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AGGREGATION RATES IN ONE-DIMENSIONAL STOCHASTIC
SYSTEMS WITH ADHESION AND GRAVITATION
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St. Petersburg State Universityniversité Lille | and Université Paris VI

We consider one-dimensional systems of self-gravitating sticky particles
with random initial data and describe the process of aggregation in terms of
the largest cluster siz&,, at any fixed time prior to the critical time. The
asymptotic behavior of.;, is also analyzed for sequences of times tending
to the critical time. A phenomenon of phase transition shows up, namely, for
small initial particle speeds (“cold” gas), has logarithmic order of growth
while higher speeds (“warm” gas) yield polynomial rates£gr.

1. Introduction. We consider a system af particles living in one-dimen-
sional space. At initial moment, every patrticle is characterized by its mass, initial
position and initial speed. There exists a pairwise gravitation between the particles.
Between the moments of shocks, particles move in this gravitation field according
to usual rules of Newtonian mechanics. The shock between two (or more) particles
results in the birth of a new patrticle (“cluster”) whose characteristics are defined
by the laws of conservation of mass and momentum (while the energy is dissipated
at these nonelastic collisions).

The clusters gradually become larger and larger while the number of clusters
diminishes—until the unique cluster, containing the totality of mass, remains on
the line. This collapse vaguely models emergence of a “star” from dispersed “dust.”
Indeed, the roots of the model are in astrophysics (see [14, 18]), but the reason of
actual interest in similar particle systems is due to their relation with solutions of
nonlinear PDEs such as the Burgers equation (see [1, 3, 4, 7] and the references
therein).

The aim of the present work is to describe essential features of the aggregation
process provided that initial data aesxdomand that the number of initial particles
tends to infinity. Assuming that at the beginning there exigtarticles, we try
to understand the behavior &f, ()—the largest number of particles that form a
common cluster at time. Therefore,L, (t) increases, as time goes by, from 1 at
the beginning ta: at the collapse time.

We will extend the quantitative results obtained in recent works [2, 7, 10,
16, 17]. It is known from these works that, under reasonable assumptions, there
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exists ecritical time 7* such that lim) _, o L"T(t) = 0 in probability for every < T*

and lim,_ o L”T(’) =1 in probability for everyr > T*. In other words, the time
when essential collapse occurs, is, in fact, deterministic. “Essential” means that
after critical time one can still observe a number of small peripheral clusters, but
the main core has already been formed and it contains the overwhelming part of
the total mass.

Our results show that the aggregation process behaves rather differently in the
cases of “large” and “small” initial speeds. In the literature the most frequently
used model is that of i.i.d. initial speeds. For this case, which is naturally
interpreted as “warm” system (see, e.g., [10, 17]), we essentially show that for
anyt < T*,

L, () ~ c(t)n®3(logn)/3.

On the other hand, whenever initial speed is small or vanishes, which is natural to
interpret as “cold” system (see [7]), one has

L, (t) ~ c(t)logn.

Our results, in fact, cover the whole range of possible behaviors containing the two
aforementioned special cases.

In any case, one can observe from these formulaelthat « n, that is, the
aggregation process is rather slow and that genuinely macroscopic clusters appear
only shortly before the critical time. Therefore, it is interesting to describe the
behavior ofL, (¢,) for t, — T*. This is done for cold systems in Theorem 3.4.

We give a rigorous description of the model in Section 2 and state our results
in Section 3. Section 4 provides the necessary information on conservation
laws which control the behavior of the systems. Finally, Section 5 contains the
collection of proofs. There is an amazing contrast between the elementary nature
of the results and the rather advanced techniques one needs to obtain them.

2. Systemsof sticky particles.

2.1. Dynamics of deterministic systemdaVe consider the following one-
dimensional system (gas) of particles with gravitation. At the starting moment
t = 0, our gas consists of particles, positioned on the real line at points with
coordinatesx1(0), ..., x,(0). Particles are always enumerated so thgl) <
.-+ < x,(0). Each patrticle is characterized by its magssand its initial speed; (0).

The particles move under the action of forces of pairwise mutual gravitation. The
gravitation force acting on a particle of masspositioned atc, from a particle of
massu positioned aty, is

(2.2) F =ymusign(y — x).
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Here,y > 0 is a positivegravitation constantNote that there is no dependence of
the gravitation force on the distance between the particles. This feature is typical
for one-dimensional gravitation models.

Between collisions particles obey the Newton’'s second I&W:(m@).

The total gravitation force acting on a particle is obviously proportional to the
difference of the masses on its right and on its left.

On collision particles stick together, following the conservation laws of mass
and momentum. In other words, two particles with characterigticsv) and
(u, w) produce one particle with mas$ = m + 1 and speed = (mv + pw)/M.

This is a completely nonelastic collision, kinetic energy is dissipated. The particles
which are born upon collisions are calleldisters

We assume that the initial particles do not die at collisions but continue their
movement as parts of the created clusters. Therefore, the position, the speed and
the acceleration of a particle are understood as those of the cluster containing this
particle. We denote them by (r), v; (r) := x/(r) andx/ (), respectively, for each
t > 0. The destiny of each particle is therefore defined during the life time of the
system. The speed and the acceleration have jumps at the times of collisions of the
particle or of the cluster which contains it (actually, the acceleration alsé-bas
collision times).

Throughout the paper, we cglrticlesonly the initial particles, andlustersthe
products of collisions as well as the initial particles. Thus, at any time, the system
consists of a number of clusters, each cluster being a set of one or more particles.

Whenv; (0) = 0 (zero initial speed), the system is referred to asld gas If a
gas is not cold, we call it warm gas

2.2. Similarity of systems.Let positive numbers (similarity coefficients)
Cx, Cv, Cm, ¢; @Ndc,, satisfy the conditions
Cx Cy

1: =

CyCy CmCyC[

Consider two systems of particles. The first system has initial dgtd),
v;(0),m;) and gravitation coefficienty, while the second has initial data
(cxx;(0), cyv; (0), c,ym;) and gravitation coefficient, . These two systems are
similar at any timer > 0, that is, the first system at tintrehas at positiont a
cluster of mass: moving with the speed if and only if the second system at time
¢t has at positior, x a cluster of mass,,m moving with the speed,v.

2.3. Stochastic systems of particled.et us introduce a stochastic version of
the problem by considering initial parameters of the particles as random variables,
while the interaction rules and the dynamics remain deterministic and follow the
rules described above. Moreover, we consider the asymptotic situation, in which
the numbern of particles tends to infinity, while other parameters vary in a
reasonably consistent way.
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2.3.1. Masses. We assume that the masses of the particles are deterministic
and equal ton~1 each, where > 0 is a fixed constant. This leads, at the limit,
to a model with a given density of the matier We call thesizeof a cluster the
number of particles in it.

2.3.2. Initial speeds. We assume that the initial speeds of the particles have the
form v; (0) = o,u;, 1 <i <n, where(u;) is a collection of i.i.d. random variables
with zero mean and unit variance. Zero mean is assumed only for convenience
of notation. It is easy to see that adding the same constant to all initial speeds
affects neither the times of collisions nor the sizes of the created clusters. The only
consequence is an additional uniform drift of the whole system.

