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A WEAKNESS IN STRONG LOCALIZATION FOR SINAI’S WALK

BY ZHAN SHI AND OLIVIER ZINDY

Université Paris VI

Sinai’s walk is a recurrent one-dimensional nearest-neighbor random
walk in random environment. It is known for a phenomenon of strong lo-
calization, namely, the walk spends almost all time at or near the bottom of
deep valleys of the potential. Our main result shows a weakness of this local-
ization phenomenon: with probability one, the zones where the walk stays
for the most time can be far away from the sites where the walk spends
the most time. In particular, this gives a negative answer to a problem of
Erdős and Révész [Mathematical Structures—Computational Mathematics—
Mathematical Modelling 2 (1984) 152–157], originally formulated for the
usual homogeneous random walk.

1. Introduction. Let ω = (ωx, x ∈ Z) be a collection of independent and
identically distributed random variables taking values in (0,1). The distribution
of ω is denoted by P . Given the value of ω, we define (Xn,n ≥ 0) as a random
walk in random environment (RWRE), which is a Markov chain whose distribu-
tion is denoted by Pω. The transition probabilities of (Xn,n ≥ 0) are as follows:
for x ∈ Z,

Pω(Xn+1 = x + 1|Xn = x) = ωx = 1 − Pω(Xn+1 = x − 1|Xn = x).

We denote by P the joint distribution of (ω, (Xn)).
Throughout the paper, we assume that there exists 0 < δ < 1

2 such that

P(δ ≤ ω0 ≤ 1 − δ) = 1,(1.1)

and that

E

[
log
(

1 − ω0

ω0

)]
= 0,(1.2)

σ 2 := Var
[
log
(

1 − ω0

ω0

)]
> 0.(1.3)

Assumption (1.1) is a commonly adopted technical condition, and can for exam-
ple be replaced by the existence of exponential moments of log(

1−ω0
ω0

). It implies

that, P -a.s., | log(
1−ω0
ω0

)| ≤ M := log(1−δ
δ

). Condition (1.2) ensures, according to
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Solomon [12], that for P -almost all ω, (Xn) is recurrent, that is, it hits any site
infinitely often. Finally, (1.3) simply excludes the case of a usual homogeneous
random walk.

Recurrent RWRE is known for its slow movement. Indeed, under (1.1)–(1.3), it
is proved by Sinai [11] that Xn/(logn)2 converges in distribution to a nondegen-
erate limit. Recurrent RWRE will thus be referred to as Sinai’s walk. We will from
now on assume (1.1)–(1.3).

For an overview of RWRE, see [13]. Although the understanding of one-
dimensional RWRE reached a high level in the last decade, there are still some
important questions that remain unanswered. See den Hollander [7] for those con-
cerning large deviations.

Let

ξ(n, x) := #{0 ≤ i ≤ n :Xi = x}, n ≥ 0, x ∈ Z,(1.4)

V(n) :=
{
x ∈ Z : ξ(n, x) = max

y∈Z

ξ(n, y)

}
, n ≥ 0.(1.5)

In other words, ξ(n, x) records the number of visits at site x by the walk in the
first n steps, and V(n) is the set of sites that are the most visited. Note that V(n)

is not empty. Following Erdős and Révész [4], any element in V(n) is called a
“favorite site.”

The basic question we are addressing is: if we know that the walk spends almost
all time in Z+, does it imply that favorite sites would also lie in Z+?

To formulate the problem more precisely, let us introduce the notion of “positive
sequence”: a (random) sequence 0 < n1 < n2 < · · · of positive numbers is called a
“positive sequence” [for the walk (Xn)] if

lim
k→∞

#{0 ≤ i ≤ nk :Xi > 0}
nk

= 1.(1.6)

In other words, the walk spends an overwhelming time in Z+ along any positive
sequence.

PROBLEM 1.1. Is it true that P-almost surely for any positive sequence (nk),
we have V(nk) ⊂ Z+ for all large k?

Problem 1.1 was raised by Erdős and Révész [4] (also stated as Problem 10 on
page 131 of [8]), originally formulated for the usual homogeneous random walk.

It turns out for the homogeneous walk that the answer is no. Roughly speaking,
it is because there is too much “freedom” for the homogeneous walk, so that with
probability one, it is possible to find a (random) positive sequence along which the
walk does not spend much time in any of the sites of Z+ – typically, the homo-
geneous walk makes excursions in Z+ without spending much time in any sites
of Z+, thus the favorite sites are still in Z−.
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When the environment is random, there is a phenomenon of strong localiza-
tion [6]; indeed, Sinai’s walk spends almost all the time at the bottom of some
special zones, called (deep) “valleys.” If we know that Sinai’s walk spends al-
most all time in Z+, then these deep valleys are likely to be located in Z+, and
the favorite sites—which should be located at or near to the bottom of these deep
valleys—would also lie in Z+. In other words, due to strong localization, it looks
natural to conjecture that the answer to Problem 1.1 would be yes.

However, things do not go like this. Here is the main result of the paper.

THEOREM 1.2. Under assumptions (1.1)–(1.3),

P{∀positive sequence (nk), we have V(nk) ⊂ Z+ for all large k} = 0.

The reason for which the aforementioned heuristics are wrong is that even
though Sinai’s walk is strongly localized around the bottom of deep valleys, it
can happen that a (relatively) big number of sites are around the bottom. In such
situations, none of these sites is necessarily favorite, since the visits are shared
more or less equally by all these sites.

The main steps in the proof of Theorem 1.2 can be briefly described as follows.
Step A. For P -almost all environment ω, we define a special sequence, denoted

by (mk)k≥1. This is the starting point in our construction of a positive sequence
(nk) such that for any k, V(nk) ⊂ Z−.

We mention that the special sequence (mk) depends only on the environment.
Step B. Based on the special sequence (mk) and on the movement of the walk,

we construct in Section 4 another sequence (nk). We prove that (nk) is a positive
sequence for (Xn), that is, condition (1.6) is satisfied.

Step C. Let (nk) be the positive sequence constructed in Step B. We prove in
Section 5 that P-almost surely for all large k, V(nk) ⊂ Z−.

Clearly, Steps B and C together yield Theorem 1.2.
The rest of the paper is organized as follows. In Section 2 we present some

elementary facts about Sinai’s walk. These facts will be frequently used throughout
the paper. A detailed description of Step A is given in Section 3, but the proof of
the main result of the section, Proposition 3.1, is postponed to Section 6. Sections
4 and 5 are devoted to Steps B and C, respectively. Finally, in Section 7, we make
some comments on the concentration of Sinai’s walk.

We use Ci (1 ≤ i ≤ 22) to denote finite and positive constants.

