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Motivated by the recent work of Benjamini, Haggstrom, Peres and
Steif [Ann. Probab. 34 (2003) 1-34] on dynamical random walks, we do
the following: (i) Prove that, after a suitable normalization, the dynamical
Gaussian walk converges weakly to the Ornstein—Uhlenbeck process in
classical Wiener space; (ii) derive sharp tail-asymptotics for the probabilities
of large deviations of the said dynamical walk; and (iii) characterize (by
way of an integral test) the minimal envelope(s) for the growth-rate of the
dynamical Gaussian walk. This development also implies the tail capacity-
estimates of Mountford for large deviations in classical Wiener space.

The results of this paper give a partial affirmative answer to the problem,
raised in Benjamini, Haggstrom, Peres and Staiir. Probab. 34 (2003)
1-34, Question 4], of whether there are precise connections between the OU
process in classical Wiener space and dynamical random walks.

1. Introduction and main results. Let {w;}32, denote a sequence of i.i.d.
random variables, and to eaaly we associate a rate-one Poisson process with
jump times O< 7;(1) < 7;(2) < ---. (All of the said processes are assumed to
be independent from one another.) Now at every jump-time ofjthePoisson
process, we replace the existingvalue by an independent copy. In symbols, let
{w’;.};?,ok=1 be a double-array of i.i.d. copies of theg’s—all independent of the
Poisson clocks and define the proc&ss= {X ;(1); t > 0}?‘;1 as follows: For all
Jj=1,

Xj (0) =wj,
Xj0):=aof Vie[rjk).tjk+1).

We remark that, as a process indexed iyt — (X1(¢), X2(2),...) is a
stationary Markov process R whose invariant measure is the product measure
1, whereu denotes the law ab;.

Recently, Benjamini, Haggstrom, Peres and Steif (2003) have introduced
dynamical random walks as the partial-sum processes that are associated to
the Markov processX. In other words, the dynamical walk associated to the
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DYNAMIC WALKS 1453
distribution  is defined as the two-parameter procéss= {S,(t)},>1.,>0 that
is defined by
(1.2) S,@)=X10)+---+ X,,(0) Vn>11>0.

From now on, we specialize our dynamical walks by assuming that the incremental
distribution is standard normal, that is, for alle R,

_ o0 —22/2
(1.3) p(lx,00) =1—®(x) = P(x) := f N dz.

Our forthcoming analysis depends on this simplification in a critical way.
Now consider the following rescaled dynamical Gaussian Welk

Sl_nsj (t)
N

Our first contribution is the following large-sample result on dynamical Gaussian

walks.

(1.4) Ul (s) := Vs, 1 €[0,1].

THEOREM 1.1. As n tends to infinity, the random field U" converges
weakly in D([0, 1]%) to the continuous centered Gaussian random field U whose
covarianceis

(1.5) E(U,()Uy (s} =e "I min(s,s")  Vs,s',t,¢ €[0,1].

(For information onD ([0, 1]%), consult Section 4.)
Before proceeding further, we make two tangential remarks.

REMARK 1.2. The limiting random field/ has the following interpretation:
(1.6) U (s):=e "' B(s, %) Vs, t €0, 1],

where B is the two-parameter Brownian sheet. Standard arguments then show
that U := {U;},;>0 is an infinite-dimensional stationary diffusion on the classical
Wiener spaceC ([0, 1]), and the invariant measure @f is, in fact, the Wiener
measure onC ([0, 1]). The processU is the so-calledOrnsteinr—Uhlenbeck

(OU) process in classical Wiener space. Theorem 1.1, in conjunction with this
observation, gives a partial affirmative answer to Benjamini, Haggstrém, Peres and
Steif [(2003), Question 4], where it is asked whether there are precise potential-
theoretic connections between the dynamical (here, Gaussian) walks and the OU
process inC ([0, 1]).

REMARK 1.3. Theorem 1.1 can be viewed as a construction of the OU process
in C([0, 1]). Thisis an interesting process in and of itself, and arises independently
in diverse areas in stochastic analysis. For three samples, see Kuelbs (1973),
Malliavin (1979) and Walsh (1986). The elegant relation (1.6) to the Brownian
sheet was noted by David Williams; see Meyer [(1982), Appendix].
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Our next result elaborates further on the connection between the dynamical
Gaussian walk and the proceds

THEOREM1.4. Choose and fix a sequence {z,-}?":1 that satisfies

. . ) lo
(1.7) infz, > 1, lim z, =400 and lim ./ gnzn —0.
n n— o0 n—00 n

Then, asn — oo,
1+0(1)
9

(1.8) zﬁci)(zn) < P{ sup S, (t) > znﬁ} <(2+ 0(1))255(@;)-

t€[0,1]

The following reformulation of a theorem of Mountford (1992) provides the
analogue for the standard OU procéss= {U,(1); t > 0}: There exists a constant
K19 > 1such that

(1.9)  Ki972®() < P{ sup U (1) > z} <K192°®d(z) Vz>1
t€[0,1]
For a refinement, see Pickands (1967) and also Qualls and Watanabe (1971).

The apparent similarity between Theorem 1.4 and (1.9) is based on more than
mere analogy. Indeed, Theorems 1.1 and 1.4 together imply (1.9) as a corollary.
This can be readily checked; see the last line of Section 4.1.

As a third sample from our present work, we show a pathwise implication of
Theorem 1.4. This is the dynamical analogue of the celebrated “integral test” of
Erdds (1942). Define the maf( H), for all nonnegative measurable functiols
by

oo H4(1\&
(1.10) JCH) :=/l wm.

THEOREM 1.5. Suppose that H is a nonnegative nondecreasing function.
Then:

() If J(H) < 400, then with probability one,

(1.11) sup S,(t) < H(n)/n for all but a finite number of n’s.
t€[0,1]

(i) Conwversely, if J(H) = +o0, then with probability one, there existsa ¢
[0, 1], such that

(1.12) S,(t) > H(n)/n  for aninfinite number of n’s.
REMARK 1.6. Owing to (1.17) below, we have

o0 dt
(1.13) J(H) <400 f Hs(t)e_(l/z)Hz(’)7<+oo.
1
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We recall that the Ei@k integral test asserts th§t(0) > H (n)+/n for infinitely
many n (a.s.) if and only if [ H()e~M/2H* =14t = 400, Combining the
preceding remark with Theorem 1.5 immediately leads us to the following result
whose elementary proof is omitted.

