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CHOQUET EXPECTATION AND PENG’S g-EXPECTATION

BY ZENGJINGCHEN,1 TAO CHEN AND MATT DAVISON2

Shandong University and University of Western Ontario

In this paper we consider two ways to generalize the mathematical
expectation of a random variable, the Choquet expectation and Peng’s
g-expectation. An open question has been, after making suitable restrictions
to the class of random variables acted on by the Choquet expectation, for
what class of expectation do these two definitions coincide? In this paper
we provide a necessary and sufficient condition which proves that the only
expectation which lies in both classes is the traditional linear expectation.
This settles another open question about whether Choquet expectation may be
used to obtain Monte Carlo-like solution of nonlinear PDE: It cannot, except
for some very special cases.

1. Introduction. The concept of expectation is clearly very important in
probability theory. Expectation is usually defined via

Eξ =
∫ ∞
−∞

x dF(x),

whereF(x) := P(ξ ≤ x) is the distribution of random variableξ with respect to
the probability measureP . Alternatively, the expectationEξ can be written as

Eξ =
∫ 0

−∞
[P(ξ ≥ t) − 1]dt +

∫ +∞
0

P(ξ ≥ t) dt,(0.1)

which implies the relation between mathematical expectation and probability
measure. One of the properties of mathematical expectation is its linearity: for
given random variablesξ andη,

E(ξ + η) = Eξ + Eη.(0.2)

This is equivalent to the additivity of probability measure, that is,

P(A + B) = P(A) + P(B) if A ∩ B = ∅.(0.3)
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From this viewpoint, we sometimes call mathematical expectation (resp. proba-
bility measure) linear mathematical expectation (resp. linear probability measure).
It is easy to define conditional expectation using the additivity of mathematical
expectations, that is, the conditional expectationη of a random variableξ under
a givenσ -field F is aF -measurable random variable such that

EξIA = EηIA ∀A ∈ F .(0.4)

It is well known that linear mathematical expectation is a powerful tool for dealing
with stochastic phenomena. However, there are many uncertain phenomena which
are not easily modeled using linear mathematical expectations. Economists have
found that linear mathematical expectations result in the Allais paradox and
the Ellsberg paradox, see Allais (1953) and Ellsberg (1961). How to deal with
uncertain phenomena which cannot be well explained by linear mathematical
expectations? One idea is to examine nonlinear expectations. How should
nonlinear mathematical expectations be defined? Choquet (1953) extended the
probability measureP in (0.1) to a nonlinear probability measureV (also called
the capacity) and obtained the following definitionC(ξ) of nonlinear mathematical
expectations (called the Choquet expectation):

C(ξ) :=
∫ 0

−∞
[V (ξ ≥ t) − 1]dt +

∫ +∞
0

V (ξ ≥ t) dt.

BecauseV no longer has property (0.3), the above Choquet expectationC(ξ)

usually no longer has property (0.2). Choquet expectations have many applications
in statistics, economics, finance and physics. Unfortunately, scientists also find
that it is difficult to define conditional Choquet expectations in terms of Choquet
expectations. Many papers study the Choquet expectation and its applications, see,
for example, Anger (1977), Dellacherie (1970), Graf (1980), Sarin and Wakker
(1992), Schmeidler (1989), Wakker (2001), Wasserman and Kadane (1990)
and the references therein. Peng (1997, 1999) introduced a kind of nonlinear
expectation (he calls it theg-expectation) via a particular nonlinear backward
stochastic differential equation (BSDE for short). Using Peng’sg-expectation,
it is easy to define conditional expectations in the same way as in (0.4). Some
applications of Peng’sg-expectation in economics are considered in Chen and
Epstein (2002). An open question raised by Peng is the following: What is the
relation between Choquet expectation and Peng’sg-expectation? We note that
Peng’sg-expectations can be defined only in a BSDE framework, while Choquet
capacities and expectations makes sense in more general settings. In this paper
when we compare the two objects, we do so after making suitable restrictions
to Choquet expectations. That said, does there exist a Choquet expectation
whose restriction to the domainL2(�,F ,P ) of g-expectation is equal to a
g-expectation?

An earlier work by Chen, Kulperger and Sulem (2002) shows that the answer is
yes for certain special random variables. In this paper we shall further study this



CHOQUET AND PENG EXPECTATION 1181

question and obtain a necessary and sufficient condition for this open question.
This settles another open question about whether Choquet expectation may be
used to obtain Monte Carlo-like solution of nonlinear partial differential equations
(PDE): It cannot, except for some very special cases.

2. Notation and lemmas. In this section we introduce the concepts of
Choquet expectation and Peng’sg-expectation. For convenience, we include some
related lemmas used in this paper.

Capacity and Choquet expectation. We now introduce the concepts of capacity
and Choquet expectation.

DEFINITION 1. 1. Random variablesξ andη are called comonotonic if

[ξ(ω) − ξ(ω′)][η(ω) − η(ω′)] ≥ 0 ∀ω,ω′ ∈ �.

2. (Comonotonic additivity). A real functional F on L2(�,F ,P ) is called
comonotonic additive if

F(ξ + η) = F(ξ) + F(η) wheneverξ andη are comonotonic.

3. A set functionV :F −→ [0,1] is called a capacity if:
(i) V (∅) = 0,V (�) = 1;

(ii) If A,B ∈ F andA ⊆ B, thenV (A) ≤ V (B);
(iii) If An ↑ A, thenV (An) ↑ V (A), n → ∞.

