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CONCENTRATION OF NORMALIZED SUMS AND A CENTRAL
LIMIT THEOREM FOR NONCORRELATED
RANDOM VARIABLES!

BY SERGEY G. BoBkoOvV
University of Minnesota

For noncorrelated random variables, we study a concentration property
of the family of distributions of normalized sums formed by sequences of
times of a given large length.

1. Introduction. LetX = (X4,..., X,,) be a vector ofi random variables on
a probability spaceé2, P) such that, forall, j =1, ...,n,

(11) EX,'X‘/' = 8,"/',
whered;; is Kronecker’s symbol. Given a positive integek n, denote byg,, «

the family of all collections of indices = {i1, ..., i} of sizekwith1<i; <.-- <
ir <n.Toeveryr € §, , We associate a normalized sum

5 — Xi, + -+ X,
vk

and a corresponding distribution functidi(x) = P{S; < x}, x € R. In this paper

we show that, wheh is a large fixed number, most of the random varialSleare

“almost” equidistributed, that is, most @t 's are close to the average distribution
function

1
(1.2) F(x)= EZFz(x),

whereC,’; =card$,.x) = ﬁlk), stands for the usual combinatorial coefficients.
To study the rate of closeness, we use the Lévy distaige, F), which is defined

to be the infimum over alf > 0 suchthatF(x —8) -8 < F;(x) < F(x +68) +

for all x € R. In terms of the normalized counting measpre- t,, x ON Gy k, WE
have:

THEOREM1.1. Under (1.1),for all § > 0,
(1.3) plt:L(Fy, F) > 8} < Ck¥*exp(—cks®),
where C and ¢ are certain positive numerical constants.
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The property that, for a growing number of summakdmany F,’s approxi-
mate a “center’F may be viewed as a weak kind of a central limit theorem. In
general, however, the centéressentially depends dnand the distribution of the
underlying sequencs.

An analogous concentration property has been intensively studied in a number
of related randomized models. In a seminal work [31], as an application of the
isoperimetric theorem on the sphere, Sudakov established a concentration property
of distributions of the weighted sunggleejxj provided that the weight; are
randomly chosen as coordinates of a point on the unit Euclidean spHetdvith
respect to the uniform measure on the sphere). A different approach in the case of
normalized Gaussian weights was suggested by von Weizsacker [32]. Quantitative
versions with refinements for the rate of concentration in the case of log-concave
random vectorsX were obtained in [2, 5]; see also [8, 13, 14]. Multidimensional
random projections of were considered by Naor and Romik [28], who essentially
used a concentration inequality on the Grassmanian manifold.

As it turns out, the weights can be restricted to the férm-= % (cf. [6]). As
well as on the sphere, the latter model uses a specific dimension-free concentration
property on the discrete cube. Similarly, under the conditions of Theorem 1.1 we
are dealing with certain weights, namely of the form
€j
NG
where the sequence;) contains exactly 1's andn — k 0's. With respect to the
previous examples, this model seems to be closest to the classical, nonrandomized
version of the central limit theorem, since only usual sums of dgtare taken
into consideration. The concentration property (1.3) thus tells us that the resulting
sum does not depend, in essence, on the concrete times when the observations are
made.

Moreover, under certain natural assumptions on random variahlethe aver-
age distributionF must be close to the standard normal distribution function
Namely, suppose we have an infinite sequence of random varisiblteat satisfy
the orthogonkity condition (1.1).

0, = 1<j=n,

THEOREM 1.2. Let EX; = 0 and sup, EIX;[® < oco. Suppose that in
probability, asn — oo,
X§4. 4 X2
n

Thenfor all (k,n) suchthat 1 < k < n, for every § > Oandfor all t € §,, x except
for a set of u-measure at most Ck%/4 exp(—cks8), we have L(F;, ®) < 8 + o(1).

— 1.

Hereo(1) denotes a certain sequengg, independent o, which converges
to zero for the indicated range ¢, n).
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The proofs of Theorems 1.1 and 1.2 are given in Sections 3 and 5. The
proof of Theorem 1.1 relies on a concentration property of the megsure
with respect to the canonical graph structuregy. We discuss this property
separately in Section 2. Section 4 is devoted to one auxiliary inequality on
elementary symmetric polynomials that is needed for Theorem 1.2. It is also
applied in Section 6 to study the asymptotic normality of normalized sums for
finite exchangeable sequences.

2. Concentration on dlices of the discrete cube. In this section it is
convenient to identifyg,, x with the subset of the discrete cube, so let us redefine
it as

Gni={x=1....x) €{0, )" :x1 4 +x, =k}.

From the discrete cube, x inherits the structure of a graph: Neighbors are
couples of the points which differ exactly in two coordinates. We egyip with
the metric

p(x,y)=31cardi <n:x; #yi}, X,V €Gnk

which is one half of the Hamming distance. Every poirt G,  hask(n — k)
neighbors(s;;x}ici(x), jes(x) Parametrized by

I(x)={i <n:x; =1}, J(x)={j<n:x; =0}

Namely,(sl-jx)r =x, forr i, j and(sl-jx)l- =Xj, (sl-jx)j =X;.

For every functionf on §,, x and a point in §, ¢, the discrete gradie f (x)
represents a vector in the Euclidean spRéE) x R/ of dimensionk(n — k)
with coordinates f (x) — f(sijx))ici(x), jesx)- It has Euclidean lengthv f (x)]
given by

IVIOP= > 1f@—f0mP= 3 > 1f) = ol
p(x,y)=1 iel(x) jeJ(x)
In 1987, Diaconis and Shahshahani[19], using a group representation approach,
derived a remarkable inequality of Poincaré-type on this graph:

(2.1) [ r2du- (/fdu)zs% [1vsian

Note that the constant on the right-hand side can be chosen independently
of k. Actually, for the quadratic formiQf, f) = [ |V f|2du in L?(Gn.x, 1), all
eigenfunctions and eigenvalues are known. As emphasized in [15], first they were
essentially determined without using group theory by Karlin and McGregor [23].
In particular, with our notations (2.1) becomes equality for all linear functions
fx)=aix1+ -+ apxp.

