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CONCENTRATION OF NORMALIZED SUMS AND A CENTRAL
LIMIT THEOREM FOR NONCORRELATED

RANDOM VARIABLES1

BY SERGEY G. BOBKOV

University of Minnesota

For noncorrelated random variables, we study a concentration property
of the family of distributions of normalized sums formed by sequences of
times of a given large length.

1. Introduction. Let X = (X1, . . . ,Xn) be a vector ofn random variables on
a probability space(�,P) such that, for alli, j = 1, . . . , n,

EXiXj = δij ,(1.1)

whereδij is Kronecker’s symbol. Given a positive integerk ≤ n, denote byGn,k

the family of all collections of indicesτ = {i1, . . . , ik} of sizek with 1 ≤ i1 < · · · <
ik ≤ n. To everyτ ∈ Gn,k we associate a normalized sum

Sτ = Xi1 + · · · + Xik√
k

and a corresponding distribution functionFτ (x) = P{Sτ ≤ x}, x ∈ R. In this paper
we show that, whenk is a large fixed number, most of the random variablesSτ are
“almost” equidistributed, that is, most ofFτ ’s are close to the average distribution
function

F(x) = 1

Ck
n

∑
τ

Fτ (x),(1.2)

whereCk
n = card(Gn,k) = n!

k!(n−k)! stands for the usual combinatorial coefficients.
To study the rate of closeness, we use the Lévy distanceL(Fτ ,F ), which is defined
to be the infimum over allδ ≥ 0 such thatF(x − δ) − δ ≤ Fτ (x) ≤ F(x + δ) + δ

for all x ∈ R. In terms of the normalized counting measureµ = µn,k on Gn,k, we
have:

THEOREM 1.1. Under (1.1), for all δ > 0,

µ{τ :L(Fτ ,F ) ≥ δ} ≤ Ck3/4 exp(−ckδ8),(1.3)

where C and c are certain positive numerical constants.
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The property that, for a growing number of summandsk, manyFτ ’s approxi-
mate a “center”F may be viewed as a weak kind of a central limit theorem. In
general, however, the centerF essentially depends onk and the distribution of the
underlying sequenceX.

An analogous concentration property has been intensively studied in a number
of related randomized models. In a seminal work [31], as an application of the
isoperimetric theorem on the sphere, Sudakov established a concentration property
of distributions of the weighted sums

∑n
j=1 θjXj provided that the weightsθj are

randomly chosen as coordinates of a point on the unit Euclidean sphere inRn (with
respect to the uniform measure on the sphere). A different approach in the case of
normalized Gaussian weights was suggested by von Weizsäcker [32]. Quantitative
versions with refinements for the rate of concentration in the case of log-concave
random vectorsX were obtained in [2, 5]; see also [8, 13, 14]. Multidimensional
random projections ofX were considered by Naor and Romik [28], who essentially
used a concentration inequality on the Grassmanian manifold.

As it turns out, the weights can be restricted to the formθj = ±1√
n

(cf. [6]). As
well as on the sphere, the latter model uses a specific dimension-free concentration
property on the discrete cube. Similarly, under the conditions of Theorem 1.1 we
are dealing with certain weights, namely of the form

θj = εj√
k
, 1 ≤ j ≤ n,

where the sequence(εj ) contains exactlyk 1’s andn − k 0’s. With respect to the
previous examples, this model seems to be closest to the classical, nonrandomized
version of the central limit theorem, since only usual sums of dataXj are taken
into consideration. The concentration property (1.3) thus tells us that the resulting
sum does not depend, in essence, on the concrete times when the observations are
made.

Moreover, under certain natural assumptions on random variablesXj , the aver-
age distributionF must be close to the standard normal distribution function�.
Namely, suppose we have an infinite sequence of random variablesXj that satisfy
the orthogonality condition (1.1).

THEOREM 1.2. Let EXj = 0 and supj E|Xj |3 < ∞. Suppose that in
probability, as n → ∞,

X2
1 + · · · + X2

n

n
→ 1.

Then for all (k, n) such that 1� k � n, for every δ > 0 and for all τ ∈ Gn,k except
for a set of µ-measure at most Ck3/4 exp(−ckδ8), we have L(Fτ ,�) < δ + o(1).

Hereo(1) denotes a certain sequenceεn,k , independent ofδ, which converges
to zero for the indicated range of(k, n).
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The proofs of Theorems 1.1 and 1.2 are given in Sections 3 and 5. The
proof of Theorem 1.1 relies on a concentration property of the measureµ

with respect to the canonical graph structure onGn,k. We discuss this property
separately in Section 2. Section 4 is devoted to one auxiliary inequality on
elementary symmetric polynomials that is needed for Theorem 1.2. It is also
applied in Section 6 to study the asymptotic normality of normalized sums for
finite exchangeable sequences.

