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We investigate the evolution of barycenters of masses transported by
stochastic flows. The state spaces under consideration are smooth affine
manifolds with certain convexity structure. Under suitable conditions on
the flow and on the initial measure, the barycenter{Zt } is shown to be a
semimartingale and is described by a stochastic differential equation. For the
hyperbolic space the barycenter of two independent Brownian particles is a
martingale and its conditional law converges to that of a Brownian motion
on the limiting geodesic. On the other hand for a large family of discrete
measures on suitable Cartan–Hadamard manifolds, the barycenter of the
measure carried by an unstable Brownian flow converges to the Busemann
barycenter of the limiting measure.

1. Introduction. We consider the motion of a mass moving according to the
law of a random flow. This can be used to model the motion of passive tracers
in a fluid, for example, the spread of oil spilled in an ocean. Such motion can be
assumed to obey a stochastic flow where particles at nearby points are correlated,
for example, isotropic flows as investigated in [22, 27] or a general semimartingale
flow as considered in [5]. The evolution of pollution clouds in the atmosphere
or a gas of independent particles, on the other hand, can be described as blocks
of masses moving according to the laws of independent stochastic flows. Here
we propose to study the dynamics of masses transported by stochastic flows by
investigating the motion of their centers of mass. As the medium in which the
liquid travels is not necessarily homogeneous or flat, it makes sense to work on a
nonlinear space, for example, on a manifold diffeomorphic toR

n but with different
geometric structure. All measures considered here are normalized to have mass 1.

The center of mass for a measure onR
n is the minimizer of the square

distance function averaged with respect to the measure. This definition is used
to define martingales onRn. The same minimizing problem can be considered
on Riemannian manifolds. Although the distance inL2 is the traditional object
to minimize, we can also make sense of finding the minimizer of the distance
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function inL1. Busemann barycenters, for example, of measures on the boundaries
of hyperbolic spaces are minimizers of Busemann distance functions inL1. The
Busemann barycenter was investigated for continuous measures for its application
in analysis (see, e.g., [3]), while we are interested in both discrete and continuous
measures. We shall relate the center of a mass pushed by a stochastic flow, in the
limit, to the Busemann barycenter of its limiting measure.

From the point of view of minimizing assumptions on the state space, we note
below that a center of mass can be defined using the concept of geodesics. For this
we only need a linear connection∇ on a smooth manifold, and the pair(M,∇)

shall be called anaffine manifold. Denote byγu the geodesic with initial velocity
u ∈ TxM . Denote by exp :T M → M the exponential map expx u = γu(1), if it
exists.

A point x ∈ M is anexponential barycenterof µ if it is a solution to∫
M

exp−1
x y µ(dy) = 0.(1.1)

In the sequel, by barycenter we always mean exponential barycenter. Note that
(1.1) always makes sense locally and therefore for measures with sufficiently small
support. However, to consider more general measures we are obliged to work on
convex manifolds. An affine manifold(M,∇) is said to beconvexif for every pair
of pointsx, y ∈ M there exists a unique geodesic, defined using∇, joiningx andy

and this geodesic depends smoothly onx andy.

Main results. In Section 2 the existence and uniqueness of exponential
barycenters of a probability measure with compact support are established for
CSLCG manifolds. A CSLCG manifold is an affine manifold satisfying certain
convexity conditions. Furthermore, a stochastic differential equation governing the
motion of the barycenter is given.

To study the large time behavior of the barycenter, we first investigate the toy
model of the empirical measureµt = 1

n

∑n
i=1 δXi

t
of n independent Brownian

particles(Xi
t ) on an hyperbolic spaceH. For n = 2 this is explicitly studied in

Section 3 and forn ≥ 3 this can be considered as a special case of the discussion
in Section 4 and can be proved analogously. For two particles, whent gets large
the barycenter gets close to a Brownian motion of variance 1/2 on the geodesic
with asymptotic directionsX1∞ andX2∞, whereXi∞ is the limit of Xi

t . For more
than two particles, the barycenter converges to a unique point in the manifold.
This result seems to be surprising. However, it has a link to the elementary Steiner
problem of finding a point which minimizes the sum of its distances ton given
vertices: there is a unique minimizer if and only if the vertices do not all lie on
the same line. If we replace the usual distance in this problem by the Busemann
distance function and look for the point which minimizes the sum of the distances
to then given points on the boundary, we shall obtain the Busemann barycenter
of the empirical measure of the limiting points. The unique point the barycenter
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of µt converges to is this Busemann barycenter. Forn = 2, the two limiting points
can be joined by a geodesic and every point on the geodesic is a minimizer for the
Busemann distance function.

In Section 4 the state space under consideration is a Cartan–Hadamard manifold
with pinched negative curvature on which the Brownian motions satisfy a law
of large numbers. In this case a Brownian flowFt(y) converges almost surely
for every starting pointy to a processF∞(y) on the visibility compactification
of M . Furthermore, under suitable conditions, the limiting process separates the
initial points and the uniformo(t) fluctuations for the Brownian motions vanish
in the limit. Thus theL2 minimizer of the distance function is the same as theL1

minimizer, the Busemann barycenter, of the limiting measure on the boundary.
More precisely, supposeµ0 has finite support and all the weights are smaller
than 1/2. Then the barycenter ofµt converges almost surely to a random variable
Z∞ ∈ M , the Busemann barycenter ofF∞(µ0), characterized by

lim
t→∞

∫
M

ϕ̇
(
Z∞,Ft (y)

)
(0) dµ(y) = 0,

where(ϕ(z, y)(s), s ≥ 0) is the unit speed geodesic connectingz andy starting at
z andϕ̇(z, y)(0) = d

ds
|s=0ϕ(z, y)(s).

Notation. Throughout the paper, a standard filtered probability space(�,F ,

(Ft )t≥0,P) is fixed. If (Xt) is an M-valued continuous semimartingale andα

is a C1 section ofT ∗M , we denote by
∫ t
0〈α(Xr), δXr〉 and

∫ t
0〈α(Xr), d

∇Xr〉,
respectively, the Stratonovich and Itô integrals ofα alongX. The second integral
requires a connection∇ on M . If Xt(ω) takes its values in the domain of a local
chart for anyt ∈ [S(ω),T (ω)[ whereS andT are stopping times, then∫ T

S
〈α(Xt), δXt 〉 =

∫ T

S
αi(Xt) dXi

t + 1

2

∫ T

S

∂αi(Xt)

∂xj
d〈Xi,Xj 〉t

and ∫ T

S
〈α(Xt), d

∇Xt 〉 =
∫ T

S
αi(Xt)

(
dXi

t + 1
2�i

jk(Xt) d〈Xj,Xk〉t ),
where�i

jk are the Christoffel symbols of∇. The Itô integral can be defined via
the Stratonovich integral as follows: let//0,t :TX0M → TXt M be the stochastic
parallel transport along(Xt) and letZt = ∫ t

0 //−1
0,r δXr be the anti-development

of (Xt), aTX0M-valued semimartingale. Then∫ t

0
〈α(Xs), d

∇Xs〉 =
∫ t

0
〈α(Xs) ◦ //0,s , dZs〉.

A semimartingale(Xt) is called a∇-martingaleif and only if, for every smooth
section α of T ∗M ,

∫ t
0〈α(Xs), d

∇Xs〉 is a local martingale. Equivalently the
stochastic anti-development of(Xt) by ∇ is a local martingale. The reader may
consult [7–9] and [12] for general reference.
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2. Exponential barycenters of measures transported by flows.

2.1. Preliminaries. If the geodesics determined by two linear connections are
the same, then the two connections differ by a tensor of type(1,2). In particular,
given any connection, we can always subtract from it half of its torsionT to
obtain a torsion-free connection with the same geodesics. Since convexity and
barycenters are determined by geodesics, we assume that∇ is a torsion-free
connection. We do not impose the condition that our connection be metric with
respect to any Riemannian metric onM . However, for calculations we shall fix an
auxiliary Riemannian metric onM with the corresponding Riemannian distance
function denoted byρ. In the sequel when the term “Riemannian manifold” is used
it is considered as an affine manifold with respect to the Levi–Civita connection.
A smooth local diffeomorphism between two manifoldsM and (M̃, ∇̃) induces
a connection∇ on M . An affine mapφ between two affine manifolds(M,∇)

and (M̃, ∇̃) is a smooth map such that for all smooth functionsf : M̃ → R,
∇d(f ◦ φ) = φ∗(∇̃df ). An affine map onM preserves geodesics. We shall
frequently use the following:

1. A pointx in M is a barycenter ofµ if and only if

H(x) ≡ Hµ(x) =
∫
M

γ̇ (x, y)(0)µ(dy) = 0(2.1)

for geodesics(γ (x, y)(s) : 0≤ s ≤ 1) connectingx andy.
2. If z is the barycenter ofµ andG :M → N an affine map between two convex

affine manifolds, thenG(z) is the barycenter of the push forward measureG(µ)

by G.
3. For a smooth Riemannian manifold letµ be a probability measure onM

such thatf (x) = ∫
M dist2(x, y)µ(dy) is finite for some (hence for all)x

in M . Then the exponential barycenters ofµ are the critical points of the
function f ([10], Proposition 3). Moreover, ifx is an exponential barycenter
of µ andh is a convex function onM , then we have Jensen’s-type inequality
([10], Proposition 2)

h(x) ≤
∫
M

h(y)µ(dy).(2.2)

A convex manifoldM is diffeomorphic to an open set ofR
m, m = dim(M), and

there exists a neighborhoodU of the null section inT M such that

(x,u) ∈ U �→ (x,expx u) ∈ M × M

is a diffeomorphism. Standard convex complete Riemannian manifolds include
Cartan–Hadamard manifolds (complete, simply connected manifolds with sec-
tional curvature less than or equal to 0). Examples of incomplete convex manifolds
are given by: small geodesic balls in Riemannian manifolds or small balls centered
at the origin in an exponential chart in an affine manifold. [Note that every pointx
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in a Riemannian manifoldM has a convex geodesic ballBr(x); in the case of a
sphere of radiusr , a maximal convex set is given by an open half sphere, and its
convexity radius isπr/2.]

Recall that a functionφ :M → R on an affine manifold(M,∇) is convexif φ ◦γ

is a convex function for all geodesicsγ , that is, for all geodesics(γ (x, y)(t),0 ≤
t ≤ 1) connecting two different pointsx andy,

φ
(
γ (x, y)(t)

) ≤ tφ(x) + (1− t)φ(y).(2.3)

For aC2 functionφ, it is convex if and only ifD
dt

d
dt

φ(γt ) ≥ 0, whereD
dt

denotes
covariant differentiation with respect tot .

For the uniqueness of exponential barycenter we often use a convex function on
M × M which separates points. The definition below is partly borrowed from [9].

DEFINITION 2.1. Consider an affine manifold(M,∇) and M × M with
product connection. A convex functionφ :M × M → R+ vanishing exactly on
the diagonal� of M × M is called aseparating functionon M . Let p ∈ 2N.
A manifold which carries a smooth separating functionφ such that

cρp ≤ φ ≤ Cρp(2.4)

for some constants 0< c < C and some Riemannian distance functionρ is called
amanifold withp-convex geometry.

For Cartan–Hadamard manifolds, the Riemannian distance function is a
separating function. Note that the square of the distance function is also a
separating function and it is smooth. In more general Riemannian manifolds,
sufficiently small geodesic balls have 2-convex geometry. For instance, any
geodesic ball strictly smaller than an open hemisphere hasp-convex geometry
for somep depending on the radius, as proved by Kendall in [15], and any point in
an affine manifold has a convex neighborhood with 2-convex geometry. However,
an affine manifold carrying a separating function is not necessarily convex. For
example,Rm \ {0} is not convex even though the distance function is a separating
function. It is more difficult to find convex manifolds which do not carry separating
functions; see [16].