2. Preliminaries on Sinai’s walk. We list some basic estimates about hitting
times and excursions of Sinai’s walk.

In the study of Sinai’s walk, an important role is played by a process called
the potential, denoted by V = (V (x), x ∈ Z). The potential is a function of the
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environment ω, and is defined as follows:

V (x) :=



x∑
i=1

log
(

1 − ωi

ωi

)
, if x ≥ 1,

0, if x = 0,

−
0∑

i=x+1

log
(

1 − ωi

ωi

)
, if x ≤ −1.

By (1.1), we have |V (x) − V (x − 1)| ≤ M for any x ∈ Z.

2.1. Hitting times. For any x ∈ Z, we define

τ(x) := min{n ≥ 1 :Xn = x}, min ∅ := ∞.(2.1)

[Attention, if X0 = x, then τ(x) is the first return time to x.] Throughout the paper,
we write P x

ω(·) := Pω(·|X0 = x) (thus P 0
ω = Pω) and write Ex

ω for expectation with
respect to P x

ω .
It is known ([13], formula (2.1.4)) that for r < x < s,

P x
ω {τ(r) < τ(s)} =

s−1∑
j=x

eV (j)

(
s−1∑
j=r

eV (j)

)−1

.(2.2)

The next lemma, which gives a simple bound for the expectation of τ(r) ∧ τ(s)

when the walk starts from a site x ∈ (r, s), is essentially contained in [6].

LEMMA 2.1. For any integers r < s, we have

max
x∈(r,s)∩Z

Ex
ω

[
τ(r)1{τ(r)<τ(s)}

]≤ (s − r)2 exp
[

max
r≤i≤j≤s

(
V (i) − V (j)

)]
.(2.3)

PROOF. Given {τ(r) < τ(s)}, the walk does not hit site s during time interval
[0, τ (r)]. Therefore, τ(r) under P x

ω {·|τ(r) < τ(s)} is stochastically smaller than
the first hitting time of site r by a walk starting from s with a reflecting barrier (to
the left) at site s. The expected value of this latter random variable is, according
to (A1) of [6], bounded by (s − r)2 exp{maxr≤i≤j≤s(V (i) − V (j))}. This yields
the lemma. �

We will also use the following estimate borrowed from Lemma 7 of [6]: for
� ≥ 1 and x < y,

P x
ω {τ(y) < �} ≤ � exp

(
− max

x≤i<y
[V (y − 1) − V (i)]

)
.(2.4)

Looking at the environment backward, we get: for � ≥ 1 and w < x,

P x
ω {τ(w) < �} ≤ � exp

(
− max

w<i≤x
[V (w + 1) − V (i)]

)
.(2.5)
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2.2. Excursions. We quote some elementary facts about excursions of Sinai’s
walk (for detailed discussions, see Section 3 of [3]). Let b ∈ Z and x ∈ Z, and
consider ξ(τ (b), x) under P b

ω . In words, we look at the number of visits to x of
the walk (starting from b) at the first return to b. Then there exist constants C1, C2
and C3 such that

C1e
−[V (x)−V (b)] ≤ Eb

ω

[
ξ
(
τ(b), x

)]≤ C2e
−[V (x)−V (b)],(2.6)

and that

Varbω
[
ξ
(
τ(b), x

)]≤ C3|x − b| exp
(

max
b≤y≤x

[V (y) − V (x)]
)
e−[V (x)−V (b)],(2.7)

where maxb≤y≤x should be replaced by maxx≤y≤b if x < b.

3. Step A: a special sequence. Recall the constant δ from condition (1.1).
We write

C4 := δ3

2
.

For any j > 0, we define

d+(j) := min{n ≥ 0 :V (n) ≥ j},(3.1)

b+(j) := min
{
n ≥ 0 :V (n) = min

0≤x≤d+(j)
V (x)

}
.(3.2)

Similarly, we define

d−(j) := max{n ≤ 0 :V (n) ≥ j},(3.3)

b−(j) := max
{
n ≤ 0 :V (n) = min

d−(j)≤x≤0
V (x)

}
.(3.4)

In the next sections, we will be frequently using the following elementary esti-
mates: for any ε > 0, P -almost surely for all large j ,

j2−ε ≤ |b±(j)| < |d±(j)| ≤ j2+ε.(3.5)

To introduce the announced special sequence in Step A, we define the events
[the constant C5 will be defined in (6.8)]:

E+
1 (j) := {−2j ≤ V (b+(j)) ≤ −j},(3.6)

E+
2 (j) :=

{
max

0≤x≤y≤b+(j)
[V (y) − V (x)] ≤ j

4

}
,(3.7)

E+
3 (j) :=

{
max

b+(j)≤x≤y≤d+(j)
[V (x) − V (y)] ≤ j

}
,(3.8)

E+
4 (j) :=

{ ∑
0≤x≤d+(j)

e−[V (x)−V (b+(j))] ≥ C4 log log j

}
(3.9)
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and

E−
1 (j) := {V (b−(j)) ≤ −3j},(3.10)

E−
2 (j) :=

{
max

b−(j)≤x≤0
V (x) ≥ j

3

}
,(3.11)

E−
3 (j) :=

{
max

b−(j)≤x≤y≤0
[V (x) − V (y)] ≤ j

2

}
,(3.12)

E−
4 (j) :=

{
j

3
≤ max

d−(j)≤x≤y≤b−(j)
[V (y) − V (x)] ≤ j

}
,(3.13)

E−
5 (j) :=

{ ∑
d−(j)≤x≤0

e−[V (x)−V (b−(j))] ≤ 1 + C5

}
.(3.14)

We set

E+(j) :=
4⋂

i=1

E+
i (j), E−(j) :=

5⋂
i=1

E−
i (j).(3.15)

In other words, E+
1 (j), E+

2 (j) and E+
3 (j) require (V (x),0 ≤ x ≤ d+(j)) to

behave “normally” (i.e., without excessive minimum, nor excessive fluctuations),
whereas E+

4 (j) requires the potential to have a “relatively large” number of sites
near the minimum.

Similarly, E−
1 (j) and E−

2 (j) require (V (y), d−(j) ≤ y ≤ 0) to have no ex-
cessive extreme values, E−

3 (j) and E−
4 (j) no excessive fluctuations, E−

5 (j) no
excessive concentration around the minimum.

Later, we will see that P {E+
1 (j) ∩ E+

2 (j) ∩ E+
3 (j) ∩ E−(j)} is greater than a

positive constant, while P {E+
4 (j)} tends to 0 (as j → ∞) “sufficiently slowly.”

See Figure 1 for an example of ω ∈ E+(j) ∩ E−(j).
For future use, let us note that for ω ∈ E−

3 (j) ∩ E+
1 (j) ∩ E+

2 (j) ∩ E+
3 (j), we

have

max
b−(j)≤x≤y≤d+(j)

[V (x) − V (y)] ≤ 5j

2
.(3.16)

The proof of the following proposition is postponed until Section 6.