COROLLARY 1.7. Givent €]0,1],

. S,(t)]2=2nInIn
(1.14) lim sup[ 2l "_3 a.s.
n— 00 ninininn

On the other hand, there exists a (random) T < [0, 1], such that

2
(1.15) limsup (DI~ = 2nininn _

n— 00 ninininn

a.s.

REMARK 1.8. In the terminology of Benjamini, Haggstrom, Peres and Steif
(2003), our Theorem 1.5 has the consequence that thzskttaracterization of
the upper class of a Gaussian random walk is “dynamically sensitive.” This is in
contrast to the fact that the LIL itself is “dynamically stable.” In plain terms, the
latter means that, with probability one,

, Su ()
1.16 Imsup—————=1 Vit e]O0,1].
( ) n—>oop«/2n Inlnn [ ]

See Benjamini, Haggstrom, Peres and Steif [(2003), Theorem 1.2].

The organization of this paper is as follows: In Section 2 we state and prove
a theorem on the Poisson clocks that, informally speaking, asserts that with
overwhelming probability the typical clock is at mean-field all the time, and
this happens simultaneously “over a variety of scales.” This material may be of
independent technical interest to the reader.

In Section 3 we make a few computations with Gaussian random variables.
These calculations are simple consequences of classical regression analysis of
mathematical statistics, but since we need the exact forms of the ensuing estimates,
we include some of the detalils.

After a brief discussion of the spad¥([0, 1]2), Theorem 1.1 is then proved in
Section 4. Our proof relies heavily on the general machinery of Bickel and Wichura
(1971).

Theorem 1.4 is more difficult to prove; its proof is split across Sections 5,

6 and 7. The key idea here is that estimates, similar to those in Theorem 1.4, hold
in the quenched setting, where the implied conditioning is made with respect to
the clocks.

Finally, we derive Theorem 1.5 in Section 8. Our proof combines Theorem 1.4,

a localization trick, and the combinatorial method of &q1942).
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Throughout, we frequently use the elementary facts that, for alD,
1 + 0(1) e_ZZ/Z
/21

We have used Bachmann’s “littlg’big-O” notation to simplify the exposition.

(1.17) d(y)<e /2 and d(z)= (z = 00).

2. Regularity of the clocks. Consider the random fiel¢iV]',,:0 <s <1,

n > 1} thatis defined as follows: Given< ¢ andn > 1, N]'_,, denotes the Poisson-
based number of changes made from tinte time¢; that is,

n
(2.1) N =D L 04X () -
j=1

Itis clear thatN;',, is a sum of: i.i.d. {0, 1}-valued random variables. Because
we know also thaP{X1(s) = X1(r)} = e~ "=, we can deduce from the strong
law for such binomials that for large, N, ~ n(1 — e~!"=5!). The following is
an estimate that ensures that, in the mentioned approximation, a good amount of

uniformity in s andz is preserved.

THEOREM2.1. |If {Aj};?il isasequencein [0, 1] such that lim,, . A, =0,

thenfor all n > 1land «a € (0, 1),

N, ‘ } 512 ( 3a3nAn>
——— —1ll>a; < —S—5exp|l - ,
EN", a2A2 2304

(2.2) P{ sup

O<s<t<l:t—s>A,

where supg := 0.

This, and the Borel-Cantelli lemma, together imply the following result that we
shall need later on. In rough terms, it states that as long as the “window size” is
not too small, then the Poisson clocks are at mean-field.

COROLLARY 2.2. If A, — 0in[0, 1] satisfieslim,_, o, n(logn) 1A, = +o0,
then with probability one,

Si—"_l‘zo_

2.3 lim su
@) oz, ENI,

=00 gcy<t<l:t—s>A,

It is not hard to convince oneself that the preceding fails if the “window size”
A, decays too rapidly.

PrROOF OFTHEOREM?2.1. Throughout this prooé; < (0, 1) is held fixed.
We first try to explain the significance of the conditior s > A,, by obtaining
a simple lower bound oBN]_,, in this case.
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Observe the following simple bound:

(2.4) gfl—e_xfx Vx el[0,1].
This shows that

. ni,
(2.5) inf EN; ., > .

O<s<t<l:t—s>A,

Next we recall an elementary large deviations bound for Binomials. According
to Bernstein’s inequality [cf. Bennett (1962); also see the elegant inequalities of
Hoeffding (1963)], if{B;}52, are i.i.d. Bernoulli random variables wit{B1 =
1} := p, then

ni2
2.6 P{|B -+ B, — >pl}<2expg ———— .
(2.6) {IBL+ -+ By —np|>nA} < P( 2p+(2/3)K>

Apply this with Bj = 1{X]'(S)75Xj(l‘)}i for arbitl‘arys <tandx:= af[l— e_(t_s)],
to deduce that, for alk € (0, 1) andn > 1,

P{IN",, —EN"_,|>aEN",,} <2 exp( o’nl1— e(”)]>
—_— a J—
(2 7) s—>1 s—>1l = s—>t) — 2+ (2/3)a
. 3a2n[l— e~ 9]
<2 exp(— 8 )

From (2.4) we can deduce that, for alk (0, 1) andn > 1,

3a2nA
(2.8) sup  P{N™,, —EN",|>aEN", )< 2exp(_ " ")
O<s<t<l:|s—t|>A, ' ) ’ 16

Next, we choose and fix integeks < k2 < - - - — oo as follows:

8 aA aA
2.9 kyi=|1 sothat—= <k 1< —=,
Based on these, we define
(2.10) r,,::{i:o§j5kn}.

kn

Then it follows immediately from (2.8) and (2.9) that

N” 33 A
(2.11) P{ sup S—H—”—llza}§2(kn+1)2exp<— " ")

O<s<t<l:s,tel’, ENs—>t 144

Given any poink € [0, 1], define

u,:=maxre[0,u]:rel,},
(2.12) _X{ }
uy =minf{r e [u,1]:r e I'y}.
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These are the closest pointsidn I, from below and above, respectively. We
note, in passing, that € u, — u, < k1. Moreover, thanks to (2.9), whenever
0<s <t <1 satisfyt —s > A,, it follows thats, < ¢, with room to spare. We
will use this fact without further mention. Moreover, for such a gajr),