4. LetV be a capacity,ξ ∈ L2(�,F ,P ) and denoteC(ξ) by

C(ξ) :=
∫ 0

−∞
(
V (ξ ≥ t) − 1

)
dt +

∫ ∞
0

V (ξ ≥ t) dt.

We callC(ξ) the Choquet expectation ofξ with respect to capacityV .

Dellacherie (1970) showed that comonotonic additivity is a necessary condition
for a functional to be represented by a Choquet expectation.

BSDEs and g-expectation. Let (�,F ,P) be a probability space with filtra-
tion (Fs)s≥0, and let(Ws)s≥0 be a standardd-Brownian motion. For ease of ex-
position, we assumed = 1. The results of this paper can be easily extended to the
cased > 1. Suppose that(Fs) is theσ -filtration generated by(Ws)s≥0, that is,

Fs = σ {Wr;0≤ r ≤ s}.
Let T > 0, FT = F and g = g(y, z, t) : R × Rd × [0, T ] → R be a function
satisfying

(H.1) ∀ (y, z) ∈ R × Rd , g(y, z, t) is continuous int and
∫ T
0 g2(0,0, t) dt < ∞;
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(H.2) g is uniformly Lipschitz continuous in(y, z), that is, there exists a
constantC > 0 such that∀y, y′ ∈ R, z, z′ ∈ Rd , |g(y, z, t) − g(y′, z′, t)| ≤
C(|y − y′| + |z − z′|);

(H.3) g(y,0, t) ≡ 0, ∀ (y, t) ∈ R × [0, T ].
Let M(0, T ,Rn) be the set of all square integrableRn-valued, Ft -adapted
processes{vt } with

E

∫ T

0
|vt |2 dt < ∞.

For eacht ∈ [0, T ], let L2(�,Ft , P ) be the set of allFt -measurable random
variables. Pardoux and Peng (1990) considered the following backward stochastic
differential equation:

yt = ξ +
∫ T

t
g(ys, zs, s) ds −

∫ T

t
zs dWs,(1)

and showed the following result:

LEMMA 1. Suppose that g satisfies (H.1)–(H.3)and ξ ∈ L2(�,F ,P ). Then
BSDE (1) has a unique solution (y, z) ∈ M(0, T ;R) × M(0, T ;Rd).

Using the solution of BSDE (1), Peng (1997) introduced the concept of
g-expectation via BSDE (1).

DEFINITION 2. Supposeg satisfies (H.1)–(H.3). Givenξ ∈ L2(�,F ,P ), let
(y, z) be the solution of BSDE (1). We denote Peng’sg-expectation ofξ by Eg[ξ ]
and define it

Eg[ξ ] := y0.

From the definition ofg-expectation, Peng (1997) introduced the concept of
conditionalg-expectation:

LEMMA 2. For any ξ ∈ L2(�,F ,P ), there exists unique η ∈ L2(�,Ft , P )

such that

Eg[IAξ ] = Eg[IAη] ∀A ∈ Ft .

We call η the conditional g-expectation of ξ and write η as Eg[ξ |Ft ]. Of course,
such conditional expectations can be defined only for sub σ -algebras which appear
in the filtration {Ft }. Furthermore, Eg[ξ |Ft ] is the value of the solution {yt } of
BSDE (1) at time t . That is,

Eg[ξ |Ft ] = yt .
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Theg-expectationEg[·] preserves many of the properties of classical mathemat-
ical expectation. However, it does not preserve linearity. See, for example, Peng
(1997) or Briand et al. (2000) for details.

LEMMA 3. 1.If c is a constant, then Eg[c] = c.
2. If ξ1 ≥ ξ2, then Eg[ξ1] ≥ Eg[ξ2].
3. Eg[Eg[ξ |Ft ]] = Eg[ξ ].
4. If ξ is Ft -measurable, then Eg[ξ |Ft ] = ξ .
5. For the real function g defined on R × Rd × [0, T ], if ξ is independent of Ft ,

then Eg[ξ |Ft ] = Eg[ξ ].

From the definition ofg-expectation, it is natural to defineg-probability thus:

DEFINITION 3. For givenA ∈ F , denotePg(A) by

Pg(A) = Eg[IA].
We callPg(A) theg-probability ofA. Obviously,Pg(·) is a capacity.

To simplify notation, we sometimes rewriteg-expectationEg[·], conditional
g-expectationEg[·|Ft ] andg-probability Pg(·) asEµ[·], Eµ[·|Ft ], Pµ(·), respec-
tively, if g(y, z, t) = µt |z|.

REMARK 1. 1. g-expectation and conditionalg-expectation depend on the
choice of the functiong, if g is nonlinear, theng-expectation is usually also
nonlinear.
2. If g ≡ 0, setting conditional expectationE[·|Ft ] on both sides of BSDE (1)

yields yt = Eg[ξ |Ft ] = E[ξ |Ft ], y0 = Eg[ξ ] = E[ξ ]. This implies another
explanation for mathematical expectation: Within the particular framework of
a Brownian filtration, conditional mathematical expectations with respect toFt

are the solution of a simple BSDE and mathematical expectation is the value of
this solution at timet = 0.

The following example is a special case of Theorem 2.2 in Chen and Epstein
(2002).

EXAMPLE 1. Let µ := {µt } be a continuous function on[0, T ]. Suppose
g(y, z, t) = µt |z| andP is a set of probability measures denoted by

P :=
{
Qv :

dQv

dP
:= e−(1/2)

∫ T
0 |vs |2 ds+∫ T

0 vs dWs ,

vt is Ft -adapted and|vt | ≤ |µt |, a.e.t ∈ [0, T ]
}
.