PROPOSITION 3.1. Under assumptions (1.1)–(1.3), for P -almost all environ-
ment ω, there exists a random sequence (mk) such that ω ∈ E+(mk)∩E−(mk) for
all k ≥ 1.

By admitting Proposition 3.1, we will complete Steps B and C in the next two
sections.
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FIG. 1. Example of ω ∈ E+(j) ∩ E−(j).

4. Step B: a positive sequence. Let (mk) be the special sequence introduced
in Proposition 3.1. Without loss of generality, we can assume mk ≥ k3k for all
k ≥ 1. For brevity, we write throughout the paper,

b+
k := b+(mk), d+

k := d+(mk), τ+
k := τ(b+

k ),(4.1)

b−
k := b−(mk), d−

k := d−(mk), τ−
k := τ(b−

k ).(4.2)

We define

nk := (
1 + (log k)−1/4)τ−

k .(4.3)

We prove in this section that P-almost surely, (nk) is a positive sequence for (Xn),
that is, 1

nk
#{0 ≤ i ≤ nk :Xi > 0} → 1, P-a.s. (as k → ∞).

We start with a few lemmas.

LEMMA 4.1. We have, P -almost surely, for all large k,

Pω{τ−
k < τ+

k } ≤ m3
ke

−mk/12,(4.4)

Pω{τ(d+
k ) < τ−

k } ≤ m3
ke

−mk/2.(4.5)
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As a consequence, P-almost surely for all large k,

τ+
k < τ−

k < τ(d+
k ).(4.6)

PROOF. By (2.2), Pω{τ−
k < τ+

k } = ∑b+
k −1

j=0 eV (j)/
∑b+

k −1

j=b−
k

eV (j). Since

maxb−
k ≤j≤0 V (j) ≥ mk

3 [see (3.11)], we have
∑b+

k −1

j=b−
k

eV (j) ≥ emk/3. On the other

hand, max0≤j≤b+
k

V (j) ≤ mk

4 according to (3.7). Therefore, Pω{τ−
k < τ+

k } ≤
b+
k e−mk/12. Since b+

k ≤ m3
k for large k [see (3.5)], this yields (4.4). The proof

of (4.5) is along the same lines, using the fact that maxb−
k ≤j≤0 V (j) ≤ mk

2 [a con-
sequence of (3.12)].

Since mk ≥ k, (4.4) and (4.5) yield, respectively,
∑

k Pω{τ−
k < τ+

k } < ∞,∑
k Pω{τ(d+

k ) < τ−
k } < ∞, P -almost surely. Now (4.6) follows from the Borel–

Cantelli lemma. �

LEMMA 4.2. Let A−(n) := #{i : 0 ≤ i ≤ n,Xi ≤ 0}. There exists a con-
stant C6 such that P -almost surely, for all large k,

Eω[A−(τ−
k )] ≤ C6(b

−
k )2emk/2.(4.7)

PROOF. Let x ∈ (b−
k ,0] ∩ Z. Recall ξ(n, x) from (1.4). Recall that P x

ω(·) :=
Pω(·|X0 = x). Clearly, Pω{ξ(τ−

k , x) = �} = (1 − πx)
�−1πx , � ≥ 1, where

πx := P x
ω {τ(x) > τ−

k }
= (1 − ωx)P

x−1
ω {τ(x) > τ−

k }(4.8)

= 1 − ωx∑x−1
j=b−

k

eV (j)−V (x−1)
,

the last identity being a consequence of (2.2). In view of assumption (1.1), this
yields

1

πx

≤ C6|b−
k | exp

(
max

b−
k ≤j≤i≤0

(
V (j) − V (i)

))
.

Since maxb−
k ≤j≤i≤0(V (j) − V (i)) ≤ mk

2 , and Eω[ξ(τ−
k , x)] = 1

πx
, this yields

Eω[ξ(τ−
k , x)] ≤ C6|b−

k |emk/2. Summing over x ∈ (b−
k , 0] ∩ Z completes the proof

of the lemma. �

REMARK 4.3. A similar argument shows that for all x ∈ [0, b+
k ],

Eω[ξ(τ+
k , x)] ≤ C6b

+
k emk/4.(4.9)
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LEMMA 4.4. For any k ≥ 1 and N ≥ 1, we have

Pω{τ+
k < τ−

k < N} ≤ C6e
−4mk/3N.(4.10)

Furthermore, P -almost surely, for all large k,

Eω

(
1

τ−
k

1{τ+
k <τ−

k }
)

≤ C7mke
−4mk/3.(4.11)

PROOF. We observe that

Pω{ξ(τ−
k , b+

k ) = �} = qk

(
1 − πb+

k

)�−1
πb+

k
, � ≥ 1,(4.12)

where πb+
k

is as in (4.8), qk := Pω{τ+
k < τ−

k }, and Pω{ξ(τ−
k , b+

k ) = 0} = 1 − qk .

Therefore, for any N ≥ 1, Pω{1 ≤ ξ(τ−
k , b+

k ) ≤ N} ≤ πb+
k
N . Note that,

πb+
k

≤ exp
(
V (b+

k − 1) − max
b−
k ≤j≤0

V (j)

)
≤ C6e

−4mk/3,(4.13)

the second inequality following from (3.6) and (3.11). In view of the trivial rela-
tions τ−

k ≥ ξ(τ−
k , b+

k ) + 1 and {τ+
k < τ−

k } = {ξ(τ−
k , b+

k ) ≥ 1}, this implies (4.10).
To prove the second inequality in the lemma, we note that by the strong

Markov property, Eω(
1{τ+

k
<τ

−
k

}
1+ξ(τ−

k ,b+
k )

) = qk E
b+
k

ω ( 1
1+ξ(τ−

k ,b+
k )

). Since P
b+
k

ω {ξ(τ−
k , b+

k ) =
�} = (1 − πb+

k
)�−1πb+

k
, � ≥ 1, it follows that

Eω

( 1{τ+
k <τ−

k }
1 + ξ(τ−

k , b+
k )

)
=

qkπb+
k

(1 − πb+
k
)2

(
log
(

1

πb+
k

)
− (

1 − πb+
k

))

≤
πb+

k

(1 − πb+
k
)2 log

(
1

πb+
k

)
.

The function u 
→ u
(1−u)2 log( 1

u
) is increasing in the (positive) neighborhood of 0.

