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SECOND-ORDER FLUCTUATIONS AND CURRENT ACROSS
CHARACTERISTIC FOR A ONE-DIMENSIONAL
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Fluctuations from a hydrodynamic limit of a one-dimensional asymmet-
ric system come at two levels. On the central limit scalen1/2 one sees initial
fluctuations transported along characteristics and no dynamical noise. The
second order of fluctuations comes from the particle current across the char-
acteristic. For a system made up of independent random walks we show
that the second-order fluctuations appear at scalen1/4 and converge to a
certain self-similar Gaussian process. If the system is in equilibrium, this
limiting process specializes to fractional Brownian motion with Hurst pa-
rameter 1/4. This contrasts with asymmetric exclusion and Hammersley’s
process whose second-order fluctuations appear at scalen1/3, as has been
discovered through related combinatorial growth models.

1. Introduction. An interface model defined in terms of a height function on
an integer lattice is a stochastic processσt = {σt (x) :x ∈ Zd}, where the value
σt (x) is interpreted as the height of the interface over sitex. The random variables
σt (x) move up and down according to random rates whose momentary values
depend on the height values in some neighborhood around sitex. A hydrodynamic
scaling limit is a type of law of large numbers for these systems. The conventional
statement is that under a suitable scaling of space and time, the entire space-time
random evolution{σt (x) :x ∈ Zd, t ≥ 0} converges to the solution of a differential
equation.

When the system is asymmetric, in the sense that there is an average drift
either up or down, the typical law of large numbers for the system is of the
following form. The result is for a sequence of processesσn

t , wheren = 1,2,3, . . .

is the scaling parameter. The statement is that asn → ∞, the random position
n−1σn

nt ([nx]) converges to a functionu(x, t) that solves a Hamilton–Jacobi
equation

ut + f (∇u) = 0.(1.1)
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In the macroscopic description,f gives the local velocity of the height as a
function of the local gradient. A necessary hypothesis for this type of law of large
numbers is that asn → ∞, the sequence of scaled initial statesn−1σn

0 ([ny]) in
some sense converges to a functionu0(y). The functionu0 then serves as the initial
data for the equationut + f (∇u) = 0. The equation andu0 uniquely determine
u(x, t) at all later timest . Depending on the situation, there might be additional
assumptions on the distributions ofσn

0 . Examples of results for various models can
be found in [12, 14, 16, 17, 19]. For general accounts of hydrodynamic limits, we
refer to the monographs [11] and [20], and to the lectures [4] and [21].

The fluctuation question for asymmetric systems has so far found answers
only in the one-dimensional situation, where the following picture has emerged.
Suppose the initial conditions satisfy a central limit theorem of the type

σn
0 ([ny]) − nu0(y)√

n
→ ζ0(y), y ∈ R,

with a continuous limiting processζ0. This situation arises naturally when the
initial incrementsσn

0 (x)−σn
0 (x −1) are independent with slowly varying bounded

means and variances. Then at later times a weak limit

σn
nt ([nx]) − nu(x, t)√

n
→ ζ(x, t)(1.2)

holds. The processζ(x, t) is a deterministic function of the initial processζ0.
More specifically, the valueζ(x, t) is determined by the valuesζ0(y), such that
a generalized characteristic of the p.d.e. (1.1) emanating at(y,0) reaches(x, t).
Qualitatively, a crucial feature is that there is no dynamical noise visible at this
scalen1/2. These types of results have been proved for the exclusion process under
various hypotheses [7, 8, 13] and for Hammersley’s process [18].

The motivation of the present paper is to describe fluctuations that lie “beyond”
the trivial fluctuations transported by the characteristics that appear in (1.2). This
second level of fluctuations appears when the first-order fluctuations of (1.2)
are suitably subtracted off or when the initial conditions are deterministic. In
the asymmetric exclusion and Hammersley settings, one should find some kind
of fluctuations at then1/3 scale. The results of Baik–Deift–Johansson [2] and
Johansson [10] can be interpreted as fluctuation results for Hammersley’s process
and the exclusion process with special deterministic initial configurations. So
for exclusion and Hammersley’s process, the aim would be to generalize those
n1/3 results to other initial conditions. What is special about exclusion and
Hammersley’s process is that these “second-order” fluctuations arise through
natural growth models that are amenable to the powerful combinatorial and
analytic machinery of [2] and its descendants.

In the present paper we start another direction, the investigation of these
phenomena in other models besides exclusion and Hammersley’s process. Two
questions arise. Do the trivialn1/2 fluctuations transported by characteristics
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appear in other asymmetric models? What then would be the second-order
fluctuations, especially if there is no combinatorial growth model present that
would lead to then1/3 fluctuations and the random matrix connections?

A simple model is one where the increments of the height function come from
independent random walks. This case we analyze in the present paper. The initial
increments are taken independently with slowly varying means and variances.
Exactly as for exclusion and Hammersley, on the central limit scalen1/2 we have
the initial fluctuations transported by characteristics. Then we find the next order
of fluctuations on the scalen1/4. In the limit these fluctuations are described by
a certain Gaussian processZ(ȳ, t), where(ȳ,0) is the initial point of the (now
unique) characteristic that reaches(x, t). The covariance ofZ(ȳ, ·) is determined
by the mean and variance of the initial increments around the macroscopic pointȳ.
Imprecisely speaking, the random height expands as

σn
nt ([nx]) ≈ nu(x, t) + n1/2ζ(x, t) + n1/4Z(ȳ, t).

The processesZ(ȳ, ·) are independent for distinct initial pointsȳ.
In the special case when the height increments are in equilibrium, for a fixedȳ,

the processZ(t) = Z(ȳ, t) specializes to fractional Brownian motion with Hurst
parameter1

4. These second-order fluctuations turn out to be the same as the
particle current across a characteristic of the macroscopic equation. Hence, the
juxtaposition in the title of the paper.

In the next section we describe the random walk model, its hydrodynamic
limit and the two levels of fluctuations. For the sake of comparison, we include
a brief section on the fluctuation picture of Hammersley’s process. We show that
for Hammersley’s process the second-order fluctuations are, at most, of order
n1/3 logn. This bound is valid also for shock locations. The last two sections prove
the theorems. In the proofs,C, C0, C1, . . . denote constants whose actual values
may change from line to line. The set of natural numbers isN = {1,2,3, . . . }.

2. The random walk model. We consider a model of an interface whose
height differences between neighboring sites are defined by independent random
walks onZ. The state of the system at timet is a height functionσt : Z → Z. The
height function is nondecreasing in space, so the increments

ηt (x) = σt (x) − σt (x − 1)(2.1)

are nonnegative integers.
The randomly evolving height function is constructed as follows. Let{Xi(t) :

i ∈ I} be a countable collection of independent continuous-time random walks
on Z. The jump rates of the random walks are given by a probability kernel
{p(x) :x ∈ Z}. In other words, the assumption onp(x) is∑

x∈Z

p(x) = 1
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and the common transition probability of the random walks is

P [Xi(s + t) = y|Xi(s) = x] = pt(x, y) =
∞∑

k=0

e−t t k

k! p(k)(y − x),

where

p(k)(z) = ∑
x1+x2+···+xk=z

p(x1)p(x2) · · ·p(xk)

is thek-fold convolution of the kernelp(x).
Given an initial height functionσ0 = {σ0(x) :x ∈ Z} defined on some proba-

bility space, define the initial incrementsη0(x) = σ0(x) − σ0(x − 1). Choose the
initial positions of the random walks so that sitex containsη0(x) particles:∑

i∈I

1{Xi(0) = x} = η0(x).(2.2)

Once the initial points{Xi(0) : i ∈ I} have been specified, define the subsequent
evolutions{Xi(t) − Xi(0) : i ∈ I, t ≥ 0} as an i.i.d. collection of random walks
on this same probability space, independent ofσ0. Define the currentJt (x) as the
(net) number of particles that have moved from(−∞, x] to [x + 1,∞) in time
interval[0, t],

Jt (x) =∑
i

1{Xi(0) ≤ x < Xi(t)} −∑
i

1{Xi(t) ≤ x < Xi(0)}.

The height function at timet is then defined by

σt (x) = σ0(x) − Jt (x).(2.3)

In other words, the interface height atx movesdown one step with every particle
that jumps from(−∞, x] to [x + 1,∞), andup one step with every particle that
does the opposite. The increment variablesηt (x) defined by (2.1) also serve as the
occupation variables of the random walks: from (2.1)–(2.3) one can derive

ηt (x) =∑
i

1{Xi(t) = x}.(2.4)

We can describe the evolution ofσt directly in terms of the rates, without
reference to the random walks. Given a height functionσ (a nondecreasing
functionZ → Z), andx, � ∈ Z, define a new height functionσx,� by

σx,�(y) =


{

σ(y) − 1, x ≤ y ≤ x + � − 1,

σ (y), if y < x or y ≥ x + �,
if � ≥ 0;{

σ(y) + 1, x + � ≤ y ≤ x − 1,

σ (y), if y < x + � or y ≥ x,
if � < 0.

(2.5)

The dynamical rule for the height process is this: if the current state isσ , then for
eachx ∈ Z and� ∈ Z, at ratep(�)(σ (x) − σ(x − 1)), the process jumps fromσ
to σx,�. If � = 0, there is actually no change:σx,0 = σ .
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Now some assumptions. We give them in three groups, first the assumption
on the kernelp(x) and then the assumptions on the sequence of initial height
functions{σn

0 } that determine the hydrodynamic limit setting.

ASSUMPTION A. For the random walk kernel, we assume that, for some
δ > 0, ∑

x∈Z

eθxp(x) < ∞ for |θ | ≤ δ.(2.6)

The purpose of Assumption A is to enable us to use standard large deviation
bounds on the random walks.

Assume given a sequence of initial height functionsσn
0 , random or determinis-

tic, defined on some probability space. The positive integer parametern will tend
to ∞ in the results. Define initial occupation variablesηn

0(x) = σn
0 (x)−σn

0 (x −1).

ASSUMPTIONB. Assume that for some nondecreasingC1 functionu0 on R,
and ally ∈ R,

lim
n→∞n−1σn

0 ([ny]) = u0(y) in probability.(2.7)

Assumption B is for the hydrodynamic limit. For the fluctuation results we need
stricter control of the initial conditions, as in the next assumption.