2. Concentration on slices of the discrete cube. In this section it is
convenient to identifyGn,k with the subset of the discrete cube, so let us redefine
it as

Gn,k = {
x = (x1, . . . , xn) ∈ {0,1}n :x1 + · · · + xn = k

}
.

From the discrete cube,Gn,k inherits the structure of a graph: Neighbors are
couples of the points which differ exactly in two coordinates. We equipGn,k with
the metric

ρ(x, y) = 1
2 card{i ≤ n :xi �= yi}, x, y ∈ Gn,k,

which is one half of the Hamming distance. Every pointx ∈ Gn,k hask(n − k)

neighbors{sij x}i∈I (x), j∈J (x) parametrized by

I (x) = {i ≤ n :xi = 1}, J (x) = {j ≤ n :xj = 0}.
Namely,(sij x)r = xr for r �= i, j and(sij x)i = xj , (sij x)j = xi .

For every functionf onGn,k and a pointx in Gn,k , the discrete gradient∇f (x)

represents a vector in the Euclidean spaceRI (x) × RJ (x) of dimensionk(n − k)

with coordinates(f (x) − f (sijx))i∈I (x),j∈J (x). It has Euclidean length|∇f (x)|
given by

|∇f (x)|2 = ∑
ρ(x,y)=1

|f (x) − f (y)|2 = ∑
i∈I (x)

∑
j∈J (x)

|f (x) − f (sij x)|2.

In 1987, Diaconis and Shahshahani [19], using a group representation approach,
derived a remarkable inequality of Poincaré-type on this graph:∫

f 2 dµ −
(∫

f dµ

)2

≤ 1

2n

∫
|∇f |2 dµ.(2.1)

Note that the constant on the right-hand side can be chosen independently
of k. Actually, for the quadratic form(Qf,f ) = ∫ |∇f |2dµ in L2(Gn,k,µ), all
eigenfunctions and eigenvalues are known. As emphasized in [15], first they were
essentially determined without using group theory by Karlin and McGregor [23].
In particular, with our notations (2.1) becomes equality for all linear functions
f (x) = a1x1 + · · · + anxn.

If |∇f | is bounded by a constant, say,σ (such functions may be viewed as
Lipschitz with Lipschitz seminorm at mostσ ), then by (2.1), Varµ(f ) ≤ 1

2n
σ 2.
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This already shows that Lipschitz functions are strongly concentrated around
their µ meansEµf ≡ ∫

f dµ. Applying (2.1) to functions of the formetf and
properly iterating over smallt , we arrive at a much better estimate,

µ{|f − Eµf | ≥ h} ≤ Ce−c
√

nh/σ , h > 0,(2.2)

up to some numerical positive constantsC and c. The property that Poincaré-
type inequalities imply exponential bounds on the tails of Lipschitz functions
was first observed by Gromov and Milman [21] (in the context of Riemannian
manifolds) and by Borovkov and Utev [12] (for probability measures on the real
line). Afterward it was intensively studied in the literature; see [1] for an extension
to the graph setting or [26] for an account of the question.

Although it is not possible to sharpen (2.2) on the basis of (2.1), we may wonder,
in analogy with the usual discrete cube, whether a stronger Gaussian bound such
as

µ{|f − Eµf | ≥ h} ≤ C exp(−cnh2/σ 2), h > 0,(2.3)

holds in the case of the graphGn,k. As is well known, in general, such an
improvement can be reached by virtue of a logarithmic Sobolev inequality. An
important step in this direction was made by Lee and Yau [27]. They proved that,
for every real-valued functionf onGn,k,

Entµ(f 2) ≤ C log(n/k)

n

∫
|∇f |2 dµ,(2.4)

whereC is a numerical constant and where we assume for simplicity of notations
thatk ≤ n

2. (A little weaker inequality with factor logn in the place of logn
k

was
earlier obtained in [18].) Here and elsewhere, the entropy functional is defined by

Ent(g) = Eg logg − Eg logEg, g ≥ 0.

Thus, whenk is proportional ton, say, of ordern2, the additional logarithmic term
log n

k
vanishes and then the logarithmic Sobolev inequality (2.4) represents an

improvement, up to a factor in the constant, of the spectral gap inequality (2.1)
and implies, in particular, the Gaussian deviation inequality (2.3).