Let ϕ be aC2 convex function with{ϕ < 0} a relatively compact set. Then
any probability measureµ on M with support included in{ϕ < 0} has an
exponential barycenter, see [10, 14]. Also ifM is an affine manifold with a
bounded separating function, then any probability measure onM has at most one
exponential barycenter [10, 14].

As a consequence: letM be a convex manifold with convex geometry, and let
φ be aC2 separating function withφ−1

x ([0, a[) relatively compact inM for some
fixedx ∈ M and somea > 0 whereφx = φ(x, ·) (which is not the case in general).
Then any measure supported on the setφ−1

x ([0, a[) has a unique exponential
barycenter.

Observe that an open convex subset of a convex manifold withp-convex
geometry is a manifold withp-convex geometry.
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2.2. Existence and uniqueness.

DEFINITION 2.2. A convex affine manifold(M,∇) is said to be CSLCG
(convex, with semilocal convex geometry) if every compact subsetK of M has
a relatively compact convex neighborhoodUK which hasp-convex geometry for
somep ∈ 2N depending onK .

Equivalently, a convex affine manifold(M,∇) is CSLCG if there exists an
increasing sequence(Un)n≥1 of relatively compact open convex subsets ofM such
that M = ⋃

n≥1 Un, and for everyn ≥ 1, Un hasp-convex geometry for some
p ∈ 2N depending onn.

This definition is motivated by Propositions 2.4 and 2.7 which state that
any probability measure in a CSLCG manifold, of compact support, has a
unique barycenter and that in a certain sense, the exponential barycenter ofµ is
differentiable as a function ofµ.

Note p increases withK . Examples of CSLCG manifolds are open hemi-
spheres endowed with the Levi–Civita connection (which do not havep-convex
geometry for anyp ∈ 2N; see [15]). Examples of geodesically complete CSLCG
Riemannian manifolds should be given by manifolds with a pole under curvature
conditions to be determined. We conjecture that if(M,∇) is a CSLCG manifold,
then(T M,∇c) is a CSLCG manifold, where∇c is the complete lift of∇. Note that
on every relatively compact convex subset ofT M one can construct a continuous
separating function: by [17], uniqueness of martingales with prescribed terminal
values implies the existence of such a separating function, and by [1], uniqueness
holds. So the conjecture concerns the smoothness of the separating function, and
the fact that it satisfies (2.4).

One can find in [16] an example of convex manifold which has not semilocal
convex geometry. In the manifold constructed there, there exists a probability
measure carried by three points, which possesses four exponential barycenters.
Clearly there is no convex neighborhood of these seven points in which we can
define a separating function.

LEMMA 2.3. Let (M,∇) be a CSLCG manifold. Every compact convex
subsetK of M has a convex neighborhoodU with a nonnegativeC1 convex
functionφK such thatφ−1

K ({0}) = K .

PROOF. Let U ′ be an open convex relatively compact neighborhood ofK

with p-convex geometry for somep ∈ 2N. Let φ be a smooth separating function
onU ′ satisfyingcρp ≤ φ ≤ Cρp where 0< c < C, andρ is the Euclidean distance
induced by a global chart, for example, an exponential chart. Define forx ∈ U ′

φK(x) = inf{φ(y, x), y ∈ K}.(2.5)

Clearlyφ−1
K ({0}) = K , sinceK is compact.
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1. First we show thatφK is convex onU ′. Take(x1, x2) ∈ U ′ × U ′. Let p(xi)

be points in the compact setK achieving the minimum:φK(xi) = φ(p(xi), xi),
i = 1,2. Sinceφ is convex, for everyt ∈ [0,1],

φ
(
γ

(
p(x1),p(x2)

)
(t), γ (x1, x2)(t)

) ≤ (1− t)φ
(
p(x1), x1

) + tφ
(
p(x2), x2

)
.

On the other hand, by the definition ofφK , we have sinceγ (p(x1),p(x2))(t) ∈ K

φK

(
γ (x1, x2)(t)

) ≤ φ
(
γ

(
p(x1),p(x2)

)
(t), γ (x1, x2)(t)

)
.

Putting these equations together we obtain

φK

(
γ (x1, x2)(t)

) ≤ (1− t)φK(x1) + tφK(x2),

which proves the convexity ofφK .
2. Next we show thatφK is C1 on some convex neighborhoodU of K included

in U ′. We first prove that there exists a neighborhoodU ⊂ U ′ of K on which there
is a unique pointp(x) such thatφK(x) = φ(p(x), x).

Suppose forx ∈ U ′ andy0, y1 ∈ K , φK(x) = φ(y0, x) = φ(y1, x). Sety(t) =
γ (y0, y1)(t). Then necessarily, for everyt ∈ [0,1], φ(y(t), x) = φK(x).

By the Hadamard lemma (see, e.g., [4], Corollaire 3.1.9 and Exercice 3.1.10)
we can write in the global chart

φ(y, x) =
m∑

i1,...,ip=1

ai1...ip (x)

p∏
j=1

(yij − xij )

+
m∑

i1,...,ip+1=1

bi1...ip+1(y, x)

p+1∏
j=1

(yij − xij ),

whereai1...ip andbi1...ip+1 are smooth functions.
Write f (t) = φ(y(t), x). It is a constant function. On the other hand, we can

differentiatep times the functionf with the expression ofφ in the chart. Using

ÿi(t) = −
m∑

j,k=1

�i
jk(y(t))ẏj (t)ẏk(t),

where�i
jk are the Christoffel symbols of∇ in the chart, we see thatf (p) is of the

following format:

f (p)(t) =
m∑

i1,...,ip=1

ai1...ip (x)

p∏
j=1

ẏij (t) + g(y(t), ẏ(t), x),

where g is a smooth function. SinceU ′ is a relatively compact convex open
neighborhood ofK , we see by the Hadamard lemma and explicit calculation that

|g(y, z, x)| ≤ C′‖y − x‖‖z‖p
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for some positive constantC′. Now sincecρp ≤ φ, we have for everyz ∈ R
m

m∑
i1,...,ip=1

ai1...ip (x)

p∏
j=1

zij ≥ c‖z‖p.

We chooseU of the formU = {x′ ∈ U ′, φK(x′) < ε}, with ε ∈]0, cp+1/(C′)p[,
such thatU is convex and relatively compact inU ′. Consequently forx ∈ U and
y ∈ K , ‖y − x‖p ≤ φ(x, y)/c ≤ ε/c and

f (p)(t) ≥ c‖ẏ(t)‖p − C′‖y(t) − x‖ · ‖ẏ(t)‖p

≥ (
c − (ε/c)1/pC′)‖ẏ(t)‖p ∀ t ∈ [0,1],

where c − (ε/c)1/pC′ > 0. But f is constant, so we havėy(t) ≡ 0 and
consequentlyy0 = y1.

3. Forx ∈ U , we letp(x) be the point inK such thatφK(x) = φ(p(x), x). We
prove thatp is continuous onU . If not, let (xn)n∈N be a convergent sequence in
U with limit x such thatp(xn) does not converge top(x). SinceK is compact, by
choosing a subsequence if necessary, we can assumep(xn) → y ∈ K \ {p(x)}. By
the continuity ofφ, φK(xn) ≡ φ(p(xn), xn) → φ(y, x). On the other hand, since
φK is convex on the open setU , it is continuous (see, e.g., [11], Proposition 1) and
so limφK(xn) = φK(x). Consequently,φ(y, x) = φK(x) and by the uniqueness
given in (2) we obtainy = p(x), a contradiction. So the mapp is continuous.

4. We are left to prove thatφK is C1. Denote bydgφK the Gâteaux-differential
of φ. Recall that for everyx ∈ U andv ∈ TxM ,

dgφK(x)(v) = lim
t↓0

φK(exptv) − φK(x)

t

and thatdgφK(x) is convex onTxM (again by [11], Proposition 1). Letx ∈ U and
v ∈ TxM . If t > 0 is sufficiently small, we have

φK(exptv) − φK(x) ≤ φ
(
p(x),exptv

) − φ
(
p(x), x

)
which yields

dgφK(x)(v) ≤ dφp(x)(x)(v),

φy denoting the mapφ(y, ·). Since dφp(x)(x) is linear, this inequality im-
plies dgφK(x) = dφp(x)(x) on TxM . Otherwise we would havedgφK(x)(v) <

dφp(x)(x)(v) for somev ∈ TxM , which would give by convexity ofdgφK(x)

dgφK(x)(−v) ≥ −dgφK(x)(v) > −dφp(x)(x)(v) = dφp(x)(x)(−v),

a contradiction. SodgφK(x) = dφp(x)(x) onTxM . The differentiability ofφK then
easily comes from the inequalities, for allv ∈ TxM sufficiently close to 0,

0 ≤ φK(expv) − φK(x) − dφp(x)(x)(v)

≤ φp(x)(expv) − φp(x)(x) − dφp(x)(x)(v).

ThatφK is C1 comes from the continuity ofp. �
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PROPOSITION 2.4. Let M be a CSLCG manifold. Every probability mea-
sureµ onM with compact support has a unique exponential barycenter.

PROOF. The proof is a slight modification of that of Proposition 5 in [10]. For
uniqueness letx andx′ be two exponential barycenters ofµ. SetK = supp(µ) ∪
{x, x′}. Let φ be a separating function defined on a convex relatively compact
neighborhood ofK . Writing ν the measureµ pushed forward byy �→ (y, y),
(x, x′) is an exponential barycenter ofν, so

ρp(x, x′) ≤ 1

c
φ(x, x′) ≤ 1

c

∫
φ(y, y′) dν(y, y′) = 1

c

∫
φ(y, y) dµ(y) = 0

giving x = x′.
For the existence letK be a convex compact subset ofM containing the support

of µ (we know that this exists in a CSLCG manifold). By Lemma 2.3 there
exists aC1 convex nonnegative functionφK defined on a relatively compact open
neighborhoodU of K , such thatφ−1

K ({0}) = K . Let ε > 0 satisfyφ−1
K ([0, ε[) ⊂ U .

We apply [10], Proposition 5, to the functionφK − ε/2 to see thatµ has an
exponential barycenter inφ−1

K ([0, ε/2[) (note [10], Proposition 5 is still valid with
aC1 convex function instead of aC2 convex function). �

2.3. Mass moved by a smooth vector field.Let (M,∇) be a smooth convex
affine manifold with∇ torsion free. As before, forx, y in M let (γ (x, y)(s),0 ≤
s ≤ 1) be the geodesic, with respect to∇, with end pointsx andy. The geodesic
γ (x, y) shall be abbreviated asγ where there is no risk of confusion. Set

J (u, v)(s) = T
(
γ (·, ·)(s))(u, v), u ∈ TxM, v ∈ TyM, s ∈ R,

whereT γ (s)(u, v) denotes the derivative ofγ (s) in the direction of(u, v). The
map (J (u, v)(s),0 ≤ s ≤ 1) is the Jacobi field satisfying boundary condition
J (u, v)(0) = u and J (u, v)(1) = v. Write J̇ (u, v)(s) = (∇d/dsJ (u, v))(s). For
everyx, y ∈ M , we define the linear map

ψ(x,y) :TxM → TxM, u �→ J̇ (u,0y)(0),(2.6)

where 0y is the zero tangent vector inTyM .
On T M one can define a connection∇c, called the complete lift of∇ (see,

e.g., [26]). It is a torsion-free connection since∇ is, so it is characterized by
its geodesics, which are the Jacobi fields of the connection∇. The canonical
projection π : (T M,∇c) → (M,∇) is affine. We easily see that(T M,∇c)

is convex if (M,∇) is and the only geodesic joiningu and v in T M is
(J (u, v)(s),0≤ s ≤ 1). Given aC1 vector fieldA, consider the mapA :M → T M .
It induces a measureA(µ) on T M . A point v ∈ T M is a barycenter of a measure
A(µ) if and only if π(v) is a barycenter ofµ and∫

M
J̇

(
v,A(x)

)
(0) dµ(x) = 0.(2.7)
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A measureµ is differentiable along a vector fieldA if its pushed forward
measureSt (µ) is weakly differentiable int , where forx ∈ M , St (x) is the integral
curve ofA starting fromx. The following lemma asserts that the mapµ → b(µ),
b(µ) the barycenter ofµ, is a differentiable map in the above sense.