If |Vf| is bounded by a constant, say,(such functions may be viewed as
Lipschitz with Lipschitz seminorm at most), then by (2.1), Vg((f) < %02.
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This already shows that Lipschitz functions are strongly concentrated around
their » meansE,, f = [ f du. Applying (2.1) to functions of the forne’/ and
properly iterating over small we arrive at a much better estimate,

(2.2) w{lf —Eufl=h}<Ce~Vmlo — pso,

up to some numerical positive constaidtsand ¢. The property that Poincaré-
type inequalities imply exponential bounds on the tails of Lipschitz functions
was first observed by Gromov and Milman [21] (in the context of Riemannian
manifolds) and by Borovkov and Utev [12] (for probability measures on the real
line). Afterward it was intensively studied in the literature; see [1] for an extension
to the graph setting or [26] fan account of the question.

Although itis not possible to sharpen (2.2) on the basis of (2.1), we may wonder,
in analogy with the usual discrete cube, whether a stronger Gaussian bound such
as

(2.3) w{lf —Eufl=h)<Cexp(—cnh?/a?),  h>0,

holds in the case of the grapf, . As is well known, in general, such an
improvement can be reached by virtue of a logarithmic Sobolev inequality. An
important step in this direction was made by Lee and Yau [27]. They proved that,
for every real-valued functiof on g, ,

Cl k
(2.4) Ent, () < % IR

whereC is a numerical constant and where we assume for simplicity of notations
thatk < 5. (A little weaker inequality with factor log in the place of log was
earlier obtained in [18].) Here and elsewhere, the entropy functional is defined by

Ent(g) =Eglogg — EglogEg, g=>0.

Thus, wherxk is proportional toz, say, of ordef;, the additional logarithmic term
log7 vanishes and then the logarithmic Sobolev inequality (2.4) represents an
improvement, up to a factor in the constant, of the spectral gap inequality (2.1)
and implies, in particular, the Gaussian deviation inequality (2.3).

As for the rangek = o(n), we have to keep in mind that the constant on the
right-hand side of (2.4) is asymptotically sharp. Therefore, to reach (2.3) for the
whole range, we need a different argument, and it appears that a modified form
of (2.4) may still be used:

THEOREM2.1. For everyreal-valued function f on g, &,
(2.5) (n+2En (/) <8/, /) < [ 1Vf1%! du.

In particular, if [V f| <o,
(2.6) p{lf —Eufl=h)<2exd—n+ 2)h%/(40?)), h > 0.
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The Dirichlet form that appears in the middle of (2.5) is defined canonically by

€(f.8) = /(Vf(X), Vg (x))du(x)

=/ Yo (F@ = D)) —g(»)du(x),
p(x,y)=1
where f and g are arbitrary functions 0§, . The estimate (2.6) is obtained
from (2.5) by applying the latter to functiong: It then yields a distributional
inequality (n + 2) Ent, (¢') < 0%?E ,e'/, which is known to imply the bound

E.expt(f —Euf)) <expo??/(n+2), 1€R,

on the Laplace transform gf (an argument due to Ledoux [25]).

The second inequality in (2.5) holds true for the uniform probability measure on
an arbitrary finite undirected graph, due to the elementary estitmateb) (e —
e?) < (a — b)%(e? +¢)/2, a, b € R. As for the first inequality in (2.5), it comes
naturally in the Markov chain setting in connection with the problem on the rate
of convergence to the stationary distribution. In the casg,of, it was recently
proved [9] in a little more general form by interpolating between the Poincaré and
the modified log-Sobolev inequality, and independently [20] where a martingale
approach was used to get an asymptotically equivalent constant on the left-hand
side of (2.5). For more details and discussions of that inequality, we also refer
the interested reader to [10]. Here, for the sake of completeness and to emphasize
the “concentration” content, we include below a direct inductive argument.

PROOF OFTHEOREM2.1. Forl<k <n-—1,letA, ; denote the bestconstant
in
A
7)  Enu() = An€(flogf) = L5 3 R FO)).

nop(x,y)=1

where f is an arbitrary positive function o = ¢, «, R(a,b) = (a — b)(loga —
logb), for a, b > 0 and the summation is performed over all ordered pairs)
g x g such thafo(x, y) =1. By symmetryA, x = Ay n—k-

Whenk = 1, ¢ represents a graph of sizewhere all different points are
neighbors of each other (a complete graph). In this case, by Jensen’s inequality,

1 1
Ent.(f) = covu(f.10g /) = > Y R(fx). f() = 5 €(flog f).
XFEY

Hence A, 1 < % As fork > 2, we deduce a recursive inequality that relatgs

to A,,_1x—1 and then we may proceed by induction. Thuskfix 2 and a positive
function f on g with [ f du = 1 [this can be assumed in view of the homogeneity
of (2.7)]. Introduce subgraphs

gi={xeg:ixi=1}, 1<i<n,
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and equip them with uniform probability measurgs. Since all §; can be
identified with§,,_1 x—1, we may write the definition (2.7) for these graphs:

