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REGENERATIVE COMPOSITION STRUCTURES1

BY ALEXANDER GNEDIN AND JIM PITMAN

Utrecht University and University of California, Berkeley

A new class of random composition structures (the ordered analog of
Kingman’s partition structures) is defined by a regenerative description
of component sizes. Each regenerative composition structure is represented
by a process of random sampling of points from an exponential distribution
on the positive halfline, and separating the points into clusters by an
independent regenerative random set. Examples are composition structures
derived from residual allocation models, including one associated with the
Ewens sampling formula, and composition structures derived from the zero
set of a Brownian motion or Bessel process. We provide characterization
results and formulas relating the distribution of the regenerative composition
to the Lévy parameters of a subordinator whose range is the corresponding
regenerative set. In particular, the only reversible regenerative composition
structures are those associated with the interval partition of[0,1] generated
by excursions of a standard Bessel bridge of dimension 2− 2α for some
α ∈ [0,1].

1. Introduction. A composition of a positive integern is a sequence of
positive integersλ = (n1, . . . , nk) with sum

∑
j nj = n. Eachni may be called

a part of the composition. We will use the notationλ |= n to say thatλ is a
composition ofn. A random composition of n is a random variableCn with
values in the set of all 2n−1 compositions ofn. A composition structure (Cn)

is a Markovian sequence of random compositions ofn, for n = 1,2, . . . , whose
cotransition probabilities are determined by the following property ofsampling
consistency [10, 13]: if n identical balls are distributed into an ordered series of
boxes according to(Cn), thenCn−1 is obtained by discarding one of the balls
picked uniformly at random, and then deleting an empty box in case one is created.
We study composition structures with the following further property:

DEFINITION 1.1. A composition structure(Cn) is regenerative if for all
n > m ≥ 1, given that the first part ofCn is m, the remaining composition ofn−m

is distributed likeCn−m.
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According to our main result (Theorem 5.2), each regenerative composition
structure can be represented by a process of random sampling of points from
the exponential distribution on[0,∞[, and separating the sample points into
clusters by points of an independent regenerative random closed subsetR of
[0,∞[. We recall in Theorem 5.1 the fundamental result of Maisonneuve [28] that
every suchR can be represented as the closed range of asubordinator (St ), that
is, an increasing process with stationary independent increments. Each possible
distribution of a regenerative composition structure is thereby described in terms
of the drift coefficient d and Lévy measureν of an associated subordinator.
Alternatively, we can transformR into R̃ := 1 − exp(−R) ⊂ [0,1] and replace
the exponential sample by a sample from the uniform distribution on[0,1]. In
this form the construction is an instance of theordered paintbox representation of
composition structures, developed in [10, 13, 31].

Keeping track of only the sizes of parts, and not their order, every composition
structure induces apartition structure, that is, a sequence of sampling consistent
partitions of integers, as studied by Kingman [26, 27]. Passing from compositions
to partitions is equivalent to passing from the ordered paintboxR̃c = [0,1] \ R̃
to Kingman’s paintbox defined by the decreasing sequence of lengths of interval
components ofR̃c. A partition structure is thereby associated with a typically
infinite collection of composition structures, each corresponding to a different way
of ordering interval components of given lengths. We show that if one of these
composition structures is regenerative, it is unique in distribution (Corollary 7.3).
In Section 7.1 we also discuss necessary and sufficient conditions for the existence
of such a regenerative rearrangement. See also [39].

Known examples of regenerative composition structures include the composi-
tions associated with the ordered Ewens sampling formula [10], and those derived
from the zero set of a recurrent Bessel process in [31]. The partition structures
corresponding to these examples are instances of the two parameter family of par-
tition structures studied in [30, 33]. We show in Section 8 that each member of
this family, with positive values of parameters, corresponds to a unique regenera-
tive composition structure. Also (Theorem 10.1), the only reversible regenerative
composition structures are the members of this family associated with the interval
partition of[0,1] generated by excursions of a standard Bessel bridge of dimension
2 − 2α for someα ∈ [0,1]. See also Section 4 and [15, 16], for further examples
of regenerative composition structures.

Our definition of regenerative composition stuctures is reminiscent of King-
man’s characterization of the one-parameter Ewens partition structure by
invariance with respect to deletion of a random part, selected in a size-biased
fashion. This property is calledspecies noninterference or neutrality in the set-
ting of population genetics. We refer to [3, 11, 33] for background on partition
structures, exchangeability and related matters. As shown by James [23], another
closely related concept, developed in the setting of Bayesian nonparametric sta-
tistics, is Doksum’s [9] notion of a random discrete probability distribution that is
neutral to the right.
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From an algebraic viewpoint, our representation of regenerative composition
structures is equivalent to solving a nonlinear recurrence (Proposition 3.3). The
nonlinearity of the recursion reflects the fact that the family of probability
laws of regenerative compositions is not closed under mixtures. So unlike the
problems of characterizing all partition or composition structures, the problem
of characterizing all regenerative composition structures is not just a problem of
identifying the extreme points of a convex set. Still, we show in Section 5 that
it can be reduced to such a problem (equivalent to a version of the Hausdorff
moment problem) by a suitable nonlinear transformation. The Lévy data(d, ν)

of the associated subordinator are thereby encoded in a finite measure on[0,1].

2. Compositions and partitions. This section recalls briefly some back-
ground material on composition structures and their associated partition structures.
See [10, 13, 30, 31, 33] for a fuller account. For a composition structure(Cn) and
a compositionλ = (n1, . . . , nk) of n, define thecomposition probability function p

by

p(λ) := P(Cn = λ).(1)

For each fixedn, this function defines a probability distribution on the set of
compositionsλ |= n, and these distributions are subject to the following linear
relation describing the sampling consistency. Forλ = (n1, . . . , nk) |= n andµ |=
n + 1, we say thatµ extends λ and writeµ ↘ λ if µ is obtained fromλ by either
increasing a partnj by one or by inserting a part 1 in the sequenceλ. The sampling
consistency amounts to the recursion

p(λ) = ∑
µ↘λ

κ(λ,µ)p(µ), p(1) = 1,(2)

where the coefficientκ(λ,µ) equals(nj +1)/(n+1) if µ is obtained by increasing
a partnj , and equals(j + 1)/(n + 1) if µ is obtained by inserting a 1 into a row
of consecutive ones 1,1, . . . ,1 of lengthj ≥ 0.

RegardCn as a way to partition a row ofn identical balls into an ordered
series of nonempty boxes, and independently ofCn, let the balls be labelled by
a uniform random permutation of the set[n] := {1, . . . , n}. This defines a random
exchangeable ordered partition C∗

n of the set[n] whose distribution is defined
as follows. For eachparticular ordered partition of[n] into k classes of sizes
n1, . . . , nk, sayc∗,

P(C∗
n = c∗) =

(
n

n1, . . . , nk

)−1
p(n1, . . . , nk),(3)

since the multinomial coefficient is the number of such ordered partitions of[n],
and these are equally likely. The sampling consistency property of a composition
structure(Cn) means that(C∗

n) can be constructedconsistently, in the sense that
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C∗
n−1 is the restriction ofC∗

n obtained by deleting elementn. Then Cn is the
ordered record of sizes of classes ofC∗

n , and the entire sequence(C∗
n) defines

an exchangeable ordered partition of the setN of all positive integers.
Ignoring the order of classes yields a randomexchangeable partition � of the

setN. The restriction�n of � to [n] is obtained by ignoring the order of classes
of C∗

n . So for eachparticular partitionπ of [n] into k classes whose sizes in some
order aren1, . . . , nk,

P(�n = π) =
(

n

n1, . . . , nk

)−1 ∑
σ

p
(
nσ(1), . . . , nσ(k)

)
,(4)

where the sum is over thek! permutations of[k], corresponding to thek!
different ordered partitionsc∗ of [n] derived from the given partitionπ of [n].
This symmetric function of(n1, . . . , nk) is theexchangeable partition probability
function (EPPF) of [30, 33]. Note by construction that the partition ofn defined by
the decreasing rearrangement of sizes of classes of�n, or of C∗

n , is identical to the
decreasing rearrangement of the parts ofCn. Such a sequence of random partitions
of n, subject to a consistency constraint, is called apartition structure.

3. Regenerative composition structures. Let (Cn) be a composition struc-
ture with composition probability functionp. Let Fn denote the size of the first
part ofCn, and denote the distribution ofFn by

q(n : m) := P(Fn = m) = ∑
(n1,...,nk)

1(n1 = m)p(n1, . . . , nk), 1 ≤ m ≤ n,(5)

where the sum is over all compositions(n1, . . . , nk) of n, and1(· · ·) denotes the
indicator function which equals 1 if· · · and 0 else. We callq thedecrement matrix
of the composition structure(Cn).

PROPOSITION3.1. A composition structure (Cn) is regenerative in the sense
of Definition 1.1 iff for each n = 1,2, . . . , the distribution of Cn is determined by
the product formula

p(n1, . . . , nk) =
k∏

j=1

q(Nj :nj )(6)

for each composition (n1, . . . , nk) of n, where Nj := nj + · · · + nk and q(n :m) is
the decrement matrix defined by (5). Thus, the law of a regenerative composition
structure is uniquely determined by its decrement matrix.