In the literature, the scaling parametgris usually assumed to be independent
of n. Then the caser,, = 0 corresponds to a cold gas, whitg, = o > 0
corresponds to a warm gas. We prefer to handle the setting with vasigldence
we are interested in identifying the border separating the models whose properties
are close to those of cold and warm gas, respectively.

2.3.3. Initial positions. Three meaningful different models are distinguished
here, though they often lead to the same asymptotic results.

The lattice deterministic modedssumes that the particles are initially located
on the latticex; (0) =i/n, 1<i <n.

ThePoisson modedssumes that the particles are initially located on the positive
half-line at the first: points of a Poisson point process with intensityin other
words, they are located at the times of first jumps of a Poisson process of the
just mentioned intensity (the space where the particles live is interpreted here as a
time parameter of the process). By the well-known property of Poisson processes,
the differences; (0) — x;_1(0) [notation:xg(0) := 0], 1 <i < n, are independent
exponential random variables with meant.

Thei.i.d.-modelassumes that the particles are initially located at the points cor-
responding to a sample afindependent random variables uniformly distributed
on the interval[0, 1]. Since the particles are indexed by the order of initial posi-
tions, the initial location of theth particle corresponds to thiéh order statistics
of the uniform sample.

2.3.4. Relation between the Poisson and the i.i.d.-model$ie Poisson model
is more convenient for investigation due to the (aforementioned) property of
independence of distances between the particles at time zero. The following
passage from the Poisson model to the i.i.d.-model is useful; it is well known and
stated here without proof.

FAcT 2.1. Fixk > 1, and letXy, ..., X, X;11 be the times of fiNrsk jumps
of a Poisson process of constant intensity. Then the random variﬁbkes)%,

1 <i <k, have the same joint distribution as the order statistics of a samjle of
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i.i.d. random variables uniformly distributed on the interf@l1]. Moreover, the
random vectof Xy, ..., Xz) and the random variablg;; are independent.

Note that the intensity of the Poisson process does not play any role. In the
sequel we use a standard Poisson process (of unit intensity), as well as a Poisson
process of intensity.

3. Main results on aggregation rates. In this section we investigate the
asymptotic behavior of.,,(¢), the largest cluster size at timén the system of:
initial particles. Since the cluster size coincides with the number of initial particles
in it, we always have k¥ L, () <n.

The collapse timeT (n) is the first time when all the particles belong to a
common cluster, that is, when the total collapse of the particle system occurs.

Let us introduce theritical time of the systerdefined by

(3.1) T* = (yp) /2.

3.1. Aggregations in a cold gas.First we recall a known result (see, e.qg., [7])
on the collapse time, which motivates the definition (3.1).

Fact 3.1. In a cold gas, for any of the three models (lattice, Poisson or
i.i.d.) of initial positions, the random variab¥&(n) converges in probability (when
n — o0) to the deterministic constaft*.

Therefore, the behavior of the largest cluster size after the critical time is trivial:

COROLLARY 3.2. In a cold gasfor any of the three model#attice, Poisson
ori.i.d), forany: > T*, we havdim,,_, .o P{L, (¢) =n} = 1.

We consider nowL,, (¢) fort < T*, thatis, we are interested in the largest cluster
size at a fixed time prior to the critical time.

The case of lattice initial positions is particularly instructive. For a cold gas we
deal here with a purely deterministic model. All the particles move to the point of
general meeting without any collision. More precisely, the pariicteoves along
the trajectory

2

i yps .
xi(s)=;+ o (n—2i +1),
with constant acceleration. We see that at tifffeall the particles simultaneously

meet at the barycenter point= ”Z—J;l The absence of collisions prior to the global

meeting follows, for example, from the formula

1- ,os2
xi(s) — xi_a(s) = — 2%

However, in other models of initial positions, the situation is not so trivial.
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THEOREM 3.3. In a cold gas for both Poisson and.d.-models for any
t < T*, we have

. Ln(l) . a2\ —1 . .
(3.2) nll_)moo ogn I((t/T*)%) in probability,
where
8.3) I(r):=r—1-—logr, r>0.

The logarithmic order, already established in [7], indicates a very slow growth
of clusters in a cold gas. Our contribution is to prove the existence of the limit and
to determine its exact value.

The function/(-) in (3.3) is the rate function in the large deviations for the
exponential law.

We set aside the delicate question of studying the behavidr,oT*), and
consider the maximal cluster size in a cold gas at times shortly prior to the critical
instant7*.

THEOREM 3.4. In a cold gas for both Poisson and.d.-models for any
sequenceét,) C [0, T*] which satisfies assumptions
(3.4) lim t,=T* and lim n(T* —1,)% = oo,
n— oo n— oo
we have

Ly(ta)(T* —1,)%  (T*)?
n—o0 log(n(T* —1,)2) 2

in probability.

Assumption (3.4) is quite natural, since it is shown in [7] for total collapse
time 7 (n) thatT* — T'(n) has order—Y/2. The assertion of our theorem obviously
becomes false whefm,) approached* faster than what is admitted in (3.4).

3.2. Aggregations in a warm gas.Consider now a warm gas, that is, a system
of particles with nonzero initial speeds(0) = o,,u;, where the speed scale,) is
a sequence of nonnegative numbers anglis a family of i.i.d. random variables
with E(u;) = 0 andE(u?) = 1.

The aggregation in a warm gas has been extensively studied in [2, 10, 16, 17].
The critical timeT* is still defined by (3.1), but its interpretation becomes slightly
different. It is not interpreted any more as a limit value of collapse times, but as
a time after which there exists a single cluster of huge mass and, possibly, a dust
of small clusters whose total mass is negligible. In other words, analogously to
Corollary 3.2, for any > T*, we have lim_ LT(” =1 in probability.

The aggregation in a warm gas at critical tiffie is remarkably studied in [17]

(for lattice model witho,, = 1). Therefore, it remains to evalualg, () at times
t < T* (cf. Theorem 3.2.1in [17]).
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Before stating the result, let us explain a natural but somewhat nonstandard
notation of superior and inferior limits in probability which will be frequently used

in the sequel. Let, be a sequence of random variables ardR. Then
”,[E)ig'of &, >c in probability
means that for al# > 0,
nli_)moo PE, <c—¢)=0.
Similarly,

limsupé, <c in probability

n—>oo

means that for al§ > 0,

nli_)moo P&, >c+¢e)=0.

THEOREM3.5. Assume that

. o .
(3.5) im ——— =00 and Ilm —= =
n—oo n~llogn n—o0 p1/2

0,

and thatu; has a finite exponential momeRBtexp{a|u;|} < oo for somea > 0.
Then for any of the three modelgattice, Poisson or ii.d.), for anyt < T*, we
have

Ln(1)

(3.6) Ilnrglgof (o2 log(njo2)) /3 > c1(t) in probability,
. L,(t) . -
(3.7) limsup <ca(1) in probability,

n—>o0 (no,)2/3(log(no’>))1/3
where

t

2/3
m) . can) = (20/3)Y3¢1(0).