/(%flogfdm

<[ rawtog| ram+TEEY Y kU@ 1)

n 1 xe€$%iyebi,plx,y)=1

Puta; = [ fdu;. Summing the above inequalities over alk n with weight%

and making use of Y7, u; = i, we get

/flogfdu
(2.8) n lk 1
<— Zaz loga; + = ZZ > R(F@), fO).
1

n— i=1xe$; yebi,p(x,y)=1

Since% Y qa; = [ fdu =1, the first term in (2.8) is estimated from above,
according to the case=1in (2.7), by(A,,,l/C,}) >ixj R(ai,a;). Hence, (2.8)
implies

Ent, (f) < ”1ZR<a,, a;) + ”C“‘ 122 Y R(f@), fO)).

i#) n—1 i=1xe§; yegi,p(x,y)=1

Now, givenx, y € § with p(x, y) = 1, the number of all such thatx € §; and
y € §; simultaneously is equal to— 1. Hence, the triple sum contributes

k-1 3 R(f), fO)) =k —DCLE(f log f).

xX€G y€G,p(x,y)=1

Since((k — 1)Ck)/(nC 1) = 4221, we thus get
Ay, —DA,_1i-
@9)  En(f) = LS R ap+ ETP A g og ),
i#]

To treat the sum in (2.9), note that, for each cougle), i £ j, the map
sij {0, 1}" — {0, 1}"* acts as a bijection betweé&n and§ ;, pushingu,; forward
ontou; (wheneverk > 2). In particulara; = [ f(y)du;(y) = [ f(sijx)dpi(x).
Hence, by convexity oR in the positive quartet, b > 0 and Jensen'’s inequality,

R(ai.a)) =R( [ redme. [ f(s,;,-x)du,-<x>)

< f R(F @), f(s1j2)) dpni(x).
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Therefore,

(2.10) Y R ap = —= 3 Y R(FG), 50,

i) Ca-1i7jxeg;
Note thaty = s;;x always implieso(x, y) < 1 and in the case € §,, the equality
p(x,y) =1is only possible when; =1, x; = 0. Hence, the double sum in (2.10)
contains only term® (£ (x), f(y)) with p(x, y) = 1 [the casep (x, y) =0 can be
excluded]. In turn, for any couple, y € 4 such thato (x, y) =1, there is a unique
pair (i, j) such that # j andy = s;;x. Thus, the right-hand side of (2.10) turns
into

Y x R(f(). f() = ZE(f.l0g f)

n—1xe€g ye§,p(x,y)=1
and we finally get, from (2.9),

Ay k—1DA—11—
Ent, (f) < 2t k) Ll e £ log £).

Hence, A, x < #(Ap1+ (k—1)Ay_14-1), OF By < Ay 1+ By_1—1in terms of
B, = kA, k. Applying this inequality successivety— 1 times and recalling that
Ap1 <35, We arrive at

C

B 1 n 1 n 1 n 1
o T 2m—n T - k-2 2<n—<k—1>>'
If k <5, each of the above terms does not exceed_1;—2, SO B,k < —-. This

yields the desired estimatg, ; < n—+2. In the casé > 3, we haveA,,,k = A,,,,,_k,
and Theorem 2.1 follows.

3. Proving Theorem 1.1. We turn to the proof of Theorem 1.1 and to
the original definition ofg, ; as a collection of all subsets df,...,n} of
cardinality k. We always assume the basic orthonormal hypothesis (1.1) on the
sequenc«i, ..., X,.

First we focus on the concentration property of the farfifly} in terms of their
characteristic functions

fo(t) = Ee'"St, T€Gur. 1 €R,

viewed as complex-valued functions gp , with parameter. As a second step,
concentration of values of; (+) around itsu mean,

+o0o |
F0) = / fe@du(o) = / ¢ dF (),

—o0
is converted, with the help of standard facts from Fourier analysis, into the
concentration property of distributions in the form (1.3). Although this route is
different than that in [2] or [5] for the case of the sphere, it has proved to work
well on the discrete cube [6] (see also [17]).
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LEMMA 3.1. For every r € R, the function = — f;(¢) has gradient on g, «
satisfying
2 n
[Vfr@] < (e[ +19) o T € Gnk-

PROOF Everyrt in §, x hask(n — k) neighbors ing,, x,
Ty = (t \ {u}) U{v}, UET,VET.
HenceS; — S, , = (X, — Xy)/+/k and
fo(t) = fo,, (1) = EexpirS;) (1 — exp(—it (X, — X,)/Vk)).

Given a complex-valued functiopon g, x, we apply the equivalent represen-
tation for the modulus of gradient,

IVg(r)| = SU%Z Zau,v(g(f) - g(Tu,v)) )

Mefv¢f

where the supremum runs over all collections of complex numigerssuch that
Y uer Lwgr lau,1? = 1. In particular, forg(r) = f;(t) we have

IV fe ()| = su%Eexp(itS,) 3> aus(1—exp(—it (X, — XU)/\/%))‘

Mefvéf

< Supk

S5 (1 — exp(—it (X, — XU)/«/z))‘.

UET pétT

Using the estimatg’® —1—ia| < a2 (« € R), the assumptioB (X, — X,)? =
and the identity SUR_, e, >~ y¢. lauv| = vk(n — k), we can continue to get

DO au (X —

Mefvéf

V(D] < SUPE

f

+Z supEZDau ol (X — X)?

UET y¢r

Zzau (X — Xy)

UET y¢r

| | supE

2
+ %\/k(n —%).

To treat the last double sum, introdue= 3", 4, @,y andcy = 3¢, @y v, SO

we can write
Z Zau,v(xu - X)) = Zbuxu - ZCUXU

Mefvéf Uet Uéf
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By (1.1),
2
=E

2 2
+E

> buXy

uet

ZCUXU

VET

=Y 1bul?+ > lewl?,

Uet v¢f

E Z Zau,v(xu - Xv)

UET yét

but by Cauchy’s inequality,
bul2< (=0 lausl®  leolP <k Y laul?

vt UET
SOY yer 1bul® + X ygr Icul? < (n — k) + k = n. Therefore, once more by Cauchy’s
inequality,
E

Z Zau,v(Xu — Xy)| <+/n.

