φ1 �= φ2, for every δ > 0 there exists λ ∈ M
(possibly depending on δ) such that

sup
t∈[0,T ]

|λ(t) − t | ≤ d0(φ1, φ2) + δ[1 ∧ d0(φ1, φ2)]
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and

sup
t∈[0,T ]

|φ1(t) − φ2(λ(t))| ≤ d0(φ1, φ2) + δ[1 ∧ d0(φ1, φ2)].
The scaling property (3.40) along with (1.15) for i = ∞ implies that

sup
t∈[0,T ]

|�a(φ1)(t) − �a(φ2)(λ(t))| ≤ 2
(
d0(φ1, φ2) + δ[1 ∧ d0(φ1, φ2)]).

Since this is true for all δ > 0, by the definition of d0 this implies that

d0
(
�a(φ1),�a(φ2)

) ≤ 2d0(φ1, φ2),

which is the inequality (1.15) for i = 0. Clearly, (1.15) holds also in the case i = 0,
φ1 = φ2 ∈ D[0, T ].

We now prove (1.15) for i = 1. For a given φ ∈ D[0, T ], let φ(0−)
.= φ(0) and

let

Gφ = {(t, z) ∈ [0, T ] × R : z ∈ [φ(t−) ∧ φ(t), φ(t−) ∨ φ(t)]}(3.41)

be the graph of φ ordered by the following relation: (t1, z1) ≤ (t2, z2) if either
t1 < t2 or t1 = t2 and |φ(t1−)−z1| ≤ |φ(t1−)−z2|. Let �(φ) be the set of all para-
metric representations of Gφ , that is, continuous nondecreasing (in the order rela-
tion just defined) functions (r, g) mapping [0,1] onto Gφ . For φ1, φ2 ∈ D[0, T ],

d1(φ1, φ2)
.= inf{‖r1 − r2‖T ∨ ‖g1 − g2‖T : (ri, gi) ∈ �(φi), i = 1,2}.

We show in Lemma A.1 in the Appendix that if (r, g) ∈ �(φ), then (r,�a(g)) ∈
�(�a(φ)). Therefore,

d1
(
�a(φ1),�a(φ2)

)
≤ inf{‖r1 − r2‖T ∨ ‖�a(g1) − �a(g2)‖T : (ri, gi) ∈ �(φi), i = 1,2}
≤ 2d1(φ1, φ2),

where the last inequality follows from (1.15) for i = ∞. We have proved (1.15).
It is well known (see, e.g., Lemma 13.5.1 and Theorem 13.5.1 of [16]) that for

any T < ∞ and ψ1,ψ2 ∈ D[0, T ]
di

(
�0(ψ1),�0(ψ2)

) ≤ 2di(ψ1,ψ2)(3.42)

for i = 0,1,∞. The representation �0,a = �a ◦ �0 stated in (1.13), along with
(1.15) and (3.42) then implies that (1.16) holds with L = 4.

By the argument in Theorem 12.9.4 in [16], the validity of (1.15) and (1.16) on
D[0, T ] for every T > 0 implies the same bound on D[0,∞). �

REMARKS. Example 13.5.1 in [16] shows that the bound in (3.42) with
i = ∞ is tight. Similarly, the bound (1.15) for i = ∞ is tight. To see this, let
us consider φ1, φ2 ∈ D[0,1] defined by φ1 = 2I[0,1], φ2 = 3I[0,1/2) + I[1/2,1].
With a = 2 we have �a(φ1) = φ1, �a(φ2) = 2I[0,1/2), ‖φ1 − φ2‖1 = 1 and
‖�a(φ1) − �a(φ2)‖1 = 2. However, Theorem 14.8.1 in [16] shows that (1.16) for
i = ∞ (and thus also for i = 0,1) actually holds with L = 2. Clearly, the bound
(1.16) with L = 2 is tight, because the bound (3.42) is tight.
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4. Comparison properties of the double reflection map. In this section we
present the proof of Theorem 1.7. We first establish some preliminary results that
may be of independent interest. In the proofs we make repeated use of the elemen-
tary inequalities [b1 + b2]+ ≤ b+

1 + b+
2 and [b1 − b2]+ ≥ b+

1 − b+
2 for b1, b2 ∈ R,

without explicit reference.