ASSUMPTIONC. For eachn, the initial occupation variables{ηn
0(x) :x ∈ Z}

are independent, with a uniformly bounded sixth moment:

sup
n∈N,x∈Z

E[ηn
0(x)6] < ∞.(2.8)

Let

ρn
0(x) = Eηn

0(x) and vn
0(x) = Var[ηn

0(x)]
be the mean and variance of the initial occupation variableηn

0(x), x ∈ Z. Let u0 be
the function specified in Assumption B, setρ0 = u′

0, and letv0 be another given
nonnegative function onR. Assume bothρ0 andv0 are bounded. The meansρn

0(x)

and variancesvn
0(x) approximate the functionsρ0 andv0 in the following precise

sense:
For eachy ∈ R, there exist positive integersL = L(n) such thatn−1/4L(n) → 0,

and for any finite constantA,

lim
n→∞ sup

|m|≤A
√

n logn

n1/4

∣∣∣∣∣ 1

L(n)

L(n)∑
j=1

ρn
0([ny] + m + j) − ρ0(y)

∣∣∣∣∣= 0.(2.9)

The same assumption holds whenρn
0 andρ0 are replaced byvn

0 andv0.
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Throughout the paper,L = L(n) denotes the quantity specified in the assump-
tion above. The awkwardly complicated assumption (2.9) is made to accommodate
both random and deterministic initial conditions. Given a functionρ0, the expecta-
tion of a randomηn

0(x) can, of course, agree exactly withρ0(
x
n
), but a deterministic

ηn
0(x) cannot unlessρ0(

x
n
) is integer-valued. Here are two basic examples of initial

conditions that satisfy Assumptions B and C.

EXAMPLE 2.1 (Random initial conditions). The functionsρ0 = u′
0 and v0

are bounded, nonnegative and satisfy a local Hölder property: for each bounded
interval[a, b], there existβ = β(a, b) > 1/2 andC = C(a, b) < ∞ such that

|ρ0(x) − ρ0(y)| + |v0(x) − v0(y)| ≤ C|x − y|β for all x, y ∈ [a, b].(2.10)

For eachn, let {ηn
0(x) :x ∈ Z} be independent, satisfy assumption (2.8) and have

Eηn
0(x) = ρ0

(
x

n

)
and Var[ηn

0(x)] = v0

(
x

n

)
.(2.11)

Additionally, the variables{σn
0 (0)} are chosen so that (2.7) holds fory = 0.

Then (2.7) is satisfied for ally ∈ R.

EXAMPLE 2.2 (Deterministic initial conditions). ρ0 = u′
0 is bounded, non-

negative and satisfies the Hölder condition (2.10) withβ = β(a, b) > 1/2, andv0
is identically zero. Define deterministic initial occupation variables by

ηn
0(m) =

[
nu0

(
m

n

)]
−
[
nu0

(
m − 1

n

)]
,(2.12)

where, as throughout the paper,[x] = max{k ∈ Z : k ≤ x} denotes the integer part
of a realx. The functionu0 is nondecreasing so eachηn

0(m) is a nonnegative
integer. And finally, the variables{σn

0 (0)} can be random or deterministic, but must
satisfy (2.7) fory = 0.

We set the stage with the hydrodynamic limit and the first-order fluctuations.
The first two moments of the random walk kernel appear in various parts of the
results. We denote these by

b =∑
x

xp(x) and κ2 =∑
x

x2p(x).

Let

u(x, t) = u0(x − bt).(2.13)

It is the solution of the linear transport equation

ut + bux = 0, u(x,0) = u0(x).(2.14)
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THEOREM 2.1. Assume Assumptions A–C. Then, for each (x, t) ∈ R ×
[0,∞),

lim
n→∞n−1σn

nt ([nx]) = u(x, t) in probability.(2.15)

Given (x, t), let ȳ = x − bt . Then

lim
n→∞

{
σn

nt ([nx]) − nu(x, t)√
n

− σn
0 ([nȳ]) − nu0(ȳ)√

n

}
= 0 in probability.(2.16)

Furthermore, assume the specific situation of Example 2.1 and the normaliza-
tion u0(0) = σn

0 (0) = 0 for all n. Then it is possible to construct the processes σn
t

on the same probability space with a two-sided standard Brownian motion B(·)
such that these limits hold in probability, for all (x, t), ȳ = x − bt :

lim
n→∞

σn
nt ([nx]) − nu(x, t)√

n
= B

(∫ ȳ

0
v0(s) ds

)
.(2.17)

A two-sided Brownian motionB(·) is constructed by taking two independent
standard Brownian motionsB1 andB2 on [0,∞) and setting

B(t) =
{

B1(t), t ≥ 0,

−B2(−t), t < 0.

The integral
∫ ȳ
0 v0(s) ds in (2.17) has to be interpreted with a sign, in other words,∫ ȳ

0
v0(s) ds = −

∫ 0

ȳ
v0(s) ds for ȳ < 0.

The characteristics of (2.14) are straight lines with slopeb, so x = ȳ + bt

is the characteristic starting at(ȳ,0). Limits (2.16) and (2.17) say that on the
central limit scalen1/2, fluctuations from the hydrodynamic limit consist of initial
fluctuations rigidly transported along the characteristics, without any contribution
from dynamical noise.

The purpose of this paper is to describe the “second-order” fluctuations that
appear beyond the trivial fluctuations of Theorem 2.1. Fixȳ ∈ R. Let

Yn(t) = σn
nt ([nȳ] + [nbt]) − σn

0 ([nȳ]).(2.18)

Sinceu(ȳ + bt, t) = u0(ȳ), also

σn
nt ([nȳ] + [nbt]) − nu(ȳ + bt, t) = σn

0 ([nȳ]) − nu0(ȳ) + Yn(t).(2.19)

So Yn(t) represents the difference between the fluctuation experienced by the
process at space-time point(ȳ + bt, t) and the fluctuation at the initial point(ȳ,0)

of the characteristic.n−1/2Yn(t) is exactly the difference that appeared in (2.16).
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There is another way to look atYn(t), directly in terms of the particles. WriteJn
t

for the current of processσn
t andXn

i (t) for the random walks in the construction
of σn

t :

Yn(t) = σn
nt ([nȳ] + [nbt]) − σn

0 ([nȳ])
= σn

0 ([nȳ] + [nbt]) − Jn
nt ([nȳ] + [nbt]) − σn

0 ([nȳ])

=
[nȳ]+[nbt]∑
m=[nȳ]+1

ηn
0(m) − Jn

nt ([nȳ] + [nbt]).

Switching back to the random walks and cancelling gives

Yn(t) =∑
i

1{Xn
i (0) ≥ [nȳ] + 1,Xn

i (nt) ≤ [nȳ] + [nbt]}
(2.20)

−∑
i

1{Xn
i (0) ≤ [nȳ],Xn

i (nt) > [nȳ] + [nbt]}.

This counts the net number of particles that have moved from the right side of the
characteristic to the left side during time interval[0, nt]. In other words,Yn(t) also
represents the negative of the current across the characteristic.

Our main theorem is the distributional limit ofYn. Assumption B is not
relevant for the limit ofYn. The previous paragraph already showed that even
thoughYn(t) was defined in terms of the height functions in (2.18), it is actually
determined by the increment processηn

t . We included Assumption B in the
earlier discussion only to give the complete hydrodynamic picture. Also, the
approximation assumption (2.9) is needed only for the particularȳ that appears
in the definition ofYn.

THEOREM 2.2. Fix ȳ ∈ R and define Yn(t) as in (2.18).Assume Assumptions
A and C. Then as n → ∞, the process n−1/4Yn(·) converges weakly on the space
DR[0,∞) to the mean-zero Gaussian process Z(·) with covariance

EZ(s)Z(t) =
√

κ2

2π

{
ρ0(ȳ)
(√

s + t − √
s ∨ t − s ∧ t

)
(2.21)

+ v0(ȳ)
(√

s + √
t − √

s + t
)}

.

For the increment processηt = {ηt (m) :m ∈ Z}, i.i.d. Poisson distributions are
equilibrium distributions. If the mean of the Poisson isρ, thenρ0(x) = v0(x) = ρ

for all x ∈ R. The covariance in (2.21) then simplifies to

EZ(s)Z(t) = ρ

√
κ2

2π

(√
s + √

t − √
t − s
)

for s ≤ t .(2.22)

This is the covariance of fractional Brownian motion with Hurst parameterH = 1
4,

normalized byEZ(1)2 = ρ
√

2κ2/π . Standard fractional Brownian motion would
haveEZ(1)2 = 1. Let us state this special case as a corollary.



CURRENT ACROSS CHARACTERISTIC 767

COROLLARY 2.1. Let ηt be an equilibrium process whose occupation
variables {ηt (x) :x ∈ Z} are i.i.d. Poisson with mean ρ. Let ηn

t = ηt for each n.
Then n−1/4Yn(·) converges weakly on the space DR[0,∞) to fractional Brownian
motion with covariance given in (2.22).

Another special case worth highlighting is that of deterministic initial height
functions described in Example 2.2. In that case the limit in (2.17) is zero
because the second fraction in (2.16) vanishes in the limit. (2.18) gives the actual
fluctuations from the hydrodynamic limit becauseσn

0 ([nȳ]) is deterministic. We
also omit the short derivation of this corollary from Theorem 2.2.

COROLLARY 2.2. Let u0 be a nondecreasing C1 function on R with bounded
derivative ρ0. Assume ρ0 satisfies the local Hölder condition (2.10). Define
deterministic initial height functions by σn

0 (m) = [nu0(
m
n
)], m ∈ Z. The function

v0 is now zero. Fix ȳ ∈ R. Then the process{
σn

nt ([nȳ] + [nbt]) − nu(ȳ + bt, t)

n1/4 : t ≥ 0
}

converges weakly on DR[0,∞) to the mean zero Gaussian process Z(·) with
covariance

EZ(s)Z(t) = ρ0(ȳ)

√
κ2

2π

(√
s + t − √

t − s
)

for s ≤ t .

Fractional Brownian motion has stationary increments, but the general process
Z(t) with covariance (2.21) does not unlessρ0(ȳ) = v0(ȳ). One can check that for
a fixedh > 0,E[(Z(t +h)−Z(t))2] is strictly decreasing witht if v0(ȳ) > ρ0(ȳ),
and strictly increasing ifv0(ȳ) < ρ0(ȳ). A bound

E
[(

Z(t) − Z(s)
)2]≤ C(t − s)1/2

is valid for all 0≤ s < t . Since the increment is mean-zero Gaussian, it follows
from Kolmogorov’s criterion that the processZ has continuous paths.

The processZ is self-similar with index1
4, which means that{Z(at) : t ≥ 0} d=

{a1/4Z(t) : t ≥ 0}, as is immediate from the form of the covariance.
Next we address the joint distribution of processesYn(·) from several initial

pointsȳ. Write Yn(ȳ, t) for the random variable defined by (2.18) or, equivalently,
by (2.20) to display its dependence onȳ. Write Z(ȳ, t) for the Gaussian process
with covariance given in (2.21).