PROOF. This is easily shown by induction on the number of parts of a
composition. �

Note that ifq(2 : 1) = 1, thenq(n :m) = 1(m = 1), meaning that eachCn is
a pure singleton composition, withp(1,1, . . . ,1) ≡ 1. Whereas ifq(2 : 2) = 1,



REGENERATIVE COMPOSITION STRUCTURES 449

thenq(n :m) = 1(m = n), meaning that eachCn is a trivial one-part composition
with p(n) ≡ 1. These facts are easy to check using (2) andp ≥ 0, and they
are intuitively obvious:q(2 : 1) = 1 [resp.q(2 : 1) = 0] means that two randomly
sampled balls never come from the same box (resp. from different boxes). It can be
shown thatq(4 : 2) > 0 implies 0< q(n :m) < 1 for all 1≤ m ≤ n andn > 1 and
therefore, 0< p(λ) < 1 for λ |= n > 1. In the caseq(4 : 2) and 0< q(2 : 2) < 1 we
haveq(n : 1) + q(n :n) = 1 for all n, hencep(λ) > 0 only for compositions of the
form λ = (n) or λ = (1,1, . . . ,1, k) with k ≥ 1.

The product formula (6) identifiesCn with the sequence of decrements of
a transient Markov chainQn := Qn(0),Qn(1), . . . with values in {0, . . . , n}.
This chain has decreasing paths starting from the stateQn(0) = n, with the
terminal state 0 and time-homogeneous triangular transition matrix(q(n :n − m),

1 ≤ m ≤ n < ∞). In this interpretation the parts of a compositionn1, . . . , nk are
the magnitudes of jumps of the chain, while(N1, . . . ,Nk) is the path ofQn prior
to absorbtion. For example, ifC8 = (3,2,1,2), the path ofQ8 is(

Q8(0),Q8(1), . . .
) = (8,5,3,2,0,0, . . . ).

Consider now the joint law of two compositions derived from a regenerative
compositionCn by a random splitting, sayCn = (C<

n ,C>
n ), where C<

n is a
composition ofm(C<

n ) ∈ {1, . . . , n}, and C>
n is the remaining composition of

n − m(C<
n ), regarded as a trivial sequence with no elements ifm(C<

n ) = n.
Suppose that the number of parts ofC<

n is a randomized stopping time of the
chainQn, meaning [35] that for each 1≤ k ≤ n, givenCn with at leastk parts, the
conditional probability thatC<

n has exactlyk parts depends only on the firstk parts
of Cn. Equivalently, for eachλ = (n1, . . . , n�) |= n and eachλ< = (n1, . . . , nk) for
some 1≤ k ≤ �,

P(C<
n = λ<|Cn = λ) = fn(λ

<)(7)

for some functionfn of compositions ofm for 1 ≤ m ≤ n. The strong Markov
property ofQn then implies the following:

(i) the compositionsC<
n andC>

n are conditionally independent givenm(C<
n ),

and
(ii) for each 1≤ m < n, givenm(C<

n ) = m, the remaining compositionC>
n of

n − m is distributed likeCn−m.

Conversely, we record the following proposition which applies, in particular, to
the splitting scheme defined by (7) withfn(n1, . . . , nk) = nk/n. In terms of balls
in boxes, such a split is made just to the right of the box containing a ball picked
uniformly at random.

PROPOSITION3.2. Suppose a composition structure (Cn) admits a random
splitting Cn = (C<

n ,C>
n ) for each n, such that (7) holds with fn(m) > 0 for all

1≤ m < n, and (ii) holds. Then (Cn) is regenerative.
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PROOF. Let p denote the composition probability function of(Cn), as in (1).
By definition, (Cn) is regenerative iff for all 1≤ m < n and all compositionsλ>

of n − m,

p(m,λ>) = q(n :m)p(λ>)(8)

for some matrixq(n :m), which is then the decrement matrix of(Cn). Whereas (ii)
holds iff for all 1≤ m < n and all compositionsλ< of m andλ> of n − m,∑

λ<|=m

fn(λ
<)p(λ<,λ>) = q̂(n :m)p(λ>)(9)

for some matrixq̂(n :m), in which caseq̂(n :m) = P(m(C<
n ) = m). Assum-

ing that (9) holds, (8) is obvious form = 1 with q(n : 1) = q̂(n : 1)/fn(1).
Proceeding by induction onm, suppose that (9) holds for all 1≤ m < n,
and that (8) has been established withm′ instead of m for all 1 ≤ m′ <

m < n. Apart from the termfn(m)p(m,λ>), all terms of the sum in (9) in-
volve compositionsλ<, all of whose parts are smaller thanm. So the induc-
tive hypothesis allows us to write these terms asfn(λ

<)hn(λ
<)p(λ>), where

hn(λ
<) is a product of entries of the decrement matrixq. Now rearrange (9)

to isolate the termfn(m)p(m,λ>) on the left-hand side, and observe that
p(λ>) is a common factor on the right-hand side, to complete the induction.

�

Our aim now is to describe as explicitly as possible all matricesq which define
a composition structure by means of (6). We start with an algebraic description:

PROPOSITION3.3. A nonnegative matrix q is the decrement matrix of some
regenerative composition structure iff q(1 : 1) = 1 and

q(n :m) = m + 1

n + 1
q(n + 1 :m + 1)

+ n + 1− m

n + 1
q(n + 1 :m) + 1

n + 1
q(n + 1 : 1)q(n :m)

(10)

for 1≤ m ≤ n.

PROOF. We will show first that the condition (10) is sufficient, that is,
(10) and (6) imply (2). Indeed, assuming (10) and (6),

q(n :n) = q(n + 1 :n + 1) + 1

n + 1
q(n + 1 :n) + 1

n + 1
q(n + 1 : 1)q(n :n)

implies readily

p(n) = p(n + 1) + 1

n + 1
p(n,1) + 1

n + 1
p(1, n),
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which means (2) for all one-part compositions. Now suppose (2) holds for all
compositions with less thank parts, and letλ |= n be a composition withk parts.
Write λ in the formλ = (m,λ′), whereλ′ |= n − m. We have by the induction
hypothesis and (6),∑
µ↘λ

κ(λ,µ)p(µ)

= 1

n + 1
p(1, λ) + m + 1

n + 1
p(m + 1, λ′) + n − m + 1

n + 1

∑
µ′↘λ′

κ(λ′,µ′)p(m,µ′)

= 1

n + 1
q(n + 1 : 1)q(n :m)p(λ′)

+ m + 1

n + 1
q(n + 1 :m + 1)p(λ′) + n − m + 1

n + 1
q(n + 1 :m)p(λ′),

which by (10) and (6) is equal toq(n :m)p(λ′) = p(λ) and the induction step is
completed.

Conversely, assuming (2) and (6), the recursion (10) follows by a similar
argument withk = 2. �

4. First examples.

EXAMPLE 1 (Geometric sampling [7, 24]). Imagine infinitely many players
labeled 1,2, . . . , who flip repeatedly the same coin with fixed probabilityx ∈]0,1]
for tails. In the first round, each of the players tosses the coin and those who flip
tails drop out. In the second round each of the remaining players must toss again
and those who flip tails drop out, and so on. If we restrict consideration to players
labeled 1, . . . , n, a compositionCn arises by arranging the players into groups
as they drop out. These compositions are sampling consistent by exchangeability
among the players and they form a regenerative composition structure because
“all rounds are the same.” Equivalently, we could attribute to each playerj an
individual valueξj , the number of rounds the player remains in the game, and
tie the players into blocks by equality of their individual values. Theξj are
independent with same geometric distribution. The probability that ofn players,
exactlym tie for the minimum value min(ξ1, . . . , ξn) is equal to

q(n :m) =
(n
m

)
xm(1− x)n−m

1− (1− x)n
, m = 1, . . . , n,

which is the binomial distribution conditioned on a positive value. Note that the
one-part or the pure singleton compositions appear forx = 1 orx ↓ 0, respectively.

It is the memoryless property which makes the geometric distribution work,
and sampling from any otherfixed distribution on integers would not produce a
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regenerative composition. Still, it is possible to preserve the regenerative feature
by randomizing the distribution in a very special way.

EXAMPLE 2 (Stick-breaking compositions [10, 15, 16, 22, 23, 39]). Let(Xk)

be independent copies of some random variableX with 0 < X ≤ 1. Think of Xk

as the probability of tails for thekth coin. Modify the algorithm in the previous
example by requiring that at roundk each of the remaining players must toss the
kth coin. It is easily seen that the resulting composition structure is regenerative.
Fixing a group ofn players and conditioning on the number of players that drop
out at the first coin-tossing trial, we obtain the recurrence

q(n : m) =
(

n

m

)
E

(
Xm(1− X)n−m) + E(1− X)nq(n :m),

resulting in the decrement matrix

q(n :m) =
(n
m

)
E(Xm(1− X)n−m)

E(1− (1− X)n)
, m = 1, . . . , n,(11)

which says thatq(n : ·) is a mixture of binomial distributions conditioned on a
positive value.

For example, ifX is uniform on[0,1], thenq(n :m) = n−1, that is, a discrete
uniform distribution for eachn. More generally, ifX has a beta distribution with
parameters(1, θ), θ > 0, the decrement matrix becomes

q(n :m) =
(

n

m

) [θ ]n−m m!
[θ + 1]n−1n

,(12)

where

[θ ]n := θ(θ + 1) · · · (θ + n − 1)(13)

is a rising factorial. The corresponding partition structure is well known to be that
defined by the Ewens sampling formula [11]. The individual values of the players
are now only conditionally i.i.d., with conditional distribution

P(ξj = i|X1,X2, . . . ) = (1− X1) · · · (1− Xi−1)Xi.

Additional randomization allows the same composition structure to be defined
in another way. Mark the players by independent uniform[0,1] random vari-
ables(uj ), also independent of(Xk). Consider a random partition of[0,1] into
intervals by points

Yk = 1−
k∏

i=1

(1− Xi), k = 1,2, . . . .(14)

The number of intervals is finite ifP(X = 1) > 0 or infinite otherwise. Group
together those players whose individual marks fall in the samecomponent
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]Yk−1, Yk[ , and maintain the order of groups from the left to the right. This
sequential algorithm of random interval division is often referred to asstick-
breaking or as aresidual allocation model. Note that in the stick-breaking case
the partition of[0,1] has a first (leftmost) interval, a second interval, and so on.