Therefore, by (4.13),
π

b
+
k

(1−π
b
+
k

)2 log( 1
π

b
+
k

) ≤ C7mke
−4mk/3 (for large k). Now (4.11)

follows again by means of the trivial inequality τ−
k ≥ ξ(τ−

k , b+
k ) + 1. �

LEMMA 4.5. We have, P-almost surely, for all large k,

max
τ−
k ≤i≤nk

Xi < 0.(4.14)

PROOF. By the strong Markov property, {X(i + τ−
k ), i ≥ 0} is independent

(under Pω) of τ−
k . Recall that nk = (1 + (log k)−1/4)τ−

k . We have, for any � ≥ 1,

Pω

{
max

τ−
k ≤i≤nk

Xi ≥ 0
∣∣∣τ−

k = �

}
= P

b−
k

ω

{
τ(0) ≤ �

(logk)1/4

}
≤ C6

�

(logk)1/4 e−3mk ,



LOCALIZATION FOR SINAI’S WALK 1127

the last inequality being a consequence of (2.4) [together with (3.10) and (3.11)].
As a consequence,

Pω

{
max

τ−
k ≤i≤nk

Xi ≥ 0, τ−
k < τ(d+

k )

}
≤ C6

(log k)1/4 e−3mkEω

(
τ−
k 1{τ−

k <τ(d+
k )}
)
.

By (2.3) and (3.16),

Eω

(
τ−
k 1{τ−

k <τ(d+
k )}
)≤ (d+

k − b−
k )2e5mk/2.(4.15)

Since d+
k − b−

k ≤ m3
k , P -almost surely, for all large k [see (3.5)] and since mk ≥ k,

it follows that∑
k

Pω

{
max

τ−
k ≤i≤nk

Xi ≥ 0, τ−
k < τ(d+

k )

}
< ∞, P -a.s.

Recall from (4.6) that τ−
k < τ(d+

k ) P-almost surely, for all large k. Lemma 4.5 now
follows from the Borel–Cantelli lemma. �

It is now time to complete the argument for Step B by showing that (nk) is a
positive sequence for (Xn).

Combining (4.7) with (4.10) yields that

Pω

{
A−(τ−

k )

τ−
k

≥ e−mk/3, τ+
k < τ−

k

}
≤ Pω{A−(τ−

k ) ≥ e−mk/3N} + Pω{τ+
k < τ−

k < N}

≤ C6(b
−
k )2emk/2

e−mk/3N
+ C6e

−4mk/3N.

Recall that |b−
k | ≤ m3

k P -almost surely, for all large k [see (3.5)]. Choosing
N := emk , and we have, for large k,

Pω

{
A−(τ−

k )

τ−
k

≥ e−mk/3, τ+
k < τ−

k

}
≤ C8m

6
ke

−mk/6.

Since mk ≥ k, this yields
∑

k Pω{A−(τ−
k ) ≥ e−mk/3τ−

k , τ+
k < τ−

k } < ∞, P -almost
surely. On the other hand, by (4.6), we have τ+

k < τ−
k P-almost surely, for all

large k. Therefore, the Borel–Cantelli lemma shows that P-almost surely when
k → ∞,

A−(τ−
k )

τ−
k

≤ e−mk/3 → 0.(4.16)

Since for large k, A−(nk) = A−(τ−
k ) + (logk)−1/4 τ−

k (Lemma 4.5) and τ−
k < nk

by definition, we have proved that A−(nk)
nk

→ 0, P-almost surely. In other words,
(nk) is a positive sequence for the walk.
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5. Step C: negative favorite sites along a positive sequence. Let (nk) be the
positive sequence defined in (4.3). In this section, we prove that P-almost surely
for all large k, V(nk) ⊂ Z−. As before, we use the notation b±

k , d±
k and τ±

k as
in (4.1)–(4.2).

We will prove that P-almost surely, for all large k,

ξ(nk, b
−
k ) ≥ τ−

k

(log k)1/3 ,(5.1)

max
x∈[1,d+

k ]
ξ(τ−

k , x) ≤ τ−
k

(log k)1/2 .(5.2)

Observe that P-almost surely, for all large k, we have maxx∈[1,d+
k ] ξ(τ−

k , x) =
maxx≥1 ξ(τ−

k , x) [by (4.6)], and maxx≥1 ξ(τ−
k , x) = maxx≥1 ξ(nk, x) (Lem-

ma 4.5). It is now clear that (5.1) and (5.2) together will complete Step C, and
thus the proof of Theorem 1.2.

The rest of the section is devoted to the proof of (5.1) and (5.2). For the sake of
clarity, they are proved in distinct subsections.

5.1. Proof of (5.1). Let T −
0 := τ−

k and

T −
j = T −

j (k) := min{n > T −
j−1 :Xn = b−

k }, j = 1,2, . . . .

We define, for any j ≥ 1,

Y−
j (x) := ξ(T −

j , x) − ξ(T −
j−1, x), x ∈ Z,

Z−
j := ∑

x∈(d−
k ,0]

Y−
j (x).

By the strong Markov property, (Z−
j , j ≥ 1) is a sequence of i.i.d. random vari-

ables (under Pω). Recall that nk = (1 + (logk)−1/4)τ−
k . Let � ≥ 1. By the strong

Markov property, Pω{ξ(nk, b
−
k ) < �

(logk)1/3 |τ−
k = �} = P

b−
k

ω {ξ( �
(log k)1/4 , b

−
k ) <

�
(logk)1/3 }. Under probability P

b−
k

ω , if τ(d−
k )∧τ(0) > �

(logk)1/4 , then the walk stays in

(d−
k ,0) during time interval [0, �

(logk)1/4 ]; if moreover ξ( �
(log k)1/4 , b

−
k ) < �

(logk)1/3 ,

then
∑�/(log k)1/3

j=1 Z−
j ≥ �

(logk)1/4 . Accordingly,

Pω

{
ξ(nk, b

−
k ) <

�

(log k)1/3

∣∣∣τ−
k = �

}

≤ Pω

{�/(log k)1/3∑
j=1

Z−
j ≥ �

(log k)1/4

}
+ P

b−
k

ω

{
τ(d−

k ) ∧ τ(0) ≤ �

(log k)1/4

}
.
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By (2.6), Eω(Z−
j ) ≤ C2

∑
x∈(d−

k ,0] e−[V (x)−V (b−
k )], which, according to (3.14), is

bounded by C2(1 + C5) =: C9. Therefore,

Pω

{�/(log k)1/3∑
j=1

Z−
j ≥ �

(log k)1/4

}

≤ Pω

{�/(logk)1/3∑
j=1

(Z−
j − EωZ−

j ) ≥ (
(log k)−1/4 − C9(logk)−1/3)�}

≤ Varω(Z−
1 )

((log k)−1/4 − C9(log k)−1/3)2(log k)1/3�
.