As for the rangek = o(n), we have to keep in mind that the constant on the
right-hand side of (2.4) is asymptotically sharp. Therefore, to reach (2.3) for the
whole range, we need a different argument, and it appears that a modified form
of (2.4) may still be used:

THEOREM 2.1. For every real-valued function f on Gn,k ,

(n + 2)Entµ(ef ) ≤ E(ef , f ) ≤
∫

|∇f |2ef dµ.(2.5)

In particular, if |∇f | ≤ σ ,

µ{|f − Eµf | ≥ h} ≤ 2 exp
(−(n + 2)h2/(4σ 2)

)
, h > 0.(2.6)
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The Dirichlet form that appears in the middle of (2.5) is defined canonically by

E(f, g) =
∫

〈∇f (x),∇g(x)〉dµ(x)

=
∫ ∑

ρ(x,y)=1

(
f (x) − f (y)

)(
g(x) − g(y)

)
dµ(x),

wheref and g are arbitrary functions onGn,k . The estimate (2.6) is obtained
from (2.5) by applying the latter to functionstf : It then yields a distributional
inequality(n + 2)Entµ(etf ) ≤ σ 2t2Eµetf , which is known to imply the bound

Eµ exp
(
t (f − Eµf )

) ≤ exp
(
σ 2t2/(n + 2)

)
, t ∈ R,

on the Laplace transform off (an argument due to Ledoux [25]).
The second inequality in (2.5) holds true for the uniform probability measure on

an arbitrary finite undirected graph, due to the elementary estimate(a − b)(ea −
eb) ≤ (a − b)2(ea + eb)/2, a, b ∈ R. As for the first inequality in (2.5), it comes
naturally in the Markov chain setting in connection with the problem on the rate
of convergence to the stationary distribution. In the case ofGn,k , it was recently
proved [9] in a little more general form by interpolating between the Poincaré and
the modified log-Sobolev inequality, and independently [20] where a martingale
approach was used to get an asymptotically equivalent constant on the left-hand
side of (2.5). For more details and discussions of that inequality, we also refer
the interested reader to [10]. Here, for the sake of completeness and to emphasize
the “concentration” content, we include below a direct inductive argument.

PROOF OFTHEOREM 2.1. For 1≤ k ≤ n−1, letAn,k denote the best constant
in

Entµ(f ) ≤ An,kE(f, logf ) = An,k

Ck
n

∑
ρ(x,y)=1

R
(
f (x), f (y)

)
,(2.7)

wheref is an arbitrary positive function onG = Gn,k, R(a, b) = (a − b)(loga −
logb), for a, b > 0 and the summation is performed over all ordered pairs(x, y) ∈
G × G such thatρ(x, y) = 1. By symmetry,An,k = An,n−k .

When k = 1, G represents a graph of sizen where all different points are
neighbors of each other (a complete graph). In this case, by Jensen’s inequality,

Entµ(f ) ≤ covµ(f, logf ) = 1

2n2

∑
x �=y

R
(
f (x), f (y)

) = 1

2n
E(f, logf ).

Hence,An,1 ≤ 1
2n

. As for k ≥ 2, we deduce a recursive inequality that relatesAn,k

to An−1,k−1 and then we may proceed by induction. Thus, fixk ≥ 2 and a positive
functionf onG with

∫
f dµ = 1 [this can be assumed in view of the homogeneity

of (2.7)]. Introduce subgraphs

Gi = {x ∈ G :xi = 1}, 1≤ i ≤ n,
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and equip them with uniform probability measuresµi . Since all Gi can be
identified withGn−1,k−1, we may write the definition (2.7) for these graphs:∫

Gi

f logf dµi

≤
∫
Gi

f dµi log
∫
Gi

f dµi + An−1,k−1

Ck−1
n−1

∑
x∈Gi

∑
y∈Gi ,ρ(x,y)=1

R
(
f (x), f (y)

)
.

Put ai = ∫
f dµi . Summing the above inequalities over alli ≤ n with weight 1

n

and making use of1
n

∑n
i=1 µi = µ, we get∫

f logf dµ

≤ 1

n

n∑
i=1

ai logai + An−1, k−1

nCk−1
n−1

n∑
i=1

∑
x∈Gi

∑
y∈Gi ,ρ(x,y)=1

R
(
f (x), f (y)

)
.

(2.8)

Since 1
n

∑n
i=1 ai = ∫

f dµ = 1, the first term in (2.8) is estimated from above,
according to the casek = 1 in (2.7), by(An,1/C

1
n)

∑
i �=j R(ai, aj ). Hence, (2.8)

implies

Entµ(f ) ≤ An,1

n

∑
i �=j

R(ai, aj ) + An−1,k−1

nCk−1
n−1

n∑
i=1

∑
x∈Gi

∑
y∈Gi ,ρ(x,y)=1

R
(
f (x), f (y)

)
.

Now, givenx, y ∈ G with ρ(x, y) = 1, the number of alli such thatx ∈ Gi and
y ∈ Gi simultaneously is equal tok − 1. Hence, the triple sum contributes

(k − 1)
∑
x∈G

∑
y∈G,ρ(x,y)=1

R
(
f (x), f (y)

) = (k − 1)Ck
nE(f, logf ).