Then for anyξ ∈ L2(�,F ,P ), we have:
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(i) g-expectationEµ[ξ ]:

Eµ[ξ ] =




Eξ, µ = 0,

inf
Q∈P

EQ[ξ ], µ < 0,

sup
Q∈P

EQ[ξ ], µ > 0.

(ii) Conditionalg-expectation:

Eµ[ξ |Ft ] =




E[ξ |Ft ], µ = 0,

ess inf
Q∈P

EQ[ξ |Ft ], µ < 0,

ess sup
Q∈P

EQ[ξ |Ft ], µ > 0.

(iii) g-probability (capacity):∀A ∈ F ,

Pµ(A) =




P(A), µ = 0,

inf
Q∈P

Q(A), µ < 0,

sup
Q∈P

Q(A), µ > 0.

The following are two key lemmas that we shall use in the next section:
Lemma 4 is from Briand et al. (2000). We rewrite it in the following form.
Lemma 5 is from Peng (1997):

LEMMA 4. Suppose {Xt } is of the following form:

dXt = bt dWt ,

b is a continuous, bounded adapted processes. Then

lim
s→t

Eg[Xs |Ft ] − E[Xs |Ft ]
s − t

= g(Xt , bt , t),

where the limit is in the sense of L2(�,Ft , P ).

LEMMA 5. If g is convex (resp. concave) in (y, z), then for any ξ,

η ∈ L2(�,F ,P ),

Eg[ξ + η|Ft ] ≤ (resp. ≥) Eg[ξ |Ft ] + Eg[η|Ft ], t ∈ [0, T ].
3. Main result. The main result in this paper is the following theorem:

THEOREM 1. Suppose that g satisfies (H.1)–(H.3). Then there exists a
Choquet expectation whose restriction to L2(�,F ,P ) is equal to a g-expectation
if and only if g does not depend on y and is linear in z, that is, there exists
a continuous function ν(t) such that

g(y, z, t) = ν(t)z.
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The strategy of the proof is the following. First, we shall show that ifEg[·] is
a Choquet expectation on the set of all random variables with the formy + zWT ,
then g is of the form g(y, z, t) = µt |z| + νtz. Second, we further show if
g-expectation is a Choquet expectation on the set of all random variables with
the formI[WT ≥1] andI[1≤WT ≤2], thenµt = 0.

Lemma 6 is the first step. The first part of Lemma 6 shows the uniqueness of
capacity:

LEMMA 6. If there exists a Choquet capacity V such that the associated
Choquet expectation on L2(�,F ,P ) is equal to a g-expectation, then:

(i) V (A) = Pg(A), ∀A ∈ F ;
(ii) There exist two continuous functions µt , ν(t) on [0, T ] such that g is of the

form

g(y, z, t) = µt |z| + ν(t)z.

PROOF. (i) Let C(ξ) be the Choquet expectation ofξ with respect toV, if

Eg[ξ ] = C(ξ) ∀ ξ ∈ L2(�,F ,P ).

In particular, for anyA ∈ F , let us chooseξ = IA, thus, Eg[IA] = C(IA).
By the definition of Choquet expectation,C(IA) = V (A) and Pg(A) = Eg[IA],
completing the proof of (i).

(ii) If Eg[·] is a Choquet expectation onL2(�,F ,P ), then by Dellacherie’s
theorem in Dellacherie (1970).Eg[·] is comonotonic additive. That is,

Eg[ξ + η] = Eg[ξ ] + Eg[η] wheneverξ andη are comonotonic.(2)

Choose constants(y1, z1, t), (y2, z2, t) ∈ R2 × [0, T ] such thatz1z2 ≥ 0. For any
τ ∈ [t, T ], denoteξ = y1 + z1(Wτ − Wt) andη = y2 + z2(Wτ − Wt).

It is easy to check thatξ andη are comonotonic and independent ofFt . Note
that g is deterministic andyi andzi , i = 1,2, are constants. Applying part 5 of
Lemma 3,

Eg[ξ |Ft ] = Eg[ξ ], Eg[η|Ft ] = Eg[η], Eg[ξ + η|Ft ] = Eg[ξ + η].
This with (2) implies

Eg[ξ + η|Ft ] − E[ξ + η|Ft ]
τ − t

(3)

= Eg[ξ |Ft ] − E[ξ |Ft ]
τ − t

+ Eg[η|Ft ] − E[η|Ft ]
τ − t

.

Let τ → t on both sides of (3) to obtain, using Lemma 4,

g(y1 + y2, z1 + z2, t) = g(y1, z1, t) + g(y2, z2, t)
(4)

∀ z1z2 ≥ 0, y1, y2 ∈ R,
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which implies thatg is linear with respect toy in R andz in R+ (or R−).
Thus, for any(y, z, t) ∈ R2 × [0, T ], note thatg(y,0, t) = 0 in (H.3) and

apply (4) to obtain

g(y, z, t) = g
(
y + 0, zI[z≥0] + zI[z≤0], t

)
= g

(
y, zI[z≥0], t

) + g
(
0, zI[z≤0], t

)
= g

(
y + 0,0+ zI[z≥0], t

) + g
(
0,−(−z)I[z≤0], t

)
= g(y,0, t) + g

(
0, zI[z≥0], t

) + g
(
0,−(−z)I[z≤0], t

)
= g(0,1, t)zI[z≥0] − g(0,−1, t)zI[z≤0]
= g(0,1, t)z+ + g(0,−1, t)(−z)+

= g(0,1, t)
|z| + z

2
+ g(0,−1, t)

|z| − z

2

= g(0,1, t) + g(0,−1, t)

2
|z| + g(0,1, t) − g(0,−1, t)

2
z.