We have Varω(Z−
1 ) ≤ |d−

k |∑x∈(d−
k ,0] Varω(Y−

1 (x)). By (2.7) and (3.12)–(3.13),

Varω(Y−
1 (x)) is bounded by C3|d−

k |emk for all x ∈ (d−
k ,0]. Thus Varω(Z−

1 ) ≤
C3(d

−
k )2emk . Accordingly, for large k,

Pω

{�/(logk)1/3∑
j=1

Z−
j ≥ �

(logk)1/4

}
≤ C10

(log k)1/6(d−
k )2emk

�
.

We now estimate P
b−
k

ω {τ(d−
k )∧ τ(0) ≤ �

(logk)1/4 }. There is nothing to estimate if

� < (log k)1/4, so let us assume � ≥ (logk)1/4. By (2.5) and (3.10),

P
b−
k

ω

{
τ(d−

k ) ≤ �

(log k)1/4

}
≤
(

�

(log k)1/4 + 1
)
e−[V (d−

k +1)−V (b−
k )]

≤ C6�

(log k)1/4 e−4mk ,

whereas by (2.4) and (3.10),

P
b−
k

ω

{
τ(0) ≤ �

(logk)1/4

}
≤
(

�

(log k)1/4 + 1
)
e−[V (−1)−V (b−

k )]

≤ C6�

(log k)1/4 e−3mk .

Thus, for all � ≥ 1,

P
b−
k

ω

{
τ(d−

k ) ∧ τ(0) ≤ �

(log k)1/4

}
≤ 2C6 �

(log k)1/4 e−3mk

=: C11�

(log k)1/4 e−3mk .



1130 Z. SHI AND O. ZINDY

As a consequence, we have proved that

Pω

{
ξ(nk, b

−
k ) ≤ �

(log k)1/3

∣∣∣τ−
k = �

}

≤ C10(log k)1/6(d−
k )2 emk

�
+ C11�

(log k)1/4 e−3mk .

Therefore,

Pω{ξ(nk, b
−
k ) ≤ (log k)−1/3τ−

k , τ+
k < τ−

k < τ(d+
k )}

≤ C10(log k)1/6(d−
k )2 emkEω

(1{τ+
k <τ−

k }
τ−
k

)

+ C11

(log k)1/4 e−3mkEω

(
τ−
k 1{τ−

k <τ(d+
k )}
)
.

The two expectations, Eω( 1
τ−
k

1{τ+
k <τ−

k }) and Eω(τ−
k 1{τ−

k <τ(d+
k )}), are estimated by

means of (4.11) and (4.15), respectively. We have therefore proved that, for large k,
Pω{ξ(nk, b

−
k ) ≤ (log k)−1/3τ−

k , τ+
k < τ−

k < τ(d+
k )} is bounded by

C10C7(log k)1/6(d−
k )2mke

−mk/3 + C11

(log k)1/4 (d+
k − b−

k )2e−mk/2.

Since |d−
k | ≤ m3

k and d+
k − b−

k ≤ m3
k , P -almost surely, for all large k [see (3.5)],

and since mk ≥ k, this implies∑
k

Pω{ξ(nk, b
−
k ) ≤ (logk)−1/3τ−

k , τ+
k < τ−

k < τ(d+
k )} < ∞, P -a.s.

The proof of (5.1) is now completed by means of the Borel–Cantelli lemma
and (4.6).

5.2. Proof of (5.2). The proof of (5.2) bears many similarities to the proof
of (5.1), the basic idea being again via excursions.

Let T +
0 := τ+

k and

T +
j = T +

j (k) := inf{n > T +
j−1 :Xn = b+

k }, j = 1,2, . . . .

We write, for any j ≥ 1,

Y+
j (y) := ξ(T +

j , y) − ξ(T +
j−1, y), y ∈ Z,

Z+
j := ∑

y∈[1,d+
k ]

Y+
j (y).

Let M = M(k) := max{j :T +
j < τ−

k }. In other words, M denotes the number of

excursions (away from b+
k ) completed by the walk before hitting b−

k .



LOCALIZATION FOR SINAI’S WALK 1131

Let x ∈ [1, d+
k ]. We have ξ(τ−

k , x) ≤ ξ(τ+
k , x) +∑M+1

j=1 Y+
j (x) and #{i ≤ τ−

k :

Xi ≥ 0} ≥∑M
j=1 Z+

j . Note that {M ≥ 1} = {τ+
k < τ−

k }. Therefore, for any � ≥ 1
and kr := �2r ,

p(x) := Pω

{
(log k)1/2ξ(τ−

k , x) > #{i ≤ τ−
k :Xi ≥ 0}, τ+

k < τ−
k

}
≤ Pω{1 ≤ M < �} +

∞∑
r=0

Pω

{
(log k)1/2ξ(τ−

k , x) >

M∑
j=1

Z+
j , kr ≤ M < kr+1

}

≤ Pω{1 ≤ M < �} + Pω{ξ(τ+
k , x) > �} +

∞∑
r=0

Ir ,

where

Ir := Pω

{
(log k)1/2� + (log k)1/2

kr+1∑
j=1

Y+
j (x) >

kr∑
j=1

Z+
j

}
.

By (4.12), we have Pω{1 < ξ(τ−
k , b+

k ) ≤ �} ≤ πb+
k
�, whereas by (4.9), Pω{ξ(τ+

k ,

x) > �} ≤ 1
�
Eω[ξ(τ+

k , x)] ≤ C6b
+
k

�
emk/4. Thus,

p(x) ≤ πb+
k
� + C6b

+
k

�
emk/4 +

∞∑
r=0

Ir .(5.3)

We now estimate Ir . Recall that Y+
j (x) is the number of visits at site x by an ex-

cursion (away from b+
k ). According to (2.6), Eω[Y+

1 (x)] ≤ C2e
−[V (x)−V (b+

k )] ≤
C2. On the other hand, it follows from (2.6) and then (3.9) that Eω(Z+

1 ) ≥
C1
∑

y∈[1, d+
k ] e−[V (y)−V (b+

k )] ≥ C1C4 log logmk . Since (logk)1/2� − C1C4kr ×
log logmk + C2(log k)1/2kr+1 ≤ −C1C4

2 kr log logmk (for large k; recalling that
mk ≥ k3k), we see that, P -almost surely, for all large k, the probability Ir is
bounded (uniformly in all r ≥ 0) by

Pω

{
kr∑

j=1

[Z+
j − Eω(Z+

j )] − (log k)1/2
kr+1∑
j=1

[Y+
j (x) − Eω(Y+

j (x))]

< −C1C4

2
(log logmk)kr

}

≤ 8

(C1C4 log logmk)2kr

[Varω(Z+
1 ) + 2(log k)Varω(Y+

1 (x))].
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By means of (2.7) and (3.7)–(3.8), Varω(Y+
1 (x)) ≤ C3d

+
k emk ; it follows that

Varω(Z+
1 ) ≤ d+

k

∑
y∈[1,d+

k ] Varω(Y+
1 (y)) ≤ C3(d

+
k )3emk . Accordingly,

Ir ≤ 8C3d
+
k [(d+

k )2 + 2 logk]emk

(C1C4 log logmk)2kr

.