(3.8) c1(t) == 2(

In the basic case, = 1, we get the estimatg, (r) ~ n%3 (logn)/3.

For relatively largeo, (high temperature gas), a critical order turns out to
be 0, ~ n'/2. When approaching this order, the main term in the asymptotic
expression forL, () has ordem, while the logarithmic terms of our upper and
lower bounds are not of the same order anymore. This would indicate a kind of
phase transition. The critical time for such a hot gas should not follow the formula

T* = (yp)~Y2, but tend to infinity.

It is interesting to understand what happens if we replace the assumption

Eexplalu;|} < oo by the weaker condition
(3.9) E[|u;|P] < oo.
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Then a small number of particles with high initial speeds can substantially perturb
the behavior of_, (). However, the following result says thatfis large enough,
then Theorem 3.5 still holds true, but in narrower zones of speed ranges.

PROPOSITION3.6. Assume that3.5)and(3.9) hold. Lete > 0.

(a) Whenevep > 2 ando, > en®=P)/P we have(3.6).
(b) Whenevep > 6 ando, > en/~P/(7=% 'we havg3.7).

It is worthwhile to compare Proposition 3.6 with estimates in [17]. In our
notation, Theorem 3.2.1 in [17] yields, () < n", Vh > 2(2—:2), for o, =1
and p > 4, while Proposition 3.6 provides a better bouhg(s) < constx
n?/3(logn)1/3. These bounds become closer wher> co.

On the opposite side of the scale, for snaallwe call it a low temperature gas),
namely, foro,, <« n~tlogn, itis easy to establish the same behavior as for the cold
gas, that is, (3.2) is true.

Moreover, if weformally apply Theorem 3.5 to critically smadt, = constx
n~tlogn, we also getL, (1) ~ logn just as in Theorem 3.3. More rigorously, we
have the following analogue of Theorem 3.5.

THEOREM3.7. Assume that

(3.10) lim —2"  —¢e(0,00),

n—oo n~1logn

and thatEexp{a|u;|} < oo for somea > 0. Then for any of the three models
(lattice, Poisson orii.d.), for eacht < T*,

Lyt . _ -
IL@O%f logn > C1(1) in probability,
lim supfo” @) <é(t)  in probability,
n—o0 n

where0 < ¢1(¢) < ¢2(t) < oo are constants

4. Barycenter technique. In this section we describe and extend a barycenter
technique for the study of particle systems. This technique has been already used,
for example, in [2, 6, 7, 10, 17].

We identify the particles with their numbers, and cablack of particlesany
set of particles which have consecutive numbers. We denote such a block by
J = (i,i + k]; this block contains the particles numbered from1 toi + k.

The numbelk is called thesizeof the block. It is worthwhile to mention that
at any timer > 0, some particles in the block may belong to a cluster containing
particles that are not in the block.
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We say that a block ifree from the rightup to time: if none of its particles
has collided up to time with any of the particles initially located to the right of
the block. A blockfree from the lefts defined similarly. Finally, a block iseeup
to timer if it is free both from the left and from the right. We note that collisions
inside a free block are possible.

Let M, := " ;c;m;. Define thebarycenterof the block J by x;(7) :=
MY jeymix (@)

Define

(4.1) T5(5) =370 + 305 + 2y (M — MiP)s2,

WhereMﬁR) and M§L) denote the total masses of the particles to the right and to
the left of J, respectively. Note that — X7 (s) represents the trajectory of the
barycenter of the blocl without taking into account the collisions with external
particles and is completely expressed in terms of initial data of the particles in the
block J.

The following observation contains a basic idea in the study of such particle
systems:

“The barycenter of a free block moves with constant acceleration, as if it were
a single particle with mass equal to the total mass of the particles in the block.”

More precisely, we have the following.

PROPOSITION4.1. Leta block/ be free from the right up to time Then
(4.2) Xj(s) = x5 (s), s €[0,1].
Similarly, if a block J is free from the left up to timeg then
(4.3) Xy(s) < X5 (s), s € [0, 7].

The proof of Proposition 4.1 is straightforward, and is omitted. An immediate
consequence is the following

COROLLARY 4.2. LetablockJ be free up to time. Then

xy(s) =x5(s), O<s<rt.

We call thecollapse timetﬁ' of a blockthe first time when all the particles of
the blockJ are in a common cluster. It is possible to expr&yia the random
variables of typec; A C {1,2,..., n}. Toward this aim, let us introduce for every
particle j, the first timer¢' when it collides with the neighboring particet 1. It
is clear that for/ = (i, i + k], we have

cl cl
(4.4) ty = maxt;,,.
O<r<k
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Onthe other hand, let us consider for each triplet j < 8, the quadratic function

Qurj.p(5) 1= Xy, j1(8) = X(j g1 (5)-
We know that

Q4,50 <x;(0) —x;4+1(0) <O0.

Moreover, the main coefficient of the quadratic function is positive since by (4.1)
it is equal to

(R) _ ar(R) (L) D) y]
> SLO1GD = M) + My = MG )] =¥ M > 0.

Therefore, there exists a uniqu§j g> 0 such that

Qozjﬂ( jﬁ)—

From the mechanical point of view, w. ). is the time when the trajectories of
barycenters of blocksx, j1 and (j, 8] meet, as long as we do not take shocks
into account. The value; . ./ has an explicit expression via the coefficients of the
polynomial Q; ; g, in terms of initial positions, speeds and masses of the particles.
It is worth noticing that for any > 0,

(4.5) tzr;jﬁ & Qg p)=0.

It turns out that the following is true.

PROPOSITION4.3. Forany; < n, we have

4.6 = min ...
( ) J a<j, B>j Ta,],ﬂ

PROOF At any times < t;?', the particlesj and j + 1 belong to different
clusters, so that any block of the for, j] is free from the right and any block
of the form(}, B] is free from the left. By Proposition 4.1,

X 108) < X, j1(8) S xj(5) < xj41(5) < X(j,p1(s) < X5 41 (5)-

Therefore,Qq, j,5(s) < 0. It follows thatt;?' < oo and by continuity ofQ, we have

Qa,j,,g(tjc.') <0. Hence,r;"j,ﬂ > l}:l. Sincea < j andg > j are arbitrary, we have
S <ming_j g Th g

To prove the inequality in the other direction, we note that by definiiziﬁn’s
the collision time between particlesand j + 1, so that there exist < j and

B > j such that the blockéx, j] and(j, 8] are free up to time;?' (and collide at
time¢%'). By Corollary 4.2,

o 1) = R (05) = %11 (1) = X 4y (1)
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Hence tf' =

It follows that tf' > MiNy<j, p>j Tp j g- ThE proposition is
proved. O

ajﬁ

When estimating the collapse time of a block, it is sometimes more convenient
to deal with simpler expressions. For example, it is a consequence of (4.4) and
(4.6) that forJ := (i, i + k],

(4.7) §'< maxtl.; Va<i, VB>i+k

O<r<k
In particular, takingr =i andg =i + k gives

cl
(4.8) tj < max 7 itk

O<r<k

Note that the expression on the right-hand side depends only on the initial data of
the particles in the block itself.
There is a situation when (4.8) is sharp.