PROPOSITION2.5. Suppose(M,∇) is a CSLCG manifold. For i = 1, . . . , n,
let µi be a probability measure onM with compact supportK , let Ai be a smooth
C1 vector field and let(Si

t (x),0 ≤ t < τ) be its integral curve starting fromx.
For pi ≥ 0 with

∑n
i=1 pi = 1, setµt = ∑n

i=1 piS
i
t (µ

i). If z(t) is the exponential
barycenter ofµt :

(a) thenz(−) is differentiable att = 0 and ż(0) is the exponential barycenter
of

∑n
i=1 piA

i(µi) with respect to the complete lift∇c of ∇;
(b) there isCK > 0 depending only onK and the arbitrary metric such that

‖ż(0)‖ ≤ CK sup
x∈K

1≤i≤n

‖Ai(x)‖.

PROOF. Let M ′ be a convex relatively compact open neighborhood ofK

with p-convex geometry (p ∈ 2N). Let φ be a smooth separating function
on M ′ satisfying cρp ≤ φ ≤ Cρp whereρ is a Riemannian distance function,
0< c < C. Fort < τ the barycenterz(t) exists and by the definition of barycenters,
(z(0), z(t)) is the exponential barycenter of

∑n
i=1 pi(S

i
0, S

i
t )(µ

i) with respect to
the product connection.

Apply (2.2) to seeφ(z(0), z(t)) ≤ ∑n
i=1 pi

∫
K φ(Si

0(x), Si
t (x)) dµi(x), which

implies

ρ
(
z(0), z(t)

) ≤
[

1

c
φ

(
z(0), z(t)

)]1/p

≤
(

C

c

)1/p
(

n∑
i=1

pi

∫
K

ρp(
Si

0(x), Si
t (x)

)
dµi(x)

)1/p

(2.8)

≤
(

C

c

)1/p

t sup
i∈{1,...,n}

sup
x∈K

0≤r≤t

∥∥Ai(Si
r(x)

)∥∥,
where‖ · ‖ is the Riemannian metric corresponding toρ. Since all Riemannian
metrics onM ′ are comparable,∥∥∥∥1

t
exp−1

z(0) z(t)

∥∥∥∥ ≤ c0

t
ρ

(
z(0), z(t)

)
(2.9)

≤ c0

(
C

c

)1/p

sup
i∈{1,...,n}

sup
x∈K

0≤r≤t

∥∥Ai(Si
r(x)

)∥∥,
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some constantc0 and so the family{1
t

exp−1
z(0) z(t), t < τ } is bounded and thus has

a limit point which shall be denoted byu. Let tk be a sequence going to 0 such that
limk→∞ 1

tk
exp−1

z(0) z(tk) = u. Eachztk satisfies

0z(tk) =
n∑

i=1

pi

∫
M

γ̇
(
z(tk), S

i
tk
(x)

)
(0) dµi(x)

and the covariant derivative oḟγ (z(t), Si
t (x))(0) along the subsequencetk satisfies

D

dtk

∣∣∣∣
tk→0

γ̇
(
z(tk), S

i
tk
(x)

)
(0) = J̇

(
u,Ai(x)

)
(0).

Integrate the identity overM and use the dominated convergence theorem to see

0z(0) =
n∑

i=1

pi

∫
M

J̇
(
u,Ai(x)

)
(0) dµi(x)

which together with

0z(0) =
n∑

i=1

pi

∫
M

γ̇
(
z(0), x

)
(0) dµi(x)

shows thatu is an exponential barycenter of
∑n

i=1 piA
i(µi) with respect to∇c.

Let π :T M → M be the canonical projection. To prove the uniqueness consider
the map

T ⊗pφ :T M ′ → R+, v �→ lim
t→0+

1

tp
φ

(
π(v),exptv

)
,

which is∇c-convex andT ⊗pφ(v) ≤ C‖v‖p. Furthermore the map

(v, v′) �→ T ⊗pφ(v′ − v)

is convex onE := {(v, v′) ∈ T M ′ × T M ′, π(v) = π(v′)} for the connection
∇c ⊗ ∇c (noteE is a totally geodesic submanifold), and vanishes exactly on the
diagonal ofT M ′ × T M ′. See [1] for the proof and details.

Let u′ be another exponential barycenter ofA(µ) with respect to∇c. Since
µ has a unique barycenter andπ is affine, π(u′) = π(u). So it makes sense
to estimateT ⊗pφ(u′ − u). Set ν = ∑n

i=1 pi(A
i,Ai)(µi). Then (u,u′) is an

exponential barycenter forν, so

T ⊗pφ(u − u′) ≤
∫
E

T ⊗pφ(v − v′) dν(v, v′)

=
n∑

i=1

pi

∫
M

T ⊗pφ
(
Ai(x) − Ai(x)

)
dµi(x) = 0.

This implies thatu = u′, which in turn implies that the family1
t

exp−1
z(0) z(t) has

only one limit point ast goes to 0 and so it converges tou. Thus t �→ z(t) is
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differentiable att = 0 with derivative the exponential barycenter of
∑n

i=1 piA
i(µi)

with respect to∇c. Finally, using (2.8) and (2.9), lettingt go to 0, invoking the
compactness ofK and the continuity ofSi , we get

‖ż(0)‖ ≤ CK sup
i∈{1,...,n}

x∈K

‖Ai(x)‖ whereCK = c0

(
C

c

)1/p

.

�

The mapψx,y defined in (2.6) is not invertible in general, as can be seen with
two pointsx and y at a distanceπ/2 in a hemisphere. However, we have the
following:

LEMMA 2.6. Let M be a CSLCG manifold, let K ⊂ M be a compact set and
let ρ be a Riemannian metric onM . Then there exists a constantC′

K > 0 such that
for any probability measureµ in M with support included inK , letting z be the
exponential barycenter ofµ, the linear map onTzM :

u �→
∫
M

ψ(z,x)(u) dµ(x)

is invertible with inverse bounded byC′
K (with respect to the metricρ).

PROOF. SinceM is convex, the mapv �→ J̇ (0z, v)(0) from TxM to TzM is
injective and so is surjective. Its inverse−A(x, ·) is well defined. For eachu ∈ TzM

fixed, A(·, u) is the vector field inM characterized byJ̇ (0z,A(x,u))(0) = −u.

Let b(u) ∈ TzM be the exponential barycenter ofA(u)(µ) (by Proposition 2.5, it
is well defined). By (2.7)

0 =
∫
M

J̇
(
b(u),A(x,u)

)
(0)µ(dx)

=
∫
M

J̇
(
b(u),0

)
(0)µ(dx) +

∫
M

J̇
(
0,A(x,u)

)
(0)µ(dx).

By the definitionψ(z,x)(v) = J̇ (v,0x)(0) for v ∈ TzM ,(∫
M

ψ(z,x)(·) dµ(x)

)
(b(u)) = −

∫
M

J̇
(
0z,A(x,u)

)
(0) dµ(x) = u.

We have supx∈K ‖A(x,u)‖ ≤ C‖u‖ for some constantC sinceK is compact.
Apply Proposition 2.5 to see

‖b(u)‖ ≤ CK sup
x∈K

‖A(x,u)‖ ≤ CKC‖u‖.(2.10)

Thus
∫
M ψ(z,x)(·) dµ(x) is invertible with inverse satisfying∥∥∥∥
(∫

M
ψ(z,x)(·) dµ(x)

)−1

(u)

∥∥∥∥ ≤ ‖b(u)‖ ≤ C′
K‖u‖ for C′

k = CCK. �

As a direct consequence of Lemma 2.6 and its proof, we make more precise the
result of Proposition 2.5 and give an expression forż(t).
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PROPOSITION 2.7. Assume(M,∇) is a CSLCG manifold with the connec-
tion ∇ torsion free. For n ≥ 1 and i = 1, . . . , n, let pi be positive numbers satisfy-
ing

∑n
i=1 pi = 1 and letµi be probability measures onM with compact support.

Let

Si· (·) : [0,∞[× supp(µi) → M

be a map of classCk,0 for somek ≥ 1 [i.e., Ck in t with derivatives up to orderk
with respect tot continuous in(t, x)]. Then the exponential barycenterz(t) of
µt := ∑n

i=1 piS
i
t (µ

i) exists and is unique. Furthermore:

(i) t �→ z(t) is Ck ;
(ii) the barycenterz(t) is characterized by the identity
n∑

i=1

pi

∫
M

J̇
(
ż(t),0Si

t (x)

)
(0) dµi(x) = −

n∑
i=1

pi

∫
M

J̇
(
0z(t), Ṡ

i
t (x)

)
(0) dµi(x)

where0z is the zero vector inTzM ;
(iii) z(t) solves the ordinary differential equation

ż(t) = −
n∑

i=1

pi

∫
M

(
n∑

j=1

pj

∫
M

ψ
(z(t)S

j
t (x))

dµj (x)

)−1

(2.11) × J̇
(
0z(t), Ṡ

i
t (y)

)
(0) dµi(y),

whereψ is defined by(2.6).

Takingµi to be Dirac distributions, we get from Proposition 2.7 the following:

PROPOSITION 2.8. If (M,∇) is a CSLCG manifold with the connection∇
torsion free letn ≥ 1 and p = (p1, . . . , pn) be ann-tuple of positive numbers
satisfying

∑n
i=1 pi = 1. Then the mapGp defined by

Gp :Mn → M, (x1, . . . , xn) �→ b

(
n∑

i=1

piδxi

)
,

is smooth with derivative,

T Gp(u1, . . . , un) = −
n∑

i=1

pi

(
n∑

j=1

pjψ(G(x1,...,xn),xj )

)−1

J̇
(
0G(x1,...,xn), ui

)
(0),

where(u1, . . . , un) ∈ Tx1M × · · · × TxnM .

PROOF. Just note ifSi
t (xi) = exp(tui), thenż(0) = T Gp(u1, . . . , un). �

We want to generalize Proposition 2.7 to the case where for everyx the
flow is a semimartingale. We begin with a simple case, which is an immediate
corollary of Proposition 2.8 sinceZt as a smooth function of semimartingales is a
semimartingale and stochastic calculus applies.
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PROPOSITION 2.9. Let (M,∇) be a CSLCG manifold. Let n ≥ 1, p =
(p1, . . . , pn) be ann-tuple of positive numbers satisfying

∑n
i=1 pi = 1, x1 . . . xn

be n points ofM and µ0 = ∑n
i=1 piδxi

. For everyi, let Xi
t be a semimartingale

started atxi . Then the exponential barycenterZt of
∑n

i=1 piδXi
t

is a semimartin-
gale and satisfies

δZt = −
n∑

i=1

pi

(
n∑

j=1

pjψ(Zt ,X
j
t )

)−1

J̇
(
0Zt , δX

j
t

)
(0).