THEOREM 2.3. Assume Assumptions A and C. Let ȳ1 < ȳ2 < · · · < ȳk

be points on R. Then as n → ∞, the joint process n−1/4(Yn(ȳ1, ·), Yn(ȳ2, ·),
. . . , Yn(ȳk, ·)) converges in distribution on the space DRk [0,∞) to a vector
(Z(ȳ1, ·),Z(ȳ2, ·), . . . ,Z(ȳk, ·)) of independent DR[0,∞)-valued components.
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Remark about mean-zero random walks. We have made no assumption on the
meanb of the random walk. The results are true also forb = 0. However, in this
case the convergence ofYn does not relate to the hydrodynamic limit in the same
way because Theorem 2.1 is not the correct limit. The relevant hydrodynamic limit
takes place on the time scalen2t and the limiting evolution is governed by the heat
equation. Forb = 0, Theorem 2.1 is completely trivial becauseu(x, t) = u0(x)

andȳ = x.

Remark about fractional Brownian motion with H = 1
4 . There is, of course,

a result for Brownian motion that corresponds to the random walk result of
Theorem 2.2. We state here the equilibrium version. Letλ > 0. Let {Bi(t) : i ∈ I}
be a countable collection of independent standard Brownian motions onR whose
initial locations (and, consequently, the locations at any fixed time) are those of a
homogeneous, rateλ Poisson point process onR. Fix y ∈ R. Let

Yλ(t) =∑
i

1{Bi(0) ≤ y,Bi(t) > y} −∑
i

1{Bi(0) > y,Bi(t) ≤ y}

be the net current of Brownian particles across the pointy during time inter-
val [0, t]. To have sample paths inDR[0,∞), we should replaceYλ with the right-
continuous modificationY+

λ defined byY+
λ (t) = Yλ(t+). This change does not

affect finite-dimensional distributions. The covariance ofYλ is

EYλ(s)Yλ(t) = λ√
2π

(√
s + √

t − √
t − s
)

for s ≤ t .

THEOREM 2.4. As λ → ∞, the process λ−1/2Y+
λ (·) converges in distribution

on the space DR[0,∞) to fractional Brownian motion Z(·) with covariance

EZ(s)Z(t) = 1√
2π

(√
s + √

t − √
t − s
)

for s ≤ t .

The calculations of this paper can be adapted from the random walk situation to
the Brownian situation and we omit the explicit proof.

Before turning to the proofs, we want to compare the independent walks with
Hammersley’s process.

3. A bound on second-order fluctuations in Hammersley’s process. In this
section we look at Hammersley’s process from the same perspective from which
the previous section studied independent random walks. The difference is that now
there is genuine interaction among the particles. The hydrodynamic equation is a
nonlinear Hamilton–Jacobi equation. The characteristics of the equation can meet
and form shocks. Currently, we cannot prove the equivalent of Theorem 2.2 for
Hammersley’s process. We can only give bounds on the tails of the second-order
fluctuations which suggest that if there is a limit, it should be on then1/3 scale.
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The state of Hammersley’s process at timet is zt = (zt (i) : i ∈ Z). Depending on
the preferred interpretation, variablezt (i) ∈ R is the location of particle labeledi at
time t or the height of the interface over sitei. The dynamics preserves the ordering
zt (i−1) ≤ zt (i). Particles jump to the left, according to this rule. If the state at time
t is zt = (zt (i) : i ∈ Z), then particlei has an instantaneous ratezt (i)− zt (i − 1) of
jumping, independently of all other particles. And when particlei jumps, its new
location is chosen uniformly at random from the interval(zt (i − 1), zt (i)). This
happens independently for all particlesi.

This process can be defined in terms of a special graphical construction that
utilizes the increasing sequences in a space-time Poisson point process, see [1, 15]
or [18].

The process of increment variablesηt = (ηt (i) : i ∈ Z) is defined as before by

ηt (i) = zt (i) − zt (i − 1),

and is also known as the “stick process.” The dynamics ofηt operates as follows.
For eachi ∈ Z, at rate equal toη(i), this stick-breaking event happens: picku

uniformly distributed on[0, η(i)], and replace the stateη with the new state

ηu,i,i+1(j) =


η(i) − u, j = i,

η(i + 1) + u, j = i + 1,

η(j), j �= i, i + 1.

In other words,ηu,i,i+1 represents the stick configuration after a piece of sizeu

has been moved from sitei to i + 1. This process can be rigorously defined on a
certain subspace of the full product space[0,∞)Z, see [15] for details.

Next we describe one set of hypotheses under which the hydrodynamic limit and
the trivial fluctuations (1.2) can be proved. Then we state a bound on the size of the
second-order fluctuations. The setting is again that of a sequence of processeszn

t ,
n ∈ N.

ASSUMPTIOND. Assume given a nondecreasing Lipschitz functionu0 on R
and a bounded, continuous, nonnegative functionv0 onR. For alln, zn

0(0) = 0 and
the initial increment variables{ηn

0(i) : i ∈ Z} are mutually independent with means
and variances

E[ηn
0(i)] = nu0

(
i

n

)
− nu0

(
i − 1

n

)
and Var[ηn

0(i)] = v0

(
i

n

)
.

Furthermore, assume uniformly bounded fourth moments:

sup
n∈N,i∈Z

E[ηn
0(i)4] < ∞.

Let u(x, t) be the unique viscosity solution of the Hamilton–Jacobi equation

ut + (ux)
2 = 0, u(x,0) = u0(x).(3.1)
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Equivalently,u is defined fort > 0 by the Hopf–Lax formula

u(x, t) = inf
y : y≤x

{
u0(y) + (x − y)2

4t

}
.(3.2)

The hypotheses guarantee that there exists a nonempty compact setI (x, t) ⊆
(−∞, x] on which the infimum in (3.2) is achieved:

I (x, t) =
{
y ≤ x :u(x, t) = u0(y) + (x − y)2

4t

}
.

A point (x, t) is a shock if I (x, t) is not a singleton. Equivalently,u(x, t) is not
differentiable in thex variable at(x, t). For a fixedt > 0, there are, at most,
countably many shocks. Shocks cannot happen for the linear equation (2.14) of
independent particles, because its characteristics are parallel straight lines.

Here is the starting point: the hydrodynamic limit and the fluctuations
transported by the characteristics.

THEOREM 3.1. Assume Assumption D. Then, for each (x, t) ∈ R × [0,∞),

lim
n→∞n−1zn

nt ([nx]) = u(x, t) in probability(3.3)

and

lim
n→∞

{
zn
nt ([nx]) − nu(x, t)√

n
− inf

y∈I (x,t)

zn
0([ny]) − nu0(y)√

n

}
= 0(3.4)

in probability.
It is possible to construct the processes zn

t on the same probability space with a
two-sided standard Brownian motion B(·) such that these limits hold in probability,
for all (x, t):

lim
n→∞

zn
nt ([nx]) − nu(x, t)√

n
= inf

y∈I (x,t)
B

(∫ y

0
v0(s) ds

)
.(3.5)

This theorem is proved in [18]. The hypotheses for (3.5) in [18] are more
stringent than the ones used above (in [18] the initial increments are assumed
exponentially distributed) and the conclusion is stronger (a.s. convergence). The
argument in [18] gives convergence in probability in (3.5) under the fourth moment
bound included in Assumption D.

The infimum in (3.4) and (3.5) is in some sense the same infimum that appears
in the Hopf–Lax formula (3.2), which is inherited by a particle-level variational
formulation (5.2).

The result of Baik, Deift and Johansson [2] gives the fluctuations for Hammers-
ley’s process from the following particular deterministic initial state:z0(i) = 0 for
i ≤ 0 andz0(i) = ∞ for i > 0. In this situation the number of particles in space



CURRENT ACROSS CHARACTERISTIC 771

interval (0, x] at time t equals the maximal numberL(x, t) of space-time Pois-
son points on an increasing path in the rectangle(0, x] × (0, t]. This connection
comes from the graphical construction of Hammersley’s process. The distribu-
tional limit for n−1/3{L(nx,nt) − 2n

√
xt } in [2] can be translated into a limit for

n−1/3{znt ([nx]) − nx2/(4t)} for x, t > 0.
We saw for the independent random walk model that the scale of the fluctuations

from deterministic initial conditions is the scale of the second-order fluctuations.
So, given the Baik–Deift–Johansson result, we would expect the next order of
fluctuations for Hammersley’s process at scalen1/3. To capture these fluctuations,
fix (x, t) ∈ R × (0,∞) and define

Yn = {zn
nt ([nx]) − nu(x, t)} − inf

y∈I (x,t)
{zn

0([ny]) − nu0(y)}.

We shall prove a bound on the tails ofYn that suggestsn1/3 as the correct order.
We need one more assumption. Given(x, t), let

�(y) = u0(y) + (x − y)2

4t

be the quantity minimized overy in the Hopf–Lax formula (3.2).

ASSUMPTIONE. Given(x, t), the minimizers in (3.2) are uniformly quadra-
tic, in other words, there existc1, δ > 0 such that

�(y) − �(ȳ) ≥ c1(y − ȳ)2(3.6)

for all y ∈ R andȳ ∈ I (x, t) such that|y − ȳ| ≤ δ.

THEOREM 3.2. Let (x, t) ∈ R × (0,∞). Under Assumptions D and E, the
sequence {

Yn

n1/3 logn
:n ≥ 1

}
is tight.

We turn to proofs, beginning with the random walk model.

4. Proofs for the random walk model. The main work is in proving
Theorem 2.2. Along the way we derive an estimate that takes care of Theorem 2.3.
Last we explain how Theorem 2.1 follows. We start by proving the convergence of
finite-dimensional distributions to the correct limit, and then prove tightness at the
process level.

Using (2.20), writeYn(t) = Yn,1(t) − Yn,2(t), where

Yn,1(t) =∑
i

1{Xn
i (0) ≥ [nȳ] + 1,Xn

i (nt) ≤ [nȳ] + [nbt]} and

(4.1)
Yn,2(t) =∑

i

1{Xn
i (0) ≤ [nȳ],Xn

i (nt) > [nȳ] + [nbt]}.
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Yn,1(t) and Yn,2(t) represent contributions of slow and fast random walks,
respectively. Next write

Yn(t) = (EYn,1(t) − EYn,2(t)
)

(4.2)
+ (Yn,1(t) − EYn,1(t)

)− (Yn,2(t) − EYn,2(t)
)
.

We look at the behavior of these three terms on the scalen1/4. Note thatYn,1(t)

andYn,2(t) are independent of each other.

4.1. Convergence of finite-dimensional distributions.

PROPOSITION4.1. Fix N time points

0≤ t1 < t2 < · · · < tN.

As n → ∞ the vector n−1/4(Yn(t1), Yn(t2), . . . , Yn(tN)) converges in distribution
to the mean-zero Gaussian random vector (Z(t1),Z(t2), . . . ,Z(tN)) with the
covariance defined in (2.21).