PrRoOPOSITION4.4. IfablockJ = (i,i + k] is free up to its collapse timé]',
then

cl
(4.9) tJ - OTaX Tl i+ri+k:

PrROOF ltis sufficient to prove the inequality opposite to (4.8). Take arbitrary
integerr € [1, k) and consider the blocks, i +r] and(i +r, i +k]. We know that,
upto timet?', the first block is free from the left, while the second is free from the
right. Therefore, by Proposition 4.1,

X, l+r](t1) > X(i, z+r](tJ) = X(i+r, t+k](fJ) > X, H—k](tJI)

Hence, Q;. H_”_,_k(tj) > 0, so that by (4. 5);CI >1* ik Sincer € [1,k) is

arbitrary, this yleIdSJ > MaX0<r <k Ty ivk U

5. Proofs.

5.1. Proof of Theoren8.3. In Theorem 3.3, we work with the cold gas, that
is, there is no initial speed. Thus,

2

. n vz _ 1/2
(5.1) Ta,jp = (m) (*¢j,51(0) — X(a,1(0))

We will first provide a lower bound foL,(¢) for the Poisson model, that is, if
the initial positions(x; (0), 1 <i < n) of the particles are the firat jump times,
denoted byX1 < --- < X,,, of a Poisson process of intensityRecall that

(5.2) L (t)_max{k rTlu‘n tlft}.
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Letk < n. Consider the block$, := (¢k, (£ +1)k],0< £ < % —1. It follows from
(5.2) that

(5.3) P(Ln (1) <k) < ]P’(mlnzj' > t)

For a generic block = (i, i + k], we have, by (5.1),

b(J):= maxt* ..
( ) O<r<k Litritk

20 \1/2 1 i+k itr 1/2
:<__) kKi X:LX—X)——E:@T—Xﬁ .

vpk ] i+r+1 Jj=i+1

(5.4)

Taking J = J; = (¢k, (€ + 1)k], and in view of (4.8), we have
(+Dk

n 1/2
9 <bU)=(—) max > (Xj—Xu)
Jl )/pk O<r<k| k —r /

j=Lk+r+1

(5.5)
1 €k+r

1/2
- = Z (Xj_XZk)] ,

" j=tk+1
with the notationX := 0. Note that the random variablg&/,), for0 < ¢ < % -1,
are independent and identically distributed. Therefore, in light of (5.3), we obtain

(5.6) P(Ln (1) <k) < IP’(mZinb(Jg) > t)

= (L—P(b(Jo) <1))" < exp{—vP(b(Jo) < 1)},
wherev := | 7] denotes the number of blocks. According to (5.4),
P(b(lo)ft):IP’< Tra;)i(k% 3 X ——Zx ) <%)kt )
j=r+1
At this stage, it is useful to recall from Fact 2.1 that
(5.7) X; =)?ij+1.

Since()?l, ce, )?k) andX; .1 are independent, we arrive at the following estimate:
foranyé > 0,

k
P(b(J@gt)z[P’(omax(kir ) ——ZX)< +5)

<r<k

(5.8)

ypk 2)

Pl X < —f
% < ML= 20)m



AGGREGATION IN SELF-GRAVITATING GAS 65

Consider the empirical quantile function
(5.9) Qi (s) :=Inf{r: Fr(¢) > s}, O0<s<1,

where Fy is the empirical distribution function based on the random variables
(X j)1<j<k, thatis, Fe(t) ;= 1#{j:1< j <k, X; <t}. Then

~ . 1 ,
Xj:@k(s), JT§S<%:
and we have
! zk:)? 1Xr:)~( 1/1(2()d 1/t(£2()d ="
;= — = — s)ds — — s)ds, =—.
k—r & ST LT ) R tJo  F k
j=r+1 j=1
Accordingly,
1 K L 1L 1
X. - = X — =
OT,%]k_r.Z iy 2\
j=r+1 j=1
(5.10)
1 1 1t
SoTta<X1 1_—t./z (C‘Zk(s)—s)ds—;/o (Qk(s) —s)ds|.

The Glivenko—Cantelli theorem for quantile processes (see, e.g., [15], page 95)
asserts that lim., o sup, |@«(s) — s| = 0 almost surely. Hence,

lim P max = i X li)? <l+8 =1
k— 00 O<r<k\k —r . J r“ )= 2 o
j=r+1 j=1

For the second probability expression on the right-hand side of (5.8), we note
that 22K 2 — (1+"25)n (1/T*)?. Therefore, for all sufficiently large (how large

(T+20)n
depending o),
ypk 2) (”Xk+1 k « 2)
P X _ =P T
510 ( ML= ki1 - Grnarz /T

nXgi1 —1 *2)
zp(k+1§(l+38) (t/T"?).

By Chernoff’s large deviation principle, for all large

IP’(nkX_::l < (1+38)—1(t/T*)2> > eXp{_(1+8)1((1+33)_1(t/T*)2)(k + 1),

where the large deviation rate functidi-) of the exponential law is as in (3.3).
We choose now
logn

K=k~ T8t 301/ 792
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so that by (5.8),
vP(b(Jo) <t) > constx N A0/A4) o
logn
We derive via (5.6) thaP(L,(¢) < k) — 0. Therefore,
Ly(1)

liminf
logn

n—oo

> (1435)"11(A+38"L¢/T*)®) " in probability.

By sendingé to zero, we obtain the desired lower bound in Theorem 3.3 for the
Poisson model:

Lyt

n—00 |ogn

(¢/T*®~*  in probability.

We prove now the upper bound for the Poisson modelLet:. Assume that
we are in the situatiod,,, () > k, which means that prior to (or at) timea cluster
(say, A) of sizek + 1 or larger appears. Actually, one can chodsef size less
than or equal to 2 but we do not need the upper boundtiis proof. Consider the
block of particles/ which corresponds td in a natural way. Notice that is free
up to the time of formation ofA. By (5.4) and (4.9), we obtain

(5.12) b(J) =18 <

To boundb(J) from below, we use the following elementary estimate.