EXAMPLE 3 (Brownian bridge [31]). Consider the partition of[0,1] by the
set of zeros of a Brownian bridge. This set is perfect, that is, a compact set
with no isolated points. Given a uniform sample(uj ), group together all sample
points which fall into the same excursion interval. This defines a composition
structure which is regenerative, by a self-similarity property of the set of zeros.
The decrement matrix is described later by (39) forα = θ = 1/2. Unlike the stick-
breaking case, there is no leftmost interval.

EXAMPLE 4 (Brownian motion, meander case [31]). Same as Example 3, but
we take the set of zeros of a Brownian motion on[0,1]. The collection of intervals
is not simply ordered, but there is a definite last (i.e., rightmost) interval, known as
themeander interval, whose right endpoint is 1. The decrement matrix is described
by (39) forα = 1/2, θ = 0.

EXAMPLE 5 (Myriads of singletons). Fix d> 0 and a distribution ofX on
]0,1]. Modify the stick-breaking partition of Example 2 by assuming two types
of independent residual allocations. At each odd step the stick is broken with
residual measure beta(1,d−1), and at each even step the stick is broken according
to X. That is, consider independent random variablesZ1,X1,Z2,X2, . . . with

Zi
d= beta(1,d−1) andXi

d= X, and define

Y2k+1 = 1− (1− Zk+1)

k∏
j=1

(1− Zj)(1− Xj),

Y2k = 1− (1− Xk)(1− Zk)

k−1∏
j=1

(1− Zj)(1− Xj).

Consider a random closed set̃R which includes endpointsY0 := 0 and 1 and the
union of intervals[Y2k, Y2k+1], k = 0,1, . . . . If P(X = 1) = 0, the interval partition
has infinitely many components.

Draw an independent sample of uniform points(uj ) and define a composition
by requiring that the sample points which hit components[Y2k, Y2k+1] of R̃
become singletons, while all those which fall in a particular gap]Y2k+1, Y2k+2[
are grouped together. Forn large, a typical composition ofn will start with a
myriad of singleton parts 1,1, . . . ,1 whose number is of the order ofn, followed
by one part whose size is of the order ofn, followed by a myriad, and so on.
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Form > 1, conditioning on the number of sample points out ofn which fall into
]Y1, Y2[ leads to a recursion

q(n :m) =
(

n

m

)
E

(
(1− Z)nXm(1− X)n−m) + E

(
(1− Z)n(1− X)n

)
q(n :m),

which impliesq as in (11), but with additional termnd in the denominator.
The total asymptotic frequency of myriads, sayf , is equal to the Lebesgue

measure of̃R and satisfies a distributional equation

f
d= Z1 + (1− Z1)(1− X1)f

′,(15)

wheref ′,Z1,X1 are independent andf ′ d= f . Analysis of this equation shows that
the moments off are given by a simple formula which we record later in (32).

5. General representation.

Background on subordinators and regenerative sets. Let d ≥ 0 andν be a
measure on]0,∞] satisfying∫ ∞

0
min(1, z)ν(dz) < ∞.(16)

Here, and henceforth, the integral is over the closed interval[0,∞]. There is no
mass at 0, but we allow the case whenν gives a positive mass toz = ∞. We
also require that either d orν be nonzero. Consider a Poisson point process on
[0,∞[×[0,∞] with intensity measure Lebesgue×ν. Denoting a generic point of
the process(τj ,�j ), define the process

St = dt + ∑
τj≤t

�j , t ≥ 0.(17)

The process(St ) is asubordinator, that is, a Lévy process with increasing càdlàg
paths, withS0 = 0 andSt ↑ ∞. For ρ > 0, let �(ρ) be the Laplace exponent of
the subordinator defined forρ ≥ 0 by

E[exp(−ρSt)] = exp[−t�(ρ)].
Let ν(dz) be the Lévy measure associated with the subordinator, and letν̃(dx)

be the image ofν via the transformationx = 1 − e−z. According to the Lévy–
Khintchine formula,

�(ρ) =
∫ ∞

0
(1− e−ρz)ν(dz) + ρd(18)

=
∫ 1

0

(
1− (1− x)ρ

)
ν̃(dx) + ρd(19)

=
∫ 1

0
ρ(1− x)ρ−1ν̃[x,1] dx + ρd.(20)
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Let

R = {St , t ≥ 0}cl

be theclosed range of the subordinator. For a random closed subsetR of [0,∞],
let

G(R, t) := supR ∩ [0, t] and D(R, t) := inf R∩]t,∞](21)

with the usual conventions sup∅ = 0 and inf∅ = ∞. Following [5] and [28],
call R regenerative if for each t ∈ [0,∞[ , conditionally on{D(R, t) < ∞}, the
random set(R − D(R, t)) ∩ [0,∞] is distributed likeR and is independent of
[0, D(R, t)] ∩ R. The following representation of regenerative sets is fundamen-
tal:

THEOREM 5.1 ([28]). The closed range R of a subordinator (St ) is a
regenerative random subset of [0,∞]. Moreover, every regenerative random
subset R of [0,∞] has the same distribution as the closed range of some
subordinator (St , t ≥ 0), whose Laplace exponent � is uniquely determined up
to constant multiples.

Standard exponential sampling. Let (εj ) be a sequence of independent
standard exponential variables, independent of the subordinator(St ), and let
ε1n, . . . , εnn be the firstn sample pointsε1, . . . , εn arranged in increasing order.
Define a partition of the set{1, . . . , n} into blocks of consecutive integers by letting
j andj +1 belong to different blocks iff the closed interval[εjn , εj+1,n] contains
some point ofR, for j < n. Note, in particular, that{j} is a singleton block if
εjn ∈ R. Define a compositionCn of n by the sequence of counts of block-sizes of
this random partition of{1, . . . , n} into blocks of consecutive integers, from the left
to the right. It is obvious by construction that(Cn) is a composition structure, call
it thecomposition structure derived from the subordinator by standard exponential
sampling.

Introduce the binomial moments

�(n :m) =
(

n

m

)∫ ∞
0

(1− e−z)me−(n−m)zν(dz) + nd1(m = 1)(22)

=
(

n

m

)∫ 1

0
xm(1− x)n−mν̃(dx) + nd1(m = 1),(23)

for ν̃(dx) the image ofν(dz) via x = 1−e−z, as in (18) and (19). Note by (16) that
the integrals are finite for 1≤ m ≤ n, and that these quantities are linearly related
to the Laplace exponent� by the elementary identities

�(n) =
n∑

m=1

�(n :m), n = 1,2, . . . ,(24)

�(n : m) =
(

n

m

) m∑
j=0

(−1)j+1
(

m

j

)
�(n − m + j), 1≤ m ≤ n,(25)



456 A. GNEDIN AND J. PITMAN

where�(0) = 0.

THEOREM 5.2. (i) The composition structure derived from a subordinator by
standard exponential sampling is regenerative, with decrement matrix

q(n :m) = �(n :m)

�(n)
.(26)

(ii) Every regenerative composition structure can be so derived from some
subordinator.

(iii) The Lévy data (d, ν) of the subordinator is determined uniquely up to a
positive factor by the regenerative composition structure.

To prepare for the proof, we start by recalling some known facts about the
passage of a subordinator across an independent exponential level.

LEMMA 5.3 ([31]). Let ε be an exponential random variable with rate ρ,
independent of R, which is the closed range of a subordinator (St ) with Laplace
exponent �. Let Gε := G(R, ε), Dε := D(R, ε) and �ε := Dε − Gε, so that
almost surely �ε is the length of the interval component of [0,∞] \ R which
covers ε, with �ε = 0 if ε ∈ R. The random variables Gε and �ε are independent,
with Laplace transforms

Eexp(−sGε) = �(ρ)

�(s + ρ)
, Eexp(−s�ε) = �(s + ρ) − �(s)

�(ρ)
.(27)

Note that the second formula in (27) is equivalent to

P(�ε ∈ dz) = (1− e−ρz)ν(dz) + ρdδ0(dz)

�(ρ)
,(28)

whereδ0 is a unit mass at 0.

PROOF OF THEOREM 5.2(i). The regenerative property of the composition
structure derived from a subordinator follows easily from the memoryless property
of exponential distribution and the regenerative property ofR at time D1n :=
D(R, ε1n). To derive (26), observe thatε1n is exponential with raten and, by
the construction,

q(n :m) = P(D1n ∈ [εmn, εm+1,n])
(with the conventionεn+1,n = ∞). Let G1n := G(R, ε1n) and�1n := D1n − G1n.
By Lemma 5.3,�1n has distribution (28) forρ = n. Moreover, given�1n = z with
z > 0, the random variableε1n − G1n is distributed like exponential variableε(n)
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with raten conditioned onε(n) < z. So the probability thatε1n hits the closed
rangeR of the subordinator (causing a singleton) is

P(D1n = ε1n) = P(�1n = 0) = nd

�(n)
(29)

and given the complementary event thatε1n missesR, with ε1n − G1n = x > 0
and�1n = z > x, the conditional probability thatD1n ∈ [εmn, εm+1,n] equals(

n − 1
m − 1

)(
1− e−(z−x))m−1

e−(z−x)(n−m).