(2.13) NI <N, <N"

Sp—>1t, s—>1 — "'y —>t,,

This follows from the fact that witlP-probability one, once one of th€; (x)'s is
updated, then from that point on it will never be replaced back to its original state.
(This is so because the chances are zero that two independent normal variates are
equal to one another.) The preceding display motivates the following bound: For
al0<s<r<1,

El1N, i, ~ M ) == [1— e~ Comt=a=2)
(2.14) o
=,
= kn

where the last inequality follows from (2.4). Owing to (2.5) and (2.9), we have the
crucial estimate

o
2.15 su E{|N, ,; —Ng inf EN,
(2.19) OSSStfl:?—sZAn NG 7, = Ve 1235 2 0su=v=liv—uza, TV

This and (2.13) together imply the following bound uniformly forakG <r <1
that satisfyr —s > A,,:

(2.16) |N

inf ENLrtl%v+maX(|ﬁsn —t

O<u<v<l:v—u=>A,

)

*)l‘l—_ S_)tn

whereZ := Z — EZ for any integrable random variab# Therefore,
P{3t—s>A,: |N |>ozENHt}

s—>t

(2.17) - - )
<P{3r—s>A,max(|NZ _, |, IN" - |)> ZEN

S,—>In 2 S_)l}

Another application of (2.15) yields
P{3r—s>A,:|N',, |>aEN", )}

_P{HI—SZA ‘ n—>1, ‘ Z(l_%)ENgn_)Ln}
(07 o n
219 PPz IV g 25 (1R )N
n
< ZP{ max Nuy 1‘ > g}
O<u<v<l:u,vel, ENz?—)v 4

3a3nA
< 2(kn + 1)2exp<— 5 3”04"),

owing to (2.11). Becausk, + 1 < 16(aeA,) 1, this proves the theorem ]
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3. A little regression analysis. Define §} to be the augmented right-
continuouss -algebra generated by the variab{gs(v) : v < ¢t} andt, where the
latter is theo-algebra generated by all of the Poisson clocks. For convenience,
we write P, {---} andE{---} in place ofP{---[91} and E{. - - |91}, respectively.

We refer toP,, as a random “quenched” measure, @i is its corresponding
expectation operator. We will also write Varfor the corresponding conditional
variance.

LEmMmA 3.1. If 0 <u < v, then the following hold P-almost surely: For all
x €R,

Nn
By (S (0)1S0 () = x) = (1 - %)x

n .

(3.1)
Var, (S (v)|Sn(u) =x) = N,

u—v

PROOF From tlmeu to timew, N -many of the increments are changed;
the remainingn —

) increments are left unchanged. Therefore, we can write

M—)U
Sn(u) =Vi+ Va,

(3.2)

Sp(v) =V1+ V3,

where it follows that: (i)V1, V> andV3 are independent; (i) the distribution &f is
the same as that &,_y»_ (0); and (iii) V2 and V3 are identically distributed and
their common distribution is that dfy»  (0). The result follows from standard
calculations from classical regression analysis.

This immediately yields the following.

LEmMmA 3.2. Forallx,y>0,alltimesO<u <vandall integersn > 1,
PulSn(v) = yIF,} = Py {Sn(v) = y|S(u)}
: _(y— 1—— Sn
(3.3) ( ( Hv) (u))’ bas

\/ u—>v u—>v)

We will also have need for the following whose elementary proof we omit.

LEMMA 3.3. Forall z>1ande > 0, wehave ®(z + ¢z) < e‘zz%(z).

Next is a “converse” inequality. Unlike the latter lemma, however, this one
merits a brief derivation.
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LEMMA 3.4. Ify > 0,then
(3.4) ci><z — g) <A4e)d(z) V= Sy

PROOF We make a direct computation:

et ot 0 -2

1 2 2 - y
(3.5) < [ ewntentiay a2 - 1)
- A/ 21 Jz Y Z

< d(z) + <i><2z - %)

On the other hand, if > y/z, then 2 — y/z > z, and so®(2z — yz 1) < ®(2).
This completes the proof.[]

4. Weak convergence.

4.1. The space D([0, 1]%). Let us first recall some facts about the Skorohod
spaceD([0, 1]%) which was introduced and studied in Neuhaus (1971), Straf
(1972) and Bickel and Wichura (1971). Bass and Pyke (1987) provide a theory
of weak convergence i (A) which subsumes that i ([0, 1]2).

In a nutshell, D([0, 1]%) is the collection of all bounded functiong : [0,
1]°> — R such thatf is cadlag with respect to the partial orderwhere

4.1) (s,1)<(s',t) < s<s and r<t.

Of course,f is cadlag with respect te if and only if: (i) As (s, 1) | (u, v) (with
respect to<), f(s,t) — f(u,v); and (i) if (s,2) 1 (u, v), then f((u,v)”) :=
lim £ (s, 1) exists.

Once it is endowed with a Skorohod-type metric, the sgad®, 1]1%) becomes
a complete separable metric space [Bickel and Wichura (1971), page 1662].

If X, X1, Xo2,... are random elements aP([0, 1]?), then X, is said to
converge weakly tX (written X,, = X) if for all bounded continuous functions
¢:D([0,1]%) — R, lim,_ o E[¢(X,)] = E[¢(X)]. Since the identity map from
C ([0, 11%) onto itself is a topological embedding 6%[0, 1]%) in D([0, 1]?), if ¢
is a continuous functional 0@ ([0, 1]2), then it is also a continuous functional on
D([0, 11%).

An important example of such a continuous functional is
(4.2) $(x):= sup x(r)  Vxe DO, 1.

te[0,1]
This example should provide ample details for deriving Mountford’s theorem (1.9)
from Theorems 1.1 and 1.4 of the present article.



DYNAMIC WALKS 1461

4.2. Proof of Theorem 1.1 The proof, as is usual in weak convergence,
involves two parts. First, we prove the convergence of all finite-dimensional
distributions. This portion is done in the quenched setting, for then all processes
involved are Gaussian and we need to compute a covariance or two only. The more
interesting portion is the second part and amounts to proving tightness. Here we
use, in a crucial way, a theorem of Bickel and Wichura (1971).