The second equality is becausezI[z≥0] · zI[z≤0] = 0.

Setµt := g(0,1,t)+g(0,−1,t)
2 andν(t) := g(0,1,t)−g(0,−1,t)

2 to complete the proof.
�

Next, we show thatµt = 0 for t ∈ [0, T ]. We need the following lemmas.
Lemma 7 is a special case of the comonotonic theorem in Chen, Kulperger and
Wei (2005):

LEMMA 7. Suppose � is a function such that �(WT ) ∈ L2(�,F ,P ). Let
(yt , zt ) be the solution of

yt = �(WT ) +
∫ T

t
µt |zs |ds −

∫ T

t
zs dWs,(5)

where µt is a continuous function on [0, T ].
(i) If � is increasing, then zt ≥ 0, a.e. t ∈ [0, T ].
(ii) If � is decreasing, then zt ≤ 0, a.e. t ∈ [0, T ].
PROOF (Sketched for the reader’s convenience). Forε > 0, let gε(z, t) =

µt

√
z2 + ε, thengε is a smoothC2-function which→ µt |z| asε → 0.

Let {yε,t,x
s , zε,t,x

s }(0≤s≤T ) be the solution of the BSDE:

ys = �(WT − Wt + x) +
∫ T

s
µr

√
zr2+ ε dr −

∫ T

s
zr dWr, 0≤ s ≤ T ,

and{yt,x
s , zt,x

s }(0≤s≤T ) be the solution of the BSDE:

ys = �(WT − Wt + x) +
∫ T

s
µr |zr |dr −

∫ T

s
zr dWr, 0≤ s ≤ T .
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By the convergence theorem of BSDE, see Proposition 2.1 in El Karoui, Peng and
Quenez (1997),

{yε,t,x
s , zε,t,x

s }(0≤s≤T ) → {yt,x
s , zt,x

s }(0≤s≤T ) asε → 0

in the sense ofM(0, T ;R) × M(0, T ;Rd).
Moreover, if we choosex = 0, t = 0 in {yt,x

s , zt,x
s }, then {y0,0

s , z0,0
s } is the

solution of BSDE (5). Thus, if we can show for eacht ∈ [0, T ], zε,t,x
s ≥ 0, a.e.

s ∈ [0, T ], by the convergence theorem of BSDE in El Karoui, Peng and Quenez
(1997), we havezt,x

s ≥ 0, thus,zt = z0,0
s ≥ 0.

Without loss of generality, we assume that� is a smoothC2-function,
otherwise, we can choose a sequence of smoothC2-functions �ε such that
�ε → � asε → 0.

Let uε(t, x) = y
ε,t,x
t . Then the general Feynman–Kac formula, see Proposi-

tion 4.3 in El Karoui, Peng and Quenez (1997) or Ma, Protter and Yong (1994),
implies thatuε solves the PDE

∂uε

∂t
+ 1

2

∂2uε

∂x2 + gε(x, t) = 0,

uε(T , x) = �(x),0≤ t ≤ T .

Moreover,

zε,t,x
s = ∂uε(s,Ws − Wt)

∂x
.

On the other hand, by the comparison theorem of PDE,uε(t, x) is increasing inx
if � is increasing, thus,

∂uε(t, x)

∂x
≥ 0.

This implies thatzε,t,x
s ≥ 0, s ≥ 0. Lettingε → 0 and(x, t) = (0,0), we obtain (i).

Similarly, we can obtain (ii) if� is decreasing. The proof is complete.�

Furthermore, we can prove the following:

LEMMA 8. Let µt be a continuous function on [0, T ] and (y, z) be the solution
of BSDE

yt = ξ +
∫ T

t
µs |zs |ds −

∫ T

t
zs dWs.(6)

(i) If ξ = I[WT ≥1], then zt > 0 ∀ t ∈ [0, T ).
(ii) If ξ = �(WT ), where � is a bounded function with strictly positive

derivative �′, then zt > 0, ∀ t ∈ [0, T ).
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(iii) If ξ = I[2≥WT ≥1], then P × λ({(ω, t) : zt (ω) < 0}) > 0,
where λ denotes Lebesgue measure on [0, T ) and P ×λ denotes the product of the
probability measure P and the Lebesgue measure λ.

PROOF. (i) Note that the indicator functionI[x≥1] is increasing, so by
Lemma 7,zt ≥ 0, a.e.t ∈ [0, T ]. This implies that the BSDE (6) is actually a linear
BSDE:

yt = I[WT ≥1] +
∫ T

t
µszs ds −

∫ T

t
zs dWs.

Let

Wt = Wt −
∫ t

0
µs ds,

then

yt = I[WT ≥1] −
∫ T

t
zs dWs.(7)

Let Q be the probability measure defined by

dQ

dP
= exp

[
−1

2

∫ T

0
µ2

s ds +
∫ T

0
µs dWs

]
.

By Girsanov’s lemma,(W t)0≤t≤T is aQ-Brownian motion.
Set conditional expectationEQ[·|Ft ] on both sides of BSDE (7). From the

Markov property,

yt = EQ

[
I[WT ≥1]|Ft

]
= EQ

[
I[WT ≥1−∫ T

0 µs ds]|Ft

]

= EQ

[
I[WT −Wt≥1−∫ T

0 µs ds−Wt ]|Ft

]

= EQ

[
I[WT −Wt≥1−∫ T

0 µs ds−Wt ]|σ(Wt)
]
.