So the probability thatε1n finds a gap inR, and exactlym of the n exponential
variablesε1, . . . , εn fall in that gap, is

1

�(n)

∫ ∞
0

ν(dz)

∫ z

0
ne−nx dx

(
n − 1
m − 1

)(
1− e−(z−x))m−1

e−(z−x)(n−m)

= 1

�(n)

(
n

m

)∫ ∞
0

e−(n−m)z(1− e−z)mν(dz)

by application of the formula
∫ z
0 me−mx(1 − ez−x)m−1 dx = (1 − e−z)m, which

has an immediate interpretation in terms of the order statistics ofm independent
exponential variables. Now (26) follows becauseq(n :m) is given by the above
formula form > 1 and has the additional termnd/�(n) from (29) form = 1. �

To prepare for the proof of the rest of Theorem 5.2, we record a sequence of
four preliminary results. The first is elementary.

LEMMA 5.4. For 1 ≤ m ≤ n, let �(n :m) and �(n) be real variables related
by (25),with �(0) = 0. Then the identity (24) holds. Moreover, (25), for 1 ≤ m ≤
n ≤ n′, implies the recursion

�(n :m) = m + 1

n + 1
�(n + 1 :m + 1)

+ n − m + 1

n + 1
�(n + 1 :m), 1≤ m ≤ n < n′.

(30)

Conversely, (30)and (24), for 1 ≤ n ≤ n′, imply (25).

A sequence�, such that�(n :m) defined by (25) is nonnegative for alln andm,
is known as acompletely alternating sequence [4], and there is the following
integral representation of such sequences:

PROPOSITION 5.5 ([4], Proposition 6.12 fork = 1, page 134). A sequence
(�(n), n ≥ 0), with �(0) = 0 and �(n) > 0 for n > 0, is such that all entries
�(n :m) defined by (25) are nonnegative if and only if there is the integral
representation (19) for some measure ν̃ on ]0,1] and d ≥ 0. Moreover, ν̃ and d
are uniquely determined by �.



458 A. GNEDIN AND J. PITMAN

LEMMA 5.6. Suppose that a sequence of numbers (�(n), n ≥ 0) with
�(0) = 0 satisfies �(n) > 0 for some n ≤ n′, and is such that each entry
�(n :m),1≤ m ≤ n ≤ n′, of the matrix (25) is nonnegative. Then �(n) > 0 for all
1≤ n ≤ n′, and the entries of the matrix (26)with 1≤ m ≤ n ≤ n′ are nonnegative
and satisfy (10) for this range of indices. Moreover, if the entries �(n :m) of the
matrix (25) are nonnegative for arbitrary n, then (26) is the decrement matrix of
some regenerative composition structure.

PROOF. We apply Lemma 5.4. Dividing (30) by�(n + 1) and substituting it
in the to-be-checked (10), we transform it by elementary algebra to

�(n + 1 : 1) = (n + 1)
(
�(n + 1) − �(n)

)
,

which is true as a special case of (25).�

LEMMA 5.7. The decrement matrix of a regenerative composition structure
can be represented in the form (26),by a matrix (�(n :m),1 ≤ m ≤ n < ∞) with
nonnegative entries satisfying (30) and (24). The matrix � is determined by q

uniquely up to a positive factor.

PROOF. The statement is only nontrivial when 0< p(n) < 1 for n ≥ 2. So
let us consider a decrement matrix with entries 0< q(n :m) < 1 for n > 1. Fix n′
and set by definition�(n′ :m) := q(n′ :m) for m = 1, . . . , n′. Consider the unique
solution (�(n :m),1 ≤ m ≤ n < n′) to (30) with the valuesq(n′ :m) at leveln′.
Becauseq(n′ :m) > 0, it is easily seen that�(n :m) > 0 for 1≤ m ≤ n ≤ n′ and,
therefore,�(n) := �(n : 1)+· · ·+�(n :n) > 0 for n < n′ [and�(n′) = 1]. By the
first assertion of Lemma 5.6 and the remark before, the elements�(n :m)/�(n)

satisfy the recursion (10) forn < n′, and forn = n′, they coincide withq(n′ :m).
Thus, by the uniqueness of solutions to (10) forn < n′ with given values at leveln′,
we conclude thatq(n :m) coincides with�(n :m)/�(n) for all 1≤ m ≤ n ≤ n′.

Keepingn′ fixed, suppose there is another representationq(n :m) = �̂(n :m)/

�̂(n), n ≤ n′, then�̂(n′ :m) = �̂(n′)q(n′ :m), thus, arguing as above and using
linearity, we get �̂(n :m) = �̂(n′)�(n :m) for 1 ≤ m ≤ n ≤ n′. Thus, the
representation for givenn′ is unique up to a multiple, and it becomes unique
subject to a normalization constraint.

Assuming the normalization�(1 : 1) = 1, the finite matrices(�(m :n),1≤ m ≤
n ≤ n′) constructed for eachn′ are consistent asn′ varies, by the uniqueness
for each particularn′, thus, they constitute an infinite matrix and the desired
representation follows.�

PROOF OF THEOREM 5.2(ii) AND (iii). These results follow immediately
from Lemma 5.7 and Proposition 5.5.�

For an alternative proof of (ii), see [17]. Also, (iii) can be deduced from
Theorem 5.1 and a general fact about composition structures ([13], Corollary 12).



REGENERATIVE COMPOSITION STRUCTURES 459

Class frequencies. If the regenerative composition structure(Cn) is derived
from a subordinator by standard exponential sampling, the associated composi-
tion C∗ of the infinite setN is simply constructed by assigningi andj to different
classes iff the closed interval with endpointsεi andεj intersectsR. The ordering
of classes is maintained according to the order of theεj associated with the classes.
The random set of positive integersj whoseεj falls in a particular interval com-
ponent ofRc := [0,∞] \ R forms apositive class, while eachj whoseεj hits R
forms a singleton class. By the law of large numbers, the probability assigned to an
interval component ofRc by the standard exponential distribution is thefrequency
of the corresponding class ofC∗, that is, the almost sure limit asn → ∞ of the pro-
portion of elements of[n] which belong to the class. For instance, if]a, b[⊂ Rc

is the interval component which coversε1, then for largen, the class ofC∗
n con-

taining element 1 will have approximatelyn(e−a − e−b) elements, so there will be
some part ofCn of this size. We note the following corollary of Theorem 5.2:

COROLLARY 5.8. Let f denote the random frequency of the union of all
singleton classes in the exchangeable random partition of N associated with a
regenerative composition structure with decrement matrix (26).Then

f = d
∫ ∞

0
exp(−St ) dt,(31)

where (St ) is the associated subordinator with Laplace exponent � and d is
the drift coefficient of (St ), and the distribution of f on [0,1] is determined by the
moments

E(f n) = n!dn∏n
i=1 �(i)

, n = 1,2, . . . .(32)

PROOF. The derivation from(St ) by standard exponential sampling gives

f =
∫ ∞

0
e−z1(St = z for somet ≥ 0) dz

and (31) follows by the change of variablez = St . This change of variable
follows by noting that the functiont �→ St is almost everywhere differentiable
with derivative d. Formula (32) can now be read from the work of Carmona, Petit
and Yor ([8], Proposition 3.3), or derived from (15).�

Extensive discussion of the exponential functional
∫ ∞
0 exp(−St ) dt is found

in [6, 23]. See [19] for further applications to regenerative composition structures.

6. Multiplicatively regenerative sets. By mapping [0,∞] onto [0,1] via
z �→ 1− e−z, we transform a subordinator(St ) into amultiplicative subordinator
S̃t := 1−exp(−St ): for t ′ > t , the ratio(1− S̃t ′)/(1− S̃t ) has the same distribution
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as 1− S̃t ′−t and is independent of(Su,0 ≤ u ≤ t). This construction appears also
in [9, 16, 23]. The counterpart of (17) is

S̃t = 1− e−dt
∏
τj≤t

(1− �̃j ),

where�̃j = 1−exp(−�j) and the product is over the atoms(τj , �̃j ) of a Poisson
point process in the strip[0,∞[×[0,1], with intensity measure Lebesgue×ν̃,
whereν̃ is the image of the measureν via z �→ 1 − e−z. Note that the mapping
preserves order, so that(S̃t ) increases from 0 to 1.

Let R̃ := 1 − exp(−R) be the closed range of the multiplicative subordinator
(speaking of closed subsets of[0,1], we shall always mean that the points
0 and 1 are contained in the set). The transformationz �→ 1 − e−z takes an
exponential sample(εj ) into a uniform sample(uj ). The regenerative composition
structure(Cn) derived from the subordinator(St ) by exponential sampling can
now be described as follows:Cn is induced by separating the firstn uniform
variablesuj by the points ofR̃. Note that the frequencies of positive classes
derived from(Cn) now coincide with the lengths of open interval components
of R̃c = [0,1] \ R̃, and remaining frequency of singletonsf , as in Corollary 5.8,
is the Lebesgue measure of̃R.

For a closed subsetR of [0,1] andz ∈ [0,1[ such thatR ∩]z,1[ �= ∅, we can
define another closed set

R(z) :=
{
y − D(R, z)

1− D(R, z)
:y ∈ R ∩ [D(R, z),1]

}
,(33)

which is the part ofR strictly to the right ofD(R, z), scaled back to[0,1].
DEFINITION 6.1. A random closed set̃R ⊂ [0,1] is calledmultiplicatively

regenerative if, for eachz ∈ [0,1[ , conditionally on{D(R̃, z) < 1} the random
setR̃(z), defined as in (33), is independent of[0,D(R̃, z)] ∩ R̃, and has the same
distribution asR̃.

The following proposition is easily checked:

PROPOSITION 6.2. For random closed sets R̃ ⊂ [0,1] and R ⊂ [0,∞]
related by R̃ = 1 − exp(−R), the random set R is regenerative iff R̃ is
multiplicatively regenerative.

As a variation of Corollary 6.5, a condition for multiplicative regeneration of a
random closed subset̃R of [0,1] can also be given in terms of a single independent
uniform variable.