Uet v¢f

Thus, we arrive at the boun¥ f,(¢)| < |t|\/%+ 12,/%=%, which finishes the proof.
O

COROLLARY 3.2. Foreveryt>0Qandh > 0,

u{r:'f’(’):f(”' Zh} —kh* )

3.1 <4ex w

PROOF Indeed, iff > % the probablity on the left-hand side is zero, since

|fz(t) — f(@®)] < 2. In the other case < % consider the functiorg(r) =
(f:(@®) — f(@®))/t. It hasu-mean zero, and according to Lemma 3.1, its modulus

of gradient is bounded bl + t)\/% <A+ %)\/% The same is true for real and
imaginary partsg1 = Reg and go = Img. Thus, we are in a position to apply
Theorem 2.1 which gives [replacimg+ 2 with n in (2.6)]

llgl = kY = pdlg1l® + 1g2l* = h?)
< uflgl = h/v2} + pflgal = h/v/2)
< dexg(—kh?/8(1+ 2/ h)?).
Corollary 3.2 follows. O

By continuity, inequality (3.1) continues to hold in the limit case 0. Since

1 Xy +-+X; -
ES:/Sd(r:— “n R kX,
uot rdpu(t) Cfl il<Z<ik JE
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whereX = (X1 + --- + X,,)/n, the limiting case becomes
(3.2) w{t:|ES; — VKEX| > h) < dexg(—kh*/8(2 + h)?).

Thus, under (1.1), the functigg(z) = ES; on$, « is strongly concentrated around
its meanE, g = VKEX.

For the next step, it is important to sharpen inequality (3.1) by making it
uniform with respect to the parameter In other words, we need to control
sup-o(lfr () — f(@®)|)/t. This can be achieved at the expense of a small
deterioration of the bound on the right-hand side of (3.1). Indeed, let us apply (3.1)
to pointst, = rh?,r=0,1,...,N= [h—zs] + 1, wher¢[ - ] stands for the integer part
of a real number and where the case 0 is understood as the inequality (3.2).
Then we get

| fo(tr) — £ (t)] N (o) = f@)
g B ) S0

4
(3.3) p( —kh )
<4(N +1)ex 82+ 2

2 —kh?
< 4<h3 + 2) ex 821 h)2>'

To involve all remaining values of > 0 in the maximum on the left-hand
side, we may assume, as in the proof of Corollary 3.2, thatrO< % Let 6(h)
denote the collection of all € §,, x suchthat f (z,) — f(t,)|/t, < hforall r =0,
1,..., N simultaneously. Recall thﬁST2 =1, so|f/(r)| <1and|f/(t)| <1, and
similarly for f.

Casel. O<t <h.By Taylor's expansion,

fe () t— f _iE
Hence, ift € §(h) and in particulatE (S; — vkX )| < h, we get

|fe () — f(@)I
t

_ 1
(Se —VEX) + ;/O A —v)(f/(tv) — f"(tv)) dv.

<h+t<2h.

CASE2. h<t< % Pick an index =0, ..., N — 1 such that, <t <#41.
Recalling that, 1 — 1, = h? and applying the Lipschitz property ¢f and f, we
may write

[fr (@) — fOI <1 fr @) = fr@)+ 1 fe @) — f@)+1f @) — f@)]
<2t —t;| + tyh < 2h® + t,h < 2h° + th < 3th.

The assumption> h was used on the last step.
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Thus, in both cases we obtain thate §.(h) implies sup_q(| fz (1) — f()|/
t) < 3h. Consequently, by (3.3),

|fe (@) = f@) 2 —kh*

This is a desired sharpening of (3.1).

PROOF OF THEOREM 1.1. We use the following observation due to
Bohman [11]. Given characteristic functiopg and ¢» of the distribution func-
tions F1 and F», respectively, iflp1(t) — ¢2(¢)| < At for all ¢+ > 0, then, for all
x € Randa > 0,

2\ 2\
Fi(x —a) — P < F(x) < Fi(x +a)+ e

The particular case = +/ 2 gives an important relationship,

(3-5) %L(FL F2)? < Suplm(t)t;fpz(t)l’

t>0
between characteristic functions and the Lévy distance. Therefore, by (3.4)
and (3.5),

1 2 —kh?
—LF,F2>3h}<4<— Z)ex 7)
“{2 (Fr. F)"23hp =45+ 82+ h)2
Replacing & with §2 and noticing that only G< § < 1 should be taken into
consideration, we arrive at the estimate

C
L (Fe, F) 2 8} < < exp(—cks®),  §>0,

with some positive numerical constants and ¢. On the other hand, in the
latter inequality, we may restrict ourselves to valdes c1k~1/8, which make
the bound(C/5%) exp(—cks8) smaller than 1, and then we arrive at the required
inequality (1.3). Theorem 1.1 has been proved.

4. Elementary symmetric polynomials. We turn to the next natural question
regarding approximation of the averarge distribution funcfitorccording to the
definition (1.2), it has characteristic function

4.1) f(t):ci’];EZexp(iij(él)-..exp(iiflg‘) [ eR,

with summation over all increasing sequences & < --- < iy < n. To better
understand possible behavior of such sums, introduce normalized elementary
symmetric polynomials im complex variables of degree

1

O'k(Z)=E Z Ziy * Lo Z=(Zl,...,Zn)€Cn.
n

i1 <---<ig
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An account on basic results and some other interesting properties of such
polynomials can be found in [30]. For our purposes, it is desirable to rejate

to arithmetic means

21+ + 2

—

In this section we derive the following statement of independent interest which
seems to be absent from the literature (cf. also [7] for a more general scheme).