Plugging this into (5.3), and using the fact that
∑

r k−1
r = 2�−1, we get that for any

� ≥ 1,

max
x∈[1,d+

k ]
p(x) ≤ πb+

k
� + C6b

+
k

�
emk/4 + C12

d+
k [(d+

k )2 + 2 logk]emk

(log logmk)2�
.

Recall from (4.13) that πb+
k

≤ C6e
−4mk/3. Now we choose � := e5mk/4, to see that

by (3.5), ∑
k

d+
k max

x∈[1,d+
k ]

p(x) < ∞, P -a.s.

This implies that
∑

k Pω{(log k)1/2 maxx∈[1,d+
k ] ξ(τ−

k , x) > #{i ≤ τ−
k :Xi ≥ 0},

τ+
k < τ−

k } < ∞, P -almost surely. This implies (5.2) by an application of the
Borel–Cantelli lemma and (4.6).

6. Proof of Proposition 3.1. We now prove that, for P -almost all environ-
ment ω, there exists a sequence (mk) such that ω ∈ E+(mk) ∩ E−(mk), ∀k ≥ 1,
where E+(mk) and E−(mk) are defined in (3.15).

Let jk := k3k (k ≥ 1) and Fjk−1 := σ {V (x), 0 ≤ x ≤ d+(jk−1)}.
Recall that (E+

j ) and (E−
j ) are independent events. If we are able to show that∑

k

P
{
E+(jk)|Fjk−1

}= ∞, P -a.s.,(6.1)

and that for some C− > 0 and all large j ,

P {E−(j)} ≥ C−,(6.2)

then Lévy’s Borel–Cantelli lemma ([10], page 518) will tell us that with positive
probability, there are infinitely many k such that ω ∈ E+(jk) ∩ E−(jk). An appli-
cation of the Hewitt–Savage zero–one law ([5], Theorem IV.6.3) will then yield
Proposition 3.1.

The rest of the section is devoted to the proof of (6.1) and (6.2), presented in
distinct subsections.

6.1. Proof of (6.1). Recall that |V (x) − V (x − 1)| ≤ M = log 1−δ
δ

for any
x ∈ Z.
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To bound P {E+(jk)|Fjk−1} from below, we start with the trivial inequality
E+(jk) ⊃ E+(jk) ∩ B+(jk−1), for any set B+(jk−1). We choose

B+(jk−1) :=
{

inf
0≤y≤d+(jk−1)

V (y) ≥ −jk−1 log2 jk−1

}
.

Clearly, B+(jk−1) is Fjk−1 -measurable. Moreover, on B+(jk−1) ∩ E+(jk), we
have d+(jk−1) ≤ b+(jk).

Recall that E+(jk) =⋂4
i=1 E+

i (jk). Let

F+
2 (jk) :=

{
max

0≤x≤y≤b+(jk)
[V (y) − V (x)] ≤ jk

4
− jk−1 log2 jk−1 − jk−1 − M

}
.

We consider

F+(jk) := E+
1 (jk) ∩ E+

3 (jk) ∩ E+
4 (jk) ∩ F+

2 (jk).

Since V (d+(jk−1)) ∈ Ijk−1 := [jk−1, jk−1 + M], we have, by applying the strong
Markov property at d+(jk−1),

P
{
E+(jk)|Fjk−1

}≥
(

inf
z∈Ijk−1

Pz{F+(jk)}
)

1B+(jk−1),

where Pz(·) := P(·|V (0) = z), for any z ∈ R; thus P = P0. (Strictly speaking,
we should be working in a canonical space for V , with Pz defined as the image
measure of P under translation.)

Clearly, 1B+(jk−1) = 1, P -almost surely for all large k. Therefore, the proof
of (6.1) boils down to showing the existence of a positive constant C+ such that
P -almost surely for all large k,

inf
z∈Ijk−1

Pz{F+(jk)} ≥ C+

k
.(6.3)

Let, for any Borel set A ⊂ R,

d+(A) := inf{i ≥ 0 :V (i) ∈ A}.
A simple martingale argument yields that, whenever x < y < z,

Py

{
d+([z,∞)

)
< d+((−∞, x])}≥ y − x

z − x + M
,(6.4)

Py

{
d+((−∞, x)

)
< d+([z,∞)

)}≥ z − y

z − x + M
.(6.5)

We now proceed to prove (6.3). Let

a� := −2jk + 3M�, G+
1 (jk, �) := {a� ≤ V (b+(jk)) < a�+1}.
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Then

Pz{F+(jk)} = Pz{E+
1 (jk),F

+
2 (jk),E

+
3 (jk),E

+
4 (jk)}

≥
�jk/(3M)−1∑

�=0

Pz{G+
1 (jk, �),F

+
2 (jk),E

+
3 (jk),E

+
4 (jk)}(6.6)

=:
�jk/(3M)−1∑

�=0

P +
k,�.

Let L(k, �) := #{0 ≤ i ≤ d+(jk) :V (i) ∈ [a�, a�+1)}. On G+
1 (jk, �), we clearly

have e−3ML(k, �) ≤∑
0≤x≤d+(jk)

e−[V (x)−V (b+(jk))]. Thus

P +
k,� ≥ Pz{G+

1 (jk, �),F
+
2 (jk),E

+
3 (jk), e

−3ML(k, �) ≥ C4 log log jk}
≥ Pz

{
G+

1 (jk, �),F
+
2 (jk),E

+
3 (jk),L(k, �) ≥ 1

2 log log jk

}
,

the last inequality following from the values of

M := log
1 − δ

δ
and C4 := δ3

2
.

We define T0 := 0, and by induction,

τp := min{i ≥ Tp−1 :V (i) < a�+1},
Tp := min{i ≥ τp :V (i) ≥ a�+1}, p = 1,2, . . . .

Let

α = α(k) := ⌊1
2 log log jk

⌋
,

T̃ := min{i ≥ τ1 :V (i) ≥ a�+2}.
Since G+

1 (jk, �) ∩ {L(k, �) ≥ α} ⊃ {τα < T̃ < d+(jk) < d+((−∞, a�])}, we have

P +
k,� ≥ Pz

{
τα < T̃ < d+(jk) < d+((−∞, a�]),F+

2 (jk),E
+
3 (jk)

}
.

Consider now the events

H+
2 (jk) :=

{
max

0≤x≤y≤τ1
[V (y) − V (x)] ≤ jk

5

}
,

H+
3 (jk) :=

{
max

T̃ ≤x≤y≤d+(jk)
[V (x) − V (y)] ≤ jk

}
.