LEMMA 5.1. Letp > 2be an integerand letx; < --- < x, be real numbers
Then

— X1
oni’ﬁ,(— Z—Z) -

PROOF Forp 2, the left-hand side just equalg — x1. For p > 2, consider
the average := 15 Y-/ 5 x;. Assume first that < 322 Then

1 2t
max(— > xj__ZxJ>>xP _1ij
j=1

O<r<p e

1
=Xp — p—l((p 2)x + x1)

p—2 X1
T (x1+xp) —
2(p—1) Pop-1

Xp— X1
= — P
2(p—1) (xp —x1) 2 2

>xp—



AGGREGATION IN SELF-GRAVITATING GAS 67

The casex > WFTX" boils down to the considered one by the substitution of
by —Xj. O

The definition ofv(J) and Lemma 5.1 yield for any block = (i, i + p],

2n )1/2(Xi+p - Xi+1>1/2
PP 2 '
Plugging this into (5.12) yields that for akyandr,

(5.13) {L,(1) >k} C U U{(;/pp) ﬂ(%)mgt}.

p=k+1i=0

b(J) > (

Since the random variablé§  , — X; 11,0 <i <n— p, are identically distributed,

we get
n 1/2 _ 1/2
P(Ly()>k)<n Y P(( 2n ) (X” Xl) §z>
p=k+1 VPP 2

n
YPP 2
=n (X —X1= = )

p=k+1

The random variable (X, — X1) is distributed as the sum ¢f — 1 independent
random variables having the standard exponential distribution. Therefore, Cher-
noff’s large deviation principle yields that for any fixéd> 0 and all sufficiently
largek and allp > &,

Yop 2

]P’(X —X1<—
n

) ]P’(X —X <=t (t/T*)Z)

SIP(n(Xp_Xl)
p—1

<exp|—(L—8I(L+8)(/T*?)(p - D)},

<1+ 6>(r/T*>2)

from which it follows that

o

P(Lo(t)>K)<n > exp{—(L—8I((A+8)/TH)(p - 1))
p=k+1
_nexpi—(1—8)I1((1+8)(t/T*?)k)
Cl—exp—(L—-8)I((1+8)(/T*))}

We choose now
(1+6)logn
A—=8I(A+8)(/T*?)’

k=k(n)~ n— oo,
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so thatP(L, (t) > k) — 0,n — oo. Therefore,

limsup I "g( ) < ﬁI((lJré)(t/T )»2)~1 in probability,
Finally, by sending to zero, we obtain the desired estimate

La(®) <I1(t/T5%"  in probability.
n

limsup

n—o0 I

This completes the proof of Theorem 3.3 for the Poisson model. In order to prove it
for the i.i.d.-model, we use the representation from Fact 2.1 with a Poisson process
of intensityn. The system with initial position&X;); <, is similar to the Poisson
model with initial positions(X;);<,, if we take similarity coefficients as follows:

e = Xnp) L e = Xugr1) Y2, ¢ = (Xn41) 2. We infer from the similarity
that
(514) Zn(t) = Ln(t Xn—l—l),

whereL, andL, denote the size of the maximal cluster in the i.i.d.-model and in
the Poisson model, respectively. Taking into accountxXhat; — 1 in probability

(law of large numbers), we derive the statement of the theorem for the i.i.d.-model
from what we have just proved for the Poisson model.

5.2. Proof of Theoren8.4.  Consider first the Poisson model. Legt:= '
The assumptions in the theorem take the form

(5.15) nILmOO en =0,
(5.16) lim ne? = oo.
n—oo
We fix a smallg € (0, 2) and take a sequence of positive integéss such that
L Iog(nez) e
n s n .
T e- (2- Pz
It follows from (5.13) that
n—p 2p
Lt >kic 1) U {n(xzﬂ) Xin) < 2}
p=ky,+1i=0 (")

It is easier to interpret the condition within the brackets on the right-hand side in
terms of centered random variables, namely,

1P
(T*)?
Recall that for anyn > 1, the random variable&:X; — i);>0 can be viewed

as sums of independent centered random variables having the standard centered

exponential distribution. Using the classical Komlés—Major—Tusnady estimate [8],
we approximate them by a Wiener procéssNamely, we need the following:

(nXivp—(+p)— (nXiy1— (+ 1) < —p+1=—pe,(2—e) + 1
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FacT 5.2 (KMT construction). It is possible to construdt and (X;) in a
common probability space such that for some numerical constaraadC,, and
for all realr > 0,

(5.17) P{lmax (nX; —i) — W(@i)| > r} < (14 C1nY?) exp{—Cor}.
Since we study only convergence in probability, it is unimportant for us whether

the probability space in KMT construction is the same fornair not. We just
make use of

|
lim IP’{ max |(nX; — i) — W(i)| > O(?”}:o.
2

n—oQo l§i§n
Observe that
P{L, (1) > kn}

n n—p
SP[ U u {IW<i+p> ~ W@ = pea2—ea) —1— C32|ognH

p=kn+1 i=0

+IP>{ max |(nX; —i) — W(@{)| >

1<i<n

logn }
o |
The second term on the right-hand side converges to zero by what we have just

seen. On the other hand, under assumptions (5.15)—(5.16), webavek, ¢, ~

2
I(Zg(gjs) > logn. Therefore, for any fixed > 0,

limsupP{L,(t,) > k)

n—oo

n n—p
< IimsumP’{ U UUWG+p) - W)= pe.(2— h)}}.

n—00 p=kp+1i=0
By scaling, the probability expression on the right-hand side is

—o O UIE) (L +2) -]z vree-n)

< IP’{ sup  sup u VAWt +u) — W) > Vknen (2 — h)}.

0<t=<n/k, 1<u<n/k,
We write, for anya > 0 andb > 1,
(5.18) Ala,b):= sup sup u YWt +u) — W)
0<t<a l<u<b
Then
(5.19) limsupP{L,(t,) > k,} <lim supP{A(l, i) > Vknen (2 — h)}.
n— oo n— oo kn kn

The following lemma gives an upper bound for the tailof
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LEMMA 5.3. LetA(.,-) beasin(5.18). Foranyh € (0, 1), there exists;, > 0
suchthatforalll >1,U >2andr > 1,

P(A(T,U) > r) < ¢y T(logU) exp{—(1 — h)r?/2}.

PrROOF By scaling, forany: > 1,

IW(s+u) — W(s)|
IP( sup sup 17

0<s<T a<u<2a

> r) =P(A(T/a,2)>r)

<P(A(T,2) >r).

Therefore, by the stationarity of the increments of the Wiener process,
I

(5.20) P(A(T,U) = r) < [T] [%—‘P(A(L 2)=r).

On the other hand, for any centered Gaussian prdd&ss, v € V}, the following
estimate of large deviations holds (see [9], Chapter 12):

lim r~?logP( sup|Y (v)| > r _ 1
r—00 9 p - T 22’

veV

where 62 := sug,evE[Y(v)Z]. We apply this estimate to the two-parameter
process

(s.u) = 28 +:1)/2_ YO swevi=01x1.2],

so that lim_ oo r 2 logP(A(L,2)>r) = —%. Therefore,
P(A(,2) >7r)
e —A—hyr?j2
This, in light of (5.20), yields the lemma.]
Let nowh be so small that

_ A=m@-h7?