PrOOF OFTHEOREM 1.1 (Finite-dimensional distributions). Given any four
(fixed) values of, ¢, s’,t" € [0, 1],

1
Ex (U ()U[/(s)} = “Eg {Sins) (1) Sy (1)}
(4.3) '1
= ;Em{SLnsJ/\\_ns/J (t)SLnsJAl_ns/J (t/)}-
Thanks to Lemma 3.R-almost surely,

ns|Alns’ |

noomeon — L4 Nean—avr) ,
@8 E UGV = (1= TS ) L) A Lns'),

On the other hand, by the strong law of large numbers,-asoo,

Nl_nsJALns’J E |ns|Alns’|
(At)— (V) (tAY)—(tVvE))
—_— 2 = (l + 0(1)) _
(4.5) ns| A |ns’| lns| A [ns’|
11—l a.s. P].

Therefore,P-almost surely, lim_. E,{U;'(s)U;(s")} = E{U;(s)Uy(s")}. This
readily implies thatP-almost surely, the finite-dimensional distributions &*
converge weaklyP ] to those ofU. By the dominated convergence theorem,
this implies the weak convergence, unéepf the finite-dimensional distributions
of U" to those ofU. [J

In order to prove tightness, we appeal to a refinement to the Bickel-Wichura
Theorem 3; see Bickel and Wichura [(1971), page 1665]. To do so, we need to first
recall some of the notation of Bickel and Wichura (1971).

A block is a two-dimensional half-open rectangle whose sides are parallel to
the axes; that is/ is a block if and only if it has the formir, s] x (¢,u] C
(0, 1]°. Two blocks I and I’ are neighboring if either: (i) I = (r,s] x (¢, ul
and I’ = (r/, s’] x (¢, u] (horizontal neighboring); or (iiy = (r, s] x (¢,u] and
I' = (r,s] x (¢, u'] (vertical neighboring).

Given any two-parameter stochastic proceéss- {Y (s, t); s, ¢ € [0, 1]}, and any
block I := (r, s] x (¢, u], theincrement of Y over I [written as¥ (/)] is defined as

(4.6) Y =Ys,u)—=Y(s,t) =Y, u)+ Y, t).

We are ready to recall the following important result of Bickel and Wichura
(1971). We have stated it in a way that best suits our later needs.
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LEMMA 4.1 (Refinement to Bickel and Wichura [(1971), Theorem 3])et
us denote by {Y, },>1 a sequence of random fields in D([O, 11%) such that for all
n>1Y,(s,t)=0ifst = 0. Upposethat thereexist constants K41 > 1,61, 02, 1,
y2 > 0 such that they are all independent of »n, and whenever I := (r, s] x (¢, u]
and J := (r', s'] x (', u'] areneighboring blocks, andif r, s, ', s’ € n=1Z N[0, 1],
then

4.7) E{ Y (D% Y, (1)1} < Kga| 1272,

where || and |J| denote, respectively, the planar Lebesgue measures of 7 and J.
If, inaddition, y1 + y2 > 1, then {Y, },>1 isatight sequence.

This is the motivation behind our next lemma which is the second, and final,
step in the proof of Theorem 1.1.

LEMMA 4.2. The process Y, (s, t) := U/'(s) satisfies (4.7) with the values
K41 :=10,01 =6, =2 and y1 = y2 = 1. In particular, {U"},>1 is a tight
sequencein D([0, 1]%).

PrROOF We begin by proving that (4.7), indeed, holds with the stated
constants. This is a laborious, but otherwise uninspiring, computation which
we include for the sake of completeness. This computation is divided into two
successive steps, one for each possible configuration of the neighboring blocks
I andJ.

STeEP 1 (Horizontal neighboring). By stationarity, it suffices to consider only
the casd := (0, 7] x (0, 7] andJ := (r, s] x (0, t], wherer, s € n~1Z. In this case,

_ Snr (t) - Snr (0)
yn(l) - T,

Sns (1) = Sns (0) = Sy (1) + Spr (0)

ﬁ b
which implies the independence of the two (unélgrand/orP), sincek — Sy is
a random walk orD([0, 1]). Now, with P-probability one,

r— 2Em{Snr(t)Snr(O)} _ 2N(r)”;t

n n

(4.8)

yn(J) =

2n
4.9) Eo (| Yn (D%} =

See Lemma 3.1. Thereforg{|Y,,(1)|?} = 2r[1 — ¢~"] < 2rt = 2|I|. By this and

the stationarity of the increments of the infinite-dimensional random ek Sy,
E{|%,(J)|?} < 2|J|. In summary, in this first case of Step 1, we have shown that
E{|yn(l)‘},(n(J)|2} < 41| x |J|, which is certainly less than 10 x |J|.
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STEP 2 (Vertical neighboring). By stationarity, we need to consider only the
case wherd = (0, s] x (0, tr]andJ = (0, s] x (¢, u], wheres € n~17Z. In this case,
Snv t) — Sns O Sns - Sns t
s(1) 0 and Yo (J) = () ().
Vi Vv
These are not independent random variables, and, consequently, the calculations
are slightly lengthier in this case.

Using the Markov property and Lemma 3.1, wealmost surely have the
following:

Eg (1% ()P0

(4100 %D =

Sus10) | ¢ Sus () = Sps (1) 2
= Var, < Sns ) [ {— Sns (2 }i|
N (1) NG (1)
(4.11) N;gu( N;gu> (N,";u> 2 [Sus ()]
n
- N, [2+ [S.(1)]? }
n

In particular,P-almost surely,
Eo {1 %a (D Y ()%}
= E{|Yn (DIPEg{| Y (DIAIFN )

ns 2
(4-12) < Nz—>u Em{|yn(1)|2|:2+ [Sns(l)] i”
n ns

Nt’iu[4N6’Lt tE, [Iyn(1)| [m(t)] ”

n
See (4.9) for the last line. Applying the Cauchy—Bunyakovsky—Schwarz inequality,

we obtain
z[sns(z)]z} \/ A {[Sma)]“}
Em{l%n(l)l . =\ Enl ¥ (DI* X Ex{ — 573

:\/3E |Yn (D%, 4

since wheneveG is a centered Gaussian variaiG* = 3(EG?)2. By applying
this identity once more in conjunction with (4.9), we have

(4.13)

NS 2
(4.14) 3Em|yn(1)|4s9[Em|yn(1>|2]2=36[ﬂ} .
n
Plugging (4.14) into (4.13) yields the followirRralmost sure inequality:
z[sm(mz} <6 R/
ns n

(4.15) Em{|yn<l>|
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We can plug this into (4.12) to deduce tirat.s.,

ns

(4.16) B[ Y (D)2 Y ()2 < 10NT*N°—*

n

On the other handy”, , and N}’ . are independent. Therefore,

Yt—u 00—t

B Yo (D)2 Y (D)2} < 1oe[N_+}E[No_»}

n n
(4.17) =10s2[1— e @ D[1—e "]
<10su x s(u —1t)
=107 x |J].

