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THE EVOLUTION OF A RANDOM VORTEX FILAMENT

BY HAKIMA BESSAIH, MASSIMILIANO GUBINELLI AND FRANCESCO RUSSO

University of Wyoming, Université Paris 13 and Université Paris 13

We study an evolution problem in the space of continuous loops in a
three-dimensional Euclidean space modeled upon the dynamics of vortex
lines in 3d incompressible and inviscid fluids. We establish existence of a
local solution starting from Hölder regular loops with index greater than 1/3.
When the Hölder regularity of the initial condition X is smaller or equal
to 1/2, we require X to be a rough path in the sense of Lyons [Rev. Mat.
Iberoamericana 14 (1998) 215–310, System Control and Rough Paths (2002).
Oxford Univ. Press]. The solution will then live in an appropriate space of
rough paths. In particular, we can construct (local) solution starting from
almost every Brownian loop.

1. Introduction. The aim of this work is to study the well-posedness of the
evolution problem for a model of a random vortex filament in three-dimensional
incompressible fluid. If u is the velocity field of the fluid, the vorticity ω : R3 → R

3

is a solenoidal field defined as ω = curlu. A vortex filament is a field of
vorticity ω which is strongly concentrated around a three-dimensional closed
curve γ described parametrically as a continuous function γ : [0,1] → R

3 such
that γ0 = γ1. Ideally, neglecting the transverse size of the filament, we can describe
the vorticity field ωγ generated by γ as the distribution

ωγ (x) = �

∫ 1

0
δ(x − γξ ) dξγξ , x ∈ R

3,(1)

where � > 0 is the intensity of vorticity. In R
3, the velocity field associated to ω

can be reconstructed with the aid of the Biot–Savart formula:

uγ (x) = − 1

4π

∫
R3

x − y

|x − y|3 ∧ ωγ (y) dy,(2)

which is the solution of curluγ = ωγ with enough decay at infinity.
Then

uγ (x) = − �

4π

∫ 1

0

x − γξ

|x − γξ |3 ∧ dξγξ ,(3)

where a ∧ b is the vector product of the vectors a, b ∈ R
3. The evolution in time

of the infinitely thin vortex filament is obtained by imposing that the curve γ is
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transported by the velocity field uγ :

d

dt
γ (t)ξ = uγ (t)(γ (t)ξ ), ξ ∈ [0,1](4)

and this gives the initial value problem

d

dt
γ (t)ξ = − �

4π

∫ 1

0

γ (t)ξ − γ (t)η

|γ (t)ξ − γ (t)η|3 ∧ dηγ (t)η, ξ ∈ [0,1].(5)

Even if the curve γ is smooth, this expression is not well defined since the integral
is divergent if γ has nonzero curvature.

To overcome this divergence, a natural approach is that of Rosenhead [23], who
suggested the following approximate equation of motion based on a regularized
kernel:

d

dt
γ (t)ξ = − �

4π

∫ 1

0

γ (t)ξ − γ (t)η

[|γ (t)ξ − γ (t)η|2 + µ2]3/2 ∧ dηγ (t)η, ξ ∈ [0,1],(6)

for some µ > 0. This model has clear advantages and has been used in some
numerical calculation of aircraft trailing vortices by Moore [21].

We will consider a generalization of the Rosenhead model where the func-
tion γ is not necessarily smooth. This is natural when we want to study models
of random vortex filaments. Indeed, for simple models of random vortex lines, the
curve γ is rarely smooth or even of bounded variation. Here we imagine to take
as initial condition a typical trajectory of a Brownian loop (since the path must
be closed) or other simple models like fractional Brownian loops (to be described
precisely in Section 5.1). As we will see later, a major problem is then the inter-
pretation of (6).

The study of the dynamics of random vortex lines is suggested by some work
of Chorin [2] and Gallavotti [15]. The main justification for the adoption of a
probabilistic point of view comes from two different directions. Chorin builds
discrete models of random vortex filaments to explain the phenomenology of
turbulence by the statistical mechanics of these coherent structures. Gallavotti
instead suggested the use of very irregular random functions to provide a natural
regularization of (5). Both approaches are on a physical level of rigor.

On the mathematical side in the recent year there has been some interest in
the study of the statistical mechanics of continuous models for vortex filaments.
Lions and Majda [17] proposed a statistical model of quasi-3d random vortex
lines which are constrained to remain parallel to a given direction and thus cannot
fold. Flandoli [7] rigorously studied the problem of the definition of the energy
for a random vortex filament modeled over a Brownian motion and Flandoli and
Gubinelli [8] introduced a probability measure over Brownian paths to study the
statistical mechanics of vortex filaments. The study of the energy of filament
configurations has been extended to models based on fractional Brownian motion
by Flandoli and Minnelli [10] and Nualart, Rovira and Tindel [22]. Moreover,
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a model of Brownian vortex filaments capable of reproducing the multi-fractal
character [12] of turbulent velocity fields has been introduced in [9].

Problem (6) defines a natural flow on three-dimensional closed curves. The
study of this kind of flows has been recently emphasized by Lyons and Li in [19],
where they study a class of flows of the form

dY

dt
= F(If (Y )), Y0 = X,(7)

where Y takes values in a (Banach) space of functions, F is a smooth function
and If (Y ) is an Itô map, that is, the map Y �→ Z where Z is the solution of the
differential equation

dZσ = f (Zσ )dYσ

driven by the path Y . They prove that, under suitable conditions, If is a smooth
map and then that (7) has (local) solutions and, thus, as a by-product, that F ◦ If

can be effectively considered a vector-field on a space of paths.
Our evolution equation does not match the structure of the flows considered

by Lyons and Li [19]. A very important difference is that (7), under suitable
assumptions on the initial condition X (e.g. X a semi-martingale path), can
be solved with standard tools of stochastic analysis (essentially Itô stochastic
calculus), while (6) has a structure which is not well adapted to a filtered
probability space and prevents even to (easily) set-up the problem in a space
of semi-martingale paths. In our opinion this peculiarity makes the problem
interesting from the point of view of stochastic analysis and was one of our main
motivation to start its study. Using Lyons’ rough paths, we will show that it is
possible to give a meaning to the evolution problem (6) starting from a (fractional
or standard) Browian loop and that this problem has always a local solution (recall
that the existence of a global solution, to our knowledge, has not been proven even
in the case of a smooth curve).

The paper is organized as follows: in Section 2 we describe precisely the
model we are going to analyze and we make some preliminary observations on
the structure of covariation of the solution (in the sense of stochastic analysis
and assuming the initial condition has finite covariations). Next, we introduce the
functional spaces in which we will set-up the problem of existence of solutions.
In Section 3 we build a local solution for initial conditions which are Hölder
continuous with exponent greater that 1/2 and for which the line integrals can
be understood à la Young [25]. In Section 4 we build a solution in a class of rough
paths (introduced in [16]) for initial conditions which are rough paths of Hölder
regularity greater that 1/3 (which essentially are p-rough paths for p < 3, in the
terminology of [20]). Moreover, we prove that the solution is Lipshitz continuous
with respect to the initial data. Finally, in Section 5 we apply these results to obtain
the evolution of random initial conditions of Brownian loop type or its fractional
variant. Appendix collects the proof of some lemmas.
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2. The model.

2.1. The evolution equation. Our aim is to start a study of the three-
dimensional evolution of random vortex filaments by the analysis of the well-
posedness of the regularized dynamical equations. Inspired by the Rosenhead
model (6), we will be interested in studying the evolution described by

∂Y (t)ξ

∂t
= V Y(t)(Y (t)ξ ), Y (0) = X,(8)

with initial condition X belonging to the set C of closed and continuous curve
in R

3 parametrized by ξ ∈ [0,1]. For any Z ∈ C, V Z is the vector-field given by
the line integral

V Z(x) =
∫
Z

A(x − y)dy =
∫ 1

0
A(x − Zξ)dZξ , x ∈ R

3,(9)

where A : R3 → R
3 ⊗ R

3 is a matrix-valued field. In this setting the Rosenhead
model is obtained by taking A of the form

A(x)ij = − �

4π

∑
k=1,2,3

εijk

xk

[|x|2 + µ2]3/2 , i, j = 1,2,3, x ∈ R
3,

where εijk is the completely antisymmetric tensor in R
3 normalized such that

ε123 = 1, µ > 0 is a fixed constant and (xk)k=1,2,3 are the components of the
vector x ∈ R

3.

2.2. A first approach using covariations for random initial conditions. Even
if the kernel of the paper is fully pathwise, before studying the existence and
uniqueness problem (in some sense to be precised), we would like to insert a
preamble concerning the stability of the quadratic variation (with respect to the
parameter) of a large class of solutions.

Let (�,F ,P) be a probability space. In order to simplify a bit the proofs, we
have chosen to use the notion of covariation introduced, for instance, in [24].

Given two processes X = (Xξ )ξ∈[0,1] and Y = (Yξ )ξ∈[0,1], the covariation
[X,Y ] is defined (if it exists) as the limit of the sequence of functions

ξ �→
∫ ξ

0
(Xρ+ε − Xρ)(Yρ+ε − Yρ)

dρ

ε

in the uniform convergence in probability sense (u.c.p.). If X and Y are classical
continuous semi-martingales, it is well known that previous [X,Y ] coincides with
the classical covariation.