PROOF. SinceYn(0) is identically zero, we may as well assume thatt1 > 0.
By the Cramér–Wold device, it suffices to show the convergence of the linear
combination

n−1/4
N∑

i=1

θiYn(ti)(4.3)

for an arbitrary vectorθ = (θ1, . . . , θN) ∈ RN and arbitraryN ∈ N.
In Lemma 4.6 below we show thatn−1/4EYn(t) = n−1/4(EYn,1(t) − EYn,2(t))

vanishes asn → ∞. Using the decomposition (4.2) and ignoring the first term that
vanishes, what we actually prove is the weak convergence of the difference

n−1/4
N∑

i=1

θi

(
Yn,1(ti) − EYn,1(ti)

)− n−1/4
N∑

i=1

θi

(
Yn,2(ti) − EYn,2(ti)

)
.(4.4)

Since the two sums above are independent, we can treat them separately. We shall
show below that they converge to mean-zero normal distributions with variances

σ 2
1 =

N∑
i=1

θ2
i

√
κ2

{
ρ0(ȳ)

∫ 0

−∞
P
(
Bti > z

)
P
(
Bti ≤ z

)
dz

+ v0(ȳ)

∫ 0

−∞
P
(
Bti ≤ z

)2
dz

}

+ 2
∑

1≤i<j≤N

θiθj

√
κ2

{
ρ0(ȳ)

∫ 0

−∞
[
P
(
Bti > z

)
P
(
Btj ≤ z

)
(4.5)

− P
(
Bti > z ≥ Btj

)]
dz

+ v0(ȳ)

∫ 0

−∞
P
(
Bti ≤ z

)
P(Btj ≤ z) dz

}
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and

σ 2
2 =

N∑
i=1

θ2
i

√
κ2

{
ρ0(ȳ)

∫ ∞
0

P
(
Bti > z

)
P
(
Bti ≤ z

)
dz

+ v0(ȳ)

∫ ∞
0

P
(
Bti > z

)2
dz

}
+ 2

∑
1≤i<j≤N

θiθj

√
κ2

{
ρ0(ȳ)

∫ ∞
0

[
P
(
Bti > z

)
P
(
Btj ≤ z

)
(4.6)

− P
(
Bti > z ≥ Btj

)]
dz

+ v0(ȳ)

∫ ∞
0

P
(
Bti > z

)
P
(
Btj > z

)
dz

}
.

Bt above stands for standard one-dimensional Brownian motion. The quantities
σ 2

1 andσ 2
2 are actually equal. Their different formulas connect to the calculations

by which they arise in the proof. The limit of (4.3) is then a centered Gaussian
with varianceσ 2

1 + σ 2
2 . To evaluate this sum, note that the terms withρ0(ȳ) add

up to integrals over(−∞,∞), while the terms withv0(ȳ) are actually equal. We
leave the proof of the next lemma to the reader (calculus and Fubini’s theorem are
needed).

LEMMA 4.1. For 0≤ s ≤ t , we have these formulas:∫ ∞
−∞

P(Bs > z)P (Bt ≤ z) dz =
√

s + t√
2π

,(4.7)

∫ ∞
0

P(Bs > z)P (Bt > z)dz =
√

s + √
t − √

s + t

2
√

2π
(4.8)

and ∫ ∞
−∞

P(Bs > z ≥ Bt) dz =
√

t − s√
2π

.(4.9)

From this lemma and the definitions (4.5)–(4.6), we get

σ 2
1 + σ 2

2 =
N∑

i=1

θ2
i

√
κ2

{
ρ0(ȳ)

√
ti√
π

+ v0(ȳ)
(
√

2− 1)
√

ti√
π

}

+ 2
∑

1≤i<j≤N

θiθj

√
κ2

{
ρ0(ȳ)

(√
ti + tj√

2π
−

√
tj − ti√

2π

)

+ v0(ȳ)

√
ti + √

tj − √
ti + tj√

2π

}
= ∑

1≤i,j≤N

θiθjEZ(ti)Z(tj ),
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where the last equality comes from (2.21). Thus, the linear combination in (4.3)
converges in distribution to the linear combination

∑N
i=1 θiZ(ti). Since the vectorθ

was arbitrary, Proposition 4.1 follows.
Equations (4.7)–(4.9) can be manipulated to show that the functions

√
s + t −√

s ∨ t − s ∧ t and
√

s + √
t − √

s + t are positive definite. This ensures that
(2.21) is a legitimate covariance of a Gaussian process for all nonnegative values
ρ0(ȳ) andv0(ȳ).

It remains now to prove the weak convergence of the sums in (4.4) and the
vanishing of the meann−1/4EYn(t) in the limit.

LEMMA 4.2. As n → ∞, n−1/4∑N
i=1 θi(Yn,1(ti) − EYn,1(ti)) converges

weakly to a mean-zero normal distribution with variance σ 2
1 defined by (4.5).

Lemma 4.2 will be proved after some preliminary steps. Relabel the random
walks so thatXm,j (·) is thej th random walk that starts at site[nȳ] + m. Then

Yn,1(t) =
∞∑

m=1

ηn
0([nȳ]+m)∑

j=1

1{Xm,j (nt) − Xm,j (0) ≤ [nbt] − m}.

Since the random walks are independent of the initial occupation numbersηn
0(x),

EYn,1(t) =
∞∑

m=1

ρn
0([nȳ] + m) · P {X(nt) ≤ [nbt] − m},(4.10)

whereX(·) represents a random walk with ratesp(x) starting at the origin.
Write

n−1/4(Yn,1(t) − EYn,1(t)
)= ∞∑

m=1

Um(t),

with mean zero summands

Um(t) = n−1/4
ηn

0([nȳ]+m)∑
j=1

1{Xm,j (nt) − Xm,j (0) ≤ [nbt] − m}

− n−1/4ρn
0([nȳ] + m) · P {X(nt) ≤ [nbt] − m}.

For fixedn andt , the variables{Um(t) :m ≥ 1} are independent. Abbreviate

�Um =
N∑

i=1

θiUm(ti).

Rearrange as follows:

n−1/4
N∑

i=1

θi

(
Yn,1(ti) − EYn,1(ti)

)= ∞∑
m=1

N∑
i=1

θiUm(ti) =
∞∑

m=1

�Um = S1 + S2,
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where

S1 =
[r(n)

√
n ]∑

m=1

�Um and S2 =
∞∑

m=[r(n)
√

n ]+1

�Um.

We shall apply the Lindeberg–Feller theorem toS1 and show thatS2 → 0 in L2.
To this end, we maker(n) ↗ ∞ sufficiently slowly. Let

H(M) = sup
n≥1,x∈Z

E[ηn
0(x)21{ηn

0(x) ≥ M}].

H(M) → 0 asM → ∞ by assumption (2.8). Now chooser(n) = o(
√

logn ) so
thatr(n) ↗ ∞ while

r(n)H(n1/8) → 0.(4.11)

The conditionr(n) = o(
√

logn ) is imposed so that later we can use assump-
tion (2.9).

We first showES2
2 → 0.S2 is a sum of independent mean-zero terms�Um, and so

ES2
2 =

∞∑
m=[r(n)

√
n ]+1

E�U 2
m ≤ ‖θ‖2

N∑
i=1

∞∑
m=[r(n)

√
n ]+1

EU2
m(ti).

We wrote‖θ‖ for the Euclidean norm and used the Schwarz inequality. SinceN

is fixed it suffices to show that for a fixedt ,

lim
n→∞

∞∑
m=[r(n)

√
n ]+1

EU2
m(t) = 0.(4.12)

Recall that the variance of a random sumTK =∑K
i=1 Zi with i.i.d. summands

Zi independent of the randomK is

Var[TK ] = EK · VarZ1 + (EZ1)
2 · VarK.(4.13)

The variance of the indicator1{X(nt) ≤ [nbt] − m} is P {X(nt) ≤ [nbt] −
m}P {X(nt) > [nbt] − m}. X(nt) is a sum of a Poisson(nt) distributed number of
independent jumps, each jump distributed according to{p(x)}. Hence, the variance
of X(nt) is ntκ2. By Donsker’s invariance principle, the process{(X(nt) −
[nbt])/√nκ2 : t ≥ 0} converges weakly to standard one-dimensional Brownian
motion.

By the definition ofUm(t) and (4.13),

E[U2
m(t)] = Var

[
n−1/4

ηn
0([nȳ]+m)∑

j=1

1{Xm,j (nt) − Xm,j (0) ≤ [nbt] − m}
]

= n−1/2ρn
0([nȳ] + m)P {X(nt) ≤ [nbt] − m}P {X(nt) > [nbt] − m}(4.14)

+ n−1/2vn
0([nȳ] + m)P {X(nt) ≤ [nbt] − m}2.
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In particular, we get the bound

E[U2
m(t)] ≤ Cn−1/2P {X(nt) ≤ [nbt] − m}(4.15)

by the uniform bound (2.8) on the moments.
By standard large deviation theory and assumption (2.6), ass → ∞, the random

walk X(s) has a rate functionI which is convex and quadratic around its unique
minimum atb. Consequently, for arbitrarily smallα > 0, there exists a constant
0< K < ∞ such that

I (b + z) ≥
{

Kz2, |z| ≤ α,

K|z|, |z| ≥ α.
(4.16)

The rate function gives the bounds

P {X(s) ≤ sb − su} ≤ exp{−sI (b − u)}
and

P {X(s) ≥ sb + su} ≤ exp{−sI (b + u)}
for all u ≥ 0 and s > 0. Even though a large deviations rate function is an
asymptotic notion, these bounds are valid already for finites by virtue of
superadditivity. We use these first in the form

P {X(nt) ≤ [nbt] − m} ≤ exp
{
−ntI

(
b − m

nt

)}
(4.17)

≤
exp
{
−K

m2

nt

}
, 0≤ m ≤ ntα,

exp{−Km}, m ≥ ntα.

Consequently, applying (4.15) and (4.17),
∞∑

m=[r(n)
√

n ]+1

E[Um(t)2]

≤ Cn−1/2
[ntα]∑

m=[r(n)
√

n ]+1

exp{−Km2(nt)−1} + Cn−1/2
∞∑

m=[ntα]+1

exp{−Km}

≤ C

∫ ∞
r(n)

e−Kt−1x2
dx + C

1− e−K
· n−1/2e−Kαnt .

This vanishes asn → ∞ due tor(n) → ∞. We have proved (4.12).
Next follows the application of Lindeberg–Feller toS1. Two things need to be

checked, namely, that

lim
n→∞

[r(n)
√

n ]∑
m=1

E[�U 2
m1{|�Um| ≥ ε}] = 0(4.18)
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for anyε > 0, and, second, that

lim
n→∞

[r(n)
√

n ]∑
m=1

E[�U 2
m] = σ 2

1 .(4.19)

(See Theorem (4.5) on page 116 in [5].) Note that

|Um(t)| ≤ n−1/4ηn
0([nȳ] + m) + n−1/4ρn

0([nȳ] + m)

and so by the uniform bound on moments,

|�Um| ≤ Cn−1/4(ηn
0([nȳ] + m) + 1

)
.