7=

ProPOSITION4.1. If|z;|<1,j=1,...,n,thenforall 1<k <n,
k—1

(4.2) low(2) — 2| < 6—.
n—1

Since|z;| < 1, both quantities satisfjoy(z)| < 1 and|z¥| < 1, sook(z) —
7¥| < 2. We can easily refine this bound by applying the polynomial formula
p1 Pn

- 1 k!
Zk = — Z - Zl oz
nk p1l- - pa! n
p1t-+pn=k n

k\Ck

n—k”ak(z) + remainde(z).

Then we obtain immediately the estimate

kick
lox(2) — 2¥| < 2(1— k").
n
Here, the right-hand side gets small only in the rakhgeo(,/n) in which case
it is of orderk?/n. The bound of ordefg in (4.2) is asymptotically sharp, but its

proof requires more sophisticated arguments.

PROOF OFPROPOSITION4.1. LetA,; denote maximum of the left-hand
side in (4.2) over all possible vectarswith |z;| <1 forall 1< j <n, and letB;
be an optimal constant in
k—1
n—1
We need a uniform bound aBy. The case: = 1 is trivial, since them,, 1 = 0. If
n = 2, by simple algebra,

Apk < B

n>k.

I S R PR
02(z) —2° = n(n_l);:l(zj 2%,
S0

|oz<z)—zz|<#f|z-—2|2<i(1—|z|2)<i.
_n(n—l)j:1 / “n-—-1 “n-—1
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Hence,A, 2 < n—fl and B2 < 1. To bound the remaining constants, we deduce
recursive inequalities that relats, x to A,,_1 x—1 (and then we can argue as in the
proof of Theorem 2.1).

Thus letn > k > 3. With everyz € C" we associate vectors inc"—1,

2y =@ e =1, T4l - Zn), 1<j=n

In what follows we always assumie;| < 1 for all 1< j <n. Let us mention
several simple immediate properties and identities:
1. Forallj <n, |zl <1.
2. We havey(jy —z2=—(zj —2)/(n —1).
3. Onthe other hand,;) — z = (z(j) — z;)/n, SO we always havg ;) — z| <
4. We haves = 1 Z” 12()-
5. We haverk(z) Z] 12j0k—1(2(j))-

From items 4 and 5 we obtain the representation

N

n

g 1 —k k-1
Uk(Z)_Zk:;ZZj(Uk—l(Z(j))_Z(]) ZZ/ Z(n 7).

Hence,
(4.3) ok (z) — 2| < Ap—1.4— 1t~ Zz, Zt =)

Thus, our task is to bound the last term on the right-hand side properly. One natural
possibility is to use expansidi;* — ¥~ = (Z(;) — 2) Th_57,,Z¥ 2 Then by

identity 3,177, " — 2¢~1| < 222 Applying this estimate in (4.3), we arrive at

2k — 1)
(4.4) Apk <Ap_1x-1+ .

Successive application of this inequality leads to the rough bodpd =
O (k?/n). Nevertheless, (4.4) can be useful for small values.dfor example,
if k=3, we get

4 1 4
An,BSAn—l,2+—§ + -
n"n—2 n
1 3n—8 5
= 5-— , >3,
n—l( n(n—2)><n—1 "=
SO0B3 < g Similarly, fork = 4,n > 4, by the previous step,
6 1 4 6
Apa<Ap- 13+ = ot —t
n—3 n

(4.5)

1 ( 4n—18> 12
= 11— < ,
n—1 nn —3) n—1
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S0B4 < 4. Hence B, < 4 fork < 4, as stated in (4.2).

Thus, assume > k > 5. We need a more careful estimate of the right-hand side
of (4.3) that is independent adnh From Taylor’s expansion in the integral form,
with integration along a segment on the plane connecting two pejatsc C, we
have a canonical estimate

la*=t — ak~1 — (k — 1)a ~%(a — ao)|

(k— 1)k —2) e
s———;——ﬂa—wﬁmmwmk%mﬁBL

In particular, whem =z, a = z(;), we may write, applying property 3,

-k—1 k-1
2y —*

s o2, k=DK=2) L _pr o 2)F3
=(k—D(z) —2)F %+ ijk(j) -2 (|Z| + ;)
for someld;| < 1. Hence, by statement 2,

k—1 k=1, o«
Zz, A le‘,(z‘,-—z)
]:

k—1)(k—2 k=3 2
+3—7%§5730|+ SIS
=1

However,> " _1z;(z; —2) = > j_1(zj — 7)? is bounded in absolute value by
n(1—|z|%). Therefore,

-1
- k-1 = 1k—2 =2
(4.6) §jz,qﬂ -2 = R - 2D

k—1)(k —2) k=3 5
(4.7) +W<| |+ ) 1 —zI%).