LEMMA 4.1. Given c0, c
′
0 ∈ R and ψ,ψ ′ ∈ D[0,∞) with ψ(0) = ψ ′(0) = 0,

suppose (φ, η) and (φ′, η′) solve the Skorokhod problem on [0,∞) for c0 +ψ and
c′

0 + ψ ′, respectively. If there exists ν ∈ I[0,∞) such that ψ ′ ≤ ψ ≤ ψ ′ + ν, then
the following two properties are satisfied:

1. η − [c′
0 − c0]+ ≤ η′ ≤ η + ν + [c0 − c′

0]+;
2. φ′ − ν − [c′

0 − c0]+ ≤ φ ≤ φ′ + ν + [c0 − c′
0]+.

Moreover, if ψ = ψ ′ + ν then

φ′ − [c′
0 − c0]+ ≤ φ ≤ φ′ + ν + [c0 − c′

0]+.(4.1)

PROOF. Using the explicit representations for η and η′ that follow from (1.1),
along with the fact that ν ∈ I[0,∞) and ψ ≤ ψ ′ + ν, we see that for every t ∈
[0,∞),

η(t) = sup
s∈[0,t]

[−c0 − ψ(s)]+

≥ sup
s∈[0,t]

[−c′
0 − ψ ′(s) − ν(s) − c0 + c′

0]+

≥ sup
s∈[0,t]

[−c′
0 − ψ ′(s) − ν(t) − c0 + c′

0]+

≥ sup
s∈[0,t]

[−c′
0 − ψ ′(s)]+ − [ν(t) + c0 − c′

0]+

≥ η′(t) − ν(t) − [c0 − c′
0]+.

Likewise, (1.1) and the fact that ψ ≥ ψ ′ shows that for every t ∈ [0,∞),

η′(t) = sup
s∈[0,t]

[−c′
0 − ψ ′(s)]+

≥ sup
s∈[0,t]

[−c0 − ψ(s) − (c′
0 − c0)]+

(4.2)
≥ sup

s∈[0,t]
[−c0 − ψ(s)]+ − [c′

0 − c0]+

= η(t) − [c′
0 − c0]+.

When combined, the last two relations establish property 1. Moreover, the first
relation and the fact that η′ = −c′

0 − ψ ′ + φ′ also implies that

φ = ψ + c0 + η ≥ ψ + c0 − c′
0 − ψ ′ + φ′ − ν − [c0 − c′

0]+
= φ′ + ψ − ψ ′ − ν − [c′

0 − c0]+,
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which is no less than φ′ − ν − [c′
0 − c0]+ if ψ ′ ≤ ψ ≤ ψ ′ + ν and is no less than

φ′ − [c′
0 − c0]+ if ψ = ψ ′ + ν. On the other hand, the second relation, (4.2), shows

that

φ = c0 + ψ + η ≤ c′
0 + ψ ′ + η′ + c0 − c′

0 + [c′
0 − c0]+ + ψ − ψ ′

= φ′ + [c0 − c′
0]+ + ψ − ψ ′.

Together, the last two displays establish property 2 and (4.1). �

The representation (1.13) for �0,a as the composition of �a and �0, allows us
to easily deduce the following corollary from Lemma 4.1.