If Xi
t = Ft(x

i) whereFt(x) is a semimartingale flow, then

δZt = −
∫
M

(∫
M

ψ(Zt ,Ft (x)) dµ0(x)

)−1

J̇
(
0Zt , δFt (y)

)
(0) dµ0(y).

Whenµ0 is carried by two points we do not need to assume that the manifold
has locally convex geometry: convexity is sufficient. Ifµ0 = 1

2(δx0 + δy0), Xt =
Ft(x0), Yt = Ft(y0) for a stochastic flowFt , thenZt is a semimartingale and

δZt = −(
ψ(Zt ,Xt ) + ψ(Zt ,Yt )

)−1(
J̇

(
0Zt , δXt

)
(0) + J̇

(
0Zt , δYt

)
(0)

)
.(2.12)

2.4. Mass pushed by a random flow.Next we consider the case whereFt is
a local semimartingale flow of homeomorphisms (which we abbreviate as semi-
martingale flow). Following Kunita ([18], Section 4.7) with small modifications,
see also [20, 21], leta(t, x, y,ω) be a predictable process with values in the tensor
productTxM ⊗ TyM , let b(t, x,ω) be a predictable process with values inTxM

and letAt be a continuous adapted real-valued increasing process. We say that
Ft(x) is a semimartingale flow with characteristic(a(t, x, y,ω), b(t, x,ω),At) if

dFt(x) ⊗ dFt(y) = a
(
t,Ft (x),Ft (y)

)
dAt ∀x, y ∈ M,

and the drift ofFt(x) is b(t,Ft (x)) dAt , that is, for every 1-formα ∈ T ∗M ,∫ 〈
α(Ft (x)), d∇Ft(x) − b

(
t,Ft (x)

)
dAt

〉
is a local martingale.

PROPOSITION2.10. Let (M,∇) be a CSLCG manifold with∇ torsion free
and let µ0 be a probability measure with compact support. AssumeFt(x) is a
semimartingale flow with characteristic(a(t, x, y,ω), b(t, x,ω),At), such that
a(t,−,−,ω) andb(t,−,ω) areC1 with derivatives a.s. locally uniformly bounded
in time and space. Then the exponential barycenterZt of µt exists and is unique.
Furthermore:

(i) the processZt is a semimartingale on[0, τ [, whereτ is an almost surely
positive random explosion time;
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(ii) the barycenterZt is characterized by the identity∫
M

J̇
(
δZt ,0Ft (x)

)
(0) dµ0(x) = −

∫
M

J̇
(
0Zt , δFt (x)

)
(0) dµ0(x);

(iii) Zt solves the stochastic differential equation

δZt = −
∫
M

(∫
M

ψ(Zt ,Ft (x)) dµ0(x)

)−1

J̇
(
0Zt , δFt (y)

)
(0) dµ0(y).(2.13)

REMARK 2.11. The assumptions on the semimartingale flow can be weak-
ened. We can assume, instead, that(a(t, x, y,ω), b(t, x,ω),At) belongs to the
classB0,1 in the sense of [18], adapted to a manifold.

PROOF OF PROPOSITION 2.10. Fix an arbitrary Riemannian distanceρ

on M . For simplicity we choosea andb bounded (by [18], remark on page 85,
this amounts to changingAt ). Using a change of time, we may assume thatAt = t .
With the assumptions on the local characteristics of the flowFt(x), we can choose
a version ofFt(x) jointly continuous in(t, x). Let (Un)n≥1 be an increasing
sequence of relatively compact convex open subsets ofM containing supp(µ0)

and such that
⋃

n Un = M . Define

τn = inf{t > 0,Ft (x) /∈ Un for somex ∈ supp(µ0)}.
Then since the map(t, x) �→ Ft(x) is almost surely continuous andµ0 has compact
support,τn is an increasing sequence of stopping times converging to the explosion
time τ , which is almost surely positive.

The map(t, y) �→ Ft(y)(ω) is almost surely uniformly continuous on[0,R] ×
supp(µ0) for everyR > 0 smaller thanτ . As a consequence, the barycenterZt

of µt is defined on[0, τ [, and is continuous and adapted.
We shall show thatZt is a semimartingale and is given precisely by the

equations in parts (ii) and (iii) up to each timeτn. Letting n tend to infinity will
prove that the conclusion of the proposition holds.

For the local result we begin with the following lemma which can be considered
as an extension of Lemma 2.6.

LEMMA 2.12. Let U be a relatively compact convex open subset ofM

containingsupp(µ0) and

τU = inf{t > 0,Ft (x) /∈ U for somex ∈ supp(µ0)}.
There existsε > 0 such that ift ≤ τU andρ(z,Zt(ω)) ≤ ε, then∫

M
ψ(z,Ft (x)) dµ0(x)

is invertible with inverse bounded by a constant depending only onU .
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PROOF. Consider the set(Ū)′ of probabilities onŪ , endowed with the weak
topology. It is a metrizable space. SinceŪ is compact, the map

(z,µ) �→
∫
M

ψ(z,x) dµ(x)

is continuous onŪ × (Ū)′ for the product topology. Furthermore, the map
from (Ū )′ to M sendingµ to its exponential barycenterz(µ) is continuous by
Skorokhod theorem: ifµk converges toµ, there is a sequence of random variables
Xk and a random variableX with values inŪ such that the law ofXk is µk , the
law of X is µ andXk converges almost surely toX. SinceŪ is compact,ρ(Xk,X)

converges to 0 inLp for everyp ∈ 2N. On the other hand,(z(µk), z(µ)) is the
exponential barycenter of the law of(Xk,X) andŪ is p-convex forp sufficiently
large. So

ρ
(
z(µk), z(µ)

) ≤ C‖ρ(Xk,X)‖p

which implies thatz(µk) converges toz(µ). This proves thatµ �→ z(µ) is
continuous on(Ū)′.

Next recall that for everyµ ∈ (Ū )′,
∫
M ψ(z(µ),x) dµ(x) is invertible. The image

of the compact set(Ū)′ by the continuous mapµ �→ ∫
M ψ(z(µ),x) dµ(x) (w.r.t.

the weak topology) is compact. This implies the existence of a neighborhood of
the graph ofµ �→ z(µ) of the form {(µ, z) ∈ ((Ū)′ × Ū ), ρ(z, z(µ)) < ε} for
someε > 0, on which

∫
M ψ(z,x) dµ(x) is invertible with inverse in a compact set

depending only onU . This proves the lemma.�

We continue with the proof of the proposition. For relatively compact setUn,
let εn be the constant defined by Lemma 2.12 and set

T 1
n := τn ∧ inf

{
t > 0, ρ(Z0,Zt ) ≥ εn

4

}
.

For everyz ∈ Un with ρ(Z0, z) ≤ εn/4 we define aTzM-valued stochastic process:

G(z, t) = −
∫ t

0

∫
M

(∫
M

ψ(z,Fs(x)) dµ0(x)

)−1

J̇
(
0z, δFs(y)

)
(0) dµ0(y),

0 ≤ t < T 1
n .

ClearlyG(z, t) is a semimartingale for eachz with bounded local characteristics
depending smoothly on the spatial parameterz (see, e.g., [27], Theorem (3.3)). So
one can solve the equation

δZ′
t = G(Z′

t , δt), Z′
0 = Z0.(2.14)

Its solutionZ′
t exists and is a semimartingale up to time

T ′
n := T 1

n ∧ inf
{
t > 0, ρ(Z′

t ,Zt ) ≥ εn

4

}
.



BARYCENTERS OF MEASURES 1525

We only need to show thatZ′
t = Zt , the exponential barycenter ofFt(µ0), that is,∫

M
γ̇

(
Z′

t , Ft (x)
)
(0) dµ0(x) = 0Z′

t
.(2.15)

The equality holds fort = 0. The procesṡγ (Z′
t , Ft (x))(0) is a semimartingale

with continuous spatial parameter and local characteristics uniformly bounded
on (x, t) ∈ supp(µ0) × [0, T ′

n[ and so using [27], Theorem (3.3), we see that
integration overM commutes with covariant Stratonovich differentiationDt in t :

Dt

∫
M

γ̇
(
Z′

t , Ft (x)
)
(0) dµ0(x) =

∫
M

Dt γ̇
(
Z′

t , Ft (x)
)
(0) dµ0(x).(2.16)

More precisely, (2.16) is equivalent to: writingVt(x) = γ̇ (Z′
t , Ft (x))(0),∫ t

0

〈
p∗(α), δ

(∫
M

Vs(x) dµ0(x)

)〉
=

∫
M

(∫ t

0
〈p∗(α), δVs(x)〉

)
dµ0(x),

for every 0≤ t < T ′
n and every sectionα of T ∗M . Herep :T T M → T M is the

map induced by the connection which to an element ofT T M associates its vertical
part.

Now since the connection is torsion free and sinceγ is smooth,Dt
∂
∂s

= D
ds

δt

where D
ds

denotes covariant differentiation ins. Consequently, we have on[0, T ′
n[,∫

M
Dt γ̇

(
Z′

t , Ft (x)
)
(0) dµ0(x)

=
∫
M

D

ds
δtγ

(
Z′

t , Ft (x)
)
(0) dµ0(x)

=
∫
M

J̇
(
δZ′

t , δFt (x)
)
(0) dµ0(x)

=
∫
M

J̇
(
δZ′

t ,0Ft (x)

)
(0) + J̇

(
0Z′

t
, δFt (x)

)
(0) dµ0(x)

=
(∫

M
ψ(Z′

t ,Ft (x))(·) dµ(x)

)
(δZ′

t ) +
∫
M

J̇
(
0Z′

t
, δFt (x)

)
(0) dµ0(x).

Plugging the expression (2.14) forδZ′
t in the last formula yields

Dt

∫
M

γ̇
(
Z′

t , Ft (x)
)
(0) dµ0(x) = 0Z′

t
.(2.17)

Together withZ′
0 = Z0 we see that fort ∈ [0, T ′

n[,∫
M

γ̇
(
Z′

t , Ft (x)
)
(0) dµ0(x) = 0Z′

t
.(2.18)

ConsequentlyZ′
t is the exponential barycenter ofFt(µ0) up to time T ′

n. This
implies thatT ′

n = T 1
n .
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On the set{T 1
n < τn} we replace time 0 by timeT 1

n and timeT 1
n by

T 2
n := τn ∧ inf

{
t > T 1

n , ρ
(
ZT 1

n
,Zt

) ≥ εn

4

}
,

to prove the requested property up to timeT 2
n . With the same procedure we define

a sequence of stopping times(T k
n )k≥1 converging almost surely toτn, such that

Proposition 2.10 is true on[0, T k
n [. Consequently it is true on[0, τn[ as requested.

�

2.5. The hyperbolic space example.Let M be a Riemannian manifold and let
∇ be the Levi–Civita connection. Assume thatM is convex for the Levi–Civita
connection. Denote byρ(x, y) the distance function betweenx andy which is
abbreviated asρ where there is no risk of confusion. For any two pointsx �= y and
γ = γ (x, y) the geodesic connecting them, a vectoru ∈ TxM has an orthogonal
decompositionu = uL + uN whereuL is in the direction ofγ̇ (0). We may also
useuL(x,y) anduN(x,y) when the points concerned need to be clarified. Denote
by //x,y :TxM → TyM the parallel transport along the geodesicγ (x, y). Set
Ei(x, y)(s) = (//x,γ (s))Ei(x, y)(0) for some tangent vectorsEi(x, y)(0) on TxM

such that(E1(x, y)(0), . . . ,En(x, y)(0)) is an orthonormal frame ofTxM . We
shall fixE1(x, y)(0) = γ̇ (0)

‖γ̇ (0)‖ so that

E1(x, y)(s) = exp−1
γ (x,y)(s) y

ρ(γ (x, y)(s), y)
, s ∈ [0,1[.