Since((k − 1)Ck
n)/(nCk−1

n−1) = k−1
k

, we thus get

Entµ(f ) ≤ An,1

n

∑
i �=j

R(ai, aj ) + (k − 1)An−1,k−1

k
E(f, logf ).(2.9)

To treat the sum in (2.9), note that, for each couple(i, j), i �= j , the map
sij : {0,1}n → {0,1}n acts as a bijection betweenGi andGj , pushingµi forward
ontoµj (wheneverk ≥ 2). In particular,aj = ∫

f (y) dµj(y) = ∫
f (sij x) dµi(x).

Hence, by convexity ofR in the positive quartera, b > 0 and Jensen’s inequality,

R(ai, aj ) = R

(∫
f (x) dµi(x),

∫
f (sij x) dµi(x)

)
≤

∫
R

(
f (x), f (sij x)

)
dµi(x).
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Therefore, ∑
i �=j

R(ai, aj ) ≤ 1

Ck−1
n−1

∑
i �=j

∑
x∈Gi

R
(
f (x), f (sij x)

)
.(2.10)

Note thaty = sij x always impliesρ(x, y) ≤ 1 and in the casex ∈ Gi , the equality
ρ(x, y) = 1 is only possible whenxi = 1, xj = 0. Hence, the double sum in (2.10)
contains only termsR(f (x), f (y)) with ρ(x, y) = 1 [the casesρ(x, y) = 0 can be
excluded]. In turn, for any couplex, y ∈ G such thatρ(x, y) = 1, there is a unique
pair (i, j) such thati �= j andy = sij x. Thus, the right-hand side of (2.10) turns
into

1

Ck−1
n−1

∑
x∈G

∑
y∈G,ρ(x,y)=1

R
(
f (x), f (y)

) = n

k
E(f, logf )

and we finally get, from (2.9),

Entµ(f ) ≤ An,1 + (k − 1)An−1,k−1

k
E(f, logf ).

Hence,An,k ≤ 1
k
(An,1 + (k − 1)An−1,k−1), orBn,k ≤ An,1 + Bn−1,k−1 in terms of

Bn,k = kAn,k. Applying this inequality successivelyk − 1 times and recalling that
Ar,1 ≤ 1

2r
, we arrive at

Bn,k ≤ 1

2n
+ 1

2(n − 1)
+ · · · + 1

2(n − (k − 2))
+ 1

2(n − (k − 1))
.

If k ≤ n
2, each of the abovek terms does not exceed1

n+2, so Bn,k ≤ k
n+2. This

yields the desired estimateAn,k ≤ 1
n+2. In the casek ≥ n

2, we haveAn,k = An,n−k,
and Theorem 2.1 follows.�

3. Proving Theorem 1.1. We turn to the proof of Theorem 1.1 and to
the original definition ofGn,k as a collection of all subsets of{1, . . . , n} of
cardinality k. We always assume the basic orthonormal hypothesis (1.1) on the
sequenceX1, . . . ,Xn.

First we focus on the concentration property of the family{Fτ } in terms of their
characteristic functions

fτ (t) = EeitSτ , τ ∈ Gn,k, t ∈ R,

viewed as complex-valued functions onGn,k with parametert . As a second step,
concentration of values offτ (t) around itsµ mean,

f (t) =
∫

fτ (t) dµ(τ ) =
∫ +∞
−∞

eitx dF (x),

is converted, with the help of standard facts from Fourier analysis, into the
concentration property of distributions in the form (1.3). Although this route is
different than that in [2] or [5] for the case of the sphere, it has proved to work
well on the discrete cube [6] (see also [17]).
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LEMMA 3.1. For every t ∈ R, the function τ → fτ (t) has gradient on Gn,k

satisfying

|∇fτ (t)| ≤ (|t| + t2)

√
n

k
, τ ∈ Gn,k.

PROOF. Everyτ in Gn,k hask(n − k) neighbors inGn,k,

τu,v = (τ \ {u}) ∪ {v}, u ∈ τ, v /∈ τ.

HenceSτ − Sτu,v = (Xu − Xv)/
√

k and

fτ (t) − fτu,v (t) = E exp(itSτ )
(
1− exp

(−it (Xu − Xv)/
√

k
))

.

Given a complex-valued functiong on Gn,k , we apply the equivalent represen-
tation for the modulus of gradient,

|∇g(τ )| = sup

∣∣∣∣∣∑
u∈τ

∑
v /∈τ

au,v

(
g(τ ) − g(τu,v)

)∣∣∣∣∣,
where the supremum runs over all collections of complex numbersau,v such that∑

u∈τ

∑
v /∈τ |au,v|2 = 1. In particular, forg(τ ) = fτ (t) we have

|∇fε(t)| = sup

∣∣∣∣∣E exp(itSτ )
∑
u∈τ

∑
v /∈τ

au,v

(
1− exp

(−it (Xu − Xv)/
√

k
))∣∣∣∣∣

≤ supE

∣∣∣∣∣∑
u∈τ

∑
v /∈τ

au,v

(
1− exp

(−it (Xu − Xv)/
√

k
))∣∣∣∣∣.