COROLLARY 4.2. Given a > 0, c0, c
′
0 ∈ R and ψ,ψ ′ ∈ D[0,∞) with ψ(0) =

ψ ′(0) = 0, suppose (φ̄, η̄) and (φ̄′, η̄′) solve the Skorokhod problem on [0, a] for
c0 + ψ and c′

0 + ψ ′, respectively. If ψ = ψ ′ + ν, where ν ∈ I[0,∞), then the
following two properties hold:

1. η̄ − 2[c′
0 − c0]+ ≤ η̄′ ≤ η̄ + 2ν + 2[c0 − c′

0]+;
2. [−|c′

0 − c0| − ν] ∨ [−a] ≤ φ̄′ − φ̄ ≤ [|c′
0 − c0| + ν] ∧ a.

PROOF. Let C = Cφ be the function defined in (2.5) and let C′ = Cφ′
. From

the first inequality in (4.1) of Lemma 4.1, it follows that

C′(t) = sup
s∈[0,t]

[(
φ′(s) − a

)+ ∧ inf
u∈[s,t]φ

′(u)

]

≤ sup
s∈[0,t]

[(
φ(s) − a + [c′

0 − c0]+)+ ∧ inf
u∈[s,t]

(
φ(u) + [c′

0 − c0]+)]

≤ sup
s∈[0,t]

[(
φ(s) − a

)+ ∧ inf
u∈[s,t]φ(u)

]
+ [c′

0 − c0]+ = C(t) + [c′
0 − c0]+.

Similarly, the second inequality in (4.1) along with the fact that ν is nondecreasing
implies that C′(t) is equal to

sup
s∈[0,t]

[(
φ′(s) − a

)+ ∧ inf
u∈[s,t]φ

′(u)

]

≥ sup
s∈[0,t]

[(
φ(s) − a − ν(t) − [c0 − c′

0]+
)+

∧ inf
u∈[s,t]

(
φ(u) − ν(t) − [c0 − c′

0]+
)]

≥ sup
s∈[0,t]

[(
φ(s) − a

)+ ∧ inf
u∈[s,t]φ(u)

]
− ν(t) − [c0 − c′

0]+

= C(t) − ν(t) − [c0 − c′
0]+.
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Let η = �0(c0 + ψ) − c0 − ψ and, likewise, let η′ = �0(c
′
0 + ψ ′) − c′

0 − ψ ′, and
note that due to the representation for �0,a in (1.13), the definition (1.11) of �a

and the definitions of C,C′, we can write η̄ = η − C and η̄′ = η′ − C′. The last
two displays, together with property 1 of Lemma 4.1, then show that

η̄ = η − C ≤ η′ + [c′
0 − c0]+ − C′ + [c′

0 − c0]+ = η̄′ + 2[c′
0 − c0]+

and

η̄ = η − C ≥ η′ − ν − [c0 − c′
0]+ − C′ − ν − [c0 − c′

0]+
= η̄′ − 2ν − 2[c0 − c′

0]+,

which establishes the first property of the corollary. The second property follows
from the first property, the fact that φ̄′, φ̄ ∈ [0, a] and the relation

φ̄′ − φ̄ = c′
0 + ψ ′ + η̄′ − c0 − ψ − η̄ = c′

0 − c0 − ν + η̄′ − η̄.(4.3) �

We introduce the family of shift operators Tr :D[0,∞) → D[0,∞), r ∈
[0,∞), defined by

[Trf ](t) = f (r + t) − f (r) for t ∈ [0,∞).

We shall also make use of the well known (and easily verified) fact that if φ =
�(ψ), where � is either the one-sided reflection map at zero or a, or the two-sided
reflection map on [0, a], then for every α > 0,

φ(α + s) = �
(
φ(α) + Tαψ

)
(s).(4.4)

REMARK 4.3. The first and second inequalities in Corollary 4.2 can be
strengthened to the inequalities

−[c′
0 − c0]+ ≤ η̄′ − η̄ ≤ [c0 − c′

0]+ + ν(4.5)

and [−[c0 − c′
0]+ − ν

] ∨ [−a] ≤ φ̄′ − φ̄ ≤ [c′
0 − c0]+ ∧ a,(4.6)

which are both easily seen to be tight. Since φ̄(t), φ̄′(t) ∈ [0, a] for all t ∈ [0,∞),
in order to establish (4.6), it suffices to show that

−[c0 − c′
0]+ − ν(t) ≤ φ̄′(t) − φ̄(t) ≤ [c′

0 − c0]+ for t ∈ [0,∞).(4.7)

In order to establish this relation, we use the projection operator π of (1.8), which
is clearly monotone and Lipschitz with Lipschitz constant 1.