SinceM is convex we can assume that theEi(x, y)’s are chosen to be smooth in
x andy in a neighborhood of some(x0, y0) off diagonal.

Denote byHm the hyperbolic space of dimensionm and byG :Hm × H
m →

H
m the smooth map which sends(x, y) to the center of the geodesic segment

[x, y] :G(x,y) = expx(
1
2 exp−1

x y).

LEMMA 2.13. The mapG :Hm × H
m → H

m is harmonic.

PROOF. We need to prove that tr∇dG = 0. We do it with a symmetry
argument. Observe thatG(x,y) = G(y,x) for all x, y. We have

tr∇dG(x, y) = tr∇dG(y, x).(2.19)

On the other hand, the symmetryϕx,y in H
m with centerG(x,y) is an isometry

which exchangesx andy. So

tr∇dG(y, x) = tr∇dG
(
ϕx,y(x), ϕx,y(y)

)
(2.20) = (ϕx,y)∗ tr∇dG(x, y) = − tr∇dG(x, y).

The identities (2.19) and (2.20) lead to tr∇dG(y, x) = 0. �
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PROPOSITION 2.14. For x0, y0 ∈ H
m set µ0 = 1

2(δx0 + δy0). Consider
two independent Brownian motionsXt and Yt with initial points x0 and y0,
respectively. Setρt = ρ(Xt , Yt ) and define a measureµt by µt(A) = 1

2(δXt (A) +
δYt (A)). ThenZt is a martingale inM . It satisfies the Itô equation

d∇Zt = 1

2

(
//Xt ,Zt d

∇Xt

)L + 1

2

(
//Yt ,Zt d

∇Yt

)L
+ 1

2cosh(ρt/2)

((
//Xt ,Zt d

∇Xt

)N + (
//Yt ,Zt d

∇Yt

)N )
,

whereu = uL + uN with uL tangential (resp. uN orthogonal) to the geodesic
γ (Xt , Yt ). Furthermore, we have locally

d∇Zt = 1√
2
E1(Zt ,Xt) dW1

t + 1√
2cosh(ρt/2)

m∑
i=2

Ei(Zt ,Xt) dWi
t

for Wi
t independent real-valued Brownian motions.

PROOF. We haveZt = G(Xt,Yt ), whereG is smooth and harmonic. Conse-
quently, since(X,Y ) is a Brownian motion inHm ×H

m, Zt is a martingale inHm.
We first look for a Stratonovich equation forZt . All Jacobi fields alongγ (x, y) can
be written as:J (s) = (a1 + b1s)E1(s) + ∑m

i=2[cosh(sρ)ai + sinh(sρ)bi]Ei(s),

whereai, bi ∈ R and ρ = ρ(x, y). In particular foru ∈ TxH
m, v ∈ TyH

m and
J (u, v) the Jacobi fields along the geodesicγ (x, y) with boundary valuesu andv,
one has

J (u, v)(s) = (
u1(1− s) + sv1)E1(s)

+
m∑

i=2

((
cosh(sρ) − sinh(sρ)cothρ

)
ui + sinh(sρ)

sinhρ
vi

)
Ei(s),

whereui = 〈u,Ei(0)〉H, vi = 〈v,Ei(1)〉H and〈·, ·〉H denotes the scalar product in
H = H

m. Note thatu1E1(0) = uL(x,y) andv1E1(1) = vL(x,y). This gives

J̇ (u,0)(0) = −u1E1(0) −
m∑

i=2

ρ(x, y)coth(ρ(x, y))uiEi(0)

(2.21)
= −uL(x,y) − ρ(x, y)coth(ρ(x, y))uN(x,y),

J̇ (0, v)(0) = v1E1(0) +
m∑

i=2

ρ(x, y)

sinh(ρ(x, y))
viEi(0)

= (//y,x v)L(x,y) + ρ(x, y)

sinh(ρ(x, y))
(//y,xv)N(x,y).
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We have∫
Hm

J̇
(
δZt ,0Ft (y)

)
(0) dµ0(y)

= −1
2(δZt)

L(Zt ,Xt ) − 1
2ρ(Zt ,Xt)coth

(
ρ(Zt ,Xt)

)
(δZt )

N(Zt ,Xt )

− 1
2(δZt)

L(Zt ,Yt ) − 1
2ρ(Zt , Yt )coth

(
ρ(Zt , Yt )

)
(δZt)

N(Zt ,Yt )

= −(δZt)
L(Zt ,Xt ) − 1

2ρ(Xt , Yt )coth
(1

2ρ(Xt , Yt )
)
(δZt )

N(Zt ,Xt ),

sinceXt , Yt andZt lie on the same geodesicvL(Zt ,Xt ) = vL(Zt ,Yt ) for any vectorv.
We shall abbreviatevL(Zt ,Xt ) = vL(Zt ,Yt ) asvL. On the other hand∫

Hm
J̇

(
0Zt , δFt (x)

)
(0) dµ0(x)

= 1

2
J̇ (0, δXt)(0) + 1

2
J̇ (0, δYt )(0)

= 1

2

(
//Xt ,Zt δXt

)L + 1

2

ρ(Zt ,Xt)

sinh(ρ(Zt ,Xt))

(
//Xt ,Zt δXt

)N

+ 1

2

(
//Yt ,Zt δYt

)L + 1

2

ρ(Zt , Yt )

sinh(ρ(Zt , Yt ))

(
//Yt ,Zt δYt

)N

= 1

2

(
//Xt ,Zt δXt

)L + 1

4

ρ(Xt , Yt )

sinh(1
2ρ(Xt , Yt ))

(
//Xt ,Zt δXt

)N

+ 1

2

(
//Yt ,Zt δYt

)L + 1

4

ρ(Xt , Yt )

sinh(1
2ρ(Xt , Yt ))

(
//Yt ,Zt δYt

)N
.

Finally, applying Proposition 2.10(ii) gives the Stratonovich equation

δZt = 1
2

(
//Xt ,Zt δXt

)L + 1
2

(
//Yt ,Zt δYt

)L
+ 1

2 cosh
(1

2ρ(Xt , Yt )
)((

//Xt ,Zt δXt

)N + (
//Yt ,Zt δYt

)N )
.

Obtaining the Itô equation (2.14) from the Stratonovich equation is immediate
sinceZt is a martingale.

For the local form of the Itô equation, by a localization procedure as in [8],
Lemma 3.5, we only need to defineWi locally. We do it with the formula

dWi
t = 1√

2

〈
Ei(Zt ,Xt), //Xt ,Zt d

∇Xt + //Yt ,Zt d
∇Yt

〉
H
,(2.22)

valid for (Xs,Ys) in a small open subset ofH
m × H

m \ {diagonal}. The processes
(Wi

t ) are martingales with quadratic variationt and therefore Brownian motions.
The independence comes from the mutual orthogonality ofEi(Zt ,Xt)’s. �
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REMARK 2.15. Note that if ω0 is a point such that the geodesic
(Xt(ω0)Yt (ω0)) converges, thenZt is close to the solution todzt = 1√

2
E1(zt ,

X∞(ω0)) dW1
t , which lives on the geodesic segment(X·(ω0)Y·(ω0))∞ if it starts

there. In the next section we shall make precise this convergence.

3. The barycenter of two independent Brownian particles in H. Consider
the hyperbolic spaceH = H

d of dimensiond ≥ 2 as an oriented manifold. Let
∂H be the visibility boundary in its visibility compactification, that is, the set of
equivalence classes of geodesic rays. In the upper half space model∂H is the
union of the boundary hyperplane and the point at infinity. The visibility topology
coincides with the usual topology whenH is considered as a subset ofR

d .
Let X andY be two independent Brownian motions inH with initial points

X0 andY0, respectively. Then they converge inH̄ with limits X∞ andY∞ in ∂H,
respectively. We denote by(XY)∞ ⊂ H the random geodesic connecting the two
limit points. By a random variableu on (XY)∞ we meanu(ω) ∈ (XY)∞(ω) for
almost allω.

THEOREM 3.1. Let Xt and Yt be two independent Brownian particles inH

and letZt be their exponential barycenter. Denote byµ(X0, Y0) the law of(Zt )t≥0.
Let u be anF∞-measurable random variable on(XY)∞ and let (Tn)n≥1 be a
sequence of finite stopping times increasing to infinity such thatZTn converges
to u almost surely. Then for almost allω0, µ(XTn(ω0), YTn(ω0)) converges asn
goes to infinity to the law of a Brownian motion(zt )t≥0 of variance1/2 on the
geodesic(XY)∞(ω0) with starting pointu(ω0); that is, (z2t )t≥0 is a Brownian
motion on(XY)∞(ω0).

PROOF. For the proof take the upper half space model

H ≡ {y = (y1, y2, . . . , yd) ∈ R
d, yd > 0}.

The process(Xt ,Zt) is a diffusion as the image of the diffusion(X,Y ) by the
diffeomorphism(x, y) �→ (x, γ (x, y)(1

2)) on H × H. Set Xn
t = XTn+t , Yn

t =
YTn+t andZn

t = ZTn+t . Then(Xn
t ,Zn

t ) has initial condition(XTn,ZTn) which by
assumption converges to(X∞, u).

Since the hyperbolic Laplacian is given by�Hf (x) = 1
2(xd)2�− d−2

2 xd∂d , the
hyperbolic Brownian motions can be written as the solution to the Itô stochastic
differential equation

dXt = Xd
t dBt − 1

2(d − 2)Xd
t ed dt,

(3.1)
dYt = Yd

t dB ′
t − 1

2(d − 2)Y d
t ed dt,

where(Bt ,B
′
t ) is a Brownian motion inR2d and {ei}di=1 is the canonical basis

in R
d .
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Setf (x1, . . . , xd) = sup(xd,0). Then(Xt) can be considered to be the solution
to

dXt = f (Xt) dBt − 1
2(d − 2)f (Xt)ed dt

on R
d . This equation has locally Lipschitz coefficients. We shall show that the

process(Xt ,Zt ) also satisfies an equation which extends toR
d × H with local

Lipschitz coefficients. First note that sinceXt andYt are martingales, (3.1) yields

d∇Xt = Xd
t dBt , d∇Yt = Yd

t dB ′
t .

On the other hand, by Proposition 2.14

d∇Zt = 1

2

(
//Xt ,Zt d

∇Xt

)L + 1

2

(
//Yt ,Zt d

∇Yt

)L
+ 1

2cosh(ρt/2)

((
//Xt ,Zt d

∇Xt

)N + (
//Yt ,Zt d

∇Yt

)N )
.

We have

dZt = d∇Zt − 1
2�(Zt)(d

∇Zt, d
∇Zt) dt,(3.2)

where�(z) is the Christoffel symbol atz for the canonical connection inH. It is
a smooth function, so we only need to prove that the equation ford∇Zt extends
as requested. For this plugd∇Xt andd∇Yt into the formula ford∇Zt and observe
thatY(t) = H(X(t),Z(t)) for H(x, z) = exp(2exp−1

x z) to obtain

d∇Zt = 1

2

(
//Xt ,Zt (X

d
t dBt )

L(Xt ,Zt )

+ //H(Xt ,Zt ),Zt

(
H(Xt,Zt )

d dB ′
t

)L(H(Xt ,Zt ),Zt )
)

+ //Xt ,Zt (X
d
t dBt )

N(Xt ,Zt )

2cosh(ρ(Xt ,Zt))

+ //H(Xt ,Zt ),Zt (H(Xt ,Zt)
ddB ′

t )
N(H(Xt ,Zt ),Zt )

2cosh(ρ(Xt ,Zt ))
.