Note thatσ(Ws; s ≤ t) = σ(Ws; s ≤ t) becauseµt is a real function int , thus,

yt = EQ

[
I[WT −Wt≥1−∫ T

0 µs ds−Wt ]|σ(Wt)
]
.

SinceWT − Wt andWt are independent, we have

yt = EQ

[
I[WT −Wt≥1−∫ T

0 µs ds−h]
]∣∣

h=Wt
.

But WT − Wt ∼ N(0, T − t), therefore,

yt =
∫ ∞

1−∫ T
0 µs ds−h

ϕ(x) dx
∣∣∣
h=Wt

,

whereϕ(x) is the density function of the normal distributionN(0, T − t).
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By the relation betweenyt and zt , see Corollary 4.1 in El Karoui, Peng and
Quenez (1997), we have

zt = ∂yt

∂h

∣∣∣∣
h=Wt

= ϕ

(
1−

∫ T

0
µs ds − Wt

)
> 0,

that is,zt > 0, a.e.t ∈ [0, T ).
(ii) Similar to the proof of (i) and noting the fact that�′ > 0, it is easy to check

zt =
∫ ∞
−∞

�′
(
x + Wt +

∫ T

0
µs ds

)
ϕ(x) dx > 0, t ∈ [0, T ),

whereϕ(x) is the density function of the normal distributionN(0, T − t).
(iii) For given ξ = I[2≥WT ≥1], we assume the conclusion of (ii) is false, then

zt ≥ 0, a.e.t ∈ [0, T ), which implies that BSDE (6) is actually a linear BSDE:

yt = I[2≥WT ≥1] +
∫ T

t
µszs ds −

∫ T

t
zs dWs.

That is,

yt = I[2≥WT ≥1] −
∫ T

t
zs dWs,(8)

where

Wt = Wt −
∫ t

0
µs ds.

As in (i), let

dQ

dP
= exp

[
−1

2

∫ T

0
µ2

s ds +
∫ T

0
µs dWs

]
.

Applying Girsanov’s lemma again,(W t)0≤t≤T is aQ-Brownian motion.
Set conditional expectationEQ[·|Ft ] on both sides of BSDE (8). Note that

σ(Ws; s ≤ t) = σ(Ws; s ≤ t),

yt = EQ

[
I[2≥WT ≥1]|Ft

]
= EQ

[
I[2−∫ T

0 µs ds−Wt≥WT −Wt≥1−∫ T
0 µs ds−Wt ]|Ft

]

= EQ

[
I[2−∫ T

0 µs ds−Wt≥WT −Wt≥1−∫ T
0 µs ds−Wt ]|σ(Wt)

]

= EQ

[
I[2−∫ T

0 µs ds−h≥WT −Wt≥1−∫ T
0 µs ds−h]

]∣∣
h=Wt

.

SinceWT − Wt ∼ N(0, T − t),

yt =
∫ 2−∫ T

0 µs ds−h

1−∫ T
0 µs ds−h

ϕ(x) dx
∣∣∣
h=Wt

.
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Therefore, applying the relation betweenyt andzt again,

zt = ∂yt

∂h

∣∣∣∣
h=Wt

= ϕ

(
1−

∫ T

0
µs ds − Wt

)
− ϕ

(
2−

∫ T

0
µs ds − Wt

)

= 1√
2π(T − t)

exp
[
−(1− ∫ T

0 µs ds − Wt)
2

2(T − t)

]

− 1√
2π(T − t)

exp
[
−(2− ∫ T

0 µs ds − Wt)
2

2(T − t)

]
.

However, it is easy to check that

zt > 0, t ∈ [0, T ) whenWt < 3
2 −

∫ T

0
µs ds;

zt < 0, t ∈ [0, T ) whenWt > 3
2 −

∫ T

0
µs ds,

which implies

P(zt > 0) > 0, P (zt < 0) > 0 a.e.t ∈ [0, T ),

thus, P × λ((ω, t) : zt (ω) < 0) > 0. We obtain a contradiction. The proof is
complete. �

Let L2+(�,F ,P ) [resp. L2−(�,F ,P )] be the set of all nonnegative (resp.
nonpositive) random variables inL2(�,F ,P ).

LEMMA 9. Suppose that g is a convex (or concave) function. If Eg[·] is
comonotonic additive on L2+(�,F ,P ) [resp. L2−(�,F ,P )], then Eg[·|Ft ] is also
comonotonic additive on L2+(�,F ,P ) [resp. L2−(�,F ,P )] for any t ∈ [0, T ).

PROOF. We show the above result onL2+(�,F ,P ); the result onL2−(�,

F ,P ) can be proved in the same way.
BecauseEg[·] is comonotonic additive onL2+(�,F ,P ), then∀ ξ, η ∈ L2+(�,

F ,P ), we have

Eg[ξ + η] = Eg[ξ ] + Eg[η] wheneverξ andη are comonotonic.(9)

We now show∀ t ∈ [0, T )

Eg[ξ + η|Ft ] = Eg[ξ |Ft ] + Eg[η|Ft ] wheneverξ andη are comonotonic.(10)

First, we assume thatg is a convex function. Then by Lemma 5,

Eg[ξ + η|Ft ] ≤ Eg[ξ |Ft ] + Eg[η|Ft ] ∀ t ∈ [0, T ].
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If (10) is false, then there existst ∈ [0, T ] such that

P(ω :Eg[ξ + η|Ft ] < Eg[ξ |Ft ] + Eg[η|Ft ]) > 0.