First suppose c0 ≥ c′
0. Then, due to the monotonicity property of the projection

operator π and the Lipschitz continuity of �0,a , Lemma 4.2 of [12] shows that the
upper bound φ̄′ − φ̄ ≤ 0 = [c′

0 − c0]+ in (4.7) holds, while the lower bound in (4.7)
follows from the first inequality in part 2 of Corollary 4.2.



EXPLICIT FORMULA FOR THE SKOROKHOD MAP 1761

Now suppose c0 < c′
0. Define

τ
.= inf{t ≥ 0 : φ̄(t) ≥ φ̄′(t)}.

The fact that φ̄(0) = π(c0) ≤ π(c′
0) = φ̄′(0) and φ̄(t), φ̄′(t) ∈ [0, a] imply

φ̄(t) < a and φ̄′(t) > 0 for t ∈ [0, τ ). (It could happen that π(c0) = π(c′
0), and

then τ = 0 and all assertions concerning t ∈ [0, τ ) are vacuously true.) Defini-
tions 1.1, 1.2 and relation (1.4) then show that for t ∈ [0, τ ), φ̄(t) = �0(c0 +ψ)(t)

and φ̄′(t) = �a(c
′
0 + ψ ′)(t). Therefore for t ∈ [0, τ ), c0 + ψ(t) ≤ φ̄(t) < φ̄′(t) ≤

c′
0 + ψ ′(t), which in turn implies that

−ν(t) ≤ 0 ≤ φ̄′(t) − φ̄(t) ≤ c′
0 − c0 + ψ ′(t) − ψ(t) ≤ c′

0 − c0

for t ∈ [0, τ ).

This shows that (4.7) is satisfied for t ∈ [0, τ ). In particular, this implies that
φ̄′(τ−) ≥ φ̄(τ−) − ν(τ−). By the monotonicity property of the projection op-
erator π , we have

φ̄′(τ ) = π
(
φ̄′(τ−) + ψ ′(τ ) − ψ ′(τ−)

)
≥ π

(
φ̄(τ−) − ν(τ−) + ψ(τ) − ψ(τ−) − (

ν(τ ) − ν(τ−)
))

(4.8)
≥ π

(
φ̄(τ−) + ψ(τ) − ψ(τ−)

) − ν(τ )

= φ̄(τ ) − ν(τ ),

where the explicit definition of π is used to obtain the second inequality. Now
for s ∈ [0,∞), φ̄(τ + s) = �0,a(φ̄(τ ) + Tτψ)(s) and, likewise, φ̄′(τ + s) =
�0,a(φ̄

′(τ ) + Tτψ
′)(s). Since φ̄(τ ) ≥ φ̄′(τ ) due to the right-continuity of φ̄, φ̄′,

we can apply (4.7) [with c0, c
′
0,ψ , ψ ′ and ν replaced by φ̄(τ ), φ̄′(τ ), Tτψ , Tτψ

′
and Tτν], and use (4.8) to obtain for s ∈ [0,∞),

−ν(τ + s) ≤ −[φ̄(τ ) − φ̄′(τ )]+ − Tτ ν(s)

≤ φ̄′(τ + s) − φ̄(τ + s)

≤ [φ̄′(τ ) − φ̄(τ )]+
= 0,

which shows that (4.7) also holds for t ∈ [τ,∞).
We have established (4.7), and hence (4.6). The inequality (4.5) can be deduced

from (4.6) using the basic relation

η̄′ − η̄ = φ̄′ − φ̄ − (c′
0 − c0) − (ψ ′ − ψ) = φ̄′ − φ̄ − (c′

0 − c0) + ν.