Let w = (w1, . . . ,wd) be a vector inR
d and let xn = (x1

n, . . . , xd
n ) be a

sequence inH converging tox = (x1, . . . , xd−1,0) ∈ ∂H \ {∞}. SetE(z, x) =
1

ρ(z,x)
exp−1

z x, which extends smoothly to the set(H× H̄) \ {diagonal} considered

as a subset ofH × R
d . Furthermore,

lim
n→∞//xn,z(x

d
nw)L(xn,z)

= lim
n→∞(−xd

n )〈w,E(xn, z)〉HE(z, xn)

= lim
n→∞

〈
w,−(xd

n )−1E(xn, z)
〉
E(z, xn) = −wdE(z, x)
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since(xd
n )−1E(xn, z) converges toed , and similarly

lim
n→∞//H(xn,z),z

(
H(xn, z)

dw
)L(H(xn,z),z) = wdE(z, x).

Moreover, forz ∈ H,

lim
n→∞

(//xn,z(x
d
nw)N(xn,z) + //H(xn,z),z(H(xn, z)

dw)N(H(xn,z),z))

2coshρ(xn, z)
= 0,

from the boundedness of the nominator and the convergence to+∞ of coshρ(xn,

z). We conclude that each coefficient in the equation for(Xt ,Zt) smoothly extends
overH̄ × H and(Xt ,Zt ) is a solution to the system of equations of the following
form:

dXt = f (Xd
t ) dBt − d − 2

2
f (Xd

t )ed dt,(3.3)

dZt = σ(Xt ,Zt ) d(Bt ,B
′
t ) + b(Xt ,Zt) dt,(3.4)

whereσ(x, z) = σ(x̄, z) andb(x, z) = b(x̄, z) if xd < 0 andx̄ = (x1, . . . , xd−1,0).
Since all coefficients are smooth on̄H × H and (Rd \ H) × H they are locally
Lipschitz onR

d × H. Consequently the system (3.3)–(3.4) has a unique solution
and it does not explode for starting points inH × H as known. If, however, the
starting point satisfiesXd

0 ≤ 0, thenX· ≡ X0 and (3.4) reduces to

d∇Zt = 1
2E(Zt , X̄0)(−dBd

t + dB ′
t
d
)(3.5)

whose solution starting fromZ0 shall be denoted by(Zt (X0,Z0)). Then
Z2t (X0,Z0) is a Brownian motion on the hyperbolic geodesic(X̄0Z0). In
particular, it does not explode.

Consider the process(Xn,Zn) as solution to (3.3)–(3.4) where(Bt ,B
′
t ) is

replaced by(BTn+t ,B
′
Tn+t ), with starting point(XTn,ZTn) which by assumption

converges almost surely to(X∞, u). SinceR
d × H is diffeomorphic toR

2d we
can apply Corollary 11.1.5 in [25] forRm-valued SDE and conclude that the
transition probabilities are Feller continuous and so by the Markov property the
law of (Xn,Zn) conditioned by(XTn,ZTn) converges almost surely to the law
of (X∞,Z(X∞, u)). Hence the law ofZ2t is that of a Brownian motion on the
geodesic(X∞, u), as requested.�

The rest of this section is devoted to the existence of sequences of stopping
times(Tn)n≥1 as in Theorem 3.1.

First we note the following fact: IfXt and Yt are independent Brownian
motions inH, then for almost allω the random geodesic(Xt(ω)Yt (ω)) converges
to (X(ω)Y (ω))∞ uniformly on compact sets ast goes to infinity, that is, for
any compact setK , limt→∞ supz∈(XtYt )∩K ρ(z, (X∞Y∞)) = 0. To see this we
take the upper half space representation. We may assumeK ⊂ {(x1, . . . , xd) ∈
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H, xd > ε} for someε > 0. If z ∈ (XtYt ) ∩ K , thenz belongs to a Euclidean
tubular neighborhood of the half-circle(XY)∞, with radius sups≥t max(‖Xs −
X∞‖,‖Ys − Y∞‖). Since forz ∈ K the hyperbolic distance is smaller than the
Euclidean distance divided byε,

lim
t→∞ sup

z∈(XtYt )∩K

ρ
(
z, (X∞Y∞)

) ≤ lim
t→∞

1

ε
sup
s≥t

(
max(‖Xs − X∞‖,‖Ys − Y∞‖))

= 0.

Next for x, y, x ∈ H with x �= y, denote by(xy) the geodesic segment
connecting them and byp(z, x, y) the orthogonal projection ofz into the geodesic
(xy).

LEMMA 3.2. Let (Xt), (Yt ), (Tn)n≥1 and u be as in Theorem3.1. If
(un)n≥1 is a sequence of(FTn)-adapted random variables inH converging
almost surely to anF∞-measurable random measurableu on (XY)∞, then
limn→∞ p(un,XTn, YTn) = u almost surely.

PROOF. Since the projection to the convex set(XTnYTn) is 1-Lipschitz we
have

ρ
(
u,p

(
un,XTn, YTn

))
≤ ρ

(
u,p

(
u,XTn, YTn

)) + ρ
(
p

(
u,XTn, YTn

)
,p

(
un,XTn, YTn

))
≤ ρ

(
u,

(
XTnYTn

)) + ρ(u,un) → 0

following from the fact that for almost allω the geodesic(Xt(ω)Yt (ω)) converges
to (XY)∞(ω) uniformly on compact setsK of H. �

THEOREM 3.3. Let (Xt), (Yt ), (Zt ) andu be as in Theorem3.1.There exists
a sequence of finite stopping times(Tn)n≥1 increasing to infinity such thatZTn

converges tou almost surely.

PROOF. Let (un)n≥1 be a sequence of(Fn)-adapted random variables inH
converging almost surely tou. By Lemma 3.2 it is sufficient to prove that
there exists a sequence of stopping times(Tn)n≥1 such thatTn ≥ n and ZTn =
p(un,XTn, YTn) almost surely. Conditioning with respect toFn, it is sufficient to
prove that for everyo ∈ M andn ≥ 1, there exists a stopping timeTn ≥ n such that
ZTn = p(o,XTn, YTn).

Let Pt = p(o,Xt , Yt ). SincePt andZt belong to the geodesic segment[Xt,Yt ],
Pt = Zt if and only if the signed distanceDt ≡ ρ(Pt ,Xt) − ρ(Xt ,Zt) betweenPt

andZt is zero. For the existence of the stopping times we only need to show that
Dt is recurrent. SetRX

t = ρ(o,Xt) andRY
t = ρ(o,Yt ). By the definition ofPt and
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the triangle inequalities, we haveρ(Xt ,Pt ) ≤ RX
t andρ(Pt , Yt ) ≥ RY

t − ρ(o,Pt ).
So

Dt = ρ(Pt ,Xt) − 1
2ρ(Xt , Yt ) = ρ(Pt ,Xt) − 1

2

(
ρ(Xt ,Pt ) + ρ(Pt , Yt )

)
= 1

2ρ(Xt ,Pt ) − 1
2ρ(Pt , Yt ) ≤ 1

2(RX
t − RY

t ) + 1
2ρ(o,Pt )

and similarlyDt ≥ 1
2(RX

t − RY
t ) − 1

2ρ(o,Pt ). Since limt→∞ ρ(o,Pt ) exists we
only need to showRX

t − RY
t is recurrent. Note that

dRX
t = dBX

t + d − 1

2
cothRX

t dt,

dRY
t = dBY

t + d − 1

2
cothRY

t dt,

where(BX
t ,BY

t ) is a planar Brownian motion. So for almost allω,

inf
(
RX

t (ω),RY
t (ω)

)
> 1

4(d − 1)t

for sufficiently large time. Now

RX
t − RY

t = BX
t − BY

t + 1
2(d − 1)

∫ t

0
(cothRX

s − cothRY
s ) ds.

But BX
t − BY

t is recurrent and
∫ ∞
0 (cothRX

s − cothRY
s ) ds exists since

|cothRX
s − cothRY

s | = |cothRX
s − 1− (cothRY

s − 1)|
=

∣∣∣∣ 2

e2RX
s − 1

− 2

e2RY
s − 1

∣∣∣∣ ≤ 4

e(d−1)s/2 − 1

for large times. ConsequentlyRX
t − RY

t is recurrent and so isDt . �

4. Barycenters of measures in a Cartan–Hadamard manifold. Let M be a
Cartan–Hadamard manifold with pinched negative curvaturesk, −b2 ≤ k ≤ −a2,

for b ≥ a > 0. Denote byM̄ = M ∪∂M its visibility compactification where∂M is
the set of equivalence classes of unit speed geodesics inM under the equivalence
relation

γ1 ∼ γ2 ⇐⇒ lim sup
t→∞

ρ
(
γ1(t), γ2(t)

)
< ∞,

endowed with the sphere topology. See, for example, [2], page 22. Note that
for each pointz ∈ M and x ∈ ∂M there is a unique unit speed geodesic in the
equivalence class ofx with initial point z, which we shall denote as{ϕ(z, x)(t),

0 ≤ t < ∞}. For z, y ∈ M , z �= y, we shall also denote by{ϕ(z, y)(t), t ≥ 0} the
unit speed geodesic satisfyingϕ(z, y)(0) = z andϕ(z, y)(ρ(z, y)) = y. In other
words,

ϕ(z, y)(t) = γ (z, y)
(
t/ρ(z, y)

) ∀ z, y ∈ M satisfyingz �= y.
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Let π :T M → M be the canonical projection and let

φ :SM ≡ {v ∈ T M, ‖v‖ = 1} −→ ∂M

be the map which sendsθ to [expπ(θ)(tθ)]t≥0 ∈ ∂M . The map� = (π,φ) from
SM to M × ∂M is a homeomorphism. In fact,�−1(z, x) = ϕ̇(z, x)(0) (see, e.g.,
[6], Propositions 2.13 and 2.14).

Foro ∈ M denote by(ψo,x, x ∈ ∂M) the family of Busemann functions:

ψo,x(y) = lim
t→∞

[
ρ

(
y,ϕ(o, x)(t)

) − t
]
.(4.1)

These functions are characterized byψo,x(o) = 0 and grady ψo,x = −�−1(y, x) =
−ϕ̇(y, x)(0), any y ∈ M . We writeψx for ψo,x if there is no risk of confusion.
Denote byM1(X) the set of probability measures on a topological spaceX

endowed with the Borelσ -field. Set

ψµ(z) ≡ ψo,µ(z) =
∫
∂M

ψo,x(z) dµ(x), µ ∈ M1(∂M).(4.2)

Then

gradz ψµ = −
∫
∂M

ϕ̇(z, x)(0) dµ(x).(4.3)

A solution to gradz ψµ = 0 is called a Busemann barycenter ofµ.
The aim of this section is to show that for discrete probability measures of

finite support transported by a suitable random flow, the exponential barycenterµt

converges to the Busemann barycenter of the limiting measure on the boundary.