(4.18) follows from this and property (4.11) ofr(n). In (4.11) we usedn1/8 simply
because for anyε > 0, εn1/4 > n1/8 for large enoughn.

We turn to verify (4.19).

�U 2
m =

N∑
i=1

θ2
i U2

m(ti) + 2
∑

1≤i<j≤N

θiθjUm(ti)Um(tj ),

and so the sum in (4.19) can be expressed as

[r(n)
√

n ]∑
m=1

E[�U 2
m] =

N∑
i=1

θ2
i S1,1(ti) + 2

∑
1≤i<j≤N

θiθjS1,2(ti , tj ),(4.20)

where we abbreviated

S1,1(t) =
[r(n)

√
n ]∑

m=1

E[U2
m(t)]

and

S1,2(s, t) =
[r(n)

√
n ]∑

m=1

E[Um(s)Um(t)].

LEMMA 4.3. For t > 0,

lim
n→∞S1,1(t) = ρ0(ȳ)

√
κ2

∫ 0

−∞
P(Bt ≤ z)P (Bt > z)dz

+ v0(ȳ)
√

κ2

∫ 0

−∞
P(Bt ≤ z)2 dz,

where Bt is standard one-dimensional Brownian motion.
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PROOF. By (4.14),

[r(n)
√

n ]∑
m=1

E[U2
m(t)] = n−1/2

[r(n)
√

n ]∑
m=1

ρn
0([nȳ] + m)P {X(nt) ≤ [nbt] − m}

× P {X(nt) > [nbt] − m}
(4.21)

+ n−1/2
[r(n)

√
n ]∑

m=1

vn
0([nȳ] + m)P {X(nt) ≤ [nbt] − m}2

≡ T1,1 + T1,2.

The last equality above defines the sumsT1,1 andT1,2. We work withT1,1, and
leave the analogous arguments forT1,2 to the reader.

We boundT1,1 from below. In the calculation that follows,L = L(n) is the
integer that appeared in assumption (2.9). Theo(n−1/4) error term below that
comes from that assumption is uniform overk becausekL = O(r(n)

√
n ) =

O(
√

n logn ), which is permitted in assumption (2.9),

T1,1 = n−1/2
[r(n)

√
n ]∑

m=1

ρn
0([nȳ] + m)P {X(nt) ≤ [nbt] − m}P {X(nt) > [nbt] − m}

≥ n−1/2
[L−1r(n)

√
n ]−1∑

k=0

L∑
j=1

ρn
0([nȳ] + kL + j)

× P {X(nt) ≤ [nbt] − (k + 1)L}P {X(nt) > [nbt] − kL}

≥ n−1/2
[L−1r(n)

√
n ]−1∑

k=0

(
Lρ0(ȳ) + L · o(n−1/4)

)
× P {X(nt) ≤ [nbt] − (k + 1)L}P {X(nt) > [nbt] − kL}

≥ ρ0(ȳ)n−1/2L

[L−1r(n)
√

n ]−1∑
k=0

P {X(nt) ≤ [nbt] − (k + 1)L}

× P {X(nt) > [nbt] − kL} + o(n−1/4) · O(r(n))

= ρ0(ȳ)n−1/2L

[L−1r(n)
√

n ]−1∑
k=0

P

{
X(nt) − [nbt]√

nκ2
≤ −(k + 1)

L√
nκ2

}

× P

{
X(nt) − [nbt]√

nκ2
> −k

L√
nκ2

}
+ o(n−1/4) · O(r(n)).
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The last termo(n−1/4) · O(r(n)) → 0 asn → ∞ becauser(n) = o(
√

logn ). As
n → ∞, a Riemann sum argument, together with the large deviation bounds (4.17),
shows that the main part of the lower bound converges to

ρ0(ȳ)
√

κ2

∫ 0

−∞
P(Bt ≤ z)P (Bt > z)dz.

Similarly, one derives an upper bound forT1,1 with the same limit. This proves the
convergence ofT1,1.

We leave the similar argument forT1,2 to the reader. This completes the proof
of Lemma 4.3. �

LEMMA 4.4. For 0< s < t ,

lim
n→∞S1,2(s, t)

= ρ0(ȳ)
√

κ2

∫ 0

−∞
{P(Bs > z)P (Bt ≤ z) − P(Bs > z ≥ Bt)}dz(4.22)

+ v0(ȳ)
√

κ2

∫ 0

−∞
P(Bs ≤ z)P (Bt ≤ z) dz.

PROOF. Formula (4.13) generalizes in the following way. Assume the i.i.d.
random variables{Zi} are independent of the random nonnegative integerK , and
f andg are bounded measurable functions on the state space of the{Zi}. Then

Cov

[
K∑

i=1

f (Zi),

K∑
i=1

g(Zi)

]

= E

[{
K∑

i=1

f (Zi) − EK · Ef (Z1)

}{
K∑

i=1

g(Zi) − EK · Eg(Z1)

}]
(4.23)

= EK · Cov[f (Z1), g(Z1)] + VarK · Ef (Z1) · Eg(Z1).

Applying this gives

EUm(s)Um(t)

= n−1/2ρn
0([nȳ] + m)

(
P {X(ns) ≤ [nbs] − m,X(nt) ≤ [nbt] − m}
− P {X(ns) ≤ [nbs] − m} · P {X(nt) ≤ [nbt] − m})

+ n−1/2vn
0([nȳ] + m)P {X(ns) ≤ [nbs] − m} · P {X(nt) ≤ [nbt] − m}.

The probabilities in the first term can be rearranged as follows:

P {X(ns) ≤ [nbs] − m,X(nt) ≤ [nbt] − m}
− P {X(ns) ≤ [nbs] − m} · P {X(nt) ≤ [nbt] − m}

= P {X(ns) > [nbs] − m} · P {X(nt) ≤ [nbt] − m}
− P {X(ns) > [nbs] − m,X(nt) ≤ [nbt] − m}.
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With m = [z√nκ2 ] this last expression converges to

P(Bs > z)P (Bt ≤ z) − P(Bs > z ≥ Bt),

which is the integrand of the first integral in (4.22). This points the way, and one
can follow the reasoning of the proof of Lemma 4.3.�

Together with (4.20), Lemmas 4.3 and 4.4 prove the limit in (4.19), and, thereby,
the central limit theorem claimed in Lemma 4.2. Next we need the corresponding
result for the second sum in the difference (4.4).

LEMMA 4.5. n−1/4∑N
i=1 θi(Yn,2(ti) − EYn,2(ti)) converges weakly to a

mean-zero normal distribution with variance σ 2
2 defined in (4.6).

PROOF. We have the same argument in principle,

Yn,2(t) =
∞∑

m=0

ηn
0([nȳ]−m)∑

j=1

1{Xm,j (nt) − Xm,j (0) > [nbt] + m}.

Then

EYn,2(t) =
∞∑

m=0

ρn
0([nȳ] − m) · P {X(nt) > [nbt] + m}.(4.24)

Next write

n−1/4(Yn,2(t) − EYn,2(t)
)= ∞∑

m=0

Vm(t),

with independent, mean zero summands

Vm(t) = n−1/4
ηn

0([nȳ]−m)∑
j=1

1{Xm,j (nt) − Xm,j (0) > [nbt] + m}

− n−1/4ρn
0([nȳ] − m) · P {X(nt) > [nbt] + m}.

With

�Vm =
N∑

i=1

θiVm(ti),

first separate out the part

S2 =
∞∑

m=[r(n)
√

n ]
�Vm.
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Use large deviation estimates to show thatS2 → 0 in L2 as n → ∞. To the
remaining part

S1 =
[r(n)

√
n ]−1∑

m=0

�Vm,

apply Lindeberg–Feller. The details are similar to those in the proof of Lemma 4.2.
�

LEMMA 4.6. For any 0< T < ∞,

lim
n→∞ sup

0≤t≤T

n−1/4|EYn(t)| = lim
n→∞ sup

0≤t≤T

n−1/4|EYn,1(t) − EYn,2(t)| = 0.

PROOF. From (4.10) and (4.24),

EYn,1(t) − EYn,2(t) = S + R1 − R2,

where

S = ρ0(ȳ)

{ ∞∑
m=1

P {X(nt) ≤ [nbt] − m} −
∞∑

m=0

P {X(nt) > [nbt] + m}
}
,

R1 =
∞∑

m=1

(
ρn

0([nȳ] + m) − ρ0(ȳ)
)
P {X(nt) ≤ [nbt] − m}

and

R2 =
∞∑

m=0

(
ρn

0([nȳ] − m) − ρ0(ȳ)
)
P {X(nt) > [nbt] + m}.

The part ofS in braces equals[nbt]−EX(nt) = [nbt]−nbt . Thus,|S| ≤ ρ0(ȳ)

uniformly overn andt .
Next we showR1 = o(n1/4) uniformly overt ∈ [0, T ]. R1 is a sum of bounded

terms, and any sum of bounded terms can be rearranged in this manner:

∞∑
m=1

am = 1

L

L∑
j=1

∞∑
m=1

am

= 1

L

L∑
j=1

j−1∑
m=1

am + 1

L

L∑
j=1

M+j−1∑
m=j

am + 1

L

L∑
j=1

∞∑
m=M+j

am

= O(L) +
M∑

m=1

1

L

L−1∑
j=0

am+j + 1

L

L∑
j=1

∞∑
m=M+j

am,
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and so ∣∣∣∣∣
∞∑

m=1

am −
M∑

m=1

1

L

L−1∑
j=0

am+j

∣∣∣∣∣≤ O(L) +
∞∑

m=M+1

|am|.

In our situationL = o(n1/4) from assumption (2.9). We takeM = M(n) =
[c√n logn ] for a large enough constantc. Then the large deviation esti-
mates (4.17) show that

sup
0≤t≤T

∑
m>c

√
n logn

P {X(nt) ≤ [nbt] − m} → 0 asn → ∞.

It remains to show that the sum

R1,1 =
M∑

m=1

1

L

L−1∑
j=0

(
ρn

0([nȳ] + m + j) − ρ0(ȳ)
)
P {X(nt) ≤ [nbt] − m − j}

is o(n1/4) uniformly overt . RewriteR1,1 as

R1,1 =
M∑

m=1

1

L

L−1∑
j=0

(
ρn

0([nȳ] + m + j) − ρ0(ȳ)
) ∞∑
k=j

P {X(nt) = [nbt] − m − k}

=
M∑

m=1

∞∑
k=0

P {X(nt) = [nbt] − m − k} 1

L

(L−1)∧k∑
j=0

(
ρn

0([nȳ] + m + j) − ρ0(ȳ)
)

=
M∑

m=1

L−1∑
k=0

P {X(nt) = [nbt] − m − k} 1

L

k∑
j=0

(
ρn

0([nȳ] + m + j) − ρ0(ȳ)
)

+
M∑

m=1

P {X(nt) ≤ [nbt] − m − L} 1

L

L−1∑
j=0

(
ρn

0([nȳ] + m + j) − ρ0(ȳ)
)
.