We associate each composition(n1, . . . , nk) of n with the finite closed set whose
points are partial sums of the parts ofn1, . . . , nk divided byn; for example, the
composition(4,2,3,1) of 10 is associated with the set{0,0.4,0.6,0.9,1}. Thus,
a composition structure(Cn) is associated with a sequence of random sets(R̃n).
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LEMMA 6.3 ([13]). Let (Cn) be a composition structure and let (R̃n)

be the associated sequence of random sets. Then R̃n converges almost surely (in
the Hausdorff metric) to some random closed subset R̃, and (Cn) is distributed as
if by using R̃ to separate the points in a random sample of uniform [0,1] variables
independent of R̃.

From Theorem 5.2, Proposition 6.2 and Lemma 6.3 we deduce the following:

COROLLARY 6.4. The composition structure (Cn) is regenerative iff R̃ is
multiplicatively regenerative.

As indicated in [17], it is also possible to prove Corollary 6.4 directly, and then
retrace the above argument to obtain an alternate proof of Theorem 5.2.

A sufficient condition for regeneration. We note that in the usual definition of
a regenerative random subsetR of [0,∞], as in Section 5, the independence of the
two random setsRt := (R − D(R, t)) ∩ [0,∞] and[0,D(R, t)] ∩ R, for all t ,
can be replaced by the apparently weaker condition of independence of the random
setRt and the random variableD(R, t) for all t . This is due to the following result:

COROLLARY 6.5. Let R be a random closed subset of [0,∞], let ε be
an exponential random variable with rate 1 independent of R, and let Rε :=
(R − D(R, ε)) ∩ [0,∞]. If Rε

d= R and Rε is independent of D(R, ε), then
R is regenerative.

PROOF. Let (Cn) be the composition structure derived fromR by the standard
exponential sampling with variables(εj ). Then splitCn = (C<

n ,C>
n ), whereC<

n is
the sequence of nonzero numbers ofεj , for 1≤ j ≤ n, falling in complementary
intervals ofR up to and including the count in the interval containingε1. This
splitting ofCn is the example preceding Proposition 3.2, hence, by the assumption
on R and the memoryless property of the exponential distribution, it satisfies
the assumption of Proposition 3.2. The conclusion now follows by application of
Proposition 3.2, Theorem 5.2, Corollary 6.4 and Proposition 6.2.�

7. Parametrization of decrement matrices. The representationq(n :m) =
�(n :m)/�(n) provides one parametrization of the regenerative composition
structures in terms of a sequence(�(n), n ≥ 1). To be probabilistically meaning-
ful, this must be the sequence of evaluations of some Laplace exponent at positive
integer values. But we may also regard the expressions forq(n : m) as a collection
of rational functions in variables�(n),n ≥ 1. This section presents some alter-
native parametrizations of regenerative composition structures, and discusses their
probabilistic and algebraic relations to each other.
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7.1. Structural moments. One meaningful collection of parameters is the
sequence of diagonal entries

p(n) = q(n :n),

which starts withp(1) = 1. We call these diagonal entries of the decrement matrix
the structural moments of composition structure, as they coincide with moments
of thestructural distribution �:

p(n) =
∫ 1

0
xn−1�(dx),

where � is the distribution of the length of the interval component ofR̃c

containing a given uniform sample point, sayu1. This random length is the
frequency of the class ofC∗ containing element 1, that is, a size-biased pick from
the collection of frequencies [33]. Note from (29) and (19), or from Corollary 5.8,
that the expectation of the total frequency of singletonsf = Lebesgue(R̃) is the
measure assigned by� to 0:

E(f ) = �({0}) = d/�(1) = d
/(

d+
∫ 1

0
xν̃(dx)

)
.

Fromp(n) = �(n :n)/�(n), by expanding the numerator by (25), we obtain a
relation

�(n)
(
p(n) + (−1)n

) =
n−1∑
j=1

(−1)j+1
(

n

j

)
�(j),(34)

which may be seen as a recursion for�(n),n = 1,2, . . . . Assuming the initial
value�(1) = 1, the recursion has a unique solution, which is necessarily positive
by Lemma 5.7. Thus, the recursion (34) allowsq to be recovered fromp(n),

n = 1,2, . . . , by first recursively computing�(n),n = 1,2, . . . , then �(n :m)

from (25) and, finally, using (26). Thus, we have proved the next proposition.

PROPOSITION 7.1. A regenerative composition structure is uniquely deter-
mined by the structural moments p(n) = q(n :n) for n = 1,2, . . . . Each q(n :m),
for 1 ≤ m ≤ n, is expressible as a rational function in the variables p(1) = 1,

p(2), . . . , p(n).

To illustrate the result, the first few entries are

q(2 : 1) = 1− p(2),

q(3 : 1) = 1− 3p(2) + 2p(3)

1− p(2)
,

q(3 : 2) = 2p(2) − 3p(3) + p(2)p(3)

1− p(2)
,
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q(4 : 1) = 1− 5p(2) + 8p(3) − 4p(2)p(3) − 3p(4) + 3p(2)p(4)

1− 2p(2) + 2p(3) − p(2)p(3)
,

q(4 : 2) = 3p(2) − 9p(3) + 6p(2)p(3) + 6p(4) − 9p(2)p(4) + 3p(3)p(4)

1− 2p(2) + 2p(3) − p(2)p(3)
,

q(4 : 3) = 3p(3) − 3p(2)p(3) − 4p(4)

1− 2p(2) + 2p(3) − p(2)p(3)

+ 8p(2)p(4) − 5p(3)p(4) + p(2)p(3)p(4)

1− 2p(2) + 2p(3) − p(2)p(3)
.

The complexity of such formulas increases rapidly withn.
In general, structural moments do not determine a composition structure

uniquely, because they do not even determine the associated partition structure.
See [33] for further discussion. Since uniqueness does hold in the special case
of regenerative composition structures, it is natural to seek a characterization of
structural moments in this case. There is the following immediate consequence
of Proposition 7.1 and Lemma 5.6:

COROLLARY 7.2. A sequence p(n), n = 1,2, . . . , with p(1) = 1 and
0 < p(n) < 1 for n > 1, is a sequence of structural moments of some regenera-
tive composition structure if and only if the following conditions are fulfilled:

(i) the sequence �(n),n = 1,2, . . . , defined by the recursion (34) with
�(1) = 1, is positive, and

(ii) each �(n :m),1≤ m ≤ n < ∞ defined by (25), is nonnegative.

If this is the case,

p(n) =
∫ 1
0 xnν̃(dx)∫ 1

0 (1− (1− x)n)ν̃(dx) + nd
, n > 1,

for some d≥ 0 and some measure ν̃ on ]0,1] with finite first moment.

REMARK. We know thatp(n), n = 1,2, . . . , is a moment sequence from the
general facts about partition structures, or from the interpretation ofp(n) as the
probability thatn balls fall in the same box. From an analytical perspective, it does
not seem obvious that the nonlinear tranform given byp(n) = �(n :n)/�(n),

n = 1,2, . . . , indeed, yields a completely monotonic sequence for arbitrary
Laplace exponent.

Because the structural moments are determined by the (unordered) partition
structure, Proposition 7.1 and Kingman’s representation of partition structures [26]
imply the following:
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COROLLARY 7.3. Each distribution of an infinite exchangeable partition
of N (which can be identified with a partition structure) corresponds to, at most,
one regenerative composition structure. Equivalently, for each distribution of a
decreasing sequence (Yj ) with Yj ≥ 0 and

∑
Yj ≤ 1, there exists, at most, one

distribution for a multiplicatively regenerative set R̃ ⊂ [0,1] such that the ranked
lengths of interval components of R̃c are distributed like (Yj ).

A constructive method to verify if a given exchangeable partition ofN is
induced by a regenerative composition structure amounts to computingq from
the structural moments, and then checking that the given EPPF coincides with the
EPPF computed by (6) and (4).

The general problem of characterizing structural distributions of partition
structures was posed by Pitman and Yor [36]. The characterization of structural
distributions of regenerative composition structures provided by Corollary 7.2
leaves open the following question: given the collection of structural moments
of a regenerative composition, or given its Laplace exponent�, describe in some
way how the classes of the associated unordered partition should be arranged to
produce the composition? We answer some restricted forms of this question in the
next section, but do not see how to answer it in any generality.

7.2. Singleton probabilities. Instead of the event “n balls fall in same box,”
consider the event “n balls fall inn different boxes.” Lete(n) be the probability of
this event, that is,

e(n) := p(1,1, . . . ,1) = q(n : 1)q(n − 1 : 1) · · ·q(2 : 1).

By the definition and from the representation (26), we derive

e(n)

e(n − 1)
= q(n : 1) = n

(
1− �(n − 1)

�(n)

)
,

which can be read as

�(1)

�(n)
=

n∏
j=2

(
1− e(j)

je(j − 1)

)
.(35)

This shows that any one of the sequences(e(n), n > 0), (q(n : 1), n > 0) or
(�(n)/�(1), n > 0) uniquely determines each of the other two sequences.

As is seen from (25) and (35), in the variablesq(n : 1), n = 1,2, . . . , the
elements of decrement matrix become polynomials

q(n : m) =
(

n

m

) m∑
j=0

(−1)m−j+1
(

m

j

) j−1∏
k=0

(
1− q(n − k : 1)

n − k

)
,(36)
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to be compared with the rational functions of structural moments considered in
Section 7.1. For example,

q(4 : 2) = 2q(3 : 1) − 3
2q(4,1) − 1

2q(3 : 1)q(4 : 1).

The definition ofe(n) makes sense for a general partition structure. Thus,
to check if a given partition structure is induced by a regenerative composition
structure, we can use the above formulas to translatee(n), n > 0, into q and then
compare the EPPF resulting from (6), (4) with the given EPPF. In particular,
if a regenerative rearrangement is possible, the sequences(p(n), n > 0) and
(e(n), n > 0) must be computable from each other, as appears by eliminating the
variables� from p(n) = �(n :n)/�(n) and (35).