- 22-p)
Applying Lemma 5.3td" = U =n/k, andr = /k,(2— h)s,, we get

P{A(ﬁ, i) > Vknén(2 — h)}
kn ky

- Chn IOgIEn/kn)

> 1.

exp(—(1 — h)(2 — h)%e2k, /2)
— e kl(ng,f)*””(l))Z log(n/ ky)

’\’Ch(z— /3)(”85)1_(1+0(1))Z-
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(We have used the fact that? — oc.) Sincez > 1, we havene?)1~ oDz _, 0,
Plugging this into (5.19) gives lim, » P{L, (¢,) > k,} = 0, which means that

1> limsup—"= L)

n—oo n

. Ln(l‘n)g2
=(2-B)limsu "
2-p Ly (1) (T* — 1y)?
= su
(T*)2 nsoo log(n(T* —t,)?)
The desired upper bound for the Poisson model follows by lelirg O.
We proceed now to the proof of the lower bound for the Poisson model. We
have already established in mequalltles (5.6), (5.8) and (5.11) that for=a0,
8 > 0 and all integek (such that*- > 1+35)

in probability.

k+1 —
(5.21) P(L,(t) < k) < exp{—v Py(k, 8) Pa(k, 8, 1)},
wherev := | 7] and
Pi(k,8) ;=P 3 ! N<2is
e == 2 _?,-:1 Yi)=2*°)
Po(k, 8, 1) —IP( J’;*l <@+385)7"Y/T )

Let us now specify the choice of the parameters. et 0 and.z > 0 be some

small numbers. We still denotg := T*T‘J", but this time we setk,,) such that

N log(ne?)
" @2+ peR

Let§, := hs,. Then

Paln, S0 1) =P(”X""+jk__f;+ D o (@+35) 2/ T2 - O ¥ 1).

For all largen,
(A +38) Mt/ T*? = D)Vhy + 1
> ((1—38)A—en)?— )k, +1
> — (38, + 2e0)Vkn + 1
=—Bh+2envkn + 1.

Therefore, for all large:,

nXg +1_(kn+1) )
Po(k,, 8, t, zIP( u < —Gh+ ek, +1).
2 ) 1 (Bh +2)en/
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Now we use the following result of moderate deviations (see [12], Chapter 8,
page 218).

FACT 5.4 (Cramér’s theorem). Lé&f be a sequence of i.i.d. centered random
variables such thaE exp{y|Y;|} < oo for somey > 0. Then for any positive
sequencéx,) with x, = o(y/n), we have

1 & ' . _1+0(1) 5
P{\/—ﬁjZZIYJ>xn}_exp< 5 xn).

Since ¢, — 0 [see (5.15)], we are entitled to apply Fact 5.4 ip =
(31 4+ 2)e,A/ky + 1. Note thak, k, + 1 — oo [see (5.16)]. Thus,

Pa(kn, 8p, 1) = (1 + 0(1)) exp|—(3h + 20262k, (1 4 0(1)) /2}

(84272
22+ PB)
= (L4 0(1)) (nef) = o,

> (14 o(1)) ex log(ne?)(1+ o(l))}

2 . .
wherez := % The parametet can be chosen so small thak 1. With this

choice, (5.16) implies

(2+,3)(n8,21)1_(1+0(l))z
2log(ne?)

(5.22) vPa(kn, Sn, ty) > Zki(ngg)*(lJro(l))z N Lo
n

Assume for a while that
(5.23) Iinrn)igmof Pi(k,,8,) > 0.

Then by (5.21) and (5.22), lign, o P{L,, (¢,)) < k,} =0, which implies the desired
lower bound:

L,(t
liminf Lultn) >1  in probability.
n—00 ky,
To establish (5.23), we observe that
o 2\ 1/2
(5.24) 8,k M2 = he/kn ~ h(%‘;")) = 0.

We use the estimate (5.10), whe2g(-) is the empirical quantile function defined
in (5.9). The well-known functional limit theorem for quantile processes (see [15])
asserts that fok — oo, the sequence of procoesséf;s(r) = Vk (Qr(r) — 1),

r € [0, 1], converges weakly to a Brownian bridgé in the Skorokhod topology.



AGGREGATION IN SELF-GRAVITATING GAS 73

In light of (5.24), we arrive at
liminf Py(k,, 8,)
n—o0

1 1 1t
1T/ (@, (s) —s)ds — ;/ (@, (s) —s)ds

<1)

<1>>0

> IimianP’( max

n—o0o O<t<1

- an)

> IimianP’( max | ——

n—>00 = \0O<r<1
1
:IP(OTgxl 1-7) W(s) ds — —/ W(s)ds
Therefore, relation (5.23) is true and Theorem 3.4 is proved for the Poisson model.
Consider now the i.i.d.-model. We use (5.14) which reduces the problem to
the Poisson case. Indeed, by the central limit theorem, forany, there exists
M > 0 such that

/ Yi, (s)ds — —/ Yy, (s)ds

1—1t

lim supIP’(}\/n—Jr 1| > %) <e.

n—oo

Lett, :=t,(1+ %). The sequencér,) satisfies the assumptions in Theorem 3.4,
and the norming sequences are equivalent:

im (7 =) "2logon(T* — 1)) _
n=00 (T* — i) =2log(n(T* — i,)?)
By (5.14), if X, 11 < 1+ % thenL, (fy) > Ly (ta/Xnt1) = L, (t,). Therefore,
for any 8 > 0, we have, for all large,
*\2 * 2
P(Zn(tn) _ I log(n(T* — t,,) ))
(24 B)(T* —1,)?

M (T*)?log(n(T* — 1,)?)
<P(VEa= 14 )+ (Lt > S5 o)

The last probability term on the right-hand side tends to zero by what we have
proved for the Poisson case. Thus,

(T*)2log(n(T* — 1))

2+ BIT* —1)? )
<lim supP(Jm > 1+ ﬁ) <e.
n—00 Vi
Sincee is arbitrary, we get the desired upper bound: for gny 0,
(T*)?log(n(T* — rn)2>) 0

(24 B)(T* —1,)? o

The lower bound follows exactly in the same waj/]

lim sup]P’(Zn(tn) >

n—oo

lim supIP’(Zn(t,,) >

n—oo
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5.3. Proof of Theoren8.5. We first focus on the lattice model. In this model,
for every blockJ = (i, i + k], we have

(5.25) xj(0)=z > x0)= L= - F
Jj=i+1 j H—l
Let
1 i+k
—ZmJMJ Z uj,
jej ] =i+1

which denotes the average of normalized initial speeds. Then (4.1) takes the form

_ 2i+k+1  _ N
(5.26) xj(s):T+anqu+yp(n—21—k)g,
and (4.5) becomes, for amy> 0,
) _ _ (B—o)d—ypt?)

(6.27) TSt &= U UG Z ot
n

We start with the proof of the lower bound fér, (r). Lete € (0,1/3) and let
k be an arbitrary positive integer. Consid&r= [(€ + &)k, (£ + 1 — e)k] N Z.
According to (4.7), for any, if there exisix < (£ + )k and > (£ + 1 — ¢)k such
that maxc, r;’j’ﬂ < t, then all the particles of the block belong to a common
cluster at time. We apply this tax = £k andg = (£ + 1)k to see, in light of (5.27),
that the condition

k(1—ypt?)
min(u —u _—
jeJ( ek, j1 = U(j,(e+Dk1) = Pnoni

ensures a single cluster at timdérom the blockJ,. Thus, similarly to (5.6), we
have

(5.28) P(L,(1) < (1—2¢)k — 1) < exp{—v P1},

wherev := | 7] denotes the number of blocks and

k(1— th2)>

P1:=P( min(ito jj — i) =
1 (].EJO( O~ (k) Z =

Let us express the average speeds in terms of the random walk

J
Sj Z=Zui, jZO.
i=1
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kS;—jSk
Mk 7

k321 — ypt?)
PJ_IP{]{ 1/2(S Sk) ( V44 i( _i)’
k 2noy,t k k
I
“k

1-e).