We have, for large k, {τα < T̃ < d+(jk) < d+((−∞, a�])} ∩ H+
2 (jk) ⊂ F+

2 (jk),
and {τα < T̃ < d+(jk) < d+((−∞, a�])} ∩ H+

3 (jk) ⊂ E+
3 (jk). Therefore, for

large k,

P +
k,� ≥ Pz

{
τα < T̃ < d+(jk) < d+((−∞, a�]),H+

2 (jk),H
+
3 (jk)

}
.
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We apply the strong Markov property at time T̃ . Since V (T̃ ) ∈ Ia�+2 := [a�+2,

a�+2 + M], we have, for large k,

P +
k,� ≥ Pz

{
τα < T̃ < d+(jk), T̃ < d+((−∞, a�]),H+

2 (jk)
}

× inf
v∈Ia�+2

Pv

{
d+(jk) < d+((−∞, a�]),(6.7)

max
0≤x≤y≤d+(jk)

[V (x) − V (y)] ≤ jk

}
.

Of course, {τα < T̃ } = {τ1 < T1 < τ2 < · · · < Tα−1 < τα < T̃ }. To estimate Pz{· · ·}
on the right-hand side, we apply the strong Markov property successively at τα ,
Tα−1, τα−1, . . . , T1 and τ1. At time τα , we use the following inequality [see (6.4)]:
for v ∈ [a�+1 − M,a�+1),

Pv

{
d+([a�+2,∞)

)
< d+((−∞, a�])}≥ (a�+1 − M) − a�

a�+2 − a� + M
= 2

7
.

At times τp and Tp (1 ≤ p < α), we use [see (6.4) and (6.5)], respectively, for
v ∈ [a�+1 − M,a�+1) and u ∈ [a�+1, a�+1 + M],

Pv

{
d+([a�+1,∞)

)
< d+((−∞, a�])}≥ (a�+1 − M) − a�

a�+1 − a� + M
= 1

2
,

Pu

{
d+((−∞, a�+1)

)
< d+([a�+2,∞)

)}≥ a�+2 − (a�+1 + M)

a�+2 − a�+1 + M
= 1

2
.

Accordingly,

Pz

{
τα < T̃ < d+(jk), T̃ < d+((−∞, a�]),H+

2 (jk)
}

≥ 2/7

22α−2 Pz{τ1 < d+(jk),H
+
2 (jk)}.

By Donsker’s theorem, infz∈Ijk−1
Pz{τ1 < d+(jk), H+

2 (jk)} is greater than a con-
stant (for large k, and uniformly in �). Thus

Pz

{
τα < T̃ < d+(jk), T̃ < d+((−∞, a�]),H+

2 (jk)
}≥ C13

22α
≥ C14

k
,

the last inequality following from the definition of α := �1
2 log log jk. Plugging

this into (6.7) gives that for large k,

P +
k,� ≥ C14

k
inf

v∈Ia�+2

Pv

{
d+(jk) < d+((−∞, a�]),

max
0≤x≤y≤d+(jk)

[V (x) − V (y)] ≤ jk

}

≥ C14

k
inf

v∈Ia�+2

Pv

{
A

(+1)
�

} ∏
2≤p≤5

inf
v∈[((p−4)/2)jk,((p−4)/2)jk+M]Pv

{
A

(+p)
�

}
,
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where

A
(+1)
� := {

d+([−jk,∞)
)
< d+((−∞, a�])},

A
(+p)
� :=

{
d+
([

p − 3

2
jk,∞

))
< d+

((
−∞,

p − 5

2
jk

])}
, 2 ≤ p ≤ 5.

(The last inequality was obtained by applying the strong Markov property suc-
cessively at the stopping times d+([jk/2,∞)), d+([0,∞)), d+([−jk/2,∞)) and
d+([−jk,∞)).) It is clear that there exist constants C15 > 0 and C16 > 0 such that

inf
v∈Ia�+2

Pv

{
A

(+1)
�

}≥ C15

jk

,

min
2≤p≤5

inf
v∈[((p−4)/2)jk,((p−4)/2)jk+M]Pv

{
A

(+p)
�

}≥ C16.

Therefore,

P +
k,� ≥ C14

k

C15

jk

(C16)
4 =: C17

kjk

.

Plugging this into (6.6) gives

Pz{F+(jk)} ≥
⌊

jk

3M

⌋
C17

kjk

≥ C18

k
,

which implies (6.3), and completes the proof of (6.1).

6.2. Proof of (6.2). We write V−(n) := V (−n), ∀n ≥ 0. Let as before Pz(·) :=
P(·|V (0) = z). Under Pz, for r > z, we define d−(r) exactly as in (3.3), that is,
|d−(r)| := min{i ≥ 0 :V−(i) ≥ r}, whereas for s < z, we define

|d−(s)| := min{i ≥ 0 :V−(i) ≤ s}.
We start with the following estimate: there exist positive constants, denoted by

C5 and C19, such that

inf
r≥1

P

{ ∑
0≤x≤|d−(r)|

e−[V−(x)−V−(|b−(r)|)] ≤ C5, |d−(r)| <
∣∣∣∣d−

(
− r

2

)∣∣∣∣
}

(6.8)
≥ C19 > 0.

This is essentially a consequence of Theorem 2.1 of [2], which is a path de-
composition for (V−(s), s ≤ n), when n is deterministic. For more details, we
refer to Lemma 3.2 of [9], which, by means of an elementary argument, ex-
tends Bertoin’s theorem for hitting times. Inequality (6.8) then follows from this
lemma via the observation that it is possible to choose 1 + c11 > 2c13 in [9] (no-
tation of [9]) such that when E1(t) ∩ E2(r) is true (notation of [9]), we have
min0≤x≤|d−(r)| V−(x) = min0≤x≤t V−(x) ≥ − r

2 (our notation).
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FIG. 2. Example of ω ∈ 
−(j).

To prove (6.2), we write β := 3 − 1
1000 and γ := 3 + 1

1000 , and define

T := min{i ≥ |d−(−3j)| :V−(i) ≥ −βj},
T̃ := min{i ≥ T :V−(i) ≤ −3j},


−(j) :=
{∣∣∣∣d−

(
j

3

)∣∣∣∣< ∣∣∣∣d−
(
− j

12

)∣∣∣∣< T < |d−(j)| < T̃ < |d−(−γj)|
}
.

See Figure 2 for an example of ω ∈ 
−(j).
Recall that E−(j) =⋂5

i=1 E−
i (j). Clearly, E−

1 (j) ∩ E−
2 (j) ⊃ 
−(j). Thus

E−(j) ⊃ 
−(j) ∩ E−
3 (j) ∩ E−

4 (j) ∩ E−
5 (j).