The next to last line above isO(L) = o(n1/4), as can be seen by replacing
ρn

0([nȳ] + m + j) − ρ0(ȳ) with a uniform upper bound and then summing the
probabilities overm. For the last line, use assumption (2.9) to replace each
L−1∑L−1

j=0 (ρn
0([nȳ] + m + j) − ρ0(ȳ)) with o(n−1/4) uniformly overm. Here the

assumptionm = O(
√

n logn ) is used. Then we have

o(n−1/4) ·
M∑

m=1

P {X(nt) ≤ [nbt] − m − L} = o(n−1/4) · O(n1/2) = o(n1/4).

The lastO(n1/2) bound comes from
∞∑

m=1

P {X(nt) ≤ [nbt] − m} = E
[([nbt] − X(nt)

)
+
]≤ C1 + C2n

1/2
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uniformly overt ≥ 0 andn. This is a consequence of the central limit theorem and
uniform integrability from assumption (2.6).

We leave the similar treatment ofR2 to the reader. �

Proposition 4.1 is now proved, and we turn to tightness at the process level.�

4.2. Moment bound for time increment. Using representation (2.20), the
differenceYn(t) − Yn(s) for 0< s < t simplifies to

Yn(t) − Yn(s) =∑
i

(
1{Xn

i (ns) > [nȳ] + [nbs],Xn
i (nt) ≤ [nȳ] + [nbt]}

− 1{Xn
i (ns) ≤ [nȳ] + [nbs],Xn

i (nt) > [nȳ] + [nbt]}).
Let

�Yn(t) = Yn(t) − EYn(t).

By virtue of Lemma 4.6, weak convergence of the processesn−1/4�Yn(·) is
equivalent to weak convergence ofn−1/4Yn(·). We shall, in fact, work with the
centered processes�Yn(·).

Relabel the random walks so thatXn
m,j (·), 1≤ j ≤ ηn

0(m), are the random walks
that start at sitem in the process indexed byn. Let

Am,j = {Xn
m,j (ns) > [nȳ] + [nbs],Xn

m,j (nt) ≤ [nȳ] + [nbt]},
Bm,j = {Xn

m,j (ns) ≤ [nȳ] + [nbs],Xn
m,j (nt) > [nȳ] + [nbt]}

and

Gm =
ηn

0(m)∑
j=1

(
1Am,j

− 1Bm,j

)− ρn
0(m)
(
P(Am,1) − P(Bm,1)

)
.

Then

�Yn(t) − �Yn(s) =∑
m∈Z

Gm

is a sum of independent mean-zero random variables. Recall now assumption (2.8),
according to whichE[ηn

0(x)6] is uniformly bounded overn andx.

PROPOSITION 4.2. There exists a constant C such that for all n ∈ N and
0≤ s < t ,

E
[(�Yn(t) − �Yn(s)

)6]≤ C
(
n1/2(t − s)1/2 + n3/2(t − s)3/2 + 1

)
.(4.25)
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PROOF. To prove Proposition 4.2, start with

E
[(�Yn(t) − �Yn(s)

)6]
= ∑

m1,...,m6∈Z

E
[
Gm1Gm2 · · ·Gm6

]
(4.26)

=∑
m

E[G6
m] +
(

6
4

) ∑
m1 �=m2

E
[
G4

m1

]
E
[
G2

m2

]
+
(

6
3

) ∑
m1<m2

E
[
G3

m1

]
E
[
G3

m2

]
+
(

6
2 2 2

) ∑
m1<m2<m3

E
[
G2

m1

]
E
[
G2

m2

]
E
[
G2

m3

]

≤ C

{ ∑
m∈Z

E[G6
m] +
( ∑

m∈Z

EG4
m

)( ∑
m∈Z

EG2
m

)

+
( ∑

m∈Z

|EG3
m|
)2

+
( ∑

m∈Z

EG2
m

)3}
.

Above we collected termsE[Gm1Gm2 · · ·Gm6] according to how many times
distinct sites appear among the indicesm1, . . . ,m6. Independence andEGm = 0
eliminate all termsE[Gm1Gm2 · · ·Gm6] where an index appears by itself. This
point is actually critical for obtaining (4.25).

LEMMA 4.7. There exists a constant C such that for each positive integer
1≤ k ≤ 6 and for all m,

E[|Gm|k] ≤ C
(
P(Am,1) + P(Bm,1)

)
.

PROOF.

E[|Gm|k] ≤ E

[(ηn
0(m)∑
j=1

∣∣1Am,j
− 1Bm,j

∣∣+ ρn
0(m)|P(Am,1) − P(Bm,1)|

)k]

=
k∑

i=0

(
k

i

)
E

[(ηn
0(m)∑
j=1

∣∣1Am,j
− 1Bm,j

∣∣)i]

× ρn
0(m)k−i |P(Am,1) − P(Bm,1)|k−i .
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The terms withi < k are bounded byC(P (Am,1) + P(Bm,1)) as the conclusion
demands. For thei = k term we bound as follows: since|P(Am,j )−P(Bm,j )| ≤ 1,

E

[(ηn
0(m)∑
j=1

∣∣1Am,j
− 1Bm,j

∣∣)k]

=
∞∑

h=1

P {ηn
0(m) = h} · E

[(
h∑

j=1

∣∣1Am,j
− 1Bm,j

∣∣)k]

≤
∞∑

h=1

P {ηn
0(m) = h}hkE

[∣∣1Am,1 − 1Bm,1

∣∣]
≤ E[ηn

0(m)k](P(Am,1) + P(Bm,1)
)
. �

We can now bound all the sums on line (4.26) by∑
m∈Z

E|Gm|k ≤ C
∑
m∈Z

P(Am,1) + C
∑
m∈Z

P(Bm,1),(4.27)

so next we estimate the sums of probabilities on the right.

LEMMA 4.8. There is a finite constant C such that, for all 0≤ s ≤ t ,∑
m∈Z

E|Gm|k ≤ C
(√

n(t − s) + 1
)
.(4.28)

PROOF. Write X(·) for a representative random walk that starts at the origin.∑
m∈Z

P(Am,1) = ∑
m∈Z

P {Xn
m,1(ns) > [nȳ] + [nbs],Xn

m,1(nt) ≤ [nȳ] + [nbt]}

= ∑
m∈Z

P {X(ns) > [nbs] − m,X(nt) ≤ [nbt] − m}.

Apply the Markov property to turn the sum into∑
m∈Z

∑
�<m

P {X(ns) = [nbs] − �}P {X(n(t − s)
)≤ [nbt] − [nbs] + � − m

}
.

Rearranging simplifies the sum to∑
k<0

P
{
X
(
n(t − s)

)≤ [nbt] − [nbs] + k
}

≤∑
k<0

P
{
X
(
n(t − s)

)≤ [nb(t − s)] + k + 1
}

(4.29)
= E
[(

X
(
n(t − s)

)− [nb(t − s)] − 1
)
−
]

≤ C0
√

n(t − s) + C1.
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Above we first used[nbt] − [nbs] ≤ [nb(t − s)] + 1. Assumption (2.6) gives
uniform integrability to all moments ofu−1/2(X(u) − [bu]) asu → ∞. Due to
the −1 inside the expectation, we need the constantC1 in (4.29),C0

√
n(t − s)

alone will not do ast − s → 0.
We leave the corresponding calculation forP(Bm,1) to the reader, and consider

the lemma proved. �

We are ready to prove Proposition 4.2. Apply (4.28) to each sum in (4.26),
remove the squares with 2x2 ≤ x +x3, and letC change its value from line to line:

E
[(�Yn(t) − �Yn(s)

)6]≤ C
{√

n(t − s) + 1+ (√n(t − s) + 1
)3}

≤ C
{√

n(t − s) + n3/2(t − s)3/2 + 1
}
.

Proposition 4.2 is proved.�

4.3. Switch to discrete-time process. The processes whose weak convergence
is claimed in Theorem 2.2 aren−1/4Yn(t). As observed earlier, it is equivalent to
prove convergence for the centered processesn−1/4�Yn(t). The moment estimate
in (4.25) is not good enough for tightness, but we can get around this by a suitable
time discretization. The forthcoming Lemma 4.11 contains an estimate that gives
tightness for the time-discretized process we next define.

Fix two constantsα,β > 0 such that

5
4 + α < β < 3

2.(4.30)

Let

W̃n(t) = n−1/4�Yn(n
−β[nβt])

(4.31)
= n−1/4(Yn(n

−β[nβt]) − EYn(n
−β[nβt])).

In this section we show that it suffices to prove the weak convergence of process
W̃n by showing thatn−1/4Yn and W̃n come uniformly close on compact time
intervals.

PROPOSITION4.3. For any 0 < T < ∞ and ε > 0,

lim
n→∞P

{
sup

0≤t≤T

|n−1/4Yn(t) − W̃n(t)| ≥ ε

}
= 0.

PROOF. Because the expectationsn−1/4EYn(n
−β[nβt]) vanish uniformly over

0≤ t ≤ T by Lemma 4.6, it suffices to prove

lim
n→∞P

{
sup

0≤t≤T

|Yn(t) − Yn(n
−β[nβt])| ≥ n1/4ε

}
= 0.(4.32)
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To prove (4.32), we consider the ways in whichYn(t) can differ fromYn(n
−β[nβt])

some time during[0, T ]. First Lemma 4.9 shows that particles that start off at least
at distancen1/2+α from [nȳ] do not contribute toYn(·) during time interval[0, T ],
in then → ∞ limit.

LEMMA 4.9. Let

N1(T ) = ∑
m≤[nȳ]−n1/2+α

ηn
0(m)∑
j=1

1{Xn
m,j (nt) ≥ [nȳ] + [nbt] for some 0≤ t ≤ T }

(4.33)

+ ∑
m≥[nȳ]+n1/2+α

ηn
0(m)∑
j=1

1{Xn
m,j (nt) ≤ [nȳ] + [nbt] for some 0≤ t ≤ T }

be the number of particles that start at least at distance n1/2+α from [nȳ],
and reach the characteristic some time during [0, nT ]. Then for a fixed T ,
EN1(T ) → 0 as n → ∞.

PROOF. We handle the first sum in the definition ofN1(T ) and omit the
similar argument for the other sum. Fix a positive integerM large enough so that
1/2 − α(2M − 1) < 0. AgainX(·) denotes a random walk starting at the origin,
andC denotes a constant whose value may change from line to line. AsEηn

0(m) is
uniformly bounded [assumption (2.8)], and by an application of Doob’s inequality
to the martingaleX(t) − bt , the expectation of the first sum in (4.33) is bounded
by

C
∑

�≥n1/2+α

P

{
sup

0≤t≤T

(
X(nt) − nbt

)≥ � − 1
}

≤ C
∑

�≥n1/2+α

�−2ME
[(

X(nT ) − nbT
)2M
+
]

≤ C
∑

�≥n1/2+α

�−2MnM ≤ Cn1/2−α(2M−1).