LEMMA 4.1. Letµ be a probability measure onM with corresponding vector
fieldHµ :M → T M defined by(2.1).We have

〈∇uHµ,u〉 ≤ −aε(z,µ)‖u‖2, u ∈ TzH,

where

ε(z,µ) = min
w∈SzM

∫
M

ρ(z, x)sin2 (
w, ϕ̇(z, x)(0)

)
dµ(x).(4.4)

PROOF. We follow the notation of Section 2.3 and note that

∇uHµ =
∫
M

J̇ (u,0x)(0) dµ(x),

where 0x ∈ TxM is the zero vector. Writeu = uL + uN whereuL ≡ uL(z,x) is
colinear to exp−1

z x anduN ≡ uN(z,x) is its orthogonal complement. Then

J̇ (u,0x)(0) = J̇ (uL,0x)(0) + J̇ (uN,0x)(0) = −uL + J̇ (uN,0x)(0),
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sum of two orthogonal vectors. WriteJ (t) = J (uN,0x)(t) and f (t) = ‖J (t)‖.
Then f ′(t) = 1

‖J (t)‖〈J (t), J̇ (t)〉. In particular,f ′(0) = 1
‖uN‖〈uN, J̇ (0)〉 and fur-

thermore

f ′′(t) = f −3(t)
(‖J (t)‖2‖J̇ (t)‖2 − 〈J (t), J̇ (t)〉2 + ‖J (t)‖2〈J (t), J̈ (t)〉)

≥ f −1(t)〈J (t), J̈ (t)〉
= −f −1(t)

〈
J (t),R

(
J (t), γ̇ (t)

)
γ̇ (t)

〉 ≥ a2ρ2(z, x)f (t),

whereγ (t) = γ (z, x)(t) for t ∈ [0,1] anda is the upper bound of the sectional
curvature. Note thatf (0) = ‖uN‖ andf (1) = 0. By comparison with the solution
to g′′(t) = a2ρ2(z, x)g(t) with the same boundary conditions, we see

f ′(0) ≤ g′(0) = −aρ(z, x)coth
(
aρ(z, x)

)‖uN‖ ≤ −aρ(z, x)‖uN‖
which leads to〈uN, J̇ (0)〉 ≤ −aρ(z, x)‖uN‖2. Finally

〈∇uHµ,u〉 =
∫
M

(−‖uL‖2 + 〈J̇ (0), uN 〉)dµ(x)

≤
∫
M

(−‖uL‖2 − aρ(z, x)‖uN‖2)dµ(x) ≤ −
∫
M

aρ(z, x)‖uN‖2 dµ(x)

= −a‖u‖2
∫
M

ρ(z, x)sin2 (
u, ϕ̇(z, x)(0)

)
µ(dx) ≤ −a‖u‖2ε(z,µ). �

LEMMA 4.2. Letµ be a probability measure on∂M . Then

∇dψµ(u,u) ≥ aα(z,µ)‖u‖2 ∀u ∈ TzM, z ∈ M,(4.5)

where

α(z,µ) = min
w∈SzM

∫
∂M

sin2 (
w, ϕ̇(z, x)(0)

)
dµ(x).(4.6)

PROOF. Let z0 ∈ M andx ∈ ∂M . Set

ψt,x(−) = ρ
(−, ϕ(z0, x)(t)

) − t.

By Proposition 3.1 in [13], ast goes to infinity,(ψt,x,gradψt,x,∇ gradψt,x)

converges to(ψx,gradψx,∇ gradψx) uniformly on compact sets. In fact, the
proof of the same proposition shows that the convergence is uniform inx. In
particular, if we set

ψt,µ(z) =
∫
∂M

ψt,x(z) dµ(x),

then

gradz ψt,µ = −
∫
∂M

ϕ̇
(
z,ϕ(z0, x)(t)

)
(0) dµ(x),

∇u gradψt,µ = −
∫
∂M

∇uϕ̇
(·, ϕ(z0, x)(t)

)
(0) dµ(x),
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(ψt,µ,gradψt,µ,∇ gradψt,µ) converges to(ψµ,gradψµ,∇ gradψµ) uniformly
on compact sets and the convergence is uniform inµ.

Let µt = ϕ(z0,−)(t)∗(µ). Sinceγ̇ (x, y)(0) = ρ(x, y)(o)ϕ̇(x, y)(0),

Hµt (z) =
∫
M

γ̇ (z, y)(0) dµt(y)

=
∫
∂M

ρ
(
z,ϕ(z0, x)(t)

)
ϕ̇

(
z,ϕ(z0, x)(t)

)
(0) dµ(x).

If u ∈ Tz0M , thenduρ(·, ϕ(z0, x)(t)) = −〈ϕ̇(z0, x)(0), u〉 and

∇uHµt =
∫
∂M

ρ
(
z0, ϕ(z0, x)(t)

)∇uϕ̇
(·, ϕ(z0, x)(t)

)
(0) dµ(x)

+
∫
∂M

duρ
(·, ϕ(z0, x)(t)

)
ϕ̇

(
z0, ϕ(z0, x)(t)

)
(0) dµ(x)

=
∫
∂M

t∇uϕ̇
(·, ϕ(z0, x)(t)

)
(0) dµ(x)

−
∫
∂M

〈ϕ̇(z0, x)(0), u〉ϕ̇(z0, x)(0) dµ(x)

= −t∇u gradψt,µ −
∫
∂M

〈ϕ̇(z0, x)(0), u〉ϕ̇(z0, x)(0) dµ(x)

usingρ(z0, ϕ(z0, x)(t)) = t and for alls ≥ 0, ϕ(z0, ϕ(z0, x)(t))(s) = ϕ(z0, x)(s).
Consequently

〈∇uHµt , u〉 = −t〈∇u gradψt,µ,u〉 −
∫
∂M

〈ϕ̇(z0, x)(0), u〉2 dµ(x).

This together with Lemma 4.1 gives

〈∇u gradψt,µ,u〉
≥ a

t
ε(z0,µt )‖u‖2 − 1

t

∫
∂M

〈ϕ̇(z0, x)(0), u〉2 dµ(x)

≥ a

t
‖u‖2 min

w∈Sz0M

∫
M

ρ(z0, y)sin2 (
w, ϕ̇(z0, y)(0)

)
dµt(y) − 1

t
‖u‖2

≥ a

t
‖u‖2 min

w∈Sz0M

∫
∂M

ρ
(
z0, ϕ(z0, x)(t)

)

× sin2 (
w, ϕ̇

(
z0, ϕ(z0, x)(t)

)
(0)

)
dµ(x) − 1

t
‖u‖2

= a‖u‖2 min
w∈Sz0M

∫
∂M

sin2 (
w, ϕ̇(z0, x)(0)

)
dµ(x) − 1

t
‖u‖2

= aα(z0,µ)‖u‖2 − 1

t
‖u‖2.
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Taking t to infinity and using the convergence of∇ gradψt,µ to ∇ gradψµ, we
obtain∇dψµ(u,u) ≥ aα(z0,µ)‖u‖2, as desired. �

Let U be the subset ofM1(∂M) containing discrete measures with no atoms
of weight greater than or equal to 1/2. Clearly the functionα(z,µ) is continuous
on M × U, using the weak convergence topology onU. Moreover, it is strictly
positive onM × U: for everyz ∈ M , the set{ϕ̇(z, x)(0), x ∈ supp(µ)} contains at
least three different vectors, and this implies that now ∈ SzM is colinear to all of
them. The positivity then follows from the compactness ofSzM .

PROPOSITION4.3. For µ ∈ U there exists a uniquez ∈ M such that

gradz ψµ ≡ −
∫
∂M

ϕ̇(z, x)(0) dµ(x) = 0.(4.7)

Denote the solution byG(µ). Then the mapG :U → M is continuous.

PROOF. The existence and uniqueness are well known in the case thatµ

is a continuous measure. In fact the uniqueness follows from Lemma 4.2 since
α(z,µ) > 0 andψµ is strictly convex. For the existence we only need to show
that there is a geodesic ballB(o,T ) ⊂ M of radiusT > 0 on which gradψµ

points outward the boundary and therefore has a zero inside the geodesic ball.
For T > 0, takey ∈ ∂B(o,T ). Let γ̄ ∈ ∂M be the point corresponding to the
geodesic rayγ (o, y) and let Bε(γ̄ ) ⊂ ∂M be the set of points whose angle
with γ (o, y) is smaller thanε using the sphere topology. Chooseε0 > 0 so that
c0 ≡ supx∈∂M µ(Bε0(x)) < 1/2 which is possible due to the compactness of the
sphere at infinity. Letx ∈ ∂M , ε the angle betweeṅϕ(0, y)(0) andϕ̇(0, x)(0), and
α the angle betweeṅϕ(y, x)(0) and ϕ̇(y, o)(0). By comparison with a manifold
with constant curvature−a2, we have

sinα ≤ cosε cosα + 1

sinε cosh(aT )
≤ 2

sinε cosh(aT )

and

〈ϕ̇(y, x)(0), ϕ̇(y, o)(0)〉 ≥ 1− 4

sin2 ε cosh2(aT )
.

Consequently

−〈grady ψµ, ϕ̇(y, o)(0)〉

=
(∫

∂M\Bε0(γ̄ )
+

∫
Bε0(γ̄ )

)
〈ϕ̇(y, x)(0), ϕ̇(y, o)(0)〉dµ(x)

≥
∫
∂M\Bε0(γ̄ )

(
1− 4

sin2 ε cosh2(aT )

)
dµ(x) + (−1) · µ(

Bε0(γ̄ )
)
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=
(

1− 4

sin2 ε cosh2(aT )

)(
1− µ

(
Bε0(γ̄ )

)) − µ
(
Bε0(γ̄ )

)

≥ 1− 4

sin2 ε cosh2(aT )
− 2c0

> 0

when cosh2(aT ) > 4/sin2 ε(1− 2c0). Sinceϕ̇(y, o)(0) is normal to the boundary
∂B(o,T ) and pointing inwards, this proves that grady ψµ is pointing outwards.
Consequently there existsz ∈ B(o,T ) such that gradz ψµ = 0, soG is well defined.

For the continuity ofG note that grady ψµ is continuous with respect to(y,µ)

since grady ψt,µ, which is continuous in(y, t,µ), converges to grady ψ uniformly
on y in compact sets and uniformly inµ. Let (µn)n≥1 be a sequence of elements
of U converging toµ ∈ U. Setzn = G(µn) andz = G(µ). From the convergence
of the sequence(µn)n≥1 to µ, we can choose the sameε0, c0 and T for all
µn and µ. Consequently,z and all thezn belong toB(o,T ). Furthermore, the
function α in Lemma 4.2 is continuous, so we haveα0 = inf{α(y,µn) : (y, n) ∈
B(o,T ) × N} > 0 and consequently〈∇u gradψµn,u〉 ≥ aα0‖u‖2 for all y ∈
B(o,T ) andu ∈ TyM . Let zn(t)t≥0 beC1 paths inM with zn(0) = z andżn(t) =
−gradψµn(zn(t)). Then by differentiating‖gradψµn(zn(t))‖2 with respect tot
we see ‖gradψµn(zn(t))‖ ≤ e−aα0t‖gradψµn(zn(0))‖. It follows that zn =
zn(∞) = limt→∞ zn(t) and the length of the curve fromz = zn(0) to zn

is smaller than‖gradψµn(z)‖/(aα0). Since gradψµn(z) → gradψµ(z) = 0,
limn→∞ ρ(z, zn) = 0. SoG is continuous. �

EXAMPLE 4.4. LetH ⊂ C be the Poincaré upper half plane. The boundary
of H is the real lineR, plus one point at infinity. Forn ≥ 2 andx1 < · · · < xn

in R setµ = 1
n

∑n
j=1 δxj

. If n = 3, the angles between the vectorsϕ̇(G(µ), xj )(0)

are ±2π/3. Considering first the casex3 = ∞ and then the general case via
homographic transformations, one finds

G(µ) = x1x3 + x2x3 − 2x1x2 + i
√

3x3(x2 − x1)

2x3 − x1 − x2 + i
√

3(x2 − x1)
.

For n = 4, the situation is even simpler:G(µ) is the intersection between the
hyperbolic geodesics(x1x3) and(x2x4).