A vector (X1, . . . ,Xn) of stochastic processes is said to have all its mutual
covariations if [Xi,Xj ] exist for every i, j = 1, . . . , n. Generally here we will
consider n = 3. Moreover, given a matrix or vector v, we denote v∗ its transpose.
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It is sometimes practical to have a matrix notation. If Mξ = {mij
ξ }i,j , Nξ =

{nij
ξ }i,j , are matrices of stochastic processes such that they are compatible for the

matrix product, we denote

[M,N]ξ =
{

n∑
k=1

[mik, nkj ]ξ
}

i,j

.

REMARK 1. The following result can be easily deduced from [24]. Let �1,�2
be of class C1(R3;R

3), X = (X1,X2,X3)∗,Z = (Z1,Z2,Z3)∗ (understood as
row vectors in the matrix calculus) such that (X,Z) has all its mutual covariations.
Then (�1(X),�2(Z)) has all its mutual covariations and

[�1(X),�2(Z)∗]ξ =
∫ ξ

0
(∇�1)(Zρ) d[X,Z∗]ρ(∇�2)(Xρ)∗.

REMARK 2. In reality, we could have chosen the modified Föllmer [11]
approach appearing in [5], based on discretization procedures for which the
common reader would be more accustomed.

In that case the same results stated in Remark 1 and Proposition 1 will be valid
also in this discretization framework. We recall briefly that context.

Consider a family of subdivisions 0 = ξn
0 < · · · < ξn

n = 1 of the interval [0,1].
We will say that the mesh of the subdivision converges to zero if |ξn

i+1 − ξn
i | go to

zero as n → ∞.
In this framework, the covariation [X,Y ] is defined (if it exists) as the limit of

ξ �→
n−1∑
i=0

(
Xξn

i+1∧ξ − Xξn
i ∧ξ

)(
Yξn

i+1∧ξ − Yξn
i ∧ξ

)
in the u.c.p. sense with respect to ξ and the limit does not depend on the chosen
family of subdivisions.

Suppose there exists a sub Banach space B of C and let V : (γ, y) → V γ (y) be
a Borel map from B × R

3 to R
3 such that:

(V1) for fixed γ ∈ B , y �→ V γ (y) is C1
b(R3;R

3);
(V2) the application γ �→ ‖∇V γ ‖∞ is locally bounded from B to R.

The main motivation for this abstract framework comes from the setting
described in the following section. Indeed, as we will see, there exists natural
Banach sub-spaces B of C such that the map V defined as

V γ (x) =
∫ 1

0
A(x − γξ ) d∗γξ ,

where d∗ denotes some kind of path integration defined for every γ ∈ B , satisfy
the above hypotheses (V1) and (V2).
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PROPOSITION 1. Suppose that a random field (Y (t)ξ )ξ∈[0,1],t∈[0,T ] with
values in B is a continuous solution of

Y(t)ξ = Xξ +
∫ t

0
V Y(s)(Y (s)ξ ) ds; ξ ∈ [0,1], t ∈ [0, T ],(10)

with an initial condition X having all its mutual covariations. Then at each time
t ∈ [0, T ], the path Y(t) has all its mutual covariations. Moreover,

[Y (t), Y ∗(t)]ξ =
∫ ξ

0
M(t)ρ d[X,X∗]ρ(M(t)ρ)∗,(11)

where

M(t)ξ := exp
[∫ t

0

(∇V Y(s))(Y (s)ξ ) ds

]
.(12)

REMARK 3. Note the following:

1. It is possible to adapt this proof to the situation where the solution exists up to
a random time.

2. Since we are in the multidimensional case, we recall that Eξ(t) =
exp[∫ t

0 Qξ(s) ds] is defined as the matrix-valued function satisfying the dif-
ferential equation

Eξ(t) ∈ R
3 ⊗ R

3,
dEξ (t)

dt
= Qξ(t)Eξ (t), Eξ (0) = Id .

3. A typical case of initial condition of process having all its mutual covariation is
a three-dimensional Brownian loop.

PROOF OF PROPOSITION 1. For simplicity, we prolongate the processes X

parametrized by [0,1], setting Xξ = X1, ξ ≥ 1. Let ε > 0. For t ∈ [0, T ],
ξ ∈ [0,1], write

Zε(t)ξ = Y(t)ξ+ε − Y(t)ξ , Xε
ξ = Xξ+ε − Xξ,

then

Zε(t)ξ = Xε
ξ +

∫ t

0

[
V Y(s)(Y (s)ξ+ε) − V Y(s)(Y (s)ξ )

]
ds

= Xε
ξ +

∫ t

0

(∇V Y(s))(Y (s)ξ )Z
ε(s)ξ ds

+
∫ t

0
Rε(s)ξZ(s)ξ ds,

where

Rε(s)ξ =
∫ t

0
ds

∫ 1

0
da

[(∇V Y(s))(Y(s)ξ + aZε(s)ξ
) − (∇V Y(s))(Y (s)ξ )

]
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so that

sup
s≤T

|Rε(s)ξ | → 0 a.s.

Therefore,

Zε(t)ξ = exp
[∫ t

0
ds

(∇V Y(s))(Y (s)ξ ) +
∫ t

0
dsRε(s)ξ

]
Xε

ξ =: M(t)εξX
ε
ξ .

Multiplying both sides by their transposed, dividing by ε and integrating from
0 to y, we get∫ ξ

0

Zε(t)ρ(Zε)∗(t)ρ
ε

dρ =
∫ ξ

0
M(t)ερ

Xε
ρ(Xε)∗ρ

ε
(M(t)ερ)∗ dρ.

Then since, as ε → 0,

M(t)εξ → exp
[∫ t

0

(∇V Y(s))(Y (s)ξ ) ds

]
= M(t)ξ

uniformly in t and ξ almost surely, using Lebesgue dominated convergence
theorem, and similar arguments to Proposition 2.1 of [24], it is enough to show
that

ξ �→
∫ ξ

0
exp

[∫ t

0
ds

(∇V Y(s))(Y (s)ρ)

]
Xε

ρ(Xε
ρ)∗

ε
exp

[∫ t

0
ds

(∇V Y(s))(Y (s)ρ)

]∗
dρ

converges u.c.p. to the right member of (11).
This is obvious since ∫ ξ

0

Xε
ρ(Xε

ρ)∗

ε
dξ → [X,X∗]ξ

u.c.p. with respect to ξ ∈ [0,1] and so, modulo extraction of a subsequence, we
can make use of the weak �-topology. �

REMARK 4. Suppose that the initial condition has all its n-mutual covariations
n ≥ 3, see for this [4]. Proceeding in a similar way as above, it is possible to show
that Y(t) has all its mutual n-covariations.

A typical example of process having a strong finite n-variation is fractional
Brownian motion with Hurst index H = 1/n.

2.3. The functional space framework. The filament evolution problem when
X has finite-length has been previously studied in [1] where it is proved that, under
some regularity conditions on A, there exists a unique local solution living in the
space H 1

c of closed curves with L1 derivative.
We would like to be able to solve the Cauchy problem (8) starting from a random

curve X like a 3d-Brownian loop (since it must be closed) or a fractional Brownian



1832 H. BESSAIH, M. GUBINELLI AND F. RUSSO

loop. In these cases X is a.s. not in H 1
c and, as a consequence, we need a sensible

definition to the path-integral appearing in (9).
Even if X is a Brownian loop do not exists a simple strategy to give a well-

defined meaning to the evolution problem (8) through the techniques of stochastic
calculus. Indeed, we could try to define the integral in V Y as an Itô or Stratonovich
integral which requires Y to be a semi-martingale with respect to some filtration F
(e.g., the filtration generated by X). However, we readily note that the problem
has no relationship with any natural filtration F since, for example, to compute
the velocity field V Y (x) in some point x, we need information about the whole
trajectory of Y .

A viable (and relatively straightforward) strategy is then to give a well-defined
meaning to the problem using a path-wise approach.

We require that the initial data has γ -Hölder regularity. When γ > 1/2, the line
integral appearing in the definition (9) of the instantaneous velocity field V Y(t)

can be understood à la Young [25]. The corresponding results will be presented in
Section 3.

When 1/2 ≥ γ > 1/3, an appropriate notion of line integral has been formulated
by Lyons in [18, 20]. In Section 4 we will show that, given an initial γ -Hölder
path X (and an associated area process X

2), there exists a unique local solution
of the problem (13) in the class DX of paths weakly-controlled by X. The
class DX has been introduced in [16] to provide an alternative formulation of
Lyons’ theory of integration and corresponds to paths Z ∈ C which locally behaves
as X in the sense that

Zξ − Zη = Fη(Xξ − Xη) + O(|ξ − η|2γ ),

where F ∈ C([0,1],R
3 ⊗ R

3) is a path taking values in the bounded endomor-
phisms of R

3.
In particular, these results provide solutions of the problem when X is a

fractional Brownian loop of Hurst-index H > 1/3 (see Section 5).