The expectationE[(X(nT )−nbT )2M+ ] is O(nM), as suggested by the central limit
theorem, due to uniform integrability guaranteed by assumption (2.6).�

Let

N2 = ∑
m : |m−[nȳ]|≤n1/2+α

ηn
0(m)

be the number of particles initially within distancen1/2+α of [nȳ]. Fix a constant
c so that

lim
n→∞P {N2 ≥ cn1/2+α} = 0.
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The event in (4.32) is contained in the event⋃
0≤k≤[T nβ ]

{
sup

kn−β≤t≤(k+1)n−β

|Yn(t) − Yn(n
−βk)| ≥ n1/4ε

}
.

For a fixedk, the event in braces implies that at least one of these two scenarios
takes place:

(i) At least 1
2εn1/4 particles cross the discretized characteristics �→ [nȳ] + [bs]

during time intervals ∈ [n1−βk, n1−β(k + 1)] by jumping. (Note that the time
interval has been put in the microscopic time scale of the particles.) On the event
{N1(T ) = 0}, these particles must be among theN2 particles initially within
n1/2+α of [nȳ]. Consequently, conditioned on{N1(T ) = 0}, the probability of
this event is bounded by the probability thatN2 independent rate 1 random walks
altogether experience at least1

2εn1/4 jumps in a time interval of lengthn1−β .
(ii) At least 1

2εn1/4 particles cross the discretized characteristic during time
interval [n1−βk, n1−β(k + 1)] by staying put while the characteristic crosses the
location of these particles. For large enoughn, the distance between the endpoints
[nȳ] + [n1−βb(k + 1)] and [nȳ] + [n1−βbk] of the characteristic is at most 1.
Hence, at most 1 site moves from one side of the characteristic to the other during
this time interval, and so these12εn1/4 particles must sit on a unique sitexk at
timen1−βk.

Accounting for all the possibilities gives the bound below.�(cn3/2+α−β) is
a meancn3/2+α−β Poisson random variable and represents the total number of
jumps amongcn1/2+α independent particles during a time interval of lengthn1−β ,

P

{
sup

0≤t≤T

|Yn(t) − Yn(n
−β[nβt])| ≥ n1/4ε

}
≤ P {N1(T ) ≥ 1} + P {N2 ≥ cn1/2+α}(4.34)

+
[T nβ ]∑
k=0

(
P
{
�(cn3/2+α−β) ≥ 1

2n1/4ε
}+ P

{
ηn

kn1−β (xk) ≥ 1
2n1/4ε

})
.

The probabilitiesP {N1(T ) ≥ 1} and P {N2 ≥ cn1/2+α} vanish asn → ∞ by
Lemma 4.9 and choice ofc. �(cn3/2+α−β) is stochastically larger than a sum
of Mn = [cn3/2+α−β] i.i.d. mean 1 Poisson variables, and so a standard large
deviation estimate gives

P
{
�(cn3/2+α−β) ≥ 1

2n1/4ε
}≤ exp

{−MnI
(1

2M−1
n n1/4ε

)}
,

whereI is the Cramér rate function for the Poisson(1) distribution. By the choice
of α andβ, Mn ≥ nα , while M−1

n n1/4 → ∞. Consequently, there are constants
0< C0,C1 < ∞,

[T nβ ]∑
k=0

P
{
�(cn3/2+α−β) ≥ 1

2n1/4ε
}≤ C0n

β exp(−C1n
α) → 0.
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To treat the last term in (4.34), we derive a moment estimate for the occupation
variables uniformly over space and time.

LEMMA 4.10. Let k ∈ N and suppose initially supm∈Z E[η0(m)k] < ∞. Then

sup
m∈Z,t≥0

E[ηt (m)k] < ∞.

PROOF. Fix x ∈ Z andt > 0, and let

ζm =
η0(m)∑
j=1

1{Xm,j (t) = x}

be the number of particles initially atm who find themselves atx at timet . Then

E[ηt (x)k] = E

[( ∑
m∈Z

ζm

)k]

= ∑
m1,m2,...,mk∈Z

E
[
ζm1ζm2 · · · ζmk

]

=
k∑

b=1

∑
(m1,m2,...,mb)

∑
(k1,k2,...,kb)

(
k

k1k2 · · ·kb

)
E
[
ζ k1
m1

]
E
[
ζ k2
m2

] · · ·E[ζ kb
mb

]
.

On the last line above we arrange the sum over allk-tuples(m1, . . . ,mk) ∈ Zk

according to the numberb of distinct sites amongm1, . . . ,mk . The second sum on
the last line is overb-tuples(m1, . . . ,mb) of distinct sites fromZ. The third sum
is overb-tuples(k1, . . . , kb) of positive integers such thatk1 + · · · + kb = k, and( k
k1k2···kb

)
counts the number of waysk1 m1’s, k2 m2’s, and so on can be arranged

into ak-tuple. Sincem1, . . . ,mb are distinct,ζm1, . . . , ζmb
are independent.

Calculating as in the proof of Lemma 4.7 gives the bound

E[ζ k
m] ≤ E[η0(m)k]pt(m,x),

wherept(m,x) = pt(0, x −m) is the translation-invariant transition probability of
the underlying random walk of the particles. Substituting this back above gives the
upper bound

k∑
b=1

∑
(m1,m2,...,mb)

∑
(k1,k2,...,kb)

(
k

k1k2 · · ·kb

)
(4.35)

×
{

b∏
i=1

pt(0, x − mi)

}
·
{

b∏
i=1

E[η0(mi)
ki ]
}
.
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Hölder’s inequality, the moment assumption andk1 + · · · + kb = k give

b∏
i=1

E[η0(mi)
ki ] ≤

b∏
i=1

E[η0(mi)
k]ki/k ≤ C.

After this, sum the probabilitiespt(0, x − mi) over each indexmi in (4.35). This
leaves

k∑
b=1

∑
(k1,k2,...,kb)

(
k

k1k2 · · ·kb

)
,

which is a constant that depends onk. �

We turn to the last term of (4.34),

[T nβ ]∑
k=0

P
{
ηn

kn1−β (xk) ≥ 1
2n1/4ε

}≤ (T nβ + 1)26ε−6n−3/2 sup
x,t,n

E[ηn
t (x)6].

Since supx,t,n E[ηn
t (x)6] < ∞ by the moment hypothesis (2.8) and Lemma 4.10,

andβ − 3/2 < 0, the right-hand side vanishes asn → ∞.
We have shown that the right-hand side of the inequality in (4.34) vanishes as

n → ∞, and, thereby, proved Proposition 4.3.�

4.4. Weak convergence. We first verify tightness of the discrete-time pro-
cesses. Let

λ = (3− 2β)/(2β) ∈ (0, 1
5

)
.

LEMMA 4.11. Fix 0 < T < ∞. Then there exists a constant C such that for
all 0 ≤ t1 ≤ t ≤ t2 ≤ T and all n,

E[|W̃n(t) − W̃n(t1)|3|W̃n(t2) − W̃n(t)|3] ≤ C(t2 − t1)
1+λ.(4.36)

PROOF. If t2 − t1 < n−β , then necessarily either[nβt] = [nβt1] or [nβt2] =
[nβt]. In either case, the left-hand side of (4.36) vanishes and the inequality holds
trivially. So we may supposet2 − t1 ≥ n−β .

By the Schwarz inequality and 2xy ≤ x2 + y2,

E[|W̃n(t) − W̃n(t1)|3|W̃n(t2) − W̃n(t)|3]
≤ E[|W̃n(t) − W̃n(t1)|6]1/2E[|W̃n(t2) − W̃n(t)|6]1/2

≤ E[|W̃n(t) − W̃n(t1)|6] + E[|W̃n(t2) − W̃n(t)|6].
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Apply (4.25) multiplied byn−3/2 to both terms, ignoring the constantC in the
front, to get the upper bound

1

n

( [nβt] − [nβt1]
nβ

)1/2

+ 1

n

( [nβt2] − [nβt]
nβ

)1/2

(4.37)

+
( [nβt] − [nβt1]

nβ

)3/2

+
( [nβt2] − [nβt]

nβ

)3/2

+ 2n−3/2.

Sincet2 − t1 ≥ n−β ,

[nβt] − [nβt1]
nβ

≤ nβt − nβt1 + 1

nβ
= t − t1 + 1

nβ
≤ 2(t2 − t1),

and also

1

n
= (n−β)1/β ≤ (t2 − t1)

1/β,

so the first term in (4.37) is bounded by

1

n

( [nβt] − [nβt1]
nβ

)1/2

≤ 21/2(t2 − t1)
1/2+1/β ≤ 21/2T (β−1)/(2β)(t2 − t1)

1+λ.

Apply similar reasoning to the other terms. Note also that

(t2 − t1)
3/2 ≤ T 1/2−λ(t2 − t1)

1+λ

and

2n−3/2 = 2(n−β)1+λ ≤ 2(t2 − t1)
1+λ.

Collecting terms gives (4.36).�

Propositions 4.1 and 4.3 imply that the finite-dimensional distributions of the
process̃Wn converge to those ofZ defined in Theorem 2.2. This and Lemma 4.11
are the hypotheses needed for Theorem 15.6 in [3]. We conclude that the
processes̃Wn converge to the processZ on the spaceDR[0, T ]. Proposition 4.3
then implies that the processesn−1/4Yn converge toZ on the spaceDR[0, T ].
SinceT is arbitrary, the convergence holds onDR[0,∞). This completes the proof
of Theorem 2.2. Instead of Theorem 15.6 in [3], one can use Theorem 8.8 on
page 139 of [6].

4.5. Proof of Theorem 2.3. LetN1(ȳ, T ) denote the random variable defined
by (4.33) to display its dependence onȳ. On the event

{N1(ȳ1, T ) = N1(ȳ2, T ) = · · · = N1(ȳk, T ) = 0},(4.38)

the processesYn(ȳ1, ·), Yn(ȳ2, ·), . . . , Yn(ȳk, ·), restricted to[0, T ], depend on
disjoint collections of independent random walks ifn is large enough. The
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probability of (4.38) converges to 1 asn → ∞ by Lemma 4.9. Consequently,
the restrictions to[0, T ] of the processesYn(ȳi , ·) become independent in the limit.
To prove the tightness of the joint processn−1/4(Yn(ȳ1, ·), Yn(ȳ2, ·), . . . , Yn(ȳk, ·))
on the spaceDRk [0,∞), apply Theorem 8.8 from page 139 of [6] to the discrete-
time process(W̃n(ȳ1, ·), W̃n(ȳ2, ·), . . . , W̃n(ȳk, ·)), each component defined as
in (4.31). The proof of Lemma 4.11 can be adapted to the multivariate case. We
omit the details, and consider Theorem 2.3 proved.