To bound the expression in (4.6), note that, given 1, a function of the form
v (b) = b"l(l b) is maximized in 0< b <1 ath = 1— I and its maximum
1- 1)’ —— can be bounded by— Applying this observatlon withh = |7|2
andr = 2, we conclude that

k—1 2k—1 1 1
4.8 o 2a— 7y < S ,
(4.8) n_1|Z| 1-1zI9) = r—2n_1 a1

where we used the assumptibp 5.
Next, to bound the expression in (4.7), consider a function of the form
vb)=b+e) YA —b)withe=2r>1+e¢.Itis maximizedin0<b <1
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at b =1— £ and its maximum(l + ¢)"(1 — %)L can be bounded by
(A4 &) /(e(r — 1)). In particular, withb = |Z] andr = k — 2 this yields
k—1)(k —2)
2(n — 1)2
(k— 1)k —2) (1 2>k—2
“e(k—3)(n—1)2 '
Hence, usingl+ 2)k=2 < (1+ 2)"~2 < ¢?/(1+ 2)2 and =242 — 2. <
n + 2, we can estimate the expression in (4.7) 8y < n—fl Together with (4.8),

the left-hand side of (4.6) is thus bounded P?y‘i Thus, returning to (4.3), we
obtain a more precise recursive inequality than (4.4):

k—3
(| I+ ) (L= E) L+ D

4
(4.9) Ank < An-1h-1+ . n>k=>5.
n —_—
Finally, applying (4.9% — 4 times and the obtained estimate (4.5), we get
4 4 4k — 1
(4.10) A, tAusaa< 22D

1 a—2 " T h_k+4 n—k+3

In the casek < % +1, we haven — k + 3> %n and (4.10) yields the desired

estimate (4.2). In the other case there is nothing to prove since’figh > 2 >
Ay, . Proposition 4.1 is proved.[]

5. Theorem 1.2 and its generalization. As before, let X4,..., X, be
random variables that satisfy the orthogonality condition (1.1) and fek ¥k n.
Now we are prepared to study asymptotic properties of the average characteristic
function f defined in (4.1) (of the average distribution functiBh Givenw € 2,
introduce random characteristic functions

fw(”—ckZ p(”X”(w)> - ex ithE(w))’

expiitX1(w)) + - - +expit X, (w)) k
8o(t) = ( ) s

n

where summation runs over all increasing sequenge$il< --- < iy <n. Thus,
f(@)=E f,(). Also put

teR.

expitX1) + -+ exp(itX,,))k
n b

g(1) = Egu(t) = E(

By Proposition 4.1, we always havg, (1) — g, (t)| < &, so a similar inequality
must hold for corresponding means, that is,

6k
(5.1) [f(t) — g ()] < teR.
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Hence, whert = o(n), the associated distribution functions must be also close to
each other and we may concentrate on the asymptotic behawooaoty.

A probabilistic meaning of each functiog, is very simple. Indeed, given
w e 2, let Yq,..., Y, be independent, identically distributed random variables
defined on some probability spa@dd, Q), whose common distribution is a sample
distribution:

1 :
Q{Y1=Xj(a))}=;, 1<j<n.
Then, by the very definitiong, represents the characteristic function of the
random variable
r _ht o+
0] «/E .

It hasQ meanEyT,, = VkX(w), whereX (w) = %Z’}zl X j(w) is just a sample
mean associated to the “sampl€i, ..., X,,, and hag) variance

n

1 —
(5.2) o (@) =Varg(T,) = ~ 3 (X (@) ~ X(@)"
j=1

representing the usual sample variance. For simplicity, in some places we omit
hoping this does not lead to confusion.

By the canonical central limit theorem, the random varidhléas a distribution
function, G, which is close to the normaV¥ (vk X, o2). Hence, the distribution
function G(x) = EG,(x), associated to the characteristic functigris close to
a P mixture of N (vk X, o2)-distribution functions. Clearly, this mixture can be
described as the distribution function of a random variable of the form

E=vkX+o¢,

where¢ is a standard normal random variable independent of all Xv.'slt has
characteristic function

(5.3) h(r) = Ee'"® = Eexp(vk Xit — 0%1?/2).
LEMMA 5.1. IfEX; =0,E|X;®< B (1< <n),then

| f (1) — h(t)] K2 o pla
sup - <3() 46

Let H denote the distribution function af. By Bohman’s inequality (3.5)
applied toF, = F andF>, = H, we get

,31/4

1/2
L%(F,H)<6 kY +120
’ — n k1/8'
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The quantity on the right-hand side is small olkds large andf; is small. In this

case E(vVkX)2 = % is small, as well, and according to (5.3)y) is close to the
characteristic function

&,
E ex ZnX:lX"'}'
J

Thus, we arrive at the following conclusion that includes the statement of
Theorem 1.2. LetX )52, be a sequence of random variables that satisfies the

correlation condition1.1) and such thaEX; = 0, sup E|X,~|3 < +400. Assume
that, for some random variabR> 0, asn — oo,

- Z X5 — R?
j =1
in the sense of the weak convergence of distributions on the real lined ket

denote the distribution function of the random variaRlg, where¢ is a standard
normal random variable that is independentfariThen we have:

THEOREMDG.2. Forall (k,n) intherangel « k <« n, for every § > 0 and for
all T € g, except for a set of . measure at most Ck>/4 exp(—cks®), we have
L(F,, ®g) <8 +0(1).
PrROOF OFLEMMA 5.1. We use the following standard estimate (needed for

the Berry—Esseen theorem; cf., e.g., [29], Chapter V, paragraph 2, Lemma 1):
If Z1,...,Z; are independent r.v.s such thBZ; = 0, E|Z;|3 < co and B =

Yk EZ? then
2
—t 1
- 16L|r|3exp(—), < —,
3 4],

o) ol 1)

where L = B~%2y%_| E|7;|® (the so-called Lyapunov fraction). Dividing by
and maximizing the right-hand side overalt 0, we get

|Eexplir(Z1 + - -+ Zi) /V/B) — exp(—12/2)|
t

(5.4) <18L,

prowded that O<r < 4L In the case > 41L, the left-hand side can be estimated
by < 8L, so (5.4) holds for alk > 0. In particular, if theZ;’s are identically

dlstrlbuted WithEZ2 = 52 andE| Z1|3 = B, thenB = 0%, L = B/ 3k, and the
above bound yields

maX|Eexp(iz(zl+---+zk)/¢E) —exp(—02t2/2)| %
t>0 t

%\
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In particular, this inequality can be applied on the probability spdéeQ) to
random variablesZ; = ¥; — X. In this casep? = 0?(w) represents the sample
variance (5.2) and similarh8(w) = %_Z’}:“Xj — X|3. Thus, introducing the
characteristic function,, (r) = exp(v/kXit — 0%t2/2), we obtain that