Using the estimate|eiα −1− iα| ≤ 1
2α2 (α ∈ R), the assumptionE(Xu −Xv)

2 = 2
and the identity sup

∑
u∈τ

∑
v /∈τ |au,v| = √

k(n − k), we can continue to get

|∇fτ (t)| ≤ |t|√
k

supE

∣∣∣∣∣∑
u∈τ

∑
v /∈τ

au,v(Xu − Xv)

∣∣∣∣∣
+ t2

2k
supE

∑
u∈τ

∑
v /∈τ

|au,v|(Xu − Xv)
2

= |t|√
k

supE

∣∣∣∣∣∑
u∈τ

∑
v /∈τ

au,v(Xu − Xv)

∣∣∣∣∣ + t2

k

√
k(n − k).

To treat the last double sum, introducebu = ∑
v /∈τ au,v andcv = ∑

u∈τ au,v, so
we can write ∑

u∈τ

∑
v /∈τ

au,v(Xu − Xv) = ∑
u∈τ

buXu − ∑
v /∈τ

cvXv.
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By (1.1),

E

∣∣∣∣∣∑
u∈τ

∑
v /∈τ

au,v(Xu − Xv)

∣∣∣∣∣
2

= E

∣∣∣∣∣∑
u∈τ

buXu

∣∣∣∣∣
2

+ E

∣∣∣∣∣∑
v /∈τ

cvXv

∣∣∣∣∣
2

= ∑
u∈τ

|bu|2 + ∑
v /∈τ

|cv|2,

but by Cauchy’s inequality,

|bu|2 ≤ (n − k)
∑
v /∈τ

|au,v|2, |cv|2 ≤ k
∑
u∈τ

|au,v|2,

so
∑

u∈τ |bu|2 + ∑
v /∈τ |cv|2 ≤ (n − k)+ k = n. Therefore, once more by Cauchy’s

inequality,

E

∣∣∣∣∣∑
u∈τ

∑
v /∈τ

au,v(Xu − Xv)

∣∣∣∣∣ ≤ √
n.

Thus, we arrive at the bound|∇fε(t)| ≤ |t|
√

n
k
+ t2

√
n−k
k

, which finishes the proof.
�

COROLLARY 3.2. For every t > 0 and h > 0,

µ

{
τ :

|fτ (t) − f (t)|
t

≥ h

}
≤ 4 exp

( −kh4

8(2+ h)2

)
.(3.1)

PROOF. Indeed, ift > 2
h
, the probablity on the left-hand side is zero, since

|fτ (t) − f (t)| ≤ 2. In the other caset ≤ 2
h
, consider the functiong(τ ) =

(fτ (t) − f (t))/t . It hasµ-mean zero, and according to Lemma 3.1, its modulus
of gradient is bounded by(1 + t)

√
n
k

≤ (1 + 2
h
)
√

n
k
. The same is true for real and

imaginary partsg1 = Reg and g2 = Img. Thus, we are in a position to apply
Theorem 2.1 which gives [replacingn + 2 with n in (2.6)]

µ{|g| ≥ h} = µ{|g1|2 + |g2|2 ≥ h2}
≤ µ

{|g1| ≥ h/
√

2
} + µ

{|g2| ≥ h/
√

2
}

≤ 4 exp
(−kh2/8(1+ 2/h)2).

Corollary 3.2 follows. �

By continuity, inequality (3.1) continues to hold in the limit caset = 0. Since

EµSτ =
∫

Sτ dµ(τ ) = 1

Ck
n

∑
i1<···<ik

Xi1 + · · · + Xik√
k

= √
k �X,



CONCENTRATION OF DISTRIBUTIONS 2893

where�X = (X1 + · · · + Xn)/n, the limiting case becomes

µ
{
τ :

∣∣ESτ − √
kE�X∣∣ ≥ h

} ≤ 4 exp
(−kh4/8(2+ h)2).(3.2)

Thus, under (1.1), the functiong(τ ) = ESτ onGn,k is strongly concentrated around
its meanEµg = √

kE�X.
For the next step, it is important to sharpen inequality (3.1) by making it

uniform with respect to the parametert . In other words, we need to control
supt>0(|fτ (t) − f (t)|)/t . This can be achieved at the expense of a small
deterioration of the bound on the right-hand side of (3.1). Indeed, let us apply (3.1)
to pointstr = rh2, r = 0,1, . . . ,N = [ 2

h3 ]+1, where[ · ] stands for the integer part
of a real number and where the caser = 0 is understood as the inequality (3.2).
Then we get

µ

{
max

0≤r≤N

|fτ (tr ) − f (tr )|
tr

≥ h

}
≤

N∑
r=0

µ

{ |fτ (tr ) − f (tr )|
tr

≥ h

}

≤ 4(N + 1)exp
( −kh4

8(2+ h)2

)

≤ 4
(

2

h3
+ 2

)
exp

( −kh4

8(2+ h)2

)
.