We have verified (4.7) withK47 = 10,601 =02 =2, y1 = y2 = 1. Now if it
were the case th&i, (s, r) = 0 wheneverst = 0, we would be done. However, this
is not so. To get around this small difficulty, note that what we have shown thus
far reveals that the random fields, ) — Y, (s, 1) — n%/28,,(0) (n =1,2,...)
are tight. On the other hand, by Donsker’s invariance principle, the processes
s> nY25,.0) (n=1,2,...) are tight, and the lemma follows from this and
the triangle inequality. (I

5. A quenched upper bound. Without further ado, next is the main result of
this section. Note that it gives quenched tail estimates foy_.gyp 4, S»(¢) since
the latter has the same distribution as, sy, S, (t).

THEOREM 5.1. Suppose {zj}j?ozl is a nonrandom sequence that satisfies
property (1.7). Then with P-probability one, for all ¢ > 0, there exists an integer
no > 1 such that for all n > ng,

(5.1) Pm{ sup S, (1) > Zn\/”_l} < (2+8)22P(2n).
1€[0,1]

In the remainder of this section we prove Theorem 5.1. Throughout, we choose
and fix a sequence, that satisfies (1.7). Based on thesgs, we define the
“window size,”

1
1672

n

(5.2) A, = Vn>1

According to (1.7), the sequencaj}?il satisfies the conditions of Theorem 2.1.
Next, define, for alkh > 1,

1
(53) Jn ::A 1{Sn(U)ZZn\/ﬁ}dv'
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Thanks to Lemma 3.2, forany>0,n > 1,

<Zn\/7_(1 (1/n) uev)Sn(u))dv
VNI, 2= A/mN}_) .

Now consider the following “good” events, whete> 1 is an integer, and €
(0, 1) is an arbitrarily small parameter:

(5.4)  Ey 5" >/

u

n

ENGL, 17T

Apg = { sup

O<s<t<l:t—s>A,

(5.5)
B, (u) := {Sn(u) = Zn\/ﬁ}
Next is a key technical estimate.

LEMMA 5.2. Chooseand fixintegersn,m > 1,u €[0,1— %] and o € (0, 1).
Then, P-a.s,,

n/ -
(56)  En(hldz o [ B(T)di 1 -
nWWnivy (1+a)Z2 0 An,aNBp (1)

PrRooF Thanks to (5.4), for any > 0,
Zn/1 — (1— (I/n)Ny;_, ) Sn(u)
57 E J gn >f ( u—)v
E7) Ealhlsi) N 2= AN,
We will estimate the terms inside. On B, (), we have

Zﬂ\/ﬁ - (l - (1/71) u—)U)Sn(u) Zn\/ﬁ - (l - (1/71) u—)v)zfl\/ﬁ
\/ u—)v —(/n) u—>v) B \% NIZZ—W

Nn

u—)v

n

) dU : 1An,aﬂBn("‘)'

(5.8)
=2Zn
On the other hand, oA, 4,
(5.9) N', <(@A4+an@—e ") < @A+a)w —u)n.

Consequently, om, » N B, («), the preceding two displays combine to yield the
following:

(5.10) Zn\; e (1/(311;_”})&1 W AT —w.

Becauseb is decreasing, the above can be plugged into (5.7) to yield

1_
E, (3} > / B e/ AT )0 — 1)) dv - 1a, 08w

1 A=) (+e)zf
= m/o ®(v1)dr - 14, .08, w-
n

(5.11)



1466 D. KHOSHNEVISAN, D. A. LEVIN AND P. J. MENDEZ-HERNANDEZ
The result follows readily from this.

PrRoOOF OFTHEOREMS5.1. Clearly, the following hold®-a.s. onA,, 4:

512 Pm{Elue [o 1- 1} Sn (1) >z,,f}

= Pm{ sup 1An,aﬂBn(u) = 1}.
uel0,1—(1/m)|NQ

Therefore, we can appeal to Lemma 5.2 to deducertradinost surely,

Ly, xPyf3ue01- l} .02 20/}

1 h/m
(5.13) Spm{ sup  Ey{/l§,} = 72/ cb(ﬁ)d;}

uel0,1—(1/m)INQ A+ a)zz Jo
1 2 2
S Zmz o En 5m+a)zn £ “"}=—§m+.“)z’” B (zn)-
oo/t dt O (/1) dt

The final Iine uses Doob’s inequality (undEgt) and the stationarity oS, (u).
According to Corollary 2.2, witP,-probability one, for all but finitely-many of
then's, 14, = 1. To finish, we note that

o,n

oo -
(5.14) / d(i)dr =1,
0
Theorem 5.1 follows after letting — oo andoe — 0. O
6. A quenched lower bound.

THEOREM 6.1. Suppose {z,} © ; is a sequence of real numbers that satis-

fies (1.7). Then, there exists a random variable ny such that, P-almost surely, the
following holds:

61 Pof WSOz 2@ vizm
t€[0,1]

We begin by proving Theorem 6.1.