Let

F−
3 (j) :=

{
max

|d−(j/3)|≤x≤y≤|d−(−3j)|
[V−(y) − V−(x)] ≤ j

12

}
,

F−
4 (j) :=

{
j

3
≤ max

T ≤x≤y≤|d−(j)|
[V−(x) − V−(y)] ≤ j

}
.

Then E−
3 (j) ⊃ 
−(j) ∩ F−

3 (j), and E−
4 (j) ⊃ 
−(j) ∩ F−

4 (j). Thus

E−(j) ⊃ 
−(j) ∩ F−
3 (j) ∩ F−

4 (j) ∩ E−
5 (j).
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On 
−(j) ∩ {|d−(j)| ≤ j3} ∩ {V−(|b−(j)|) ≤ −3j − j1/2}, we have∑
x∈[0, |d−(j)|]\[ |d−(−3j)|, T ]

e−[V−(x)−V−(|b−(j)|)] ≤ j3e−j1/2 ≤ 1,

(for large j ). Thus E−
5 (j) ⊃ F−

5 (j) ∩ 
−(j) ∩ {|d−(j)| ≤ j3} ∩ {V−(|b−(j)|) ≤
−3j − j1/2} (for large j ), where

F−
5 (j) :=

{ ∑
|d−(−3j)|≤x≤T

e−[V−(x)−V−(|b̂−(−βj)|)] ≤ C5

}
,

and |b̂−(−βj)| := min{n ≥ |d−(−3j)| :V−(n) = minx∈[|d−(−3j)|,T ] V−(x)}.
For j → ∞, we have P {|d−(j)| > j3} → 0 and P {V−(|b−(j)|) ∈ (−3j −

j1/2,−3j ]} → 0. Therefore,

P {E−(j)} ≥ P {
−(j),F−
3 (j),F−

4 (j),F−
5 (j)} − o(1),(6.9)

where o(1) denotes a term which tends to 0 (when j → ∞). The value of o(1)

may vary from line to line.
We apply the strong Markov property at time T . Since V−(T ) ∈ I−βj :=

[−βj,−βj + M], this leads to: for large j ,

P {
−(j),F−
3 (j),F−

4 (j),F−
5 (j)} ≥ P (1) inf

v∈I−βj

P (2)
v ,

where

P (1) := P

{∣∣∣∣d−
(

j

3

)∣∣∣∣< ∣∣∣∣d−
(
− j

12

)∣∣∣∣< T < |d−(j)|,

T < |d−(−γj)|,F−
3 (j),F−

5 (j)

}
,

P (2)
v := Pv

{
|d−(j)| < |d−(−3j)|, j

3
≤ max

0≤x≤y≤|d−(j)|
[V−(x) − V−(y)] ≤ j

}
.

By Donsker’s theorem, infv∈I−βj
P

(2)
v ≥ C20 > 0 (for large j ). Therefore, for

large j ,

P {
−(j),F−
3 (j),F−

4 (j),F−
5 (j)} ≥ C20P

(1).

To obtain a lower bound for P (1), we apply the strong Markov property at time
d−(−3j). Since V−(|d−(−3j)|) ∈ I−3j−M := [−3j − M,−3j ], we have

P {
−(j),F−
3 (j),F−

4 (j),F−
5 (j)} ≥ C20P

(3) inf
v∈I−3j−M

P (4)
v ,
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where

P (3) := P

{∣∣∣∣d−
(

j

3

)∣∣∣∣< ∣∣∣∣d−
(
− j

12

)∣∣∣∣< |d−(−3j)| < |d−(j)|,F−
3 (j)

}
,

P (4)
v := Pv

{
|d−(−βj)| < |d−(−γj)|,

|d−(−βj)|∑
x=0

e−[V−(x)−V−(|b−(−βj)|)] ≤ C5

}
.

We recall that |b−(−βj)| := min{n ≥ 0 :V−(n) = minx∈[0,|d−(−βj)|] V−(x)}.
By Donsker’s theorem, P (3) is greater than a positive constant (for all large j ),

whereas according to (6.8), P
(4)
v ≥ C19 (for large j , uniformly in v ∈ I−3j−M ). As

a consequence, for large j ,

P {
−(j),F−
3 (j),F−

4 (j),F−
5 (j)} ≥ C21 > 0.

Plugging this into (6.9) completes the proof of (6.2).

7. A remark. For any set A, let ξ(n,A) := ∑
x∈A ξ(n, x) = #{i : 0 ≤ i ≤ n,

Xi ∈ A}.
The recent work of Andreoletti [1] focuses on:

Yn := inf
x∈Z

min{k ≥ 0 : ξ(n, [x − k, x + k]) ≥ an},

where a ∈ [0,1) is an arbitrary but fixed constant. In words, Yn is (half) the mini-
mal size of an interval where the walk hits at least na times in the first n steps.

It is proved in [1] that under (1.1)–(1.3), there exists a constant c ∈ (0,∞) such
that

lim inf
n→∞ Yn ≤ c, P-a.s.

A close look at our argument in Section 5 reveals that for some constant c∗ > 0,

lim sup
n→∞

Yn

log log logn
≥ c∗, P-a.s.(7.1)

In fact, the proof of (5.2) shows that, for some constant C22 > 0, maxx∈[1,d+
k ] ξ(τ−

k ,

x) ≤ C22
τ−
k

log logmk
(P-almost surely, for all large k; ditto for all the other in-

equalities stated in this paragraph). In view of (4.6) and (4.16), this implies

maxx∈Z ξ(τ−
k , x) ≤ C22

τ−
k

log logmk
. On the other hand, by (4.15),

∑
k Pω{τ−

k ≥ e3mk ,

τ−
k < τ(d+

k )} < ∞. Since τ−
k < τ(d+

k ) (Lemma 4.1), we have τ−
k ≤ e3mk . Thus,

maxx∈Z ξ(τ−
k , x) ≤ 2C22

τ−
k

log log log τ−
k

. As a result, (7.1) follows, with c∗ := 1
2C22

.

It is, however, not clear whether inequality “≤” would hold in (7.1) with an
enlarged value of the constant c∗.



1140 Z. SHI AND O. ZINDY

Acknowledgments. We are grateful to Arvind Singh for help in making the
figures in Sections 3 and 6. We wish to thank two anonymous referees for careful
reading of the manuscript and for helpful comments.

REFERENCES

[1] ANDREOLETTI, P. (2005). Almost sure estimates for the concentration neighborhood of Sinai’s
walk. Available at http://arxiv.org/abs/math/0501439.

[2] BERTOIN, J. (1993). Splitting at the infimum and excursions in half-lines for random walks
and Lévy processes. Stochastic Process. Appl. 47 17–35. MR1232850

[3] DEMBO, A., GANTERT, N., PERES, Y. and SHI, Z. (2005). Valleys and the maximum lo-
cal time for random walk in random environment. Available at http://arxiv.org/abs/math/
0508579.
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