Thenﬁ(o’j] — I/_t(j’k] and, thus,

(5.29)

Let us now specify the choice @éfby letting
n
b=b,:=log| —= |,
g(a,,z)
k = ky ~ (1 — 48)%3c1(1) (no,)?3pY3,

. . . — k3/2(1—ypt?)
wherec1(¢) is defined in (3.8). Note that by the definition @f(?), ot
(1 — 4¢)(2b)Y/2. Accordingly, for all larger,

P> P{k—l/z(sj - %Sk) >(1— 33)(2b)1/2%<1 - %) e <
Let W be the Wiener process in (5.17). We have

Pz P{e (W) - 2w ) = - @)Y (1),
-1/2 N — S, 1/2J i
kYW () — §;1 < £(2b) k(l k), <do1- }
> P{k‘”(W(ks) —sW(K) = (1—e)(2h)Y25(1—5), e<s <1—c¢,

kY2 max [W(j) — ;| < 21— s)<2b>1/2}.
1<j<k

Sinces — k~2W (ks), s > 0, is also a Wiener process, we g&t> P, — P3,
where

Py:=P(W(s) —sW(1) > (1—e)20)Y2s(1—s), e <s <1—z¢},
Pai=Bf max W (j) - 512 6201 - o) (2002,
<J=

In order to estimateP,, we apply the functional large deviation principle (see,
e.g., [9], Chapter 12, Theorem 6) to the Brownian bridig&) = W(s) — sW(1):

.1
liminf ~ logP{W(s) —sW(1)>Rs(l—s), e<s<1-—¢}
R—oo R

. 1/1(1 26)2d
—— —25)°ds = ——.
- 2Jo 6
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By (3.5), we haveh — oo, which implies that for large,

n \—1-9%/3
(5.30) P> > expl—(1+&)%(1 — £)%b/3} = (F) .
We now show thatPs is negligible compared t@. Indeed, by the Komlos—
Major-Tusnady estimate (5.17),
(5.31) P3 < (14 C1kY?) exp{—C2e%(1 — &) (2bk)Y?)}.

Since § ~ (1 — 46)23c1(1)(%22)% » 1, we have, for all sufficiently large,
C2e2(1— ) (2bk)Y? > b+ log(1 + C1kY/?), which implies that for all large,

P3 <expl—-b} = (%)_l.

n

In view of (5.30), this yieldsP, >> P3. Hence,
vP1L>v(P2— P3)

n n (1-¢%)?/3
~—P — .
k2= c1(t)(noy)?3(log(n/02))1/3 (02>

The expression on the right-hand side equ%l,%;( 1= 82)2V3(Iog( 2))” 1/3,
and thus goes to infinity. In light of (5.28), we obtain

liminf Ln(®)
n—o0 (noy,)?3(log(n/o2))1/3 ~

The lower bound in Theorem 3.5 for the lattice model is proved, sincan be
arbitrarily small.

We proceed now to the proof of the upper bound (for the lattice model). We
have already seen in the proof of Theorem 3.3 that,ifr) > &, then there exists a
block J = (i, i + p] of size p betweerk + 1 and %, that is free up to its collapse
time ¢ and such that$' <. Let, for simplicity, p be even, sayy = 2¢. By virtue
of Proposition 4.4, inequality:I <t means that

> (1—2¢)(1—4¢)?3c1(r)  in probability.

max t*

O<r<2g ii+r,i+2q =t

In particular, we have;

itq.it2g =1 Which, in light of (5.27), is equivalent to

_ _ _ad—ypt?
UGi+q] — U(i+q,i+2q] = Tnt'
Similarly, whenevep is odd, sayp = 2¢ + 1, we arrive at

q(1—ypt?)

U(ii+q) — U(i+q+1i+2g+1] = po—
n



AGGREGATION IN SELF-GRAVITATING GAS 77

Summarizing, we have

{L,(t) >k} CQ1U&Q>,

k n—2q q 3/2 2
1 1 —ypt9)
Q1= U {— E (Uitj —Uitg+j) = A S

q=k/2 i=0 29 3 V2noyt
and

ko on=2q( 4 4 7321 = ypi?)

QF}QQBJTZZ?“f””““”E—?EEI—}
Thus,
k
P{L,(t) >k} <2n ) Py,
q=k/2
where
1 4
Py = P(E j:1(uj —Ugyj) > xq,n>

and

L _ g ypr?)
n — .
1 V2no,t
Lete > 0, and let

k = k(n) ~ (1+ 2¢)ca(t) (no,)?3(log(na /%)) 2,

wherec,(t) is defined in (3.8). Since we want to apply Fact 5.440 let us check
that

. Xgn
(5.32) Jim_ 255 =0

uniformly overg < 2k(n). Indeed,

2/5
o) —o( (8 2)*)
q1/? noy, noy, '

By using twice the assumption (3.5), we have

2/5
lim supM <lim sup2 logn) _

n— 00 noy n— 00 noy

0
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and (5.32) follows. Now, by Fact 5.4, for all largeand allg < [k/2, k],
2

X | 1 4Pa- thz)z}
Fo = eXp{ 20 +e) } = eXp{ 20+8) 2mon2? |
so that
3 2\2
q°(1—ypt°)
PULa() > K} <20 eXp{ 2(1+e) 2(n0,)212 }

q>k/2

_0<HWm02@m{ 1 @Ja%l—ypﬂﬁ}>
N k2 2(14+¢)  2(noy)?t? '
The expression on the right-hand side is, whes large,
=@< (now )°/* 4 (1+#)%ca(t*(L— ym%zmmn2“q>
(log(nory’))2/3 242

”2/5 5/3 5

which goes to 0 a8 — oco. Hence,
Ly
limsu ® 275
n—00" (nay)?3(log(nay’ )3

This yields the desired upper bound in Theorem 3.5 for the lattice model.

The theorem is thus proved for the lattice model. It turns out that in the
considered range of initial speeds, the fluctuations in initial positions have no
significant influence upon the asymptotics Iof(¢). Indeed, for arbitrary initial
positions, (5.29) becomes

' K2k J(y J
P =P k—1/2(5~—is)> (- 1— ypi? D-)—(l——),
1 ( Tk k ~ nopt 2( ypr) + D, k k

85151—6‘),
k

<1+ 2¢)co(t) in probability.