Igw(t) —ho@| _ 18 f(w)
t>0 t \/z 03 '

Note that bottg,, andh,, correspond to distributions with expectatigi X and
variancer 2. Hence, by Taylor's expansion around zeg,(r) — h, (t)| < o2t2 for
all t € R. On the other hand, we always have a trivial bolgiglt) — k., (¢)| < 2.
Combining these, we get

|80 (1) — heo(D)]
t
Together with (5.5) and maximizing over> 0, this gives, for alk > 0,

180() —ho®)] _ { 18 ﬂ(w) } 3B(w) Y/
. <min N 2ot < =R
Averaging ovek and using Holder’s inequality, we obtain that

lg(t) — h(1)] 3 14

— = p(EA@)”

since h(r) = Eh, (7). To estimateES(w), we may apply Jensen’s inequality,
implying |X; — X1® < 237, 1X; — X3 SinceE|X; — X, < 4E|X;|® +
4E| X, | < 88, we arrive aE| X ; — X|® < 88 and, thereforeE(w) < 88. Hence,

lg(t) —h(n)| _6pY/4
sup < AR

(5.5)

2
< min{ozt, ;} <20, t>0.

t >0,

(5.6)

t>0

It remains to involve the characteristic functigh Combining (5.1) and (5.6),
we get

/31/4
(5.7) If O =h@O] = —+—g51 10
On the other handgé = 0 and, by independence pfand (X4, ..., X,),

k —

n
soh’(0) =0 and|h”(t)| < 2 for all # € R. In addition, the distribution functio&
has mean 0 and variance 1, $6(0) = 0 and|f”(¢)| < 1. Consequently, by
Taylor's expansion around zer&/"—*0l < ¥ '+ ~ 0. Together with (5.7), the
latter gives

_ _ 1
Ee2=E(VkX +0¢)’=kE(X)2+Eo?=1+ <2,

O~k _3 [ 4k  4pY4
f m{t,— W}'

I\) |
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Finally, let us note that, givem, b > 0, a function of the formu(r) = min{t? +a}

attains its maximum afy = (a + +/a? +4b)/2 and, at this pointu(tg) = 1o <
a + +/b. Applying this tob = % anda = 48/4/kY/8, we arrive at

_ 1/2 1/4
Suplf(l) t h(t)] < g[2<k> 4 }

n) T Am

Lemma 5.1 and, therefore, Theorem 5.2 are proved.

6. Exchangeable random variables. Random variablesXq, ..., X; are
called exchangeable (or interchangeable) if the distribuBgnof the random
vector X = (X1, ..., Xx), as a measure oR¥, is invariant under permutations
of coordinates. A similar definition applies in the case of an infinite se-
quence{X}z2 4. In particular, for allk > 1, the distributions of the normalized
sums(X;, +---+ X,-k)/«/E do not depend on the choice of indidgs< - - - < i.

So let
X1+ + X

Sk = NG

Given that
(6.1) EX;=0, Ex?=1,

a well-known theorem due to Blum, Chernoff, Rosenblatt and Teicher [4] asserts
thatS; — N(0, 1) weakly in distribution ag — oo if and only if

(6.2) EX1X>=0, EX2X5=1;
that is, co¥X1, X2) = cov(X?, X2) = 0. Moreover, Berry—Esseen’s bound
ElX,[3
(6.3) SUpIP{Sy <x} —®(x)| <c¢ ,
xeR \/];

with some universat, extends from the i.i.d. case to this case as well.

Weaker assumptions than (6.1) and (6.2) with different normalization of the
sums may also lead to asymptotic normality (see, e.g., [22, 24]). However, less
seems to be known in the case of finite sequences of exchangeable variables.
A basic tool that allows study of the various properties of an infinite exchangeable
sequenc& = {X;}72, is de Finetti's representation of the distributiBp of X as
a mixture

(6.4) Px Z/H;Lgodn(oz)

of product probability measurgs;” = g ® e ® --- 0N R*. Here (I1, ) is
some probability space anid, }« < is some family of marginals with the property
that functionsx — u,(B) arer-measurable for all Borel sef® on the real line.
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In terms of this representation and assuming (6.1) is fulfilled, the central limit
theoremS; — N(0, 1) holds true if and only if the measures, have mean 0
and variance 1 forr-almost alle ([4], Lemma 1). The latter is also characterized
directly in terms ofX in the form (6.2).