3. Evolution for γ -Hölder curves with γ > 1/2.

3.1. Setting and notation. For any X ∈ C, let

‖X‖γ := sup
ξ,η∈[0,1]

|Xξ − Xη|
|ξ − η|γ , ‖X‖∞ := sup

ξ∈[0,1]
|Xξ |

and

‖X‖∗
γ := ‖X‖∞ + ‖X‖γ .

Denote Cγ the set of paths X ∈ C such that ‖X‖∗
γ < ∞.

All along this section we will assume that γ is a fixed number greater than 1/2.
In this case the following result states that there exists a unique extension to
the Riemann–Stieltjes integral

∫
f dg defined for smooth functions f,g to all

f,g ∈ Cγ .
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PROPOSITION 2 (Young’s integral). Let X,Y ∈ Cγ , then
∫ ξ
η Xρ dYρ is well

defined, coincides with the Riemann–Stieltjes integral when the latter exists and
satisfies the following bound:∣∣∣∣ ∫ ξ

η
(Xρ − Xη)dYρ

∣∣∣∣ ≤ Cγ ‖X‖γ ‖Y‖γ |ξ − η|2γ

for all ξ, η ∈ [0,1], where Cγ ≥ 1 is a constant depending only on γ .

PROOF. See, for example, [18, 25]. �

It will be convenient to introduce the integrated form of (8) as

Y(t)ξ = Xξ +
∫ t

0
V Y(s)(Y (s)ξ ) ds.(13)

Consider the Banach space XT := C([0, T ],Cγ ), with norm

‖Y‖XT
:= sup

t∈[0,T ]
‖Y(t)‖∗

γ , Y ∈ XT .

Solutions of (13) will then be found as fixed points of the nonlinear map
F : XT → XT defined as

F(Y )(t)ξ := Xξ +
∫ t

0
V Y(s)(Y (s)ξ ) ds, t ∈ [0, T ], ξ ∈ [0,1],(14)

where the application Z �→ V Z is defined for any Z ∈ Cγ as in (9) with the
line integral understood according to Proposition 2 and with the matrix field A

satisfying regularity conditions which will be shortly specified.
On m-tensor field ϕ : R3 → (R3)⊗m and for any integer n ≥ 0, we define the

following norm:

‖ϕ‖n :=
n∑

k=0

‖∇kϕ‖ where ‖ϕ‖ := sup
x∈R3

|ϕ(x)|,

where the norm |M| of a matrix M ∈ R
3 ⊗ R

3 or, more generally, of an n-tensor
M ∈ (R3)⊗n is given by

|M| =
3∑

i1=1

· · ·
3∑

in=1

|Mi1···in |,

with (Mi1···in)i1,...,in the components of the tensor in the canonical basis of R
3.

Then we can state the following:

THEOREM 1. Assume ‖∇A‖2 < ∞ and X ∈ Cγ . Then there exists a time T0
depending only on ‖∇A‖1,‖X‖∗

γ , γ such that (13) has a unique solution bounded
in Cγ .
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PROOF. Consider the initial condition X fixed. According to Lemma 3 below,
there exists T0 > 0 and BT0 > 0 depending on ‖∇A‖1, ‖X‖∗

γ , γ such that the set
{Y ∈ XT0 :Y(0) = X,‖Y‖XT0

≤ BT0} is invariant under F . Lemma 4 then asserts
that, provided ‖∇A‖2 < ∞, the map F is a strict contraction over a smaller
time interval [0, T ] with T ≤ T0. Proceeding by induction on the intervals [0, T ],
[T ,2T ], and so on . . . , it is possible to construct the unique solution of the
evolution problem up to the time T0. �

Before giving the lemmas used in the proof, we will state two useful results.
The first is just a straighforward computation on Hölder functions, the second will
allow to control the velocity field V Y in terms of the regularity of Y and of A.

LEMMA 1. Let Y, Ỹ ∈ Cγ and ϕ ∈ C2, then

‖ϕ(Y )‖γ ≤ ‖∇ϕ‖‖Y‖γ(15)

and

‖ϕ(Y ) − ϕ(Ỹ )‖γ ≤ ‖∇ϕ‖1(1 + ‖Y‖γ )‖Y − Ỹ‖γ .(16)

PROOF. See Section A.1. �

LEMMA 2. Let Y, Ỹ ∈ Cγ . For any integer n ≥ 0, the following estimates
holds:

‖∇nV Y ‖ ≤ Cγ ‖∇n+1A‖‖Y‖2
γ(17) ∥∥∇nV Y − ∇nV Ỹ

∥∥
(18)

≤ Cγ ‖∇n+1A‖1(‖Y‖γ + ‖Ỹ‖γ + ‖Ỹ‖γ ‖Y‖γ )‖Y − Ỹ‖∗
γ .

PROOF. See Section A.2. �

3.2. Local existence and uniqueness.

LEMMA 3. Assume ‖∇A‖1 < ∞. For any initial datum X ∈ Cγ , there exists
a time T0 > 0, such that for any time T < T0, the set

QT := {
Y ∈ XT :Y(0) = X,‖Y‖XT

≤ BT

}
,

where BT is a suitable constant, is invariant under F .

PROOF. Let us compute

|F(Y )(t)ξ | ≤ |Xξ | +
∫ t

0

∣∣V Y(s)(Y (s)ξ )
∣∣ds ≤ |Xξ | +

∫ t

0

∥∥V Y(s)
∥∥∞ ds
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so

‖F(Y )(t)‖∞ ≤ ‖X‖∞ +
∫ t

0

∥∥V Y(s)
∥∥ds

≤ ‖X‖∞ + Cγ ‖∇A‖
∫ T

0
‖Y(s)‖2

γ ds

≤ ‖X‖∞ + T Cγ ‖∇A‖‖Y‖2
XT

.

The γ -Hölder norm of the path F(Y )(t) can be estimated in a similar fashion:

‖F(Y )(t)‖γ ≤ ‖X‖γ +
∫ t

0

∥∥V Y(s)(Y (s)·)
∥∥
γ ds

≤ ‖X‖γ +
∫ t

0

∥∥∇V Y(s)
∥∥‖Y(s)‖γ ds

≤ ‖X‖γ + Cγ ‖∇2A‖
∫ T

0
‖Y(s)‖3

γ ds

≤ ‖X‖γ + T Cγ ‖∇2A‖‖Y‖3
XT

,

where we used (15) in the second line and (17) in the third.
Then

‖F(Y )‖XT
≤ ‖X‖∗

γ + Cγ T ‖∇A‖1‖Y‖2
XT

(
1 + ‖Y‖XT

)
.

Let BT be a solution of

BT ≤ ‖X‖∗
γ + Cγ T ‖∇A‖1B

2
T (1 + BT )

which exists for any T ≤ T0, where T0 is a constant depending only on ‖X‖∗
γ ,

‖∇A‖1 and γ . Then if ‖Y‖XT
≤ BT , we have ‖F(Y )‖XT

≤ BT and QT is invariant
under F . �

Given another initial condition X̃ ∈ Cγ , consider the associated map

F̃ (Y )(t)ξ = X̃ξ +
∫ t

0
V Y(s)(Y (s)ξ ) ds, t ∈ [0, T ], ξ ∈ [0,1].(19)

LEMMA 4. Assume ‖∇A‖2 < ∞. We have

‖F(Y ) − F̃ (Ỹ )‖XT

(20)
≤ ‖X − X̃‖∗

γ + Cγ T ‖∇A‖2
(
1 + ‖Y‖XT

+ ‖Ỹ‖XT

)3‖Y − Ỹ‖XT
.

In particular, there exists a time T ≤ T0 such that the map F is a strict contraction
on QT .
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PROOF. We proceed as follows: take Y, Ỹ ∈ Cγ , then

‖F(Y )(t) − F̃ (Ỹ )(t)‖∞

≤ ‖X − X̃‖∞ +
∫ T

0

[∥∥V Y(s)(Y (s)·) − V Y(s)(Ỹ (s)·)
∥∥∞

+ ∥∥V Y(s)(Ỹ (s)·) − V Ỹ (s)(Ỹ (s)·)
∥∥∞

]
ds

≤ ‖X − X̃‖∞ +
∫ T

0

[∥∥∇V Y(s)
∥∥‖Y(s) − Ỹ (s)‖∞ + ∥∥V Y(s) − V Ỹ (s)

∥∥]
ds

≤ ‖X − X̃‖∞ + Cγ

∫ T

0

[∥∥‖∇2A‖‖Y(s)‖2
γ ‖Y(s) − Ỹ (s)‖∞

+ ‖∇A‖1
(‖Y(s)‖γ + ‖Ỹ (s)‖γ

+ ‖Ỹ (s)‖γ ‖Y(s)‖γ

)‖Y(s) − Ỹ (s)‖∗
γ

]
ds

≤ ‖X − X̃‖∞ + Cγ T ‖∇A‖1‖Y − Ỹ‖XT

(
1 + ‖Y‖XT

+ ‖Ỹ‖XT

)2

and

‖F(Y )(t) − F̃ (Ỹ )(t)‖γ

≤ ‖X − X̃‖γ +
∫ T

0

[∥∥V Y(s)(Y (s)·) − V Y(s)(Ỹ (s)·)
∥∥
γ

+ ∥∥V Y(s)(Ỹ (s)·) − V Ỹ (s)(Ỹ (s)·)
∥∥
γ

]
ds

≤ ‖X − X̃‖γ +
∫ T

0

[∥∥∇V Y(s)
∥∥

1‖Y(s) − Ỹ (s)‖∗
γ

(
1 + ‖Y(s)‖γ

)
+ ∥∥∇V Y(s) − ∇V Ỹ (s)

∥∥‖Ỹ (s)‖γ

]
ds

≤ ‖X − X̃‖γ

+ Cγ

∫ T

0

[‖∇2A1‖Y(s)‖2
γ

(
1 + ‖Y(s)‖γ

)‖Y(s) − Ỹ (s)‖∗
γ

+ ‖∇2A‖1
(‖Y(s)‖γ + ‖Ỹ (s)‖γ + ‖Ỹ (s)‖γ ‖Y(s)‖γ

)
× ‖Ỹ (s)‖γ ‖Y(s) − Ỹ (s)‖∗

γ

]
ds

≤ ‖X − X̃‖γ + Cγ T ‖∇2A‖1‖Y − Ỹ‖XT

(
1 + ‖Y‖XT

+ ‖Ỹ‖XT

)3
.