8. The two-parameter family.

8.1. General setup. Consider the(α, θ)-partition structure determined by
following formula of [30, 33] for the distribution of�n, an exchangeable partition
of [n]: for each particular partitionπ of [n] into k classes of sizesn1, . . . , nk,

P(�n = π) =
∏k−1

i=1(θ + αi)

[1+ θ ]n−1

k∏
i=1

[1− α]ni−1,(37)

where the notation (13) is used for rising factorials. This formula defines a partition
structure for 0≤ α < 1 andθ ≥ 0, and also for some(α, θ) with eitherα < 0 or
θ < 0. We wish to establish if this partition structure can be associated with some
regenerative composition structure.

Following the method in Section 7, we first computee(n) as a special case
of (37):

e(n) = p(1,1, . . . ,1) =
n−1∏
j=0

θ + αj

θ + j
,

which leads by application of (35) to

�(n)

�(1)
= n[θ + 1]n−1

[2+ θ − α]n−1
.(38)

This yields, by virtue of (30) or (25), the formula

�(n :m)

�(1)
=

(
n

m

) [1− α]m−1

[2+ θ − α]n−1

[θ + 1]n−1

[θ + n − m]m
(
(n − m)α + mθ

)
.

Therefore,

q(n :m) = �(n :m)

�(n)
=

(
n

m

) [1− α]m−1

[θ + n − m]m
((n − m)α + mθ)

n
.(39)



466 A. GNEDIN AND J. PITMAN

Sinceq in (39) is nonnegative exactly when 0≤ α < 1 andθ ≥ 0, we conclude that
q is the decrement matrix of a regenerative composition structure for precisely this
range of parameters.

Observe that the resulting formula

p(n) = q(n :n) = [1− α]n−1

[1+ θ ]n−1
(40)

yields the moments of beta(1 − α,α + θ), which is the structural distribution for
all members of the two-parameter family of partition structures.

Adopting the normalization�(1) = B(1− α,1+ θ), where

B(a, b) := �(a)�(b)/�(a + b),

the Laplace exponent extending (38) becomes

�(s) = sB(1− α, s + θ).(41)

The corresponding measure is determined by the formula

ν̃[x,1] = x−α(1− x)θ , 0< x < 1.(42)

It remains to check that the partition structure induced by this regenerative
composition structure is given by (37). This is done in the following theorem:

THEOREM 8.1. For 0≤ α < 1 and θ ≥ 0, the distribution of the exchangeable
random partition �n of [n] derived from the regenerative composition structure
with Laplace exponent (41) is that of an (α, θ) partition defined by (37).For other
values of (α, θ), besides the limiting case (1, θ) for θ ≥ 0 which generates the pure
singleton partition, there is no regenerative composition structure which generates
an (α, θ)-partition structure.

PROOF. By the above discussion we can restrict consideration to the case
0 ≤ α < 1 and θ ≥ 0. By application of formulas (4), (6) and (39), the EPPF
derived from the regenerative composition structure with Laplace exponent (41)
is a sum ofk! terms of the form

1

[θ ]n
k∏

i=1

[1− α]ni−1
(Ni − ni)α + niθ

Ni

,

where the sequence(n1, . . . , nk) and its tail sumsNi = ∑k
j=i nj must be replaced

by permutations of the sequence and correspondingly transformed tail sums. To
match up with (37), it just has to be checked that the corrresponding sum ofk!
terms derived from

k∏
i=1

(Ni − ni)α + niθ

Ni((k − i)α + θ)
(43)

equals 1. But this is easily verified together with the probabilistic interpretation
given in the following corollary. �
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COROLLARY 8.2. In the setting of the previous theorem, given that the blocks
of �n are of sizes n1, . . . , nk when put in some arbitrary order, and given that the
first i − 1 of these blocks are the first i − 1 blocks of the ordered partition C∗

n , the
conditional probability that this coincidence continues for one more step is the ith
factor in (43).

Put another way, given block sizesn1, . . . , nk and that the firsti −1 blocks have
been picked to leave blocks of sizesnj , for i ≤ j ≤ k, the next block is the block
of indexj with probability proportional to(Ni − nj )α + njθ .

Several particular instances of the above results are known, as indicated in the
following discussion of special cases.

8.2. Case (0, θ) for θ ≥ 0. In this case the measureν̃ in (42) is a probability
measure, the beta(1, θ) distribution. So the above theorem and its corollary reduce
to the well-known fact that the ordered Ewens formula associated with beta(1, θ)

stick-breaking puts its parts in a size-biased random order [10].

8.3. Case (α,0) for 0< α < 1. In this case

ν̃(dx) = αx−α−1dx + δ1(dx)

is a measure with a beta density on]0,1[ and a unit atom at 1. The product
formula (6) reduces to

p(n1, . . . , nk) = nkα
k−1

k∏
j=1

[1− α]nj−1

nj ! ,

which is identical to the formula in [31], equation 28. By comparision of these
two formulas, the random composition in this case is identical in distribution to
that generated byRα ∩ [0,1], whereRα is the range of a stable subordinator
of index α. In particular,Rα can be realized as the zero set of a Bessel process
of dimension 2− 2α. For α = 1/2, this is the zero set of a standard Brownian
motion.

The decrement matrixq in this case has the special property that there is a
probability distributionf on the positive integers such that

q(n : m) = f (m) if m < n and q(n :n) = 1−
n−1∑
m=1

f (m).(44)

Specifically,

f (m) = α[1− α]m−1

m!(45)

and, hence,q(n :n) = [1−α]n−1/(n−1)!. The work of Young [40] shows that the
only nondegenerate regenerative composition structures with a decrement matrix



468 A. GNEDIN AND J. PITMAN

of the form (44), for some probability distributionf on the positive integers, are
those withf of the form (45), obtained by uniform sampling fromRα ∩ [0,1] for
some 0< α < 1.

The multiplicative regeneration property ofRα ∩ [0,1] is an immediate
consequence of the standard regeneration and self-similarity properties ofRα as
a subset of[0,∞]. It implies thatRα ∩ [0,1] has the same distribution as the
closure of{1 − exp(−St ), t ≥ 0}, where(St ) is a subordinator with no drift and
Lévy measure

ν(dz) = α(1− e−z)−α−1e−z dz + δ∞(dz)

on [0,∞], which is the image of̃ν via x �→ − log(1 − x), so ν has an atom of
mass 1 at∞.

As a check, letτ := inf{t :St = ∞}, which is the exponential time with rate 1
when the subordinator jumps to∞. Then, by application of the transformation
and the Lévy–Khintchine formula, if we letG := supRα ∩ [0,1[ , then we find for
s > 0,

E(1− G)s = E
(
exp(−sSτ−)

) = 1

�(s)
= B(1− α + s, α)

B(1− α,α)
.

This confirms the well-known fact that the distribution of 1− G is beta(1− α,α).
It may also be observed, using properties of the local time process(Lt , t ≥ 0)

associated withRα , as discussed in [29], that the exponential timeτ can be
represented as

τ = cα

∫ 1

0
(1− t)−α dLt ,

for some constantcα depending on the normalization of the local time process.
The fact that this local time integral has an exponential distribution was derived by
an analytic argument in [21], Corollary 3.4.

As discussed in [31], the length of the last interval component]G,1[ of
the complement toRα ∩ [0,1] is a size-biased pick from the collection of the
interval lengths, and conditionally onG, the remaining interval components are
in symmetric order; moreover, these properties are inherited by the compositions
of n for everyn. Corollary 8.2 in this case is new. It makes precise another sense in
which, given the partition ofn generated byRα ∩ [0,1[ , the smaller blocks tend
to come first in the composition ofn.

8.4. Case (α,α) for 0 < α < 1. Passing to the variablez = − log(1 − x), we
see from (42) that the associated regenerative subset of[0,∞] has zero drift and
Lévy measure

ν(dz) = α(1− e−z)−α−1e−αz dz, z ∈]0,∞[ .
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It can be read from [37] that such a regenerative set is generated as the zero set
of the squared Ornstein–Uhlenbeck process(Xt) of dimension 2− 2α driven by
the stochastic differential equationdXt = 2

√
Xt dBt + (2 − 2α − Xt) dt , where

(Bt ) is a standard Brownian motion, and that the image of this regenerative set
via x = 1 − e−z is the zero set of a Bessel bridge of dimension 2− 2α. In case
α = 1/2, this is a Brownian bridge, as in Example 3. In the notation introduced in
the discussion of the previous case, this corresponds to conditioningRα ∩ [0,1]
on the event 1∈ Rα . This can be rigorously understood by first conditioning on
G ∈ [1− ε,1] and then taking a weak limit asε ↓ 0. The decrement matrix in this
case has the special property that

q(n :m) = f (m) r(n − m)

r(n)
,(46)

wheref is given by (45) andr(n) = [α]n/n! is the probability that a random walk
on positive integers with step distributionf visitsn. Equivalently, the composition
probability function is

p(n1, . . . , nk) =
∏k

j=1 f (nj )

r(n)
(47)

or, more explicitly,

p (n1, . . . , nk) = n!
[α]n αk

k∏
j=1

[1− α]ni−1

ni ! .(48)

It follows from a result of Kerov [25] that the decrement matrix of a nondegenerate
regenerative composition structure can be expressed in the form (46) for some
functionsf andr iff it is of the form (48) for someα ∈]0,1[ . The same conclusion
is also a consequence of Theorem 10.1 in the next section. The conclusion of
Corollary 8.2 in this case is that, given the partition of[n], the block sizes appear
in Cn in a uniform random order. This can be seen directly from the symmetry of
formula (47) as a function of(n1, . . . , nk).