In the general case of a finite exchangeable sequ&nee(Xy, ..., X;), the
finite-dimensional analogue of (6.4),

(6.5) Px(B)= [ ih(B)dn(@.  BCR

whereu’g[ = lle ® - ® l are product probability measures BA, is no longer
valid and, in fact, the class of distributions B invariant under permutations of
coordinates is much wider. Therefore, it is natural to associae aaomaX|mum
natural numben = n(X) such that, for some exchangeable sequetge. .
defined perhaps on a differenigability sgce, the random vecto(xy, . . Xk)
and(Xy, ..., X;) are equidistributed. Ik can be chosen as large as we wish or,
equivalently, ifPx admits representation (6.5), putX) = oo

It may occur thatX has no exchangeable extensianX) = k. In that case, it
is hardly possible to reach asymptotic normality of the normalized Syreven
under moment assumptions such as (6.1) and (6.2). However,mions k, the
situation changes considerably. In view of de Finetti’s theorem, it seems natural to
expectin this case th&®y has to be close in some sense to the cidg®f mixtures
of product probaltity measures orR*. That is, there should hold an approximate
equality in (6.5). In terms of the variational distanice||ty between probability
measures, this question was studied by Diaconis and Freedman [16]. It was shown,
in particular that, for som@ in My,

k\Ck
o n=n(X),

1
6.6 —|IPx —
(6.6) 2|| X

and that the bound cannot be improved. Actually, if an exchangeable extension
X1,..., X, exists on the same probability spage, P), we can takeQ(B) =
[ uk (B)dP(w), that is, with

Sxy@) + -+ 3, )
p .

Under the product measures, the distribution of the functicp (x1 + ---
+ xx)/~k is nearly normal (under proper moment conditions), so the inequal-
ity (6.6) can be used to study the asymptotic normality Spf However, as
emphasized in [16], the expression on the right-hand side in (6.6) is of bfder
for k = o(\/n), while it is of order 1 for larger values @ Hence, only the range
k = O(y/n) can be taken into consideration or other metrics that better react on
the weak convergence of distributions should be examined in thé&case(,/n ).
In part concerning half-spaces of the folBn= {x € RK:x1 + --- + xx < ¢}, the
closeness 0Py (B) to Q(B) can be estimated by virtue of Proposition 4.1. As a
consequence, we can derive:

H=Q7H=P7 Mw:
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PROPOSITION 6.1. Let X = (X1,...,Xx), k > 2, be an exchangeable
sequence that satisfies the moment hypotheses (6.1) and (6.2). Then

k \? (E|X1|%HY6
(6.7) ngglP{Sk 5x}—d>(x)|5c[<m) +T],

for someuniversal ¢ > 0and p, ¢ > 0.

Although this is not as sharp as (6.3), we can still control closeness to normality
for finite sequences under the same hypotheses. The assurﬁdﬂf)r{ +o00
is technical and can be a little relaxed (to the third moment, e.g.). The second
assumption in (6.2) can be weakene(EtI&ifXg < 1. Although a strict inequality
is impossible here for infinite exchangeable sequences, it does hold for some
interesting finite exchangeable sequences (cf., e.g., [3]).

PROOF OF PROPOSITION 6.1. Let X have an exchangeable extension
X1,..., X, on (,P). By exchangeability,F(x) = P{S; < x} represents the
average distribution function (1.1), and its characteristic functforappears
in (4.1). Note that, under the measupéB) = fufU(B)dP(a)), the functionx —
(x1+ - - + xx)/~/k has distributiorG considered along the proof of Theorem 5.2.
Moreover, by Lemma 5.1 and Hdélder's inequality,

_ 1/2 a4\1/4
sup 0= O] _ 3<§> (EXD)

>0 1 n ISA

where we recall thak(r) = E exp(v/kXit — 0%t2/2) represents the characteristic
function of & = VkX + o¢ with ¢ € N(0, 1) independent of X4, ..., X,). By
Bohman'’s inequality (5.3) and usinda + b < /a + /b (a, b > 0), we may write
down a bound on the Lévy distance,

(ExDH/8

k 1/4
(6.8) L(F, H)s@(;) +¢1’2W

for the associated distribution functions. Note that we have used the assumptions
EX1=EX1X,=0andEX? =1 in this step.

To quantify closeness of the distribution functiéhto ©, we write& =¢ + n
with a small “error’n = vk X + (o — 1)¢. We apply the following general
observation: For all random variablesandz,

(6.9) L(Fyy, Fr) < EnHY3,

where F,, and F; are corresponding distribution functions. Indeed, there is
nothing to prove if§ = (Ep?)1/3 > 1. In the other case, since for alle R and
h >0,

{{=x}={{=x,n=hU{{=x,n>h}C{{+n=<x+h}U{n>h},
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by Chebyshev’s inequality, we gét (x) < F1,(x +h) + En?/h?. Applying the
latter to another couple of random variab{est n, —n) and tox — & in the place
of x, we also haveF, ., (x — h) < Fr(x) + En?/h?. All this together withi = §
yields

Fein(x = 8) =8 < F(x) < Frag(x +h) +39,

which is exactly (6.9).
Thus, returning to our specific random variablgsn), since F: = H and
F; = ®, we may conclude that

(6.10) L(H, ®) < (En>Y3,

Now, sinceEX1X, = 0 andEX? = 1, we haveEn? = E(vVk X)?+E(oc — 1)? =
14 2E(1-0).Alsonote -0 = (1-02)/(1+0) = (1— X2+ (X)?)/(1+0),
so|l—o| <|X2 -1 + (X)? whereX? = %Z;!:lsz.. By the assumption
EX2X5=1andsincEX?=1,

Ex? N n(n — 1)covX2, X2) _ Exf.
n

n n

E|X2—12=Var(X?) =

Therefore E|X 2 — 1| < (EXH Y2/ /n andE|1 - o| < (EXDHY2/yn + 1. Thus,
we getEn? < (k+1)/n + (QEXPY?)//n and by (6.10),

k)1/3 2(EXHY/S

L(H,®)<2
(1. =2 g

n
Combining this with (6.8) and making use bf< n and (EX})¥/® < (Ex1)/6
(since the fourth moment is greater than or equal to 1), we obtain that

k 1/4 (EXf)l/G
L(F, CD)SCl(;) +C2W-

Finally, we always hav@F — ®||o, < 2L(F, ), so we arrive at (6.7) withy = 3,
q = 1. This completes the proof.C]
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