Although Corollary 4.2 provides bounds on the difference between the net con-
straining terms η̄ and η̄′, it is often desirable to compare the individual constraining
terms at the upper and lower barriers. Such bounds are provided in Theorem 1.7.
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To establish these bounds, we recall that if (φ̄, η̄) solves the Skorokhod problem
on [0, a] for ψ ∈ D[0,∞), and if η̄ admits the decomposition η̄ = η̄� − η̄u that
satisfies (1.9), then for any t ∈ [0,∞),

η̄�(t) − η̄�(t−) = sup
s∈[0,t]

[η̄u(s) − ψ(s)]+ − sup
s∈[0,t)

[η̄u(s) − ψ(s)]+

= [η̄u(t) − ψ(t) − η̄�(t−)]+(4.9)

= [−φ̄(t−) − ψ(t) + ψ(t−) + η̄u(t) − η̄u(t−)]+.

PROOF OF THEOREM 1.7. Define

α
.= inf{t > 0 : η̄�(t) + ν(t) + [c0 − c′

0]+ < η̄′
�(t) or η̄u(t) + [c′

0 − c0]+ < η̄′
u(t)},

with α
.= ∞ if the infimum is over the empty set. Then the definition of α dictates

that the following two relations are satisfied for s ∈ [0, α):

η̄′
�(s) ≤ η̄�(s) + ν(s) + [c0 − c′

0]+;(4.10)

η̄′
u(s) ≤ η̄u(s) + [c′

0 − c0]+.(4.11)

Suppose α < ∞. Then we claim (and prove below) that it is also true that

η̄′
�(α) ≤ η̄�(α) + ν(α) + [c0 − c′

0]+(4.12)

and

η̄′
u(α) ≤ η̄u(α) + [c′

0 − c0]+.(4.13)

To see why the claim is true, first note that since ν, η̄� and η̄u are nondecreasing,
it is clear from (4.10) that if η̄′

� is continuous at α, then (4.12) holds. Likewise, if η̄′
u

is continuous at α, then (4.11) implies that (4.13) is satisfied. Now suppose η̄′
�(α)−

η̄′
�(α−) > 0. Then the complementarity conditions in (1.6) show that φ̄′(α) = 0

and η̄′
u(α−) = η̄′

u(α). Hence, (4.9) applied to η̄′
� implies that

η̄′
�(α) = η̄′

�(α−) − φ̄′(α−) − ψ ′(α) + ψ ′(α−).

Making the further substitutions η̄′
�(α−) − φ̄′(α−) + ψ ′(α−) = −c′

0 + η̄′
u(α−),

ψ = ψ ′ + ν and then η̄u(α−) = c0 + ψ(α−) + η̄�(α−) − φ̄(α−) into the last
display, we obtain

η̄′
�(α) = −c′

0 + η̄′
u(α−) − ψ ′(α)

= −c′
0 + η̄′

u(α−) − ψ(α) + ν(α)

= −c′
0 + c0 + ψ(α−) + η̄�(α−) − φ̄(α−) − ψ(α) + ν(α)

+ η̄′
u(α−) − η̄u(α−).
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Taking limits as s ↑ α in (4.11) yields the inequality η̄′
u(α−) − η̄u(α−) ≤

[c′
0 − c0]+. When substituted into the last display, this shows that

η̄′
�(α) ≤ −c′

0 + c0 + ψ(α−) + η̄�(α−)

− φ̄(α−) − ψ(α) + ν(α) + [c′
0 − c0]+(4.14)

= ψ(α−) + η̄�(α−) − φ̄(α−) − ψ(α) + ν(α) + [c0 − c′
0]+.