8.5. Case (α, θ) for 0 < α < 1, θ > 0. It is known [32, 36, 38] that an(α, θ)

partition ofN can be constructed as follows. First construct a(0, θ) partition ofN,
then shatter each class of this partition according to an independent(α,0) partition.
This operation restricts naturally to[n] for eachn, and can be interpreted in terms
of a fragmentation operation on the frequencies of classes. This result can be lifted
to the level of regenerative composition structures as follows.

THEOREM8.3. For 0 < α < 1 and θ > 0, let Y0 = 0 and let 0< Y1 < Y2 < · · ·
be defined by the independent stick-breaking scheme (14) for X with beta(1, θ)

distribution, let Rα(i) for i = 1,2, . . . be a sequence of independent copies of the
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range Rα of a stable subordinator, and define a random closed subset R̃(α,θ) of
[0,1] by

R̃(α,θ) = {1} ∪
∞⋃
i=1

([Yi−1, Yi] ∩ [Yi−1 + Rα(i)]).
Then R̃(α,θ) is a multiplicatively regenerative random subset of [0,1], which
can be represented as R̃(α,θ) = 1 − exp(−R(α,θ)), where R(α,θ) is the range
of a subordinator with Laplace exponent (41), and the composition structure
obtained by uniform random sampling from R̃(α,θ) is regenerative with decrement
matrix (39).

PROOF. It is easily checked, using the muliplicative regeneration of the stick-
breaking scheme, and the self-similarity ofRα , that R̃(α,θ) is multiplicatively
regenerative. The description of the Laplace exponent then follows from Propo-
sition 7.1, since the structural distribution is easily identified.�

The particular caseα = θ of Theorem 8.3 is largely contained in the work of
Aldous and Pitman [2]. In particular, forα = θ = 1/2, this construction of the
zero set of a Brownian bridge plays a key role in the asymptotic theory of random
mappings developed in [1] and [2].

9. The Green matrix. For a given composition probability function (1), the
Green matrix is defined by the formula

g(n, j) = ∑
λ|=n,j∈{Ni }

p(λ), 1≤ j ≤ n < ∞,

where the summation is over all compositionsλ = (n1, . . . , nk) |= n, which have
integer j among tail sumsNj = n − n1 − · · · − nj−1 (where we setn0 = 0).
Recalling the interpretation of a regenerative composition structure as a consistent
family of Markov chainsQn,n = 1,2, . . . , as in Section 3,g(n, j) is the chance
thatQn, with transition matrixq and initial staten, ever visits statej . In particular,
g(n,n) = 1.

EXAMPLE 6. For the two-parameter family we have, for 1≤ j ≤ n:

(i) for (0, θ),

g(n, j) = θ

j + θ
,

as is well known;
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(ii) for (α,0),

g(n, j) = [α]n−j

(n − j)! ,
which by (44) and (45) is the probability that a particular random walk with
negative increments started at leveln ever visits statej ;

(iii) for (α,α),

g(n, j) =
(n
j

)[α]j
(α + n − j) · · · (α + n − 1)

,

which is the probability of the same event for the random walk of the previous case
conditioned to hit 0.

LEMMA 9.1. The Green matrix of a regenerative composition structure is the
unique solution of the recursion

g(n, j) = j + 1− q(j + 1 : 1)

n + 1
g(n + 1, j + 1) + n + 1− j

n + 1
g(n + 1, j)(49)

with boundary condition g(n,n) = 1.

PROOF. The path of the chainQn, defining a composition ofn, is obtained
via random deletion of a state from 1,2, . . . , n+ 1, then restricting a path ofQn+1
to the undeleted states and re-labeling the states by ranking them from 1 ton.
The event “Qn visits j ” occurs when eitherQn+1 visits j and one of the states
j + 1, . . . , n + 1 is deleted (in which case statej retains the label) orQn+1 visits
j + 1 and one of the states 1, . . . , j + 1 is deleted (if statej + 1 is not deleted,
it changes the label toj ). The first event has probabilityg(n + 1, j)(n + 1 − j)/

(n + 1) and the secondg(n + 1, j + 1)(j + 1)/(n + 1). The events are not disjoint
and their intersection is the event “Qn+1 visits bothj + 1 andj , and statej + 1 is
deleted” which has probabilityg(n+1, j +1)q(j +1 : 1)/(n+1). The uniqueness
claim is obvious from the recursion.�

The next result gives an explicit formula for the Green matrix in terms of the
representation (26) via Laplace exponent.

THEOREM 9.2. The Green matrix of a regenerative composition structure is

g(n, j) = �(j)

(
n

j

) n−j∑
a=0

(
n − j

a

)
(−1)a

�(j + a)
.(50)

PROOF. In view of

q(j + 1 : 1) = (j + 1)

(
1− �(j)

�(j + 1)

)
,
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the first factor in the right-hand side of (49) equals(j +1)�(j)/((n+1)�(j +1)).
Substituting this and (50) into (49), and canceling the common factor

(n
j

)
�(j), the

to-be-checked recursion follows from the identity

�n−j+1s(j) = �n−j s(j + 1) − �n−j s(j),

where� is the forward difference operator�s(i) := s(i + 1) − s(i) ands is the
sequences(i) = 1/�(i) for i ≥ 1. �

We give one application of the formula. LetLn be the last part of Cn. In
the event{Ln = j}, the chainQn visits statej and then has the last positive
decrementj . The distribution of the last part follows from this observation
and (50):

P(Ln = j) = g(n, j)q(j : j) = �(j : j)

(
n

j

) n−j∑
a=0

(
n − j

a

)
(−1)a

�(j + a)
.(51)

In particular, normalizing by�(1) = 1 for simplicity,

P(Ln = 1) = n

[
1−

n∑
k=2

(
n − 1
k − 1

)
(−1)k

�(k)

]
.(52)

10. Symmetry. Each composition structure(Cn) has a dual(Ĉn), whereĈn is
the sequence of parts ofCn in reverse order. If(Cn) is derived by uniform sampling
from a random closed set̃R ⊂ [0,1], then Ĉn is derived similarly from 1− R̃.
If (Cn) is regenerative, and so is(Ĉn), then(Cn) and (Ĉn) must be identical in

distribution, by Corollary 7.3. Equivalently,̃R d= 1 − R̃, in which case we call
the composition structurereversible. Two degenerate examples are provided by
R̃ = {0}∪{1} andR̃ = [0,1]. The existence of regenerative composition structures
which are nondegenerate and reversible is quite surprising and counter-intuitive,
because the ideas of stick-breaking and multiplicative regeneration suggest that
typical interval sizes should decay in some sense from the left to the right.
However, it is evident from (47) that for every 0< α < 1, the regenerative
composition structure associated with an(α,α) partition is reversible. Indeed,
this composition structure issymmetric, meaning that the composition probability
function is a symmetric function of(n1, . . . , nk) with respect to all permutations
of the arguments, for eachk. The equivalent condition oñR is that the interval
components of the complement of̃R form an exchangeable interval partition
of [0,1], as defined in [3]. We note in passing that a large family of symmetric
composition structures was derived from the jumps of a subordinator in [34]. See
also [14].

THEOREM 10.1. Let (Cn) be the regenerative composition structure derived
by uniform sampling from a random closed set R̃ ⊂ [0,1]. Let Fn be the size of
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the first part of Cn, and let Ln be the size of the last part of Cn. The following
conditions are equivalent:

(i) P(Fn = 1) = P(Ln = 1) for all n;

(ii) Fn
d= Ln for all n;

(iii) (Cn) is reversible;
(iv) (Cn) is symmetric;
(v) (Cn) is the regenerative composition structure with EPPF (48),associated

with an (α,α) partition, as in Section 8.4 for some α ∈ [0,1].

Before the proof of this result, we read from Theorem 5.2 and the discussion of
Section 8.4 the following restatement of the equivalence of conditions (iii) and (v):

COROLLARY 10.2. For a random closed subset R̃ of [0,1], the following two
conditions are equivalent:

(i) R̃ is multiplicatively regenerative and R̃
d= 1− R̃.

(ii) R̃ is distributed like the zero set of a standard Bessel bridge of dimension
2− 2α, for some α ∈ [0,1].

PROOF OFTHEOREM10.1. According to (26), for any regenerative composi-
tion structure,

P(Fn = 1) = q(n : 1) = �(n) − �(n − 1)

�(n)/n
(53)

and (53) and (52) are obviously equal ifn = 1 or n = 2. We know that the
(α,α) regenerative composition structure is symmetric, hence, reversible. So for
�α(n) := [1+ α]n−1/(n − 1)!, the identityP(Fn = 1) = P(Ln = 1), together with
(53) and (52), yields

nα

n − 1+ α
= n − n

(−1)n

�α(n)
− n

n−1∑
k=2

(
n − 1
k − 1

)
(−1)k

�α(k)
.(54)

Suppose now that a regenerative composition structure is such thatP(Fn = 1) =
P(Ln = 1) for all n = 1,2, . . . , and let us prove by induction that its Laplace
exponent� normalized by�(1) = 1 is such that

�(s) = �α(s)(55)

for all s = 1,2, . . . , whereα ∈ [0,1] is defined by (55) fors = 2, that is,�(2) =
1+ α. According to (53) and (52), we have, for alln = 2,3, . . . , that

�(n) − �(n − 1)

�(n)/n
= n − n

(−1)n

�(n)
− n

n−1∑
k=2

(
n − 1
k − 1

)
(−1)k

�(k)
,(56)
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so if we make the inductive hypothesis that (55) holds for alls ≤ n − 1, then we
read from (54) and (56) that

�(n) − �(n − 1)

�(n)/n
= nα

n − 1+ α
+ n(−1)n

[
1

�α(n)
− 1

�(n)

]
,

which yields the expression

�(n) = (
�α(n − 1) − (−1)n

)/(
1− α/(n − 1− α) − (−1)n/�α(n)

)
.