Let

A = {ω :Eg[ξ + η|Ft ] < Eg[ξ |Ft ] + Eg[η|Ft ]}.
ObviouslyA ∈ F , and

IAEg[ξ + η|Ft ] < IAEg[ξ |Ft ] + IAEg[η|Ft ].
Set g-expectationEg[·] on both sides of the above inequality. By the strict
comparison theorem of BSDE, see Peng (1997), we have

Eg

[
IAEg[ξ + η|Ft ]] < Eg{IAEg[ξ |Ft ] + IAEg[η|Ft ]}.(11)

Observing the above inequality, apply the convexity ofg again to the right-hand
side of (11) and use part 3 of Lemma 3 to obtain

Eg{IAEg[ξ |Ft ] + IAEg[η|Ft ]} ≤ Eg

[
IAEg[ξ |Ft ]] + Eg

[
IAEg[η|Ft ]]

= Eg[IAξ ] + Eg[IAη].
But the left-hand side of (11) is

Eg

[
IAEg[ξ + η|Ft ]] = Eg[IAξ + IAη].

Thus,

Eg[IAξ + IAη] < Eg[IAξ ] + Eg[IAη].(12)

Furthermore, sinceξ and η are positive and comonotonic, obviouslyIAξ and
IAη are also positive and comonotonic, by the assumption thatEg[·] is comonotonic
additive, and Dellacherie’s (1970) theorem,

Eg[IAξ + IAη] = Eg[IAξ ] + Eg[IAη].(13)

Inequality (12) contradicts (13), thus,

Eg[ξ + η|Ft ] = Eg[ξ |Ft ] + Eg[η|Ft ] ∀ t ∈ [0, T ].
Next, if g is concave, then, by Lemma 5,

Eg[ξ + η|Ft ] ≥ Eg[ξ |Ft ] + Eg[η|Ft ] ∀ t ∈ [0, T ].
The rest can be proved in a fashion similar to result (i).�

Combining Dellacherie’s (1970) theorem and Lemma 9, we immediately obtain
the following:

COROLLARY 1. Under the assumption of Lemma 9, if Eg[·] is a Choquet
expectation on L2+(�,F ,P ) [resp. L2−(�,F ,P )], then for each t ∈ [0, T ],
Eg[·|Ft ] is also a Choquet expectation on L2+(�,F ,P ) [resp. L2−(�,F ,P )].
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We now study the case whereg is of the formg(t, y, z) = µt |z|. Obviously, if
µt ≥ 0, t ∈ [0, T ], theng is convex and ifµt ≤ 0, t ∈ [0, T ], g is concave.

LEMMA 10. Let µt �= 0 be a continuous function on [0, T ] and g(z, t) = µt |z|.
There exists no Choquet expectation agreeing with Eµ[·] on L2(�,F ,P ).

PROOF. Assume the result of this lemma is false, thenEµ[·] is a Choquet ex-
pectation onL2(�,F ,P ). By Dellacherie’s (1970) theorem,Eµ[·] is comonotonic
additive onL2(�,F ,P ).

We now choose two special random variablesξ1 = I[WT ≥1] andξ2 = I[2≥WT ≥1].
Let (yi, zi), i = 1,2, be the solutions of the following BSDEs corresponding to
ξ1 andξ2, respectively,

yt = ξi +
∫ T

t
µs |zs |ds −

∫ T

t
zs dWs, i = 1,2.

If (yt , zt ) is the solution of BSDE,

yt = (ξ1 + ξ2) +
∫ T

t
µs |zs |ds −

∫ T

t
zs dWs,

theny1
t = Eµ[ξ1|Ft ], y2

t = Eµ[ξ2|Ft ] andyt = Eµ[ξ1 + ξ2|Ft ].
It is easy to show thatξ1 and ξ2 are positive and comonotonic. As we have

assumed thatg-expectationEµ[·] is a Choquet expectation, thus,Eµ[·] is
comonotonic additive with respect toξ1, ξ2. By Lemma 9,Eµ[·|Ft ] is also
comonotonic additive with respect toξ1, ξ2, that is,

Eµ[ξ1 + ξ2|Ft ] = Eµ[ξ1|Ft ] + Eµ[ξ2|Ft ] ∀ t ∈ [0, T ].
This can be written in another form, namely

yt = y1
t + y2

t ∀ t ∈ [0, T ].(14)

Let 〈X,W 〉 be the finite variation process generated by the semi-martingaleX and
Brownian motionW , then, from (14),

〈y,W 〉t = 〈y1 + y2,W 〉t = 〈y1,W 〉t + 〈y2,W 〉t ∀ t ∈ [0, T ],
but

zt = d〈y,W 〉t
dt

, z1
t = d〈y1,W 〉t

dt
, z2

t = d〈y2,W 〉t
dt

.

Thus,

zt = z1
t + z2

t a.e.t ∈ [0, T ].
Applying the above inequality to (14), note that (14) can be rewritten as

(ξ1 + ξ2) +
∫ T

t
µs |zs |ds −

∫ T

t
zs dWs =

2∑
i=1

(
ξi +

∫ T

t
µs |zi

s |ds −
∫ T

t
zi
s dWs

)
.
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We can obtain

µt |z1
t + z2

t | = µt |z1
t | + µt |z2

t | a.e.t ∈ [0, T ].
Sinceµt �= 0, therefore,

|z1
t + z2

t | = |z1
t | + |z2

t | a.e.t ∈ [0, T ].(15)

Obviously, (15) is true if and only ifz1
t z

2
t ≥ 0.

However, from Lemma 8, we knowz1
t > 0, a.e.t ∈ [0, T ] and

P × λ
(
(ω, t) : z2

t (ω) < 0
)
> 0.