LEMMA 6.2. Thereissome g > 0 so that for any fixed o < ag, there existsa
random variable ny such that with P-probability one, the following holds: For all
n=n,

Pm{Sn(u) = Zn\/ﬁ9 Sn(v) > Zn\/"_l}

(6.2) 201 _ . B
§2exp<—z"(1 02(1) u)><1>(zn),

foral 0<u <v<lsuchthatv—u > A, where A, isdefined in (5.2).
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PrROOF In the course of our proof of Theorem 5.1 we observed that, for any
a €(0,1), 14,, = 1forall but afinite number of’s. Thus, it suffices to derive the
inequality of this lemma on the sei, ,. Recall that the latter event was defined

in (5.5).
By Lemma 3.2,
Po{Sn(v) = znv/n, Sy (u) = 203/}
6.3 _ B
(6.3) _/ (znf xf(l (1/n) ”_)”)cb(dx).
Ny, [2— /)N, ]

A computation shows that ¥ > z,,, then the function

6.4) Zn —x(1—u)

Ju(2 —u)
is increasing fou € [0, 1]. On the other hand, oA, ,, we have
(6.5) N, Zn(l—a)(l—e_(”_”)) zn%(l—a)(v—u);

see (2.4). Therefore,
Pm{Sn(v) > Zn\/ﬁ, Sp(u) > an}
B /oo : ( —x(1- (/A - a)(v — )
- \/(1/2)(1 ) (v —w[2—(1/2)(1-a)(v —u)]

(1/2)x(1— ) (v — ) — (x — 20)
_f ( NI )q’(d")

(6.6) ) e

=l1+12,
where b= [D9 B (dx), 12:= [, ()@ (dx), and

(6.7) n = %(1—&)(v—u).

y € (0,1) is a parameter to be determined. For the estimation,ofé note that
if x € [2n, 20 (1+ )], thengx/n(l—a)(v —u) — (x — 2)/n > 2a3(1— ) (v —
u)(1— y), and we obtain the following:

oo _ 1
Ih 5/ c1><zn<1— y)/ia—a)(v —u>)<b<dx>

201 — V21 — _
z;(1=y) (Z a)(v M)>&>(Zn)’

where the last line follows from (1.17). The integrali$ also easily estimated:
Sinced®(r) <1, we have

(6.8)

-

(6.9) I < ®(z,(14 1)) < exp(—nz2)D(z,) <e 1 H(z,).
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We have appealed to Lemma 3.3 in the penultimate inequality. Now replage
its value defined in (6.7) in order to obtain

(6.10) Iy < exp<—z§Z(1 —a)w— u)>ci>(zn).

Taking y to be the solution of = % in [0, 1], we have that
(6.11) l1+12<2exgd—(2—V3) (1 —a) (v — u))P(z,),
the result follows from the fact tha® — v/3) < 7. O

PrROOF OFTHEOREM 6.1. We recall (5.3) and appeal to Lemma 6.2 to see
thatP-a.s., for alln > ns,

E {J}—Z// (.0 = 201, S, () = 20/7 } dv d

1-A, (l oe)(v —u)
< 2d(z,
(6.12) (c )/ /M+An eXp( >dv du

+2An(b(zn)
<z, 2®( )[ o +3}
=& PRI "y T 16l

We have used the definition (5.2) af, in the last line. Let us choose small
enough so that81 — o) + 1/8 < 9. Then, we obtain

(6.13) Ey (/%) <92,°®(z4)  a.S.0NAg,.

Thus, by the Paley—Zygmund inequality, almost surelyign,,
EnJo)? 1 ,-

(6.14) Py {Jn >0} > En 3 > Z22®(2n).
Em‘]n

The theorem follows readily from this and the obvious fact atz,) > 0} C
Bu<1:8,() > z/n}. O

7. Proof of Theorem 1.4. We start by proving the simpler lower bound. Fix
a € (0,1), let W, denote theP,, -probability that sup g 1;S.(t) > /1, and
define £, := z2®(z,). (We will use this notation throughout the proof.) Then,
according to (6.14), ,, > f,, P-almost surely omMA, ,. Theorem 2.1 implies
thatP(A M) — 1, asn — oo. In particular, as — oo, P{OW,, > f,} =1+ o(1).
This, and Chebyshev’s inequality, together imply tawg, > (1+0(1)) f,,, which
is the desired lower bound in scrambled form. We now prove the corresponding
probability upper bound of Theorem 1.4.
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Let IT,, denote the total number of replacements to the incremental processes
{Xk(-)};—4 during the time-interval0, 1]. That is,

n
(7.0) 11, := Z AT, (s) whereATl, (s) := Z Lix,(5)—Xi ()50} -
s€(0,1] k=1

Becausdl, is a Poisson random variable with meare{e’!"} = exp(—n + ¢'n)
for all # > 0. This readily yields the following well-known Chernoff-type bound:
Forallx > 0,

(7.2) P{Il,>x}<infexp(—n+e'n —tx) = exp{—n —x |n(i>}.
t>0 en

Consequently, by (1.7),

(7.3) P(GS)<e™™=o0(fy)  whereG, :={I1, <3n}, Vn>1
A significant feature of the eveudt, is that,P-almost surely,

(7.4) 16, Wa < 3nP{S,(0) = z,v/n } = 3nd(z,).

(Indeed, if G,, holds, thenW, is the chance that the maximum of, at most, 3
dependent Gaussian random walks exceggdé:.) Thus, we can write the almost
sure P] bound,

(7.5) Lac Wa < 1gc +3n®(z0)1yc .
Combined with (5.13) and (6.2) (for suitable sma)| this yields
(7.6) Wn < (2+0(D)) fu + 1gc +3nd_>(zn)1Ag’n.

In this formula,o(1) denotes a nonrandom term that goes to zere tends to
infinity. We take expectations and appeal to Theorem 2.1 with= (16z2)~1
[cf. (5.2)], as well as (7.3), to deduce the following:

3u°n

8192 , K
(7.7) E(Wa} < (2+0) fu+ ——5 12 fu exp(‘Wewzg)'

Condition (1.7) guarantees that the right-hand side is asymptotically equal to
2+ o(D)) f,, asn — oo. This proves the theorem.

8. Proof of Theorem 1.5. Throughout, logx) := logx := In(e v x), and
consider the&erdés sequence:

(8.1) e, =e(n) = Lexp(logn(n)ﬂ Vn>1
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Note that the sequende J}OO , satisfies the followingap property:

——(1+o0()

€nt+l— €y =
Iog( )
(8.2) e,
—(1 1 .
Ioglog(e,,)( o). (n = c0)
[This was noted in Erdls (1942), equation (0.11).] Furthermore, we can combine
the truncation argument of Ebd [(1942), equations (1.2) and (3.4)] with our

equation (1.16) to deduce the following: Without loss of generality,

(8.3) J9oglog(t) < H(t) < 2,/loglog(z) V> 1

The following is a standard consequence.

LEMMA 8.1. If H isa nonnegative nondecreasing measurable function that
satisfies (8.3), then

(8.4) JH) <400 = Y H%e,)P(H(ey)) < +oo,
where J(H) isdefinedin (1.10).
We are ready to prove (the easier) part (i) of Theorem 1.5.