Putting together the two estimates, we get

‖F(Y )−F(Ỹ )‖XT
≤ ‖X− X̃‖∗

γ +Cγ T ‖∇A‖2
(
1+‖Y‖XT

+‖Ỹ‖XT

)3‖Y − Ỹ‖XT
.
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There exists T ≤ T0 such that

Cγ
T ‖∇A‖2(1 + 2BT )3 =: α < 1,

then if Y, Ỹ ∈ QT , we have

‖F(Y ) − F(Ỹ )‖XT
≤ Cγ T ‖∇A‖2(1 + 2BT )3‖Y − Ỹ‖XT

= α‖Y − Ỹ‖XT

so that F is a strict contraction on QT with a unique fixed-point. �

REMARK 5. Here and in the proofs for the case γ > 1/3, some conditions
on A can be slightly relaxed using better estimates. For example, in the proof
of Lemma 3 the condition ‖∇A‖1 < ∞ can be relaxed to require ∇A to be a
Hölder continuous function of index (1 − γ + ε)/γ for some ε > 0. However,
these refinements are not able to improve qualitatively the results.

3.3. Dependence on the initial condition. Denote with T0(‖X‖∗
γ ) the exis-

tence time of the solution build in Theorem 1, where we have considered explicitly
its dependence on the norm of the initial condition. For any r > 0, let B(Cγ ; r),
the open ball of Cγ with radius r and centered in zero. Now, fix r > 0 and let
� :B(Cγ ; r) → XT0 , where T0 = T0(r), denote the solution of the evolution prob-
lem starting from the initial condition X ∈ B(Cγ ; r) and living up to time T0(r).

THEOREM 2. Under the conditions of Theorem 1, the map X �→ �(X) is
Lipshitz.

PROOF. Consider two initial conditions X, X̃ ∈ B(Cγ ; r). Note that
F(�(X)) = �(X) in XT0 . By Lemma 4, we have that, for T < T0,

‖F(�(X)) − F̃ (�(X̃))‖XT

= ‖F(�(X)) − F̃ (�(X̃))‖XT

≤ ‖X − X̃‖∗
γ

+ Cγ T ‖∇A‖2
(
1 + ‖�(X)‖XT

+ ‖�(X̃)‖XT

)3‖�(X) − �(X̃)‖XT
.

Since the norm of the initial condition is bounded by r in Cγ , by Lemma 3, there
exists a constant BT0(r) such that ‖�(X)‖XT0

≤ BT0(r) for any X ∈ B(Cγ ; r).
Then for T < T0 sufficiently small, we have

‖�(X) − �(X̃)‖XT
≤ (1 − α)−1‖X − X̃‖∗

γ ,

where

α := Cγ T ‖∇A‖2
(
1 + ‖�(X)‖XT

+ ‖�(X̃)‖XT

)3
< 1;

which gives the Lipshitz continuity of the map on XT . By an easy induction
argument, it follows the Lipshitz continuity on all XT0 (see, e.g., [16]). �
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3.4. Blow-up estimate. From the previous results, it is clear that if the norm
‖Y(t)‖γ of a solution Y with initial condition X ∈ Cγ is bounded by some
number M in some interval [0, T ], then the solution can be extended on a strictly
larger interval [0, T + δM ] with δM depending only on M (and on the data of
the problem). This implies that the only case in which we cannot find a global
solution (for any positive time) is when there is some time t̂γ (X) such that
limt→t̂γ (X)− ‖Y(t)‖γ = +∞. This time is an epoch of irregularity for the evolution
in the class Cγ . Near this epoch we can establish a lower bound for the norm
‖Y(t)‖γ .

PROPOSITION 3. Assume t̂γ (X) > 0 is the smallest epoch of irregularity for
a solution Y in the class Cγ . Then we have

‖Y(t)‖γ ≥ C

(t̂γ (X) − t)1/2
(21)

for any t ∈ [0, t̂γ (X)).

PROOF.

‖Y(t)‖γ − ‖Y(s)‖γ ≤
∫ t

s

∥∥V Y(u)(Y (u)·)
∥∥
γ du

(22)

≤
∫ t

s

∥∥∇V Y(u)
∥∥∞‖Y(u)‖γ du,

and using Lemma 2, we have

‖Y(t)‖γ − ‖Y(s)‖γ ≤ C

∫ t

s
‖Y(u)‖3

γ du

for some constant C depending only on A and γ , so that

d

dt
‖Y(t)‖γ ≤ C‖Y(t)‖3

γ ,

letting y(t) = ‖Y(t)‖γ and integrating the differential inequality between times
t > s, we obtain

1

y(s)2 − 1

y(t)2 ≤ 2C(t − s).

Now, assume that there exists a time t̂γ (X) such that limt→t̂γ (X)− y(t) = +∞,

then, for any s < t̂γ (X), we have the following lower bound for the explosion of
the Cγ norm of Y :

‖Y(s)‖γ = y(s)1/2 ≥ 1

(2C)1/2(t̂γ (X) − s)1/2
. �
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Estimate (22) used in the previous proof implies also that

z(t) ≤ z(0) +
∫ t

0

∥∥∇V Y(s)
∥∥∞z(s) ds,(23)

where z(t) = sups∈[0,t] ‖Y(s)‖γ . By the Gronwall lemma,

z(t) ≤ z(0) exp
(∫ t

0

∥∥∇V Y(s)
∥∥∞ ds

)
.

This bound allows the continuation of any solution on the interval [0, t] if the
integral

∫ t
0 ‖∇V Y(s)‖∞ ds is finite. Then if t̂γ (X) is the first irregularity epoch

in the class Cγ , we must have that t̂γ (X) = t̂ (X) = sup1/2<γ≤1 t̂γ (X) for any
1/2 < γ ≤ 1. Indeed, is easy to see that, for any t < t̂(X), there exists a finite
constant Mt such that sups∈[0,t] ‖∇V Y(s)‖∞ ≤ Mt .

COROLLARY 1. Let X ∈ Cγ∗ with γ∗ > 1/2, then, for any 1/2 < γ ≤ γ∗,
there exists a unique solution Yγ ∈ C([0, t̂γ (X)),Cγ ) with initial condition X.
Moreover, the first irregularity epoch t̂γ (X) for the solution in Cγ does not depend
on γ ≥ γ ∗.

4. Evolution for γ > 1/3.

4.1. Rough path-integrals. When γ ≤ 1/2, there are difficulties in defining
the path-integral appearing in (9) for the velocity field V . A successful approach
to such irregular integrals has been found by Lyons to consist in enriching the
notion of path (see, e.g., [18, 20] and for some recent contributions [6, 13, 16]).

For any γ > 1/3, a γ -rough path (of degree two) is a couple X = (X,X
2),

where X ∈ Cγ and X
2 ∈ C([0,1]2,R

3 ⊗R
3) is a matrix-valued function (called the

area process) on the square [0,1]2 verifying the following compatibility condition
with X:

X
2,ij
ξρ − X

2,ij
ξη − X

2,ij
ηρ = (Xi

ξ − Xi
η)(X

j
η − Xj

ρ), ξ, η, ρ ∈ [0,1]2,(24)

(i, j = 1,2,3 are vector indexes) and such that

‖X
2‖2γ := sup

ξ,η∈[0,1]
|X2

ξη|
|ξ − η|2γ

< ∞.(25)

REMARK 6. If γ > 1/2, then a natural choice for the area process X
2 is the

geometric one given by

(X2
geom)

ij
ξη =

∫ η

ξ
(Xρ − Xξ)

i dXj
ρ,(26)

which naturally satisfy (24) (as can be directly checked) and (25) (using Lemma 2).
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As shown by Lyons [18], when γ > 1/3, any integral of the form∫
ϕ(X)dX

can be defined to depend in a continuous way on the γ -rough path (X,X
2) for

sufficiently regular ϕ.
In [16] it is pointed out that any γ -rough path X define a natural class of paths

for which path-integrals are meaningful. Define the Banach space DX of paths
weakly-controlled by X as the set of paths Y that can be decomposed as

Yξ − Yη = Y ′
η(Xξ − Xη) + RY

ηξ ,(27)

with Y ′ ∈ Cγ ([0,1],R
3 ⊗ R

3) and ‖RY ‖2γ < ∞. Define the norm for Y ∈ DX as

‖Y‖D := ‖Y ′‖γ + ‖RY ‖2γ + ‖Y ′‖∞;
moreover, let

‖Y‖∗
D := ‖Y‖D + ‖Y‖∞.