Next we consider a Brownian flowFt in M , that is, a semimartingale flow
with characteristic(a(t, x, y,ω),0, t) as defined in Proposition 2.10, such that
for everyx ∈ M , Ft(x) is a Brownian motion [which is equivalent to saying that
a(t, x, x,ω) = ∑d

i=1 ei ⊗ei , where(ei)1≤i≤d is an orthonormal basis ofTxM ]. We
furthermore assume thatFt is unstable, that is, whenevery1 andy2 are two distinct
points inM , the distance betweenFt(y1) andFt(y2) converges to+∞ ast goes to
infinity. Typical examples of unstable flows are given by isotropic Brownian flows
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in the hyperbolic plane with positive first Lyapounov exponent (see, e.g., [24]).
The following result is immediate.

PROPOSITION4.5. Let Ft be an unstable Brownian flow inM . Takeε > 0,
y1 �= y2 and letXi

t = Ft(yi), i = 1,2. Then for almost allω there ist (ω) such that
ρ(X1

t ,X
2
t ) ≥ ((d − 1)a − ε)t whenevert ≥ t (ω).

PROOF. Forx1 �= x2 andu = (u1, u2) ∈ T(x1,x2)(M × M) write ui = vi + wi ,
the orthogonal decomposition withvi tangential to the geodesic(x1x2). We have
by the Hessian comparison theorem,∇dρ(u,u) ≥ a tanh(aρ

2 )(‖w0‖2 + ‖w1‖2)

(see, e.g., [23] Lemma 1.1.1, where a similar calculation is done in positive
curvature). As a consequence, the drift ofϒt := ρ(X1

t ,X
2
t ) is larger than(d −

1)a tanh(aϒt

2 ) dt . Whent is sufficiently large, thenϒt is large by instability of the
flow, so its drift is close to(d − 1)a dt . On the other hand, sinceρ is 1-Lipschitz,
the processϒt has a bracket satisfyingd〈ϒ,ϒ〉t ≤ 2dt. So we can conclude that
for ε > 0 andt large,ϒt ≥ ((d − 1)a − ε)t . �

PROPOSITION 4.6. Let Xt and Yt be two M-valued continuous functions
converging toX∞ andY∞ on ∂M , respectively, as t → ∞. Suppose furthermore
that limt→∞(ρ(o,Xt)− �t)/t = 0, limt→∞(ρ(o,Yt )− �t)/t = 0 andρ(Xt , Yt ) ≥
a′t for t large, for some constantsa′, � > 0 ando ∈ M . ThenX∞ �= Y∞.

PROOF. We only need to establish that if̂Pt is the orthogonal projection ofYt

on the half-geodesic[oXt) := {ϕ(o,Xt)(s), s ≥ 0}, then limt→∞ ρ(P̂t , Yt ) = ∞.
We will prove that, fort large,ρ(P̂t , Yt ) ≥ a′∧�

2 t . WhenP̂t = o, this is clear. Let

us consider the case wherêPt �= o. Let t be a time such thatρ(o, P̂t ) ≥ ρ(o,Xt).
Then

ρ(o,Yt ) ≥ ρ(o, P̂t ) = ρ(o,Xt) + ρ(Xt , P̂t ) ≥ ρ(o,Xt) + ρ(Xt , Yt ) − ρ(P̂t , Yt ),

which implies

ρ(P̂t , Yt ) ≥ ρ(o,Xt) − ρ(o,Yt ) + ρ(Xt , Yt ).

This clearly impliesρ(P̂t , Yt ) ≥ a′
2 t whent is large. Now lett be a time such that

ρ(o, P̂t ) ≤ ρ(o,Xt). We have

ρ(P̂t , Yt ) ≥ ρ(o,Yt ) − ρ(o, P̂t ),

ρ(P̂t , Yt ) ≥ ρ(Xt , Yt ) − ρ(P̂t ,Xt ).

Adding the two together gives

2ρ(P̂t , Yt ) ≥ ρ(o,Yt ) + ρ(Xt , Yt ) − ρ(o,Xt) ∼ ρ(Xt , Yt ) ≥ a′t

which again proves thatρ(P̂t , Yt ) ≥ a′
2 t whent is large. ThusX∞ �= Y∞. �
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A stochastic processXt is said to satisfy the law of large numbers with limit�

if lim t→∞ 1
t
ρ(o,Xt) = �. It is known that all Brownian motions satisfy the law of

large numbers with nonzero limit if (a)M = H
d , (b) M is the universal cover of

a compact Riemannian manifold with negative curvature (see, e.g., [19]), or more
generally, (c)M is a Cartan–Hadamard manifold such that for some pointo ∈ M ,
�ρ(o,−) converges to a negative constant asr goes to infinity.

Note that if ρ(Xi(t), y) are more or less all of the same length independent
of i, that is, ρ(Xi(t), o) = f (t) + Ri(t) with Ri(t) small compared tof (t),
then the minimizer of

∑m
i=1 ρ(Xi(t), y) is close to (or the same as) that of∑m

i=1 ρ2(Xi(t), y). This is the consideration behind the following theorem.

THEOREM 4.7. Let µ be a discrete probability measure onM with finite
support and no weight greater than or equal to1/2. SupposeFt is an unsta-
ble Brownian flow satisfying the conditions of Proposition4.5 and such that
limt→∞ 1

t
ρ(o,Xt) = � where� > 0. Denote byZt the exponential barycenter of

the pushed forward measureµt ≡ Ft(µ). Let µ∞ be the measureF∞(µ) on ∂M .
Thenlimt→∞ Zt = G(µ∞) almost surely.

PROOF. The measureµ∞ is carried by a finite set, and by Propositions
4.5 and 4.6, for almost allω, F∞(y1,ω) �= F∞(y2,ω) if y1 �= y2. This implies
µ∞ ∈ U. For p ∈ M fixed denote by�p(q) the point on∂M determined by
the geodesicϕ(p,q), that is, �p(q) = φ(ϕ̇(p, q)(0)). Then Ft(x) induces a
measurēµp,t on ∂M by �p(·) andµ̄p,t → µ∞. Furthermore, by continuity ofG,
Proposition 4.3, limt→∞ G(µ̄p,t ) = G(µ∞).

Define

Rs =
∫
M

∣∣∣∣1s ρ
(
o,Fs(y)

) − �

∣∣∣∣dµ(y).

Sinceµ has finite support, lims→∞ Rs = 0 almost surely.
SetZ′

t = G(µ̄t ). By definition
∫
∂M ϕ̇(Z′

t , x)(0) dµ̄o,t (x) = 0, so

Hµs (Z
′
s) =

∫
M

γ̇
(
Z′

s,Fs(y)
)
(0) dµ(y) − �s

∫
∂M

ϕ̇(Z′
s, x)(0) dµ̄o,s(x)

=
∫
M

(
γ̇

(
Z′

s,Fs(y)
)
(0) − �sϕ̇

(
Z′

s,Fs(y)
)
(0)

)
dµ(y)

+ �s

∫
M

(
ϕ̇

(
Z′

s,Fs(y)
)
(0) − ϕ̇

(
Z′

s,�o(Fs(y))
)
(0)

)
dµ(y)

=
∫
M

(
ρ

(
Z′

s,Fs(y)
) − �s

)
ϕ̇

(
Z′

s,Fs(y)
)
(0) dµ(y)

+ �s

∫
M

(
ϕ̇

(
Z′

s,Fs(y)
)
(0) − ϕ̇

(
Z′

s,�o(Fs(y))
)
(0)

)
dµ(y).

Set R′
s = �

∫
M ‖ϕ̇(Z′

s,Fs(y))(0) − ϕ̇(Z′
s,�o(Fs(y)))(0)‖dµ(y). By the conver-

gence ofZ′
s , the angular convergence of Brownian motions and the continuity off
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diagonal of the map(z, x) �→ ϕ̇(z, x)(0) from M × M̄ to SM , lims→∞ R′
s = 0

almost surely. We have∥∥Hµs (Z
′
s)

∥∥ ≤ ρ(o,Z′
s) + Rss + sR′

s = ρ(o,Z′
s) + s(Rs + R′

s).

On the other hand, fory ∈ M , let Rs(y) = |1
s
ρ(o,Fs(y)) − �|. Note that for

z ∈ B(Z′
s,1),

ρ
(
z,Fs(y)

) ≥ ρ
(
o,Fs(y)

) − ρ(z, o) ≥ �s − Rs(y)s − [ρ(z,Z′
s) + ρ(Z′

s, o)]
≥ �s − Rs(y)s − 1− ρ(Z′

s, o).

Consequently, by Lemma 4.1, ifu ∈ TzM andz ∈ B(Z′
s,1),〈∇uHµs , u

〉
≤ −a‖u‖2 min

w∈SzM

∫
M

ρ
(
z,Fs(y)

)
sin2 (

w, ϕ̇
(
z,Fs(y)

)
(0)

)
dµ(y)

≤ −a‖u‖2
(
�s min

w∈SzM

∫
M

sin2 (
w, ϕ̇

(
z,Fs(y)

)
(0)

)
dµ(y)

− Rss − ρ(o,Z′
s) − 1

)

= −a‖u‖2(�sα(z, µ̄z,s) − Rss − ρ(o,Z′
s) − 1

)
,

whereα is the continuous and positive function defined in Lemma 4.2. Sinceµ̄z,s

converges toF∞(µ) andZ′
s converges inM to G(µ∞), there existC1(ω) > 0 and

s(ω) > 0 such that fors ≥ s(ω),〈∇uHµs , u
〉 ≤ −C1‖u‖2s ∀ z ∈ B(Z′

s,1), u ∈ TzM.(4.8)

Next let βs(t), t ≥ 0, be theC1 path starting fromZ′
s and such that∂

∂t
βs(t) =

−Hµs (βs(t)). Then with an argument similar to the end of the proof of
Proposition 4.3, (4.8) implies that for everyt ≥ 0 smaller than the exit time from
B(Z′

s,1), ∥∥Hµs (βs(t))
∥∥ ≤ e−C1s

∥∥Hµs (Z
′
s)

∥∥
and

ρ
(
βs(t), βs(0)

) ≤ ‖Hµs (Z
′
s)‖

C1s
(4.9)

≤ ρ(o,Z′
s) + s(Rs + R′

s)

C1s
= ρ(o,Z′

s)/s + Rs + R′
s

C1
.

Since the right-hand side converges to 0 ass goes to infinity, we see that fors
large,βs(t) stays inB(Z′

s,1) for all t ≥ 0. Moreover,βs(t) converges ast goes to
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infinity to βs(∞) = Zs which is the only point in the manifold whereHµs vanishes.
From (4.9), we get

ρ(Zs,Z
′
s) ≤ ρ(o,Z′

s)/s + Rs + R′
s

C1
.

The right-hand side goes to 0, soZs converges toG(µ∞). �

REMARK 4.8. WhenM is the hyperbolic spaceHm anda has second-order
space derivatives almost surely bounded, Theorem 4.7 generalizes to a discrete
measureµ with compact but not necessarily finite support. The proof is the same;
the only difference is that one has to find another argument for the almost sure
convergence ofRs to 0. The new argument is as follows. In an exponential chart
� based ato, let (a′, b′, t) be the characteristic of the flow. Thena′ has second-
order space derivatives almost surely bounded andb′ = 1

2�� has first-order space
derivatives almost surely bounded. Since the chart is centered ato, the distance to
the origin is the same in the chart and in the manifold. Using [5], Theorem 2.1,
we can say that almost surely, for ally ∈ supp(µ), Rs(y) = |1

s
ρ(o,Fs(y)) − �| is

bounded by a constant depending only on the support ofµ. SinceRs(y) converges
almost surely to 0 ass goes to infinity, by dominated convergence,Rs goes to 0.
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