Since η̄u(α) − η̄u(α−) ≥ 0, (4.9) implies that

η̄�(α) = η̄�(α−) + [−φ̄(α−) − ψ(α) + ψ(α−)

+ η̄u(α) − η̄u(α−)]+
≥ η̄�(α−) − φ̄(α−) − ψ(α) + ψ(α−).

When substituted into (4.14) this yields (4.12). The proof of the remaining fact
that (4.13) continues to hold even if η̄′

u(α) − η̄′
u(α−) > 0 is exactly analogous and

is thus omitted.
Having established (4.12) and (4.13), we note from the definition of α that there

must exist a sequence {sn} with sn ↓ 0 as n → ∞ such that one of the following
two cases holds:

(i) η̄′
�(α + sn) > η̄�(α + sn) + ν(α + sn) + [c0 − c′

0]+ ∀n ∈ N;(4.15)

(ii) η̄′
u(α + sn) > η̄u(α + sn) + [c′

0 − c0]+ ∀n ∈ N.(4.16)

First, suppose that case (i) holds. Then due to (4.15), the fact that sn ↓ 0 and the
right continuity of η̄′

�, η̄� and ν, it follows that η̄′
�(α) ≥ η̄�(α)+ ν(α)+[c0 − c′

0]+.
When combined with (4.12), this yields the equality

η̄′
�(α) = η̄�(α) + ν(α) + [c0 − c′

0]+.(4.17)

We now show that in this case φ̄(α) = φ̄′(α) = 0. First, combining (4.17), (4.15)
and the fact that η̄� + ν is nondecreasing, we have η̄′

�(α + sn) > η̄′
�(α) for every

n ∈ N. Since sn ↓ 0, the first complementarity condition in (1.6) ensures that
φ̄′(α) = 0. Along with (4.13), (4.17) and the relations φ̄′(α) = 0 and ψ = ψ ′ + ν,
this implies that

φ̄(α) = φ̄(α) − φ̄′(α)

= c0 − c′
0 + ν(α) + η̄�(α) − η̄′

�(α) + η̄′
u(α) − η̄u(α)

≤ c0 − c′
0 − [c0 − c′

0]+ + [c′
0 − c0]+

= 0.

Since φ̄ ∈ [0, a], this implies φ̄(α) = 0.
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The right continuity of φ̄ and φ̄′ then ensures the existence of ε > 0 such that
for every s ∈ [0, ε], φ̄(α + s) < a and φ̄′(α + s) < a. Hence, due to the comple-
mentarity conditions (1.6), property (4.4) and the definitions of �0 and �0,a , for
s ∈ [0, ε] we can write

φ̄(α + s) = �0
(
φ̄(α) + Tαψ

)
(s) = �0(Tαψ)(s);

φ̄′(α + s) = �0
(
φ̄′(α) + Tαψ ′)(s) = �0(Tαψ ′)(s);

Tαη̄�(s) = Tαη̄(s) = �0(Tαψ)(s) − Tαψ(s);
Tαη̄′

�(s) = Tαη̄′(s) = �0(Tαψ ′)(s) − Tαψ ′(s).

Since Tαψ = Tαψ ′ + Tαν and φ̄(α) = φ̄′(α) = 0, property 1 of Lemma 4.1 (re-
placing c0 and c′

0 by 0 and ψ ′ and ψ by Tαψ ′ and Tαψ , resp.) shows that for every
s ∈ [0, ε],

η̄′
�(α + s) − η̄′

�(α) = Tαη̄′
�(s) ≤ Tαη̄�(s) + Tαν(s)

= η̄�(α + s) − η̄�(α) + ν(α + s) − ν(α).

When combined with (4.17) this yields the inequality

η̄′
�(α + s) ≤ η̄�(α + s) + ν(α + s) + [c0 − c′

0]+ for s ∈ [0, ε],
which contradicts (4.15) and so case (i) does not hold.