Since we will need to consider only closed paths, we will require for Y ∈ DX

that Y0 = Y1. Then it is easy to show that

‖Y‖γ ≤ ‖Y‖D(1 + ‖X‖γ )

and that DX ⊆ Cγ .
The next lemma states that DX behaves nicely under maps by regular functions:

LEMMA 5. If ϕ is a C2 function and Y ∈ DX , then ϕ(Y ) ∈ DX with ϕ(Y )′ =
∇ϕ(Y )Y ′ and there exists a constant K ≥ 1 such that

‖ϕ(Y )‖D ≤ K‖∇ϕ‖1‖Y‖D(1 + ‖Y‖D)(1 + ‖X‖γ )2.(28)

Moreover, if Y, Ỹ ∈ DX , we have

‖ϕ(Y ) − ϕ(Ỹ )‖D
(29)

≤ K‖∇ϕ‖2‖Y‖D(1 + ‖Y‖D + ‖Ỹ‖D)2(1 + ‖X‖γ )4‖Y − Ỹ‖D.

PROOF. See [16], Proposition 4. �

The main result about weakly-controlled paths is that they can be integrated one
against the other with a good control of the resulting object:

LEMMA 6 (Integration of weakly-controlled paths). If Y,Z ∈ DX , then the
integral ∫ η

ξ
Y dZ := Yξ (Zη − Zξ) + Y ′

ξZ
′
ξX

2
ηξ + Qξη, η, ξ ∈ [0,1]
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is well defined with

‖Q‖3γ ≤ C′
γ CX‖Y‖D‖Z‖D,

where C′
γ > 1 and

CX = (1 + ‖X‖γ + ‖X
2‖2γ ).

The integral
∫ η
ξ Y dZ is the limit of the following “renormalized” finite sums:

n−1∑
i=0

[
Yξi

(
Zξi+1 − Zξi

) + Y ′
ξi
Z′

ξi
X

2
ξi+1ξi

]
,

(where ξ0 = ξ < ξ1 < · · · < ξn = η is a finite partition of [ξ, η]) as the size of the
partition goes to zero.

Moreover, if Ỹ , Z̃ ∈ DX̃ , then∫ η

ξ
Y dZ −

∫ η

ξ
Ỹ dZ̃

= Yξ (Zη − Zξ) − Ỹξ (Z̃η − Z̃ξ ) + (Y ′
ξZ

′
ξ − Ỹ ′

ξ Z̃
′
ξ )X

2
ηξ + Qξη − Q̃ξη

and

‖Q − Q̃‖3γ ≤ C′
γ CX(‖Y‖DεY + ‖Z‖DεZ)

with

εY = ‖Y ′ − Ỹ ′‖∞ + ‖Y ′ − Ỹ ′‖γ + ∥∥RY − RỸ
∥∥

2γ ,

εZ = ‖Z′ − Z̃′‖∞ + ‖Z′ − Z̃′‖γ + ∥∥RZ − RZ̃
∥∥

2γ .

PROOF. See [16], Theorem 1. �

A weakly-controlled path (Y,Y ′) ∈ DX can be naturally lifted to a γ -rough path
by setting

Y
2,ij
ρξ :=

∫ ξ

ρ
(Y i

η − Y i
ρ) dY j

η ,(30)

where the integral is the rough integral in Lemma 6.

4.2. Local existence and uniqueness. Given T > 0, consider the Banach space
DX,T = C([0, T ],DX) endowed with the norm

‖Y‖DX,T
:= sup

t∈[0,T ]
‖Y(t)‖∗

D

and, as above, the application F : DX,T → DX,T defined as

F(Y )(t)ξ := Xξ +
∫ t

0
V Y(s)(Y (s)ξ ) ds
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with

V Y (x) :=
∫ 1

0
A(x − Yη) dYη(31)

understood as a rough integral. Lemma 5 guarantees, under suitable smoothness of
the function x �→ V Y(s)(x), that F(Y ) ∈ DX,T if Y ∈ DX,T with F(Y )′ given by

[F(Y )(t)′]ijξ := δij +
3∑

k=1

∫ t

0
∇k

[
V Y(s)(Y (s)ξ )

]i[Y(s)′ξ ]kj ds,
(32)

i, j = 1,2,3,

where δij is the Kronecker symbol.
A result proven in [16], page 103, implies that the rough integral in (33) can be

indifferently understood as an integral with respect to the weakly-controlled path
Y ∈ DX or as an integral over the lifted rough path (Y,Y

2), where Y
2 is defined

as in (30).
We will state now the main result of this section, namely, the existence and

uniqueness of solutions to the vortex line equation in the space DX .

THEOREM 3. Assume ‖∇A‖4 < ∞ and X is a γ -rough path. Then there exists
a time T0 > 0 depending only on ‖∇A‖3,X,X, γ such that (13) has a unique
solution bounded in DX for any T ≤ T0.

PROOF. Lemmas 8 and 9 prove that, on a small enough time interval [0, T ],
the map F is a strict contraction on some ball of DX,T having a unique fixed point.
The arguments are similar to those used in the case γ > 1/2. �

Since V is defined through rough integrals, we can obtain the following bounds
on its regularity:

LEMMA 7. Let Y, Ỹ ∈ DX , for any integer n ≥ 0,

‖∇nV Y ‖ ≤ 4C′
γ ‖∇n+1A‖1C

3
X‖Y‖2

D(1 + ‖Y‖D)(33)

and ∥∥∇nV Y − ∇nV Ỹ
∥∥ ≤ 16C′

γ C3
X‖∇n+1A‖2‖Y − Ỹ‖∗

D(1 + ‖Y‖D)2‖Y‖D.(34)

PROOF. See Section A.3. �

LEMMA 8. Assume ‖∇A‖3 < ∞. For any initial γ -rough path X with
γ > 1/3, there exists a time T0 such that, for any time T ≤ T0, the set

QT := {
Y ∈ DX,T :Y(0) = X,‖Y‖DX,T

≤ BT

}
,

where BT is a suitable constant, is invariant under F .
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PROOF. Fix a time T > 0. First of all we have, for any t ∈ [0, T ],
|F(Y )(t)ξ | ≤ |Xξ | +

∫ t

0

∥∥V Y(s)
∥∥∞ ds

≤ ‖X‖∞ + 4C′
γ ‖∇A‖1C

3
X

∫ t

0
ds ‖Y(s)‖2

D

(
1 + ‖Y(s)‖D

)
≤ ‖X‖∞ + 4C′

γ T C3
X‖∇A‖1‖Y‖2

DX,T

(
1 + ‖Y‖DX,T

)
so that

sup
t∈[0,T ]

‖F(Y )(t)‖ ≤ ‖X‖∞ + 4T C′
γ C3

X‖∇A‖1‖Y‖2
DX,T

(
1 + ‖Y‖DX,T

)
.

Next,

‖F(Y )(t)‖D ≤ ‖X‖D +
∫ t

0

∥∥V Y(s)(Y (s)·)
∥∥
D ds

≤ ‖X‖D + KC2
X

∫ t

0

∥∥∇V Y(s)
∥∥

1‖Y(s)‖D

(
1 + ‖Y(s)‖D

)
ds,

where we used Lemma 5.
Lemma 7 gives then

‖F(Y )(t)‖D ≤ ‖X‖D + 16KC′
γ C5

X

∫ t

0
‖Y(s)‖3

D

(
1 + ‖Y(s)‖D

)2
ds,

from which we easily obtain

‖F(Y )‖DX,T
≤ ‖X‖∗

D + C′
γ T

[
16KC5

X‖Y‖3
DX,T

(
1 + ‖Y‖DX,T

)2

+ 4C3
X‖Y‖2

DX,T

(
1 + ‖Y‖DX,T

)]
≤ ‖X‖∞ + 1 + 20KC′

γ C5
XT ‖∇A‖3‖Y‖2

DX,T

(
1 + ‖Y‖DX,T

)3

and for T small enough (T ≤ T0 with T0 depending only on X and ‖∇A‖3),
we have that there exists a constant BT such that if ‖Y‖DX,T

≤ BT , then
‖F(Y )‖DX,T

≤ BT . �

LEMMA 9. Assume ‖∇A‖4 < ∞. There exists a time T ≤ T0 such that the
map F is a strict contraction on QT .