Thus,P × λ((ω, t) : z1
t (ω)z2

t (ω) < 0) > 0, which implies

P × λ
(
(ω, t) : |z1

t (ω) + z2
t (ω)| < |z1

t (ω)| + |z2
t (ω)|) > 0,

which contradicts (15). The lemma’s proof is complete.�

From the above proof, applying the strict comparison theorem of BSDE in Peng
(1997), we have the following:

COROLLARY 2. If µt �= 0, ∀ t ∈ [0, T ]. Let ξ1 = I[WT ≥1] and ξ2 = I[2≥WT ≥1],
obviously ξ1 and ξ2 are comonotonic, but Eµ[ξ1 + ξ2] < Eµ[ξ1] + Eµ[ξ2].

We now prove our main theorem.

PROOF OFTHEOREM 1.

Sufficiency. If g(y, z, t) = νtz, for anyξ ∈ L2(�,F ,P ), let us consider BSDE

yt = ξ +
∫ T

t
νszs ds −

∫ T

t
zs dWs.

Let Wt = Wt − ∫ t
0 νs ds, then

yt = ξ −
∫ T

t
zs dWs.

By Girsanov’s lemma,(W t)0≤t≤T is aQ-Brownian motion underQ defined by

dQ

dP
= exp

[
−1

2

∫ T

0
v2
s ds +

∫ T

0
vs dWs

]
.

Thus,

Eg[ξ |Ft ] = EQ[ξ |Ft ], Eg[ξ ] = EQ[ξ ].
This impliesg-expectation is a classical mathematical expectation. Obviously, the
classical mathematical expectation can be represented by the Choquet expectation.
So the sufficiency proof is complete.
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Necessity. For any ξ ∈ L2(�,F ,P ), by Lemma 6(ii), there exist two
continuous functions on[0, T ] such that

g(y, z, t) = µt |z| + ν(t)z.

Without loss of generality, we assumeν(t) = 0, t ∈ [0, T ], otherwise, by
Girsanov’s lemma, we can rewrite the BSDE

yt = ξ +
∫ T

t
(µs |zs | + νszs) ds −

∫ T

t
zs dWs

as

yt = ξ +
∫ T

t
µs |zs |ds −

∫ T

t
zs dWs,(16)

where Ws := Ws − ∫ s
0 ν(r) dr , (W t)0≤t≤T is a Q-Brownian motion underQ

defined by

dQ

dP
= exp

[
−1

2

∫ T

0
ν2
s ds +

∫ T

0
νs dWs

]
.

We can consider our question on the probability space(�,F ,Q).
Assumeµ �≡ 0, then there existst0 such thatµt0 �= 0. Without loss of generality,

we assumeµt0 > 0.
Sinceµt is continuous, then there exists a region oft0, say[t, T ] ⊂ [0, T ] such

that∀ t ∈ [t, T ], µt > 0.
The next step of the proof is to localize in time so as to use Lemma 10.
Let ξ1 = I[WT −Wt≥1] and ξ2 = I[2≥WT −Wt≥1]. Obviously, ξ1 and ξ2 are

comonotonic.
We now show that

Eµ[ξ1 + ξ2] < Eµ[ξ1] + Eµ[ξ2],
which implies thatEµ[·] is not comonotonic additive for comonotonic random
variablesξ andη.

Let Ws = Wt+s − Wt , then {Ws : 0 ≤ s ≤ T − t} is (F ′
s ) Brownian motion,

where

F ′
s = σ {Wr : 0≤ r ≤ s} = σ {Wt+r − Wt : 0≤ r ≤ s}.

Using the above notation,ξ1 and ξ2 can be rewritten asξ1 = I[WT −t≥1] and
ξ2 = I[2≥WT −t≥1].

For the givenξ1 and ξ2, let at = µt+t and (Y i,Zi) be the solutions of the
following BSDEs with terminal valueξ1 andξ2, respectively, on[0, T − t]:

Y i
t = ξi +

∫ T −t

t
as |Zi

s |ds −
∫ T −t

t
Zi

s dWs, t ∈ [0, T − t], i = 1,2,(17)
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and(Y ,Z) be the solution of the BSDE:

Y t = ξ1 + ξ2 +
∫ T −t

t
as |Zi

s |ds −
∫ T −t

t
Z

i

s dWs, t ∈ [0, T − t].(18)

Sinceat = µt+t �= 0, ∀ t ∈ [0, T − t], by Corollary 2,

Y t < Y
1
t + Y

2
t , t ∈ [0, T − t].(19)

On the other hand, for the givenξ1 andξ2, consider the BSDE on[0, T ]:

yi
t = ξi +

∫ T

t
µs |zi

s |ds −
∫ T

t
zi
s dWs, i = 1,2, t ∈ [0, T ],(20)

and

yt = ξ1 + ξ2 +
∫ T

t
µs |zi

s |ds −
∫ T

t
zi
s dWs, t ∈ [0, T ].(21)

Comparing (17) with (20) and (18) with (21),

Y i
t = yi

t , i = 1,2; Y t = yt , t ∈ [0, T − t].
But y1

t = Eµ[ξ1|Ft ], y2
t = Eµ[ξ2|Ft ] andyt = Eµ[ξ1 + ξ2|Ft ].

Thus,

Y i
0 = Eµ[ξi], i = 1,2, Y 0 = Eµ[ξ1 + ξ2].