Thus we have shown that there does not exist any sequence {sn} with sn ↓ 0 that
satisfies (4.15). Together with (4.10) and (4.12), this means that there must exist
δ > 0 such that

η̄′
�(s) ≤ η̄�(s) + ν(s) + [c0 − c′

0]+ for s ∈ [0, α + δ].
Combining (1.9) with the above inequality we then obtain for t ∈ [0, α + δ],

η̄′
u(t) = sup

s∈[0,t]
[c′

0 + ψ ′(s) + η̄′
�(s) − a]+

= sup
s∈[0,t]

[c′
0 + ψ(s) − ν(s) + η̄′

�(s) − a]+

≤ sup
s∈[0,t]

[
c0 + ψ(s) + η̄�(s) − a + c′

0 − c0 + [c0 − c′
0]+

]+
≤ sup

s∈[0,t]
[c0 + ψ(s) + η̄�(s) − a]+ + [c′

0 − c0]+.

= η̄u(t) + [c′
0 − c0]+.

However this contradicts (4.16) and so we conclude that neither case (i) nor
case (ii) holds, which in turn contradicts the fact that α < ∞. Thus α = ∞ or,
in other words, the second inequality in property 1 and the first equality in prop-
erty 2 of the theorem are satisfied.
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Applying the result just proved above with ψ,ψ ′, c0, c
′
0 replaced by −ψ ′,−ψ,

a − c′
0, a − c0 respectively, and invoking (1.10), it follows that β = ∞, where

β
.= inf{t > 0 : η̄′

u(t) + ν(t) + [c0 − c′
0]+ < η̄u(t) or η̄′

�(t) + [c′
0 − c0]+ < η̄�(t)}.

This completes the proof of the first two properties of the theorem. The third and
fourth properties are the content of Remark 4.3. �

APPENDIX: TRANSFORMATION OF GRAPH
PARAMETRIZATIONS UNDER �a

Given φ ∈ D[0, T ], recall the definition of the graph Gφ given in (3.41) and the
set �(φ) of parametric representations of Gφ , as defined immediately after (3.41).
The following result is used in the proof of Corollary 1.6.

LEMMA A.1. Let φ ∈ D[0, T ] be given. For (r, g) ∈ �(φ), we have
(r,�a(g)) ∈ �(�a(φ)).

PROOF. Since the mapping (r, g) is continuous, by Proposition 1.3 the
map (r,�a(g)) is also continuous. We will show that for every s ∈ [0,1],
(r(s),�a(g)(s)) ∈ G�a(φ). Fix t ∈ [0, T ]. We consider two cases.

Case 1. φ(t) = φ(t−).
Consider s ∈ [0,1] such that r(s) = t . We want to show that

�a(g)(s) = �a(φ)(t),(A.1)

which clearly implies (r(s),�a(g)(s)) ∈ G�a(φ). In the case under consideration,

g(s) = φ(t)(A.2)

and (A.1) is equivalent to

sup
s′∈[0,s]

[(
g(s′) − a

)+ ∧ inf
s′′∈[s′,s]g(s′′)

]
(A.3)

= sup
t ′∈[0,t]

[(
φ(t ′) − a

)+ ∧ inf
t ′′∈[t ′,t]φ(t ′′)

]
.

The inequality

sup
s′∈[0,s]

[(
g(s′) − a

)+ ∧ inf
s′′∈[s′,s]g(s′′)

]
(A.4)

≥ sup
t ′∈[0,t]

[(
φ(t ′) − a

)+ ∧ inf
t ′′∈[t ′,t]φ(t ′′)