PROOF. Let Z(t) := F(Y )(t) and Z̃(t) := F(Ỹ )(t), with Y, Ỹ ∈ QT . Let
H := Z − Z̃. We start with the estimation of the sup norm of H(t):

H(t)ξ = Z(t)ξ − Z̃(t)ξ =
∫ t

0
ds

[
V Y(s)(Y (s)ξ ) − V Ỹ (s)(Ỹ (s)ξ )

]
=

∫ t

0
ds

[
V Y(s)(Y (s)ξ ) − V Y(s)(Ỹ (s)ξ ) + V Y(s)(Ỹ (s)ξ ) − V Ỹ (s)(Ỹ (s)ξ )

]
,



1844 H. BESSAIH, M. GUBINELLI AND F. RUSSO

which gives

‖H(t)‖∞ ≤
∫ t

0
ds

[∥∥∇V Y(s)
∥∥∞‖Y(s) − Ỹ (s)‖∞ + ∥∥V Y(s) − V Ỹ (s)

∥∥∞
]

≤ C′
γ T ‖Y − Ỹ‖DX,T

[
4C3

X‖∇2A‖1‖Y‖2
DX,T

(
1 + ‖Y‖DX,T

)
(35)

+ 16C3
X‖∇A‖2‖Y‖DX,T

(
1 + ‖Y‖DX,T

)2]
≤ 20C′

γ T C3
X‖∇A‖2

(
1 + ‖Y‖DX,T

)3‖Y − Ỹ‖DX,T
.

Next we need to estimate the DX norm of H(t):

‖H(t)‖D ≤
∫ T

0

∥∥V Y(s)(Y (s)·) − V Ỹ (s)(Ỹ (s)·)
∥∥
D ds

≤
∫ T

0

[∥∥V Y(s)(Y (s)·) − V Ỹ (s)(Y (s)·)
∥∥
D

+ ∥∥V Ỹ (s)(Y (s)·) − V Ỹ (s)(Ỹ (s)·)
∥∥
D

]
ds.

Next we estimate the first contribution in the integral by using Lemmas 5 and 7 as∥∥V Y(s)(Y (s)·) − V Ỹ (s)(Y (s)·)
∥∥
D

≤ KC2
X

∥∥∇V Y(s) − ∇V Ỹ (s)
∥∥

1‖Y(s)‖D

(
1 + ‖Y(s)‖D

)
≤ 32KC′

γ C5
X‖∇2A‖3‖Y(s) − Ỹ (s)‖∗

D‖Y(s)‖2
D

(
1 + ‖Y(s)‖D

)3

≤ 32KC′
γ C5

X‖∇2A‖3‖Y − Ỹ‖DX,T
‖Y‖2

DX,T

(
1 + ‖Y‖DX,T

)3

and the second as∥∥V Ỹ (s)(Y (s)·) − V Ỹ (s)(Ỹ (s)·)
∥∥
D

≤ KC4
X

∥∥∇V Ỹ (s)
∥∥

2

(
1 + ‖Ỹ (s)‖D + ‖Y(s)‖D

)2‖Y − Ỹ‖D

≤ 8KC′
γ ‖∇2A‖3C

7
X

(
1 + ‖Ỹ (s)‖D + ‖Y(s)‖D

)3‖Ỹ (s)‖2
D‖Y(s) − Ỹ (s)‖D

≤ 8KC′
γ ‖∇2A‖3C

7
X

(
1 + ‖Ỹ‖DX,T

+ ‖Y‖DX,T

)3‖Ỹ‖2
DX,T

‖Y − Ỹ‖DX,T
,

giving

‖H(t)‖D ≤ 40T KC′
γ ‖∇2A‖3C

7
X

(
1 + ‖Y‖DX,T

+ ‖Y‖DX,T

)5‖Y − Ỹ‖DX,T
.

Finally, collecting together the bounds,

‖F(Y ) − F(Ỹ )‖DX,T

≤ 60T C′
γ KC7

X‖∇A‖4
(
1 + ‖Y‖DX,T

+ ‖Ỹ‖DX,T

)5‖Y − Ỹ‖DX,T
.
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When Y, Ỹ ∈ QT , we have

‖F(Y ) − F(Ỹ )‖DX,T
≤ 60T C′

γ KC7
X‖∇A‖4(1 + 2BT )5‖Y − Ỹ‖DX,T

.

Proving that for T < T0 small enough so that

60T C′
γ KC7

X‖∇A‖4(1 + 2BT )5 < 1,

F is a contraction in the ball QT ⊂ DX,T . �

REMARK 7. By imposing enough regularity on A and requiring that X can
be completed to a geometric rough path with bounded p-variation (in the sense
of Lyons), it is likely that the above proof of existence and uniqueness can be
extended to cover the case of rougher initial conditions (e.g., paths living in some
Cγ with γ < 1/3 suitably lifted to rough paths).

REMARK 8. The solution (Y,Y ′) in DX,T , satisfies [cf. with (32)]

Y(t)′η = Id+
∫ t

0
∇V Y(s)(Y (s)η)Y

′(s)η ds(36)

and, as can be easily verified,

[RY (t)]iξη

=
∫ t

0
ds

[
∇kV Y(s)i(Y (s)η)[RY (s)]kξη

(37) +
∫ 1

0
dr

∫ r

0
dw

× ∑
k,l=1,2,3

∇k∇ l[V Y(s)(Y(s)ξ + wY(s)ξη

)]i
Y (s)kξηY (s)lξη

]
,

where Y(s)ξη := Y(s)η − Y(s)ξ .

4.3. Dependence on the initial condition. Let �γ be the set of γ -rough paths
(X,X

2) (with γ > 1/3). On �γ consider the distance

d(X, X̃) = ‖X − X̃‖γ + ‖X
2 − X̃

2‖2γ ,

where X = (X,X
2) and X̃ = (X̃, X̃

2) are two points in �γ .
Fix r > 0 and let B(�γ ; r) be the open ball of �γ with radius r centered at the

trivial rough path (0,0). Let T0(r) > 0 be the smaller existence time of solution to
the evolution problem, as given by Theorem 8, for initial data living in B(�γ ; r).

Define the map � :B(�γ ; r) → C([0, T0],�γ ) as follows: for any t ∈ [0, T0]
and any X = (X,X

2) ∈ B(�γ ; r), let �(X) := Y, where Y = (Y,Y
2) with
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Y ∈ DX,T0 the solution starting at X and Y
2 the corresponding area process defined

as

[Y2(t)]ijρξ :=
∫ ξ

ρ

(
Y(t)iη − Y(t)iρ

)
dY (t)jη(38)

for any t ∈ [0, T0] where the integral is understood as an integral over the weakly-
controlled path Y(t) ∈ DX .

Then

THEOREM 4. The map � is Lipshitz from B(�γ ; r) to C([0, T0],�γ )

endowed with the uniform distance.

PROOF. Take two inital conditions in B(�γ ; r): X = (X,X
2) and X̃ =

(X̃, X̃
2). Let Y ∈ DX,T0 (resp. Ỹ ∈ DX̃,T0

) be the solution starting from X (X̃).
Let

�(t) := ‖Y ′(t) − Ỹ ′(t)‖∗
γ + ∥∥RY (t) − RỸ (t)

∥∥
2γ .

Using results form [16], it is not too difficult to prove that (cf. Lemmas 6 and 7)

‖Y
2(t) − Ỹ

2(t)‖2γ ≤ D1[d(X, X̃) + �(t)](39)

and ∥∥∇nV Y(t) − ∇nV Ỹ (t)
∥∥ ≤ D2‖∇n+1A‖2[d(X, X̃) + �(t)], n ≥ 0,(40)

uniformly for t ∈ [0, T0], where here and in the following Dk > 0 are constants
depending only on r and on γ .

At this point �(t) can be estimated using the expression given in (36) and (37)
for Y ′(t), Ỹ ′(t),RY (t) and RỸ (t) to obtain

�(t) ≤ D3‖∇A‖4

∫ t

0
[d(X, X̃) + �(s)]ds.

For T small enough so that D3‖∇A‖4T ≤ 1/2, we have

sup
t∈[0,T ]

�(t) ≤ d(X, X̃),

which implies that

sup
t∈[0,T ]

d
(
Y(t), Ỹ(t)

) ≤ D4d(X, X̃)

[using (39)]. Then again, a simple induction argument allows to extend this result
to the whole interval [0, T0] proving the claim. �

The continuity of � implies, in particular, that if we have a sequence of smooth
loops (X(n))n≥1 which can be naturally lifted to a sequence of γ -rough paths



EVOLUTION OF A RANDOM VORTEX 1847

(X(n))n≥1 [using (26) for the area process X
(n),2] and such that it converges to

the rough path X (in the topology of �γ ), then the sequence of solutions �(X(n))

converge to the solution �(X).
Since integrals over a smooth path X(n) coincide with integrals over the

(geometrically lifted) rough path X
(n), we have that, for smooth initial conditions,

classical solutions to the vortex line equation coincide with the projection of the
solution �(X(n)) built in the space of rough paths.

Then the sequence of classical solutions (once lifted to a γ -rough path)
converges in the sense of γ -rough paths (which is stronger than the γ -Hölder
topology) to the solution �(X).