4.6. Proof of Theorem 2.1. Limit (2.16) follows from (2.19) and Theorem 2.2.
Subsequently, the hydrodynamic limit (2.15) follows from limit (2.16) and
assumption (2.7).

To prove (2.17), we take a two-sided Brownian motionB(·), and create a bi-
infinite sequence of random times

· · · ≤ Tn,−2 ≤ Tn,−1 ≤ 0= Tn,0 ≤ Tn,1 ≤ Tn,2 ≤ · · ·
such that

σn
0 (x) =

x∑
m=1

ρ0

(
m

n

)
+ √

nB(n−1Tn,x)(4.39)

can be taken as the initial condition. (Ifx < 0, the sum actually ranges over
x + 1 ≤ m ≤ 0.) To achieve this, apply the usual Skorokhod embedding (see,
e.g., Section 7.6 in [5]) to the independent mean-zero random variables{ηn

0(x) −
ρ0(

x
n
) :x ∈ Z} and the two-sided Brownian motionBn(s) ≡ n1/2B( s

n
). Embed

{ηn
0(x) − ρn

0(x) :x > 0} in the positive half ofBn, the remaining random variables
in the negative half ofBn. Then the increments{Tn,x − Tn,x−1 :x ∈ Z} are
independent with means

E(Tn,x − Tn,x−1) = Var[ηn
0(x)] = v0

(
x

n

)
,(4.40)

and we have the equality in distribution of processes

{Bn(Tn,x) − Bn(Tn,x−1) :x ∈ Z} d=
{
ηn

0(x) − ρ0

(
x

n

)
:x ∈ Z

}
.

Note that we have been using (2.11) which is assumed for this part of Theorem 2.1.
Now it is clear thatσn

0 , defined by (4.39), has the right distribution to serve as the
initial height function.

Next we observe the central limit theorem forσn
0 . From (4.39), fory ∈ R,

σn
0 ([ny]) − nu0(y)√

n
= B
(
n−1Tn,[ny]

)
(4.41)

+ √
n

∫ y

0

(
ρ0

( [ns]
n

)
− ρ0(s)

)
ds + O(n−1/2).
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One can show that

lim
n→∞n−1Tn,[ny] =

∫ y

0
v0(s) ds in probability.

This follows from Chebyshev’s inequality and the moment bound

E[(Tn,m − Tn,m−1)
2] ≤ CE

[(
ηn

0(m) − Eηn
0(m)
)4]≤ C1.

As n → ∞, the integral term in (4.41) vanishes by the Hölder property (2.10)
of ρ0. Consequently,

σn
0 ([ny]) − nu0(y)√

n
→ B

(∫ y

0
v0(s) ds

)
in probability. Finally, (2.17) follows from this and (2.16).

5. Proof for Hammersley’s process. The proof of Theorem 3.2 is based on
the approach and estimates derived in [18]. To save space, we refer to that paper
for all the groundwork.

We construct the initial configuration by Skorohod’s representation, so that

zn
0(i) = nu0(i/n) + n1/2B(n−1Tn,i),

where for each fixedn, {Tn,i : i ∈ Z} are the hitting times of appropriate random
intervals independent of the two-sided Brownian motionB(·). Section 8 in [18]
discusses this construction. For(x, t) ∈ R × [0,∞), set

ζ n
t (x) = n−1/2{zn

nt ([nx]) − nu(x, t)}.
In particular, in terms of the Brownian motion att = 0,

ζ n
0 (y) = B

(
n−1Tn,[ny]

)+ n1/2(u0([ny]/n) − u0(y)
)
.(5.1)

Hammersley’s process has a special graphical construction in terms of increas-
ing sequences among rate 1 Poisson points on the space-time plane. This represen-
tation goes back to [9] and [1]. It can be expressed as follows:

zn
t (k) = inf

i : i≤k
{zn

0(i) + �
n,i
t (k − i)},(5.2)

where �
n,i
t (m) is the minimal positiveh such that the space-time rectangle

(zn
0(i), z

n
0(i) + h] × (0, t] contains at leastm Poisson points on an increasing

path. This appears as equation (45) in [18]. But observe that compared to [18],
in the present paper time arguments have become subscripts and space indices
have become arguments in parentheses.
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5.1. Upper bound. Following Section 6.1.4 on page 172 in [18] givesYn ≤
Rn,3 + C0 whereC0 is a constant and

Rn,3 = sup
y∈I (x,t)

{
�

n,[ny]
nt ([nx] − [ny]) − ([nx] − [ny])2

4nt

}
.

By Lemmas 4.4 and 4.5 in [18],P(Rn,3 ≥ Cn1/3 logn) → 0 if C is fixed large
enough.

5.2. Lower bound. Let ε > 0. We shall show that for some constant
0< C < ∞, Yn ≥ −Cn1/3 logn with probability at least 1− ε for largen.

Let in be the minimal microscopic minimizer forzn
nt ([nx]) defined by (59)

in [18]. By Lemma 5.3 in [18], dist(n−1in, I (x, t)) → 0 in probability. Letδ > 0
be as in Assumption E. Then for large enoughn, there exists a randomyn ∈ I (x, t)

such that

P {|n−1in − yn| < δ} ≥ 1− ε/4.(5.3)

Assume now we are on the event in braces in (5.3). Let[a1, a2] be a compact
interval that contains theδ-neighborhood ofI (x, t). Following the calculation in
Section 6.1.2 on page 170 in [18] gives

Yn ≥
{
�

n,in
nt ([nx] − in) − (nx − in)

2

4nt

}
+ n1/2{ζ n

0 (n−1in) − ζ n
0 (yn)}

+ n{�(n−1in) − �(yn)}
≥ Rn,1 + n1/2{ζ n

0 (n−1in) − ζ n
0 (yn)} + c1n

−1(in − nyn)
2.

We used the definition

Rn,1 = min
{
�

n,i
nt ([nx] − i) − (nx − i)2

4nt
:na1 ≤ i ≤ na2

}
,

and applied assumption (3.6). By Lemma 4.3 in [18], for large enoughn,

P {Rn,1 ≥ −Cn1/3 logn} ≥ 1− ε/8(5.4)

if C is fixed large enough. Of the lower bound ofYn given above, it remains to
handle this part:

n1/2{ζ n
0 (n−1in) − ζ n

0 (yn)} + c1n
−1(in − nyn)

2

(5.5)
≥ n1/2{B(n−1Tn,in

)− B
(
n−1Tn,[nyn]

)}+ c1n
−1(in − nyn)

2 − c2.

The last constant−c2 accounts for the last terms in (5.1), actually of ordern−1/2.
Let [b1, b2] be an interval such that

∫ y
0 v0(s) ds ∈ [b1 + 1, b2 − 1] for all

y ∈ [a1, a2]. Let

w(u) = sup{|B(s) − B(r)| : s, r ∈ [b1, b2], |s − r| ≤ u}
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be the modulus of continuity of Brownian motion on the interval[b1, b2] of length
A = b2 − b1. By Lévy’s theorem,

lim sup
u→0

(
2u log(A/u)

)−1/2
w(u) = 1 a.s.

Chooseδ0 ∈ (0,1/2) so that

P
{
w(u) ≤ 2

(
u log(A/u)

)1/2 for all u ≤ δ0
}≥ 1− ε/16.(5.6)

The following law of large numbers holds: for all large enoughn,

P

{
sup

y∈[a1,a2]

∣∣∣∣n−1Tn,[ny] −
∫ y

0
v0(s) ds

∣∣∣∣≤ δ0

}
≥ 1− ε/32.(5.7)

This can be proved as Lemma 8.1 in [18] is proved. The fourth moment assumption
enters here, because the hitting times satisfy

E[(Tn,i − Tn,i−1)
2] ≤ CE[ηn

0(i)4].
On the event (5.3), bothyn andn−1in lie in [a1, a2]. Then on the event in (5.7),

both n−1Tn,in andn−1Tn,[nyn] lie in [b1, b2] and so fall within the range of the
event in (5.6).

Thus, on the intersection of the events in (5.3), (5.6) and (5.7), the right-hand
side of the inequality in (5.5) is bounded below by

−2
∣∣Tn,in − Tn,[nyn]

∣∣1/2
(logAn)1/2 + c1n

−1(in − nyn)
2 − c3.(5.8)

The new constant−c3 includes the earlier constant−c2 from (5.5) and the case
where ∣∣Tn,in − Tn,[nyn]

∣∣< 1,

as otherwise this factor should be in the denominator inside the logarithm. But
sinceu log(A/u) → 0 asu → 0, the case of small|Tn,in −Tn,[nyn]| can be bounded
by a single constant.

The probabilities of the complements of the events in (5.3), (5.4), (5.6) and (5.7)
add up to less thanε/2. On the intersection of these events,Yn is bounded below by
−Cn1/3 logn, plus the expression in (5.8). It remains to show that, with probability
at least 1− ε/2, the expression in (5.8) is bounded below by−Cn1/3 logn for yet
another constantC.

We begin with a simple general fact. Suppose{Xi} are nonnegative, independent
random variables with bounded means and variances. Let 0< a,b < ∞, and
C ≥ 1+ EXi andC1 ≥ VarXi for all i. Then,

P

{
sup

1≤�≤an,n2/3≤k≤bn

�+k−1∑
i=�

Xi ≥ 3Ck

}
≤ C1(a + b)n−1/3.(5.9)
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To prove this, note first that the event in braces implies that∑
mn2/3≤i<(m+1)n2/3

Xi ≥ Cn2/3 for some 1≤ m ≤ (a + b)n1/3.

Then by Chebyshev’s inequality,

P

{
sup

1≤m≤(a+b)n1/3

∑
mn2/3≤i<(m+1)n2/3

Xi ≥ Cn2/3

}

≤ P

{
sup

1≤m≤(a+b)n1/3

∑
mn2/3≤i<(m+1)n2/3

(Xi − EXi) ≥ n2/3

}

≤ (a + b)n1/3C1n
2/3

n4/3 .

Applying (5.9) to|Tn,in − Tn,[nyn]| (these differences are sums of independent,
nonnegative increments), we conclude that on the event (5.3), for large enoughn

with probability at least 1− ε/2,∣∣Tn,in − Tn,[nyn]
∣∣≤ C(|in − nyn| ∨ n2/3).

From this, the expression in (5.8) is bounded below by

−2C(|in − nyn|1/2 ∨ n1/3)(logAn)1/2 + c1n
−1(in − nyn)

2 − c3.(5.10)

This last expression is no less than−Cn1/3(logn)2/3 for a suitable (new) constant
0< C < ∞. This a lower bound forYn with probability at least 1− ε.
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