PROOF OFTHEOREM 1.5 (First half ). In the first portion of our proof, we
assume thag(H) < 4o0, and recall that, without loss of generality, (8.3) is
assumed to hold.

It is easy to see thatX }°o , are i.i.d. elements oD ([0, 1])—the space of
cadlag real paths of0, 1]—wh|ch implies that: — S, is a symmetric random
walk on D([0, 1]). In particular, an infinite-dimensional reflection argument
implies that, for allz > 1 andx > 0,

(8.5) P{ max sup Si(¢) > k} < ZP{ sup S, (1) z/\}.
l<k=ne[0,1] 1€[0,1]

See Khoshnevisan [(2003), Lemma 3.5] for the details of this argument. Conse-
guently, as1 — oo,

P{ max  sup Sg(t) > H(en)ven}
1<k=<e(n+1)¢¢[0,1]

(8.6) < 2P{ SUP Setnsn (1) = H (en) /6 }
t€[0,1]

< 2P{ SUP Se(ni1) (1) > H(en»/—em[l— g "(1)]}.
1€[0,1] (en)
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We have appealed to (8.2) in the last line. At this point, (8.3) and Theorem 1.4
together imply that, as — oo,

P{ max  sup Sk(f)ZH(en)\/en}
1<k=e(n+1)¢¢[0,1]

(8.7)

<[4+ o(l)]Hz(en)‘T’<H(e”) [1 - ZJ(ZS) D

< (e*4+0(D))H?(e,)D(H (en));

the last line follows from Lemma 3.4. Lemma 8.1 and the finiteness assumption
on J(H) together yield the summability of the left-most probability in the
preceding display. By the Borel-Cantelli lemma, almost surely for all but a finite
number ofn’s,

(8.8) max  sup Si(t) < H(e,)/en.

1<k<e(n+1) te[0,1]
Now anym can be sandwiched betweepnande, 1 for somen :=n(m). Hence,
a.s. for all but a finite number af’s,

(8.9) sup Sp(t)< max  sup Si(t) < H(e,) /e, < H(m)/m.
1e[0,1] 1<k=e(n+1)g[0,1)

This completes our proof of part (i)..]

The remainder of this section is concerned with proving the more difficult
second part of Theorem 1.5. We will continue to use théEmkquencee;}52; as
defined in (8.1). We will also assume—still without loss of generality—that (8.3)
holds, although no(H) = +oc.

We introduce the following notation in order to simplify the exposition:

Sy = SUp Se(u)(t),

n

t€[0,1]
Hn = H(en)a
14

n
Ly:= Z 1{S;‘-‘61]—}’
=1

f(2):=2°®(z) Vz>0.

Here is a little localization lemma that states thatand[H, ./e,, +oo] have,
more or less, the same dynamical-walk-measure.
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LEMMA 8.2. Asn — oo,

5 P{S} € 4}
(8.11) (107" + o) = PS> Hyo/en] — -

PROOF Because 9! > 0.1, Theorem 1.4 implies that as— oo,

PISE € 4,) = (0.1 + o(1)) f(Hy) — (2 + 0(1))Hn2<i><Hn + ;)

n

(8.12)
> (0.140(1) f (Hy) — (2+0(1)e £ (H,).

(The second line holds because of Lemma 3.3.) Sinte-®¢~14 < 0.09, the
lemma follows Theorem 1.4 and a few lines of arithmeticl

Since we are assuming th@tH) = 400, Lemmas 8.1 and 8.2 together imply
that ast — oo, EL, — +00. We intend to show that

: E(L?)
8.13 limsu L
(8.13) n—>oop(ELn)2
If so, then the Chebyshev inequality shows that limsup L,/EL, > 0 with
positive probability. This implies that, with positive probabilitf/,, = 400, so
that the following would then conclude the proof.

< +00.

LEMMA 8.3. If p :=P{Ly = +00} > 0, then p = 1, and part (ii) of
Theorem 1.5 holds.

PrROOF We have already observed that> S, is a random walk irD ([0, 1]).
Therefore, by the Hewitt—Savage 0-1 ldw, = +o0, a.s.
Now consider for all integers > 1,

8.14) W,:= {t >0: inf )Se(n)(s) > H,./e, for somes > 0}.

se(t—e,t+e

This is a random open set, and by the regularity of the patlss @ir all »,

x o0

(8.15) {Loo =400} C () J(Wnn[0, 1] 2}.
n=1m=n
More generally still, forany & a < b,

o 0

(8.16) {Loo(a,b) =+00} S () |J{WnNla, bl # 2},

n=1m=n
whereL, (a, b) := 27:1 1{Supe[a,b] Se(j(ned;}- But by the stationarity of th&°-
valued process S,(1), Lo (a, b) has the same distribution as,(0, »—a), and
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this means that, with probability oné . (a, b) = +o0 for all rational 0< a < b.
Therefore, according to (8.16),

o o0
(8.17) P(ﬂ U{Wmﬂ[a,b];ég})=1.

n=1m=n
This development shows that, for any W" := (>, Wn is a random open
set that is a.s. everywhere dense. Thanks to the Baire category thewrem,
M, W*N[0,1] is [a.s.] uncountable. The proof follows because assertion (ii) of
Theorem 1.5 holds for anye w. 0O

We now begin working toward our proof of (8.13). We write

n-1 n

(8.18) E{L2}=EL, +2)_ > %,
i=1j=i+1

where

(8.19) Pij=P{Sfed;,Sjed;}  Vi>j>1

In estimating?; ;, our first observation is the following.

LEMMA 8.4. There exists a finite and positive universal constant Kg4 such
that, forall j >i >1,

(8.20) Pij < Ke.aP{S; € 4i}Q;i j,

where

[ . . 14 | .
(821) @i,j = f(HJ © — H; & - — & )
€, — € €, — € H; €; — €

PrRoOOFR Recall thatr — S, is a random walk oD ([0, 1]). Therefore,

Pij < F’{S;k €Jd;}

X P{ Sup (Se; (1) — Se; (1)) = Hj/&j — \/e_i|:Hi + I:EI_4}}

(8.22) 1€[0,1]

14
=P{S' e li}P{ SUp Se;—e; (1) > Hj /& — «/e_i[Hi + _“
1€[0,1] H;
Therefore, Theorem 1.4 will do the rest, once we check that uniformly, for all
j>1i,
H; . /e; e
(8.23) Hivei —0( ej—e

Vo= \{ioge; —e») (1= 00
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Equivalently, we wish to prove that uniformly, for gll> i,

€ —6€

(8.24) Hj & = o<—
Jlog(e; —e))

By (8.3), the left-hand side is bounded above as follows:

(8.25) Hj./ej <(2+0(1)),/ejlogloge; = O(,/ejlogj), (j — 00).