(5.33)

where

Z(nX —z)—— Z (nX;—i).

i=j+1
Hence, for any1 > 0, we haveP; > Py — P4, where

(1+e1)k(1— ypt%)
2no,t ’

Py = IP>< min(it (o, j1 — #(j.x]) =
jeJo

e1k(1— yprz))

Pap:=Pmax|D;| >
4 <j<k| iz 2
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In the Poisson model, it follows from the large deviation principle that for some
constant =c(y, p, t, e1) € (0, 00),

(5.34) Py < exp{—ck},

whereas from what we have proved for the lattice model, we know Faat
exp{—ck}. Therefore, the proof of the lower bound for the Poisson model goes
through along the same lines as for the lattice model, Witin place of P;.

The same happens with the upper bound, wigrehould be replaced by

- 1 & g% (q(1—ypt?)
535 P, =P|— Ujri — U i) > ( +D) .
( ) q < /—Zq ng( +J +q+1) ﬁnant 2 q

Again, the exponential bound in (5.34) suffices to conclude the proof as for the
lattice model.

The passage between the Poisson and the i.i.d. models via Fact 2.1 is
straightforward.

5.4. Proof of Propositior3.6 (@ sketclh. Few changes are needed with respect
to the proof of Theorem 3.5, except that we have to provide alternative tools
to those based on exponential moments. For the lower bound, we can replace
the Komlés—Major-Tusnady estimate (5.31) by the Sakhanenko bound (see [13])
which states that under condition of the finiteness ofjttemoment,

P(max|Wj—Sj|zr)§% VkeN, Vr >0,
1<j<k rp

where C > 0 is an unimportant constant. For the upper bound, we can use,
instead of Cramér's moderate deviation principle (Fact 5.4) in the estimate
of P,, the following result of Nagaev [11]: fox € (0,1) and i.i.d. random
variablesyy, ..., Y, with mean zero, unit variance and finiith moment,

q
P(Z Yj > yﬁ) < Cy plgt PPEIY Py ~P + expl—ay?/2}]
j=1

VgeN, Vy >0,

whereC,, , > 0 is an unimportant constant. The rest of the proof is along the same
lines.

5.5. Proof of Theoren3.7 (a sketch. Under (3.10), the fluctuations of speeds
and initial positions have comparable influence on the asymptotic behavior
of L, (¢), hence, we have to take both of them into account. Fortunately, the large
deviation principle provides less precise (than in the preceding proofs), but still
sufficient, estimates. We just outline how the estimation works for the upper bound
for the Poisson model. The changes in the proof of the lower bound are similar.
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Fix M > 0; letq > Mlogn andB := 1‘+4pt2. We obtain forP, in (5.35) that
foranye > 0 and all largex,

q 2 2
q° (1—ypt® Dy
P, =P (Mijri — u; i) > (7-{-—)
q (jgl i+j i+gq+j noyt 2 q
Dy : Mq(1—¢) 1—ypt?)
< P(—q > B) +P( Y iy —ttivgrj) = 9
q =1 ct 4

< e~ AtoMNN(B)g e—(1+0(1))12(C)<1’

2 . . .
whereC = YA=9A=y21) "1, and 1, are relevant large deviation functions. We
take M so large thaM I1(B) > 1 andM I>(C) > 1. Then

P(Ln(1) >2Mlogn) <n Y P;—0,
qg>Mlogn

and the upper bound follows.

Acknowledgments. Part of this work was done while the first named author
was visiting the Université Paris VI in April 2003. We wish to thank the
Laboratoire de Probabilités et Modeles Aléatoires (UMR 7599) for arranging this
visit and for the hospitality. Our special thanks go to the referee and an Associate
Editor for many valuable remarks.

REFERENCES

[1] BERTOIN, J. (2000). Clustering statistics for sticky particles with Brownian initial velocity.
J. Math. Pures Appl79 173-194.

[2] BonvIN, J. C., MARTIN, PH. A., PIASECKI, J. and DT0s, X. (1998). Statistics of mass
aggregation in a self-gravitating one-dimensional daStatist. Phys91 177-197.

[3] DERMOUNE, A. (1999). Probabilistic interpretation of sticky particle mod&hn. Probab27
1357-1367.

[4] DERMOUNE, A. (2001). Sticky particle model and propagation of chadenlinear Anal.
Ser. A45529-541.

[5] E, W., Rrkov, Yu. G. and $NAI, YA. G. (1995). The Lax—Oleik variational principle
for some one-dimensional systems of quasi-linear equat®uassian Math. Surveys)
220-222.

[6] E, W., Rrkov, Yu. G. and $NAI, YA. G. (1996). Generalized variational principles, global
weak solutions and behavior with random initial data for systems of conservation laws
arising in adhesion particle dynamicdomm. Math. Phy<77 349-380.

[7] GIrRAUD, C. (2001). Clustering in a self-gravitating one-dimensional gas at zero temperature.
J. Statist. Physl05 585-604.

[8] KomLOs, J., MAJOR, P. and TUSNADY, G. (1975). An approximation of partial sums of
independent RV’s and the sample @FWahrsch. Verw. Gebie®2 111-131,34 34-58.

[9] LIFsSHITS, M. A. (1995).Gaussian Random Functior$luwer, Dordrecht.

[10] MARTIN, PH. A. and RASECKI, J. (1996). Aggregation dynamics in a self-gravitating one-
dimensional gasl. Statist. Phys34 837-857.



[11]
[12]
[13]

[14]

[15]
[16]
[17]

(18]

AGGREGATION IN SELF-GRAVITATING GAS 81

NAGAEV, S. V. (1997). Some refinements of probabilistic and moment inequalitfe=ory
Probab. Appl42 832-838.

PETROV, V. V. (1975).Sums of Independent Random Variabi&gringer, New York.
SAKHANENKO, A. |. (1986). Convergence rate in the invariance principle for non-identically
distributed variables with exponential momentsAivances in Probability Theoryimit

Theorems for Sums of Random Varial2e§3. Springer, New York.

SHANDARIN, S. F. and ZLDOVICH, YA. B. (1989). The large-scale structure of the universe:
Turbulence, intermittency, structures in a self-gravitating medkev. Modern Phy$1
185-220.

SHORACK, G. R. and WELLNER, J. A. (1986).Empirical Processes with Applications to
Statistics Wiley, New York.

SUIDAN, T. M. (2000). Adhesion dynamics on the line: The mass aggregation process.
J. Statist. Phys101 893-903.

SUIDAN, T. M. (2001). A one-dimensional gravitationally interacting gas and the convex
minorant of Brownian motiorRussian Math. Surves 687—708.

ZELDOVICH, YA. B. (1970). Gravitational instability: An approximate theory for large density
perturbationsAstronom. Astrophy& 84—89.

FACULTY OF MATHEMATICS AND MECHANICS LABORATOIRE DE PROBABILITES
ST. PETERSBURGSTATE UNIVERSITY ET MODELESALEATOIRES
198504 SARY PETERHOF UNIVERSITE PARIS VI
BIBLIOTECHNAYA PL. 2 4 PLACE JUSSIEU

Russia F-75252 RRIS CEDEX 05
E-MAIL : lifts@mail.rcom.ru FRANCE

E-MAIL : zhan@proba.jussieu.fr