4.4. Dynamics of the covariations. Recall the framework described in Sec-
tion 2.2 on the covariation structure of the solution. If we assume that the initial
condition (X,X

2) is a random variable a.s. with values in the space of γ -rough
paths (with γ > 1/3) and that X is a process with all its mutual covariations, then
the solution Y(t) at any instant of time t less that a random time T0 (depending
on the initial condition) is still a process with all its mutual covariations (due to
Proposition 1).

The covariations of Y satisfy the equation

[Y(t)i, Y (t)j ]η = ∑
k,l=1,2,3

∫ η

0
(Y (t)′)ikρ (Y (t)′)jl

ρ dρ[Xk,Xl]ρ.(41)

Indeed, comparing (36) with (12), we can identify the function M(t)ξ in
Proposition 1 with Y(t)′ξ .

REMARK 9. The same result can be obtained noting that, for our solution,∑
i

∣∣Y(t)ξi+1ξi

∣∣2 = ∑
i

Y (t)′ξi
Xξi+1ξi

Y ′(t)ξi
Xξi+1ξi

+ ∑
i

O(|ξi+1 − ξi |3γ ).

Equation (41) has a differential counterpart in the following equation:

d

dt
W(t)ξ =

∫ ξ

0

(
H(t)ρ dρW(t)ρ + dρW(t)ρH(t)∗ρ

)
,(42)

where we let W(t)ξ := [Y (t), Y (t)∗]ξ as a matrix-valued process, and H(t)ξ :=
∇V Y(t)(Y (t)ξ ). To understand better this evolution equation, let us split the matrix
H(t)ξ into its symmetric S and anti-symmetric T components:

H(t)ξ = S(t)ξ + T (t)ξ , S(t)ξ = S(t)∗ξ , T (t)ξ = −T (t)∗ξ .

Moreover, define Q(t)ξ as the solution of the Cauchy problem

d

dt
Q(t)ξ = −Q(t)ξT (t)ξ , Q(0)ξ = Id,
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that is,

Q(t)ξ = exp
[
−

∫ t

0
T (s)ξ ds

]
.

Since T is antisymmetric, the matrix Q is orthogonal, that is, Q(t)−1
ξ = Q(t)∗ξ .

This matrix describes the rotation of the local frame of reference at the point Y(t)ξ
caused by the motion of the curve.

Then define

W̃ (t)ξ :=
∫ ξ

0
Q(t)ρ dρW(t)ρQ(t)−1

ρ

and, analogously, T̃ (t)ξ := Q(t)ξT (t)ξQ(t)−1
ξ and S̃(t)ξ = Q(t)ξS(t)ξQ(t)−1

ξ ,
and compute the following time-derivative:

d

dt
dξ W̃ (t)ξ = dQ(t)ξ

dt
Q(t)−1

ξ dξ W̃ (t)ξ

+ dξ W̃ (t)ξQ(t)ξ
dQ(t)−1

ξ

dt
+ Q(t)ξ

(
d

dt
dξW(t)ξ

)
Q(t)−1

ξ

= −T̃ (t)ξ dξ W̃ (t)ξ + dξ W̃ (t)ξ T̃ (t)ξ

+ Q(t)ξ [H(t)ξ dξW(t)ξ + dξW(t)ξH(t)∗ξ ]Q(t)−1
ξ

= S̃(t)ξ dξ W̃ (t)ξ + dξ W̃ (t)ξ S̃(t)ξ .

This result implies that dξW(t)ξ can be decomposed as

dξW(t)ξ = Q(t)−1
ξ exp

[∫ t

0
S̃(s)ξ ds

]
dξW(0)ξ exp

[∫ t

0
S̃(s)ξ ds

]∗
Q(t)ξ .(43)

The relevance of this decomposition is the following. Modulo rotations, the matrix
S̃(t)ξ , corresponds to the symmetric part of the tensor field ∇V Y(t)(x) in the point
x = Y(t)ξ . This symmetric component describes the stretching of the volume
element around x due to the flow generated by the (time-dependent) vector
field V Y(t). The magnitude of the covariation then varies with time, due to this
stretching contribution, according to (43).

5. Random vortex filaments.

5.1. Fractional Brownian loops with H > 1/2. Consider the following prob-
abilistic model of Gaussian vortex filament. Let (X̃ξ )ξ∈[0,1] be a 3d-fractional
Brownian motion (FBM) of Hurst index H , that is, a centered Gaussian process
on R

3 defined on the probability space (�,P,F ) such that

EX̃i
ξ X̃

j
η = δij

2
(|ξ |2H + |η|2H − |ξ − η|2H ), i, j = 1,2,3, ξ, η ∈ [0,1],
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with H > 1/2 and X0 = 0. Define the Gaussian process (Xξ )ξ∈[0,1] as

Xξ := X̃ξ − C(ξ,1)

C(1,1)
X̃1,(44)

where C(ξ, η) := (|ξ |2H + |η|2H − |ξ − η|2H ). Then X0 = X1 = 0 a.s., moreover,
the process (Xξ )ξ is independent of the r.v. X̃1. We call X a fractional Brownian
loop (FBL). Using the standard Kolmogorov criterion, it is easy to show that X in
a.s. Hölder continuous for any index γ < H . Since H > 1/2, then we can choose
γ ∈ (1/2,H) and apply the results of Section 3 to obtain the evolution of a random
vortex filament modeled on an FBL.

5.2. Evolution of Brownian loops. As an example of application of Theo-
rem 3, we can consider the evolution of an initial random curve whose law is
that of a Brownian bridge on [0,1] starting at an arbitrary point x0. A standard
three-dimensional Brownian bridge {Bξ }ξ∈[0,1] such that B0 = B1 = x0 ∈ R

3 is a
stochastic process defined on a complete probability space (�,F ,P) whose law is
the law of a Brownian motion starting at x0 and conditioned to reach x0 at “time” 1.
As in the previous section, it can be obtained starting from a standard Brownian
motion {B̃}ξ∈[0,1] as

Bξ = B̃ξ − ξB̃1, ξ ∈ [0,1].
The Brownian bridge is a semi-martingale with respect to its own filtration

{F B
ξ : 0 ≤ ξ ≤ 1}, with decomposition

dBξ = Bξ − x0

1 − ξ
dξ + dβξ ,

where {βξ }ξ∈[0,1] is a standard 3d-Brownian motion. Using the results in [16], it is
easy to see that B is a γ -Hölder rough path if we consider it together with the area
process defined as

B
2,ij
ξη =

∫ η

ξ
(Bi

ρ − Bi
η) ◦ dBj

ρ,(45)

where the integral is understood in Stratonovich sense. Indeed, there exists a
version of the process (ξ, η) �→ B

2
ξη which is continuous in both parameters and

such that ‖B‖2γ is almost surely finite (also all moments are finite). Then, outside
an event of P-measure zero, the couple (B,B) is a γ -Hölder rough path and, by
Theorem 3, there exists a solution of the problem (8) starting at B . Of course, in
this case, the solution depends a priori on the choice (45) we made for the area
process. Indeed, if in (45) we consider, for example, the Itô integral (for which
the regularity result on B still holds), we would have obtained a different solution,
even if the path B is unchanged.
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REMARK 10. Consider the discussion in Section 4.4 and note that, for
our Brownian loop B , the covariation is [B,B]ξ = Id ·ξ , we can say that the
covariation of the solution Y starting at B will be

dξ [Y (t), Y (t)∗]ξ = Q(t)−1
ξ exp

[∫ t

0
S̃(s)ξ ds

]
exp

[∫ t

0
S̃(s)ξ ds

]∗
Q(t)ξ

(the notation is the same as in Section 4.4).

5.3. Evolution of fractional Brownian loops with 1/3 < H ≤ 1/2. The above
results on the Browian loop are a particular case of the more general case of a
fractional Brownian loop X of Hurst index H ∈ (1/3,1/2]. In general, lifting
X to a γ -rough path (with 1/3 < γ < H ) require to build an area process X

2

with appropriate regularity (when H �= 1/2 cannot be obtained by semi-martingale
stochastic calculus as in Section 5.2 above).

In [3] the authors give a construction of the area process X̃
2 in the case

where X̃ is an FBM of Hurst index H > 1/4. Moreover, they prove that the
sequence (X̃(n), X̃

(n),2)n∈N of piece-wise linear approximations of X̃, together
with the associated geometric area process X̃

(n),2, converges to (X̃, X̃
2) in the

generalized p-variation sense for any 1/H < p < 4 (for the definition of this kind
of convergence, see [3]). It is not difficult to prove that we have convergence also
as γ -rough paths for any 1/3 < γ < H , that is, that∥∥X̃(n) − X̃

∥∥
γ + ∥∥X̃

(n),2 − X̃
2∥∥

2γ → 0

as n → ∞.
To identify an appropriate area process for the fractional Brownian loop X, we

can consider the following definition:

X
2
ξρ := X̃

2
ξρ +

∫ ρ

ξ
(hη − hξ ) ⊗ dX̃η

(46)
+

∫ ρ

ξ
(X̃η − X̃ξ ) ⊗ dhη +

∫ ρ

ξ
(hη − hξ ) ⊗ dhη,

where

hξ := −C(ξ,1)

C(1,1)
X̃1

[cf. (44)]. The function h is 2H -Hölder continuous so the integrals in (45) can be
understood as Young integrals when 2H + γ > 3γ > 1.