(3.3)

To involve all remaining values oft > 0 in the maximum on the left-hand
side, we may assume, as in the proof of Corollary 3.2, that 0< t ≤ 2

h
. Let G(h)

denote the collection of allτ ∈ Gn,k such that|fτ (tr ) − f (tr )|/tr < h for all r = 0,

1, . . . ,N simultaneously. Recall thatES2
τ = 1, so|f ′

τ (t)| ≤ 1 and|f ′′
τ (t)| ≤ 1, and

similarly for f .

CASE 1. 0< t ≤ h. By Taylor’s expansion,

fτ (t) − f (t)

t
= iE

(
Sτ − √

k �X ) + t

∫ 1

0
(1− v)

(
f ′′

τ (tv) − f ′′(tv)
)
dv.

Hence, ifτ ∈ G(h) and in particular|E (Sτ − √
k�X )| < h, we get

|fτ (t) − f (t)|
t

≤ h + t ≤ 2h.

CASE 2. h ≤ t ≤ 2
h
. Pick an indexr = 0, . . . ,N − 1 such thattr < t ≤ tr+1.

Recalling thattr+1 − tr = h2 and applying the Lipschitz property offτ andf , we
may write

|fτ (t) − f (t)| ≤ |fτ (t) − fτ (tr )| + |fτ (tr ) − f (tr )| + |f (tr ) − f (t)|
< 2|t − tr | + trh ≤ 2h2 + trh < 2h2 + th ≤ 3th.

The assumptiont ≥ h was used on the last step.
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Thus, in both cases we obtain thatτ ∈ G(h) implies supt>0(|fτ (t) − f (t)|/
t) < 3h. Consequently, by (3.3),

µ

{
sup
t>0

|fτ (t) − f (t)|
t

≥ 3h

}
≤ 4

(
2

h3
+ 2

)
exp

( −kh4

8(2+ h)2

)
, h > 0.(3.4)

This is a desired sharpening of (3.1).

PROOF OF THEOREM 1.1. We use the following observation due to
Bohman [11]. Given characteristic functionsϕ1 andϕ2 of the distribution func-
tions F1 andF2, respectively, if|ϕ1(t) − ϕ2(t)| ≤ λt for all t > 0, then, for all
x ∈ R anda > 0,

F1(x − a) − 2λ

a
≤ F2(x) ≤ F1(x + a) + 2λ

a
.

The particular casea = √
2λ gives an important relationship,

1

2
L(F1,F2)

2 ≤ sup
t>0

|ϕ1(t) − ϕ2(t)|
t

,(3.5)

between characteristic functions and the Lévy distance. Therefore, by (3.4)
and (3.5),

µ

{
1

2
L(Fτ ,F )2 ≥ 3h

}
≤ 4

(
2

h3
+ 2

)
exp

( −kh4

8(2+ h)2

)
.

Replacing 6h with δ2 and noticing that only 0< δ ≤ 1 should be taken into
consideration, we arrive at the estimate

µ{L(Fτ ,F ) ≥ δ} ≤ C

δ6 exp(−ckδ8), δ > 0,

with some positive numerical constantsC and c. On the other hand, in the
latter inequality, we may restrict ourselves to valuesδ > c1k

−1/8, which make
the bound(C/δ6)exp(−ckδ8) smaller than 1, and then we arrive at the required
inequality (1.3). Theorem 1.1 has been proved.�

4. Elementary symmetric polynomials. We turn to the next natural question
regarding approximation of the averarge distribution functionF . According to the
definition (1.2), it has characteristic function

f (t) = 1

Ck
n

E
∑

exp
(

itXi1√
k

)
· · ·exp

(
itXik√

k

)
, t ∈ R,(4.1)

with summation over all increasing sequences 1≤ i1 < · · · < ik ≤ n. To better
understand possible behavior of such sums, introduce normalized elementary
symmetric polynomials inn complex variables of degreek:

σk(z) = 1

Ck
n

∑
i1<···<ik

zi1 · · · zik , z = (z1, . . . , zn) ∈ Cn.
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An account on basic results and some other interesting properties of such
polynomials can be found in [30]. For our purposes, it is desirable to relateσk

to arithmetic means

z̄ = z1 + · · · + zn

n
.