But we know this formula holds for�(n) = �α(n), so this must be the unique
solution of the recursion, and the inductive step is established. Finally, the
sequence�(1),�(2), . . . determines�(s) for all s ≥ 0, by consideration of
the second formula in (19), and the fact that a finite measure on[0,1] is determined
by its moments. �

11. Transition probabilities. Transition probabilities describing the succes-
sion of random compositions(Cn) or ordered partitions(C∗

n) asn grows follow
at once from the product formula (6) for the composition probability function. For
ordered partitions of[n], these transition probabilities can be read immediately
from (3), as indicated in [23], Section 5.4.

Assuming thatC∗
n = (A1, . . . ,Ak), an ordered partitionC∗

n+1 of [n + 1] is
obtained either by inserting singleton block{n + 1} into the sequenceA1, . . . ,Ak

or by adjoining the elementn + 1 to one of the blocks. It is easy to compute that
n + 1 is inserted beforeA1 with probability

q(n + 1 : 1)

n + 1
or adjoined toA1 with probability

n1 + 1

n + 1

q(n + 1 :n1 + 1)

q(n :n1)
.

Inductively, with probability

j∏
i=1

(
1− q(Ni + 1 : 1)

Ni + 1
− ni + 1

Ni + 1

q(Ni + 1 :ni + 1)

q(Ni :ni)

)
,

n + 1 is neither inserted immediately before nor adjoined to one of the blocks
A1, . . . ,Aj , and conditionally on this event [and given(A1, . . . ,Ak)], this element
is inserted as a singleton immediately followingAj with probability

q(Nj+1 + 1 : 1)

Nj+1 + 1

or adjoined toAj+1 (for j < k) with probability

nj+1 + 1

Nj+1 + 1

q(Nj+1 + 1 :nj+1 + 1)

q(Nj+1 :nj+1)
.
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Here, theni are the sizes of theAi and theNi are as in (6).
A transition law for integer compositions follows from the above. It is exactly

the same as for the analogous ordered set partitions, with the exception of the case
when a composition ofn is changed by appending a 1 to a series of unit parts like
1,1, . . . ,1, in which case the transition probability is obtained by summation of
individual probabilities of all possible singleton insertions into the series.

12. Interval partitions. The above probabilities of the two kinds of transition
(insertion and joining) are equal to the expected sizes of intervals of a partition of
[0,1] induced by a uniform sample ofn points andR̃. From this viewpoint, a better
prediction of the “future” compositions arising when more points are added to the
sample is obtained by conditioning on the actual sizes of intervals.

At first we shall describe a somewhat simpler distribution of the interval sizes
for the [0,∞]-partition, which can be seen as discretization of a subordinator in
the spirit of [31], Sections 3 and 4. For eachn, a random setR and exponential
order statisticsε1n, . . . , εnn induce a partition of[0,∞] associated with finite
compositionCn. The partition is comprised of two kinds of parts: those containing
some sample points or not. The parts of the first kind are either open interval
components ofRc which contain at least one of theεjn’s, or one-point parts{εjn}
corresponding toεjn ∈ R and appearing with positive probability only for d> 0.
The parts of the second kind are the connected components (intervals or separate
points) of the set resulting from removing parts of the first kind. The parts of
different kinds interlace and ifCn has Kn classes, there are 2Kn + 1 pieces
of the partition, sayJ1n, I1n, . . . , JKn−1,n, IKn,n, JKn+1,n, which can be open or
semiopen intervals or one-point sets. LetG1n,H1n, . . . ,GKn−1,n,HKn,n,GKn+1,n

be the sizes of the parts, with slight abuse of language we will call them “intervals,”
with understanding that some of them can degenerate into a point.

THEOREM 12.1. The distribution of the random sequence G1n,H1n, . . . ,

GKn−1,n,HKn,n,GKn+1,n of interval sizes has the following properties:
(i) given the composition Cn, all interval sizes are conditionally independent,

(ii) G1n is independent of Cn and also independent of other interval sizes, and
has Laplace transform

Eexp(−sG1n) = �(n)

�(n + s)
,(57)

(iii) the unconditional distribution of H1n is given by

P(H1n ∈ dz) = 1− e−nz

�(n)
ν(dz) + nd

�(n)
δ0(dz),(58)

and given Cn, the analogous conditional distribution of H1n is(n
m

)
(1− e−z)me−(n−m)zν(dz) + nd1(m = 1)δ0(dz)

�(n :m)
,
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where m is the first part of Cn,
(iv) conditionally on the event that the first j − 1 parts of Cn sum up to m, the

truncated sequence Gjn,Hjn, . . . ,HKn,n,GKn+1,n is independent of the variables
G1n,H1n, . . . ,Gj−1,n,Hj−1,n and of the first j − 1 parts of composition Cn, and
has the same distribution as the interlacing sequence

G1,n−m,H1,n−m, . . . ,HKn−m−j,n−m,GKn−m−j+1,n−m

of interval sizes associated with the composition Cn−m of integer n − m.

PROOF. The independence claims involved in (i) and (iv) follow from the
memoryless property of the exponential distribution and the strong Markov
property of R̃ applied at the right endpoints of intervalsIj or Jj . Formulas
(57) and (58) follow from Lemma 5.3 and the second formula in (iii) follows by
routine conditioning. �

Mapping [0,∞] to [0,1] by z �→ 1 − e−z sends the partition of[0,∞] to a
partition of the unit interval, saỹJ1n, Ĩ1n, . . . , ĨKn, J̃Kn+1, which is the partition
induced by a uniform sample and a multiplicatively regenerative setR̃. The
probability law of the partition of[0,1] follows from Theorem 12.1. Thus, by
virtue of the identityE(1 − G̃1n)

s = Eexp(−sG1n), the Laplace transform (57)
becomes a Mellin transform. Similarly, the ratiõH1n/(1 − G̃1n) is independent
of G̃1n and has distribution

P

(
H̃1n

1− G̃1n

∈ dx

)
= 1− (1− x)n

�(n)
ν̃(dx) + nd

�(n)
δ0(dx).

The distribution of the rest intervals follows recursively, by scaling with factor
(1− G̃1n − H̃1n)

−1.
The sizes of these 2Kn + 1 intervals, saỹGjn andH̃jn , determine the law of

the extended composition when adding new sample points. For example,

EG̃1n = 1− E(1− G̃1n) = 1− �(n)

�(n + 1)
= �(n + 1 : 1)

(n + 1)�(n + 1)
,

which by (26) is equal toq(n + 1 : 1)/(n + 1) in accord with Section 11. The
sizes also have a transparent frequency interpretation in terms of the infinite
compositionC. For example,̃G1n is the total frequency of the classes ofC∗ strictly
preceding the first class represented inC∗

n , andH̃1n is the frequency of the first
class represented inC∗

n .

Tripartite decomposition of [0,1]. For n = 1, the partition consists of three
intervals J̃11 , Ĩ11, J̃21 of sizesG := G̃11,H := H̃11,D := G̃21. The variableH
is the frequency of the class of element 1 and its distribution is the structural
distribution. Similarly,G is the total frequency of classes strictly preceding the
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class of 1 inC∗, andD is the total frequency of classes strictly following the class
of 1.

Moments ofG,H andD have clear interpretation in terms of finite composi-
tions. Thus,

E(1− G)n−1 =
n∑

m=1

m

n
q(n :m) = �(1)

�(n)
(59)

is the probability that element 1 is in the first block ofC∗
n or, what is the same, that

a size-biased pick of a part fromCn yields the first part. Similarly,

EDn−1 = q(n : 1)

n
= �(n : 1)

n�(n)
(60)

is the probability that{1} is the first block ofC∗
n .

Furthermore, the random variableH can be written as a product of two
independent variables 1− G andH/(1− G), hence,

E

(
H

1− G

)n−1

= EHn−1

E(1− G)n−1 = �(n :n)

�(1)
,(61)

which is the conditional probability that the compositionC∗
n is trivial given 1 is in

the first block.
For joint moments we have the formula

EGi Hj−1Dk

=
(

i∑
a=0

(
i

a

)
(−1)a

�(a + j + k)

)(
k∑

b=0

(−1)b
(

j

b

)
�(j + b : j + b)

)
,

(62)

[the second sum may be further converted to variables�(1),�(2), . . .] which
follows from (59), (61) andEHn = p(n) = �(n :n)/�(n) by the binomial
expansion of

Gi Hj Dk = (
1− (1− G)

)j
(1− G)j+k

(
H

1− G

)j(
1− H

1− G

)k

.

The joint moments have the following interpretation. Let(A1,A2,A3) be an
ordered partition of[n], n = i + j + k, such that 1∈ A2 and the blocks are of sizes
i, j andk, respectively, withi ≥ 0, j ≥ 1 andk ≥ 0. Then (62) is the probability
thatA2 is a block ofC∗

n and(A1,A2,A3) is coarser thanC∗
n . It follows that(

n − 1
i, j − 1, k

)
EGiHj−1Dk

is the probability that a size-biased pick of a part ofCn is j , and this part
is preceded by a composition ofi and followed by a composition ofk (with
the obvious meaning wheni or k is zero). Fork = 0, this probability is equal
to (j/n)P(Ln = j), whereLn is the last part ofCn, computing this yields an
alternative proof for (51) and the formula for the Green matrix (50).
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NOTE ADDED IN PROOF. See also [19] and the following two articles [18, 20]
for further deveplopments.

Acknowledgment. Thanks to the referee for two careful readings of the paper,
and for a number of suggestions which helped to improve the exposition.
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