It is then straighforward to check that X
2 satisfies (24) and that (X,X

2) is a
γ -rough path for any 1/3 < γ < H .

Moreover, by exploiting the continuity of the Young integral and the re-
sults in [3] mentioned above, we have that piece-wise linear approximations
(X(n),X

(n),2) of (X,X
2) converge to (X,X

2) as γ -rough paths.
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REMARK 11. This construction of the area process of a fractional Brownian
loop with H > 1/3 is a particular case of a more general result about translations
on the space of rough paths [6, 14, 20].

APPENDIX: PROOFS OF SOME LEMMAS

In the proofs we will often need to use Taylor expansions with integral
remainders, so, for convenience, we introduce a special notation: given X ∈ C, let
Xηξ := Xη −Xξ and Xr

ηξ := Jr(Xη,Xξ ), where Jr(x, y) is the linear interpolation

Jr(x, y) = (x − y)r + y

for r ∈ [0,1].

A.1. Proof of Lemma 1. The bound in (15) is easy. Let us prove the second
by considering the following decomposition:

[ϕ(Yξ ) − ϕ(Ỹξ )] − [ϕ(Yη) − ϕ(Ỹη)]

= Yξη

∫ 1

0
∇ϕ(Y r

ξη) dr − Ỹξη

∫ 1

0
∇ϕ(Ỹ r

ξη) dr

= (Yξη − Ỹξη)

∫ 1

0
∇ϕ(Ỹ r

ξη) dr + Yξη

[∫ 1

0
∇ϕ(Y r

ξη) dr −
∫ 1

0
∇ϕ(Ỹ r

ξη) dr

]

= (Yξη − Ỹξη)

∫ 1

0
∇ϕ(Ỹ r

ξη) dr

− Yξη

∫ 1

0
dr(Ỹ r

ξη − Y r
ξη)

∫ 1

0
dw∇2ϕ

(
Jw(Ỹ r

ξη, Y
r
ξη)

)
,

where Y r
ξη := Jr(Yξ , Yη), we obtain

‖ϕ(Y·) − ϕ(Ỹ·)‖γ ≤ ‖Y − Ỹ‖γ ‖∇ϕ‖ + ‖Y‖γ ‖Y − Ỹ‖∞‖∇2A‖,
which implies

‖ϕ(Y·) − ϕ(Ỹ·)‖γ ≤ ‖∇ϕ‖1(1 + ‖Y‖γ )‖Y − Ỹ‖γ .(47)

A.2. Proof of Lemma 2. By (15) and (16), we have

‖∇nA(Y·)‖γ ≤ ‖∇n+1A‖‖Y‖γ(48)

and

‖∇nA(Y·) − ∇nA(Ỹ·)‖γ ≤ ‖∇n+1A‖1(1 + ‖Y‖γ )‖Y − Ỹ‖γ .(49)
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Now, it is enough to consider n = 0, the proof for general n being similar. Using
Lemma 2 and bounds (48) and (49), estimates (17) and (18) on the velocity vector-
field follow as

|V Y (x)| =
∣∣∣∣ ∫ 1

0
A(x − Yη) dYη

∣∣∣∣ ≤ Cγ ‖A(x − Y·)‖γ ‖Y‖γ

≤ Cγ ‖∇A‖‖Y‖2
γ .

Moreover, for the difference V Y − V Ỹ , we have the decomposition

V Y (x) − V Ỹ (x) =
∫ 1

0
[A(x − Yη) dYη − A(x − Ỹη) dỸη]

=
∫ 1

0
A(x − Yη) d(Y − Ỹ )η +

∫ 1

0
[A(x − Yη) − A(x − Ỹη)]dỸη,

which, in turn, can be estimated as

|V Y (x) − V Ỹ (x)| ≤ Cγ ‖A(x − Y·)‖γ ‖Y − Ỹ‖γ

+ Cγ ‖A(x − Y·) − A(x − Ỹ·)‖γ ‖Ỹ‖γ

≤ Cγ ‖∇A‖‖Y‖γ ‖Y − Ỹ‖γ

+ Cγ ‖Ỹ‖γ ‖∇A‖1‖Y − Ỹ‖∗
γ (1 + ‖Y‖γ )

≤ Cγ ‖∇A‖1(‖Y‖γ + ‖Ỹ‖γ + ‖Ỹ‖γ ‖Y‖γ )‖Y − Ỹ‖∗
γ ,

giving (18).

A.3. Proof of Lemma 7. Consider the case n = 0, the general case being
similar. The path Zξ = A(x − Yξ ) belongs to DX and has the following
decomposition:

Zξη = ∇A(x − Yη)Yξη + YξηYξη

∫ 1

0
dr

∫ r

0
dw ∇2A(x − Yw

ξη)

= ∇A(x − Yη)Y
′
ηXξη + ∇A(x − Yη)R

Y
ξη

+ YξηYξη

∫ 1

0
dr

∫ r

0
dw ∇2A(x − Yw

ξη)

= Z′
ηXξη + RZ

ξη,

with

Z′
η = ∇A(x − Yη)Y

′
η

and

RZ
ξη = ∇A(x − Yη)R

Y
ξη + YξηYξη

∫ 1

0
dr

∫ r

0
dw ∇2A(x − Yw

ξη).
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The DX norm of Z can be estimated as follows:

‖Z‖D = ‖Z′‖∞ + ‖Z′‖γ + ‖RZ‖2γ

≤ ‖∇A‖∞‖Y ′‖∞ + ‖∇2A‖∞‖Y‖γ + ‖∇A‖∞‖Y ′‖γ

+ ‖∇A‖∞‖RY ‖2γ + ‖Y‖2
γ ‖∇2A‖∞

(50)
≤ ‖∇A‖1(‖Y‖D + ‖Y‖γ + ‖Y‖2

γ )

≤ ‖∇A‖1[(1 + CX)‖Y‖D + C2
X‖Y‖2

D]
≤ C2

X‖∇A‖1[2‖Y‖D + ‖Y‖2
D],

where we used the fact that

‖Y‖γ ≤ ‖Y ′‖∞‖X‖γ + ‖RY ‖γ

≤ ‖Y ′‖∞‖X‖γ + ‖RY ‖2γ(51)

≤ (1 + ‖X‖γ )‖Y‖D ≤ CX‖Y‖D.

Then

V Y (x) =
∫ 1

0
A(x − Yη) dYη =

∫ 1

0
Zη dYη Z0(Y1 − Y0) + Z′

0Y
′
0X

2
01 + Q01,

with

‖Q‖3γ ≤ C′
γ CX‖Z‖D‖Y‖D

and

|V Y (x)| ≤ ‖Z′‖∞‖Y ′‖∞‖X
2‖2γ + ‖Q‖3γ

≤ 2C′
γ CX‖Z‖D‖Y‖D

≤ 4C′
γ ‖∇A‖1C

3
X‖Y‖2

D(1 + ‖Y‖D),

where we used the fact that C′
γ ≥ 1.

To bound V Y (x)−V Ỹ (x), we need the DX norm of the difference A(x −Y·)−
A(x − Ỹ·). Let φ(y) = A(x − y) and consider the expansion

φ(Yη) − φ(Yξ ) − (
φ(Ỹη) − φ(Ỹξ )

)
= [∇φ(Yξ )Yηξ − ∇φ(Ỹξ )Ỹηξ ]

+
∫ 1

0
dr

∫ r

0
dw [∇2φ(Yw

ηξ )YηξYηξ − ∇2φ(Ỹw
ηξ )Ỹηξ Ỹηξ ],

which, by arguments similar to those leading to (50), gives a related estimate:

‖φ(Y·) − φ(Ỹ·)‖D ≤ ‖∇φ‖∞‖Y − Ỹ‖D + ‖∇2φ‖∞‖Y − Ỹ‖∞‖Y‖D

+ 3‖∇3φ‖‖Y − Ỹ‖∞‖Y‖2
γ + 2‖∇2φ‖∞‖Y − Ỹ‖γ ‖Y‖γ

≤ 6‖∇φ‖2C
2
X(1 + ‖Y‖D)2‖Y − Ỹ‖∗

D
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so that

‖A(x − Y·) − A(x − Ỹ·)‖D ≤ 6‖∇A‖2C
2
X(1 + ‖Y‖D)2‖Y − Ỹ‖∗

D.

Now,

V Y (x) − V Ỹ (x) =
∫ 1

0
A(x − Yη) dYη −

∫ 1

0
A(x − Ỹη) dỸη

=
∫ 1

0
[A(x − Yη) − A(x − Ỹη)]dYη +

∫ 1

0
A(x − Ỹη) d(Y − Ỹ )η

and we can conclude by observing that∣∣V Y (x) − V Ỹ (x)
∣∣ ≤ 2C′

γ CX

(‖A(x − Y·) − A(x − Ỹ·)‖D‖Y‖D

+ ‖A(x − Y·)‖D‖Y − Ỹ‖D

)
≤ 16C′

γ C3
X‖∇A‖2‖Y − Ỹ‖∗

D(1 + ‖Y‖D)2‖Y‖D.
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