On the other hand,

P — € P — € logj
(8.26) A N N
\/Iog(ej —e) \/Iogej J
In light of (8.25) and (8.26), (8.23) and, hence, the lemma is proved once we verify
that asi — oo, \/je; = o(e; — ;) uniformly for all j > i. But this follows from

) (i = 00).

the gap condition of the sequeneg ey, .. .. Indeed, (8.2) implies that uniformly,
forall j > i,
(8.27) ej—eizej—ej_1:(1+o(1))% (i = 00).

So it suffices to check that, gs— oo, \/je; = o(e;/logj), which is a trivial
matter. [

Motivated by the ideas of Ets (1942), we consider the size @f ; on three
different scales, wher@; ; is defined in (8.21). The mentioned scales are based
on the size of the “correlation gap(j — i). Our next three lemmas reflect this
viewpoint.

LEMMA 8.5. There exists a finite and positive universal constant Kgs such
that, for all integersi and j > i + [logi]'°,

(8.28) Qi.j < KgsP{S} € 4;}.

PrRoOOE We will require the following consequence of (8.2): Uniformly for all
integers;j > i,

= (Jj —i)ei .
(829) ej—ei=) (er1—e)> W(l—ko(l)) (i — 00).
=i

Now we proceed with the proof.
Sincee;/(ej —e;) > 1, (8.21) implies that

(8.30) Qi §f<Hj Y _ [Hi +§]>.

e.,-— i




DYNAMIC WALKS 1475

We intend to prove that uniformly, for every integer i + [logi]°,

(8.31) o [H,. + E] —O0MHYH (- o0).
ej — € H,' J

Given this for the time being, we finish the proof as follows: Note that the
preceding display and (3.4) together prove that uniformly, for every integer
j >i+1[ogil*® @;; = O(f(H,)) asi — oo. According to Theorem 1.4, for
this range of(i, j), Q; ; = O(P{S;‘ > H;./€j}). Thanks to Lemma 8.2, this is
O(P{Sj e 4;}). The result follows easily from this, therefore, it is enough to
derive (8.31).

Because of (8.3), equation (8.31) is equivalent to the following: Uniformly for
every integerj > i + [logi]1°,

e;(logi)(log j)
ej — €

(8.32) =00 (i — 00).

But thanks to (8.29), uniformly for all integers> i + [logi]19, the left-hand side
is, at most,

[logi1?log(i + [logi]*%)
[logi]t0

(8.33)  (1+o0(1) —o() (i — o0).

This completes our proof.[]

LEMMA 8.6. Uniformly for all integers j € [i + logi, i + [logi]t9],

(8.34) Q. <i~ WD o 00).

PROOF Wheneverj > i, we haveH; > H;. Thus, the (eventual) monotonic-
ity of f implies that, as — oo, the following holds uniformly for allj > i:

i €; e; 14 e;
Qij < f|Hi - -—
Vei—e e —¢€; Hf\ej—e;
[ Je,—e 14 i
(8.35) S ) A R i
_\/e_j+\/e_i Hf\ej—e;

< r(m; e, —e; _14+Z(1) e;logj '
Ve VR H; €j

[The last line relies on (8.27).] According to (8.3), and after appealing to the trivial
inequality thate; > e;, we arrive at the following: A$ — oo, then uniformly for
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all integersj e [i + logi, i + [logi]°],
B 1+ o0(1) | Jej—ei 09/
o= 1(00 o [ _o( 45T
1+0(1) S jej—ei
f( 5 [,/Iogz . 0(1)})

< exp{—l+0(l) [ej — ei] Iogi}.

4 ej

(8.36)

IA

[The last line holds because of the first inequality in (1.17).] On the other hand,
uniformly for all j > i + logi,

® —oxof 1 l_)
e logj logi
(8.37) - i +logi i )

> ex —
log(i +logi) logi
>24+0(1) (i = 00).

Consequentlye; —e; > (1+ o(1))e;. This and (8.36) together yield the lemma.
[

LEMmA 8.7. Uniformly for all integers j € (i,i + logi],

(8.38) Q;; <ex

p{—1+0(1)(j—i) (i = 00).

4e

ProOF Equation (8.29) tells us that uniformly for all integefs> i, and
asi — oo, e; —e; > (14 o(1))e;(j —i)/logi. On the other hand, foy €
(i, i +logi],

® —exp 1 — J i
(8.39) e,-_eXp<Iogj Iogi)fex Iogi)fe'

The preceding two displays together yield that uniformly, for all integees
(i,i +logil, e7'(e; — &) = (14 o(1))(j — i)/(elogi) (i — o0). The lemma
follows from this and (8.36). O

We are ready to commence with the following.
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PROOF OF THEOREM 1.5. Recall thatEL,, — oo, and our goal is to
verify (8.13). According to Lemma 8.4, given any two positive integetsk,

n—-1 n
E{(Ln — L)? =E{Ly — Li} +2Y_ > i
i=k j=i+1
(8.40) .
<EL,+2Kg4 Z Z P{S € 4;}Q; ;.
i=k j=i+1

We split the double-sum according to whethies i + [logi1'°, j € (i +logi,i +
[logi1®® or j € (i, i + logi] and, respectively, apply Lemmas 8.5, 8.6 and 8.7 to
deduce the existence of an integer 1 such that, for alk > v,

E{((L, — L)%
<EL, +2Kg4K3gs ZZ F’{S;k S Jl,'}F’{S;< €d;}

v<i<n
n>j>i+[logi]0

(8.41) +2Kga YD i~8p(s¥ € 1)

v<i<n
je(i+logi,i+[logi]10]

+ 2Kg 4 ZZ e_(j_i)/lzl:’{S;X< e d;}l.

v<i<n
je(i,i+logi]

SinceEL,, — oo, the above is, at most,k% 4Ks5(1 + o(1))(EL,)? asn — oo.
This proves our claim (8.13).01
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