]

follows from (A.2) and the monotonicity of (r, g), together with the fact that the
graph of (r(s′), g(s′)), s′ ∈ [0, s], consists of the graph of (t ′, φ(t ′)), t ′ ∈ [0, t],
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and the vertical segments {t ′} × [φ(t ′−) ∧ φ(t ′), φ(t ′−) ∨ φ(t ′)], t ′ ∈ [0, t]. To
prove the opposite inequality, let s0 ∈ [0, s] attain the supremum on the left-hand
side of (A.3). Let t0 = r(s0) and let [b, c] = r−1(t0). We want to show that s0 may
be chosen to be either b or c (in other words, that the supremum is attained at one
of the endpoints of [b, c]). This is obvious if φ(t0) = φ(t0−), since then g ≡ φ(t0)

on [b, c]. If φ(t0−) < φ(t0), then by the case assumption, t0 < t and s0 ≤ c < s. In
this case, g increases on [b, c] and the supremum on the left-hand side of (A.3) is
attained at c. Thus, if φ(t0−) ≤ φ(t0), we have

sup
s′∈[0,s]

[(
g(s′) − a

)+ ∧ inf
s′′∈[s′,s]g(s′′)

]

= (
g(c) − a

)+ ∧ inf
s′′∈[c,s]g(s′′)

= (
φ(t0) − a

)+ ∧ inf
t ′′∈[t0,t]

φ(t ′′)

≤ sup
t ′∈[0,t]

[(
φ(t ′) − a

)+ ∧ inf
t ′′∈[t ′,t]φ(t ′′)

]
.

On the other hand, if φ(t0−) > φ(t0), we again have t0 < t and s0 ≤ c < s, but now
g decreases on [b, c] and the supremum on the left-hand side of (A.3) is attained
at b. In this case

sup
s′∈[0,s]

[(
g(s′) − a

)+ ∧ inf
s′′∈[s′,s]g(s′′)

]

= (
g(b) − a

)+ ∧ inf
s′′∈[b,s]g(s′′)

= (
φ(t0−) − a

)+ ∧ φ(t0−) ∧ inf
t ′′∈[t0,t]

φ(t ′′)

≤ sup
t ′∈[0,t]

[(
φ(t ′) − a

)+ ∧ inf
t ′′∈[t ′,t]φ(t ′′)

]
.

Thus, regardless of the relationship between φ(t0) and φ(t0−), (A.3) holds.

Case 2. φ(t) �= φ(t−).
Let [b, c] = r−1(t), φ′ = φ − (φ(t) − φ(t−))I[t,T ], g′(s) = g(s) − (g(s ∧ c) −

g(s ∧ b)). Then g′ = g on [0, b], φ′ = φ on [0, t) and φ′(t) = φ(t−). This in turn
shows that �a(g

′)(b) = �a(g)(b), �a(φ
′)(t) = �a(φ)(t−) and (r, g′) ∈ �(φ′)

on [0, t]. Since φ′(t) = φ′(t−), we can apply (A.1) to conclude that �a(g)(b) =
�a(g

′)(b) = �a(φ
′)(t) = �a(φ)(t−). For t ′ > t such that φ(t ′) = φ(t ′−) and

s′ ∈ [0,1] such that r(s′) = t ′ we have, again by (A.1), �a(g)(s′) = �a(φ)(t ′).
Taking t ′ ↓ t , we get �a(g)(c) = �a(φ)(t). Finally, �a(g)(s) moves continuously
and monotonically from �a(g)(b) to �a(g)(c) as s increases over [b, c]. Hence,
for s ∈ [b, c], (r(s),�a(g)(s)) = (t,�a(g)(s)) ∈ G�a(φ).
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Conclusion. We have shown that the map (r,�a(g)) takes values in G�a(φ).
If �a(φ) is discontinuous at t ∈ (0, T ], then φ is also discontinuous at t . The Case
2 analysis shows that when φ is discontinuous at t , the function �a(g) traverses the
vertical segment {t} × [φ(t−) ∧ φ(t), φ(t−) ∨ φ(t)] in the direction from φ(t−)

to φ(t), which means that (r, g) is nondecreasing in the order relation on the graph
of G�a(φ) on the interval r−1(t). For values of t for which �a(φ) is continuous,
we use the fact r is nondecreasing to again conclude that (r, g) is nondecreasing.

�
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