In this section we derive the following statement of independent interest which
seems to be absent from the literature (cf. also [7] for a more general scheme).

PROPOSITION4.1. If |zj | ≤ 1, j = 1, . . . , n, then for all 1 ≤ k ≤ n,

|σk(z) − z̄k| ≤ 6
k − 1

n − 1
.(4.2)

Since |zj | ≤ 1, both quantities satisfy|σk(z)| ≤ 1 and |z̄k| ≤ 1, so |σk(z) −
z̄k| ≤ 2. We can easily refine this bound by applying the polynomial formula

z̄k = 1

nk

∑
p1+···+pn=k

k!
p1! · · ·pn!z

p1
1 · · · zpn

n

= k!Ck
n

nk
σk(z) + remainder(z).

Then we obtain immediately the estimate

|σk(z) − z̄k| ≤ 2
(

1− k!Ck
n

nk

)
.

Here, the right-hand side gets small only in the rangek = o(
√

n) in which case
it is of orderk2/n. The bound of orderk

n
in (4.2) is asymptotically sharp, but its

proof requires more sophisticated arguments.

PROOF OF PROPOSITION 4.1. Let An,k denote maximum of the left-hand
side in (4.2) over all possible vectorsz with |zj | ≤ 1 for all 1≤ j ≤ n, and letBk

be an optimal constant in

An,k ≤ Bk

k − 1

n − 1
, n ≥ k.

We need a uniform bound onBk . The casen = 1 is trivial, since thenAn,1 = 0. If
n = 2, by simple algebra,

σ2(z) − z̄2 = − 1

n(n − 1)

n∑
j=1

(zj − z̄)2,

so

|σ2(z) − z̄2| ≤ 1

n(n − 1)

n∑
j=1

|zj − z̄|2 ≤ 1

n − 1
(1− |z̄|2) ≤ 1

n − 1
.
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Hence,An,2 ≤ 1
n−1 andB2 ≤ 1. To bound the remaining constants, we deduce

recursive inequalities that relateAn,k to An−1,k−1 (and then we can argue as in the
proof of Theorem 2.1).

Thus letn ≥ k ≥ 3. With everyz ∈ Cn we associaten vectors inCn−1,

z(j) = (z1, . . . , zj−1, zj+1, . . . , zn), 1≤ j ≤ n.

In what follows we always assume|zj | ≤ 1 for all 1 ≤ j ≤ n. Let us mention
several simple immediate properties and identities:

1. For allj ≤ n, |z̄(j )| ≤ 1.
2. We havēz(j) − z̄ = −(zj − z̄)/(n − 1).
3. On the other hand,z̄(j ) − z̄ = (z̄(j ) − zj )/n, so we always have|z̄(j ) − z̄| ≤ 2

n
.

4. We havēz = 1
n

∑n
j=1 z̄(j ).

5. We haveσk(z) = 1
n

∑n
j=1 zjσk−1(z(j)).

From items 4 and 5 we obtain the representation

σk(z) − z̄k = 1

n

n∑
j=1

zj

(
σk−1

(
z(j)

) − z̄k−1
(j )

) + 1

n

n∑
j=1

zj

(
z̄k−1
(j ) − z̄k−1).

Hence,

|σk(z) − z̄k| ≤ An−1,k−1 + 1

n

∣∣∣∣∣
n∑

j=1

zj

(
z̄k−1
(j ) − z̄k−1)∣∣∣∣∣.(4.3)

Thus, our task is to bound the last term on the right-hand side properly. One natural
possibility is to use expansion̄zk−1

(j ) − z̄k−1 = (z̄(j ) − z̄)
∑k−2

u=0 z̄u
(j)z̄

k−u−2. Then by

identity 3,|z̄k−1
(j ) − z̄k−1| ≤ 2(k−1)

n
. Applying this estimate in (4.3), we arrive at

An,k ≤ An−1,k−1 + 2(k − 1)

n
.(4.4)

Successive application of this inequality leads to the rough boundAn,k =
O(k2/n). Nevertheless, (4.4) can be useful for small values ofk. For example,
if k = 3, we get

An,3 ≤ An−1,2 + 4

n
≤ 1

n − 2
+ 4

n

= 1

n − 1

(
5− 3n − 8

n(n − 2)

)
<

5

n − 1
, n ≥ 3,

soB3 < 5
2. Similarly, for k = 4, n ≥ 4, by the previous step,

An,4 ≤ An−1,3 + 6

n
≤ 1

n − 3
+ 4

n − 1
+ 6

n

= 1

n − 1

(
11− 4n − 18

n(n − 3)

)
<

12

n − 1
,

(4.5)
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soB4 < 4. Hence,Bk < 4 for k ≤ 4, as stated in (4.2).
Thus, assumen ≥ k ≥ 5. We need a more careful estimate of the right-hand side

of (4.3) that is independent onk. From Taylor’s expansion in the integral form,
with integration along a segment on the plane connecting two pointsa, a0 ∈ C, we
have a canonical estimate

|ak−1 − ak−1
0 − (k − 1)ak−2

0 (a − a0)|

≤ (k − 1)(k − 2)

2
|a − a0|2 max{|a0|k−3, |a|k−3}.