Applying (19),

Eµ[ξ1 + ξ2] < Eµ[ξ1] + Eµ[ξ2],
which contradicts the comonotonic additivity ofEµ[·]. Thus,µ(t) = 0 ∀ t ∈ [0, T ].
The proof is complete. �

An interesting application of Theorem 1 is the following:

COROLLARY 3. Suppose µ �= 0 and let Eµ[·] be the maximal (minimal )
expectations defined in Example 1, then maximal (minimal ) expectation is not a
Choquet expectation on L2(�,F ,P ).

REMARK 2. 1. In the proofs of Lemma 6(ii) and Theorem 1, we only use
random variables having the formy + zWt andI[WT ∈(a,b)]. Thus, Lemma 6(ii) and
Theorem 1 actually imply that if and only ifg is linear inz, theng-expectation
is a Choquet expectation on the set of all random variables with the form
f (WT ) ∈ L2(�,F ,P ).

2. Becauseg-expectation depends on the choice ofg, if g is nonlinear
in z, Theorem 1 implies thatg-expectation is not a Choquet expectation
onL2(�,F ,P ).
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3. It is well understood that mathematical expectation is linear in the sense of

E(ξ + η) = Eξ + Eη ∀ ξ, η ∈ L2(�,F ,P ).

For the Choquet expectation, the above equality is still true whenξ and η

are comonotonic. However, for theg-expectation, ifg is nonlinear, the above
additivity no longer holds even for comonotonic random variables. From this
viewpoint, our result implies Peng’sg-expectation usually is more nonlinear than
the Choquet expectation onL2(�,F ,P ).

4. Feynman–Kac formula and Choquet expectation. Let u be the solution
of the partial differential equation (PDE)

∂u(t, x)

∂t
= 1

2

∂2u(t, x)

∂x2 ,

(22)
u(0, x) = f (x), t ≥ 0, x ∈ R.

By the famous Feynman–Kac formula, the solutionu(t, x) of PDE (22) can be
represented by mathematical expectation:

u(t, x) = Ef (Wt + x),(23)

where{Wt } is a standard Brownian motion andf is a bounded function.
Formula (23) makes it possible to solve linear PDE using Monte Carlo methods

(the limit law theorem for additive probabilities).
We consider the following example of a nonlinear PDE. Letu be the solution of

PDE:

∂u(t, x)

∂t
= 1

2

∂2u(t, x)

∂x2 + g

(
u,

∂u(t, x)

∂x

)

(24)
u(0, x) = f (x), t ≥ 0,

whereg is a function satisfying (H.1)–(H.3) in Section 2.
If there exists a capacity such that the solution of PDE (24) can be represented

by a Choquet expectation, then applying the limit law theorem for nonadditive
probabilities in Marinacci (1999) would suggest a Monte Carlo-like method could
be used to solve nonlinear PDE (24). Unfortunately, our result shows that this is
not generally possible.

THEOREM 2. In the Brownian setting as above, denote by uf (t, x) the
solution of PDE (24). If g(y, z) is nonlinear in z, then there is no capacity such
that the associated Choquet expectation C satisfies uf (t, x) = C[f (Wt + x)] for
all bounded functions f and for all x.
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PROOF. Let {Wt } be a Brownian motion, by the general Feynman–Kac
formula, see, for example, El Karoui, Peng and Quenez (1997) or Ma, Protter and
Yong (1994),uf (t, x) can be represented, byg-expectation, that is,

uf (t, x) = Eg[f (Wt + x)].
Applying Theorem 1 and part 1 of Remark 2 completes the proof of this theorem.

�

REMARK 3. Theorems 1 and 2 state that ifg is nonlinear inz, we cannot
find a capacity such that the associated Choquet expectation andg-expectation
Eg[f (Wt + x)] satisfy

Eg[f (Wt + x)] = C[f (Wt + x)](25)

for all bounded functionsf and for allx.
However, if we further restrictf to a set containing only those bounded

functions having strictly positive derivatives, we still can find a nonlinear function
g and a Choquet expectation such that equation (25) is true. The following is
an example.

EXAMPLE 2. Supposeµ �= 0 is a constant, letg(z) = µ|z|. Obviouslyg is
nonlinear, but we have

Eg[f (Wt + x)] = EQ[f (Wt + x)]
for all bounded functionsf with strictly positive derivatives and for allx,
providedQ is a probability measure defined by

E

[
dQ

dP

∣∣∣FT

]
= e−(1/2)µ2T +µWT .(26)

Indeed, let(ys, zs) be the solution of the BSDE

ys = f (Wt + x) +
∫ t

s
µ|zr |dr −

∫ t

s
zr dWr, 0≤ s ≤ t.

By Lemma 8(ii),zr > 0, r ∈ [0, t) for all bounded functionsf with strictly positive
derivatives. Thus, the above BSDE is actually a linear BSDE

ys = f (Wt + x) +
∫ t

s
µzr dr −

∫ t

s
zr dWr, 0≤ s ≤ t.

Let W̃r = Wr − µr . Girsanov’s lemma then implies that{W̃r} is a Q-Brownian
motion underQ denoted in (26). Moreover, the above BSDE can be rewritten as

ys = f (Wt + x) −
∫ t

s
zr dW̃r , 0≤ s ≤ t.(27)
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Setting conditional expectationEQ[·|Fs] on both sides of BSDE (27),

ys = EQ[f (Wt + x)|Fs], 0 ≤ s ≤ t.

In particular, if we lets = 0, by the definition ofEg[·],
Eg[f (Wt + x)] = y0.

Thus,

Eg[f (Wt + x)] = EQ[f (Wt + x)]
for all bounded functionsf with strictly positive derivatives and for allx.

Note both thatQ does not depend on the choice off and that mathematical
expectation is a Choquet expectation. The proof is complete.
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