In particular, whena0 = z̄, a = z̄(j ), we may write, applying property 3,

z̄k−1
(j ) − z̄k−1

= (k − 1)
(
z̄(j ) − z̄

)
z̄k−2 + θj

(k − 1)(k − 2)

2

∣∣z̄(j ) − z̄
∣∣2(|z̄| + 2

n

)k−3

for some|θj | ≤ 1. Hence, by statement 2,

n∑
j=1

zj

(
z̄k−1
(j ) − z̄k−1) = −k − 1

n − 1
z̄k−2

n∑
j=1

zj (zj − z̄)

+ (k − 1)(k − 2)

2(n − 1)2

(
|z̄| + 2

n

)k−3 n∑
j=1

θj |zj − z̄|2.

However,
∑n

j=1 zj (zj − z̄) = ∑n
j=1(zj − z̄)2 is bounded in absolute value by

n(1− |z̄|2). Therefore,

1

n

∣∣∣∣∣
n∑

j=1

zj

(
z̄k−1
(j ) − z̄k−1)∣∣∣∣∣ ≤ k − 1

n − 1
|z̄|k−2(1− |z̄|2)(4.6)

+ (k − 1)(k − 2)

2(n − 1)2

(
|z̄| + 2

n

)k−3

(1− |z̄|2).(4.7)

To bound the expression in (4.6), note that, givenr > 1, a function of the form
ψ(b) = br−1(1 − b) is maximized in 0≤ b ≤ 1 at b = 1 − 1

r
and its maximum

(1 − 1
r
)r 1

r−1 can be bounded by 1
e(r−1)

. Applying this observation withb = |z̄|2
andr = k

2, we conclude that

k − 1

n − 1
|z̄|k−2(1− |z̄|2) ≤ 2

e

k − 1

k − 2

1

n − 1
<

1

n − 1
,(4.8)

where we used the assumptionk ≥ 5.
Next, to bound the expression in (4.7), consider a function of the form

ψ(b) = (b + ε)r−1(1 − b) with ε = 2
n
, r > 1 + ε. It is maximized in 0≤ b ≤ 1
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at b = 1 − 1+ε
r

and its maximum(1 + ε)r(1 − 1
r
)r 1

r−1 can be bounded by
((1+ ε)r )/(e(r − 1)). In particular, withb = |z̄| andr = k − 2 this yields

(k − 1)(k − 2)

2(n − 1)2

(
|z̄| + 2

n

)k−3

(1− |z̄|)(1+ |z̄|)

≤ (k − 1)(k − 2)

e(k − 3)(n − 1)2

(
1+ 2

n

)k−2

.

Hence, using(1+ 2
n
)k−2 ≤ (1+ 2

n
)n−2 ≤ e2/(1+ 2

n
)2 and (k−1)(k−2)

k−3 = k + 2
k−3 <

n + 2, we can estimate the expression in (4.7) bye
n−1 < 3

n−1. Together with (4.8),

the left-hand side of (4.6) is thus bounded by4
n−1. Thus, returning to (4.3), we

obtain a more precise recursive inequality than (4.4):

An,k ≤ An−1,k−1 + 4

n − 1
, n ≥ k ≥ 5.(4.9)

Finally, applying (4.9)k − 4 times and the obtained estimate (4.5), we get

An,k ≤ 4

n − 1
+ 4

n − 2
+ · · · + 4

n − k + 4
+ An−k+4,4 ≤ 4(k − 1)

n − k + 3
.(4.10)

In the casek ≤ n
3 + 1, we haven − k + 3 ≥ 2

3n, and (4.10) yields the desired

estimate (4.2). In the other case there is nothing to prove since then6(k−1)
n−1 ≥ 2 ≥

An,k . Proposition 4.1 is proved.�

5. Theorem 1.2 and its generalization. As before, let X1, . . . ,Xn be
random variables that satisfy the orthogonality condition (1.1) and let 1≤ k ≤ n.
Now we are prepared to study asymptotic properties of the average characteristic
functionf defined in (4.1) (of the average distribution functionF ). Givenω ∈ �,
introduce random characteristic functions

fω(t) = 1

Ck
n

∑
exp

(
itXi1(ω)√

k

)
· · ·exp

(
itXik (ω)√

k

)
,

gω(t) =
(

exp(itX1(ω)) + · · · + exp(itXn(ω))

n

)k

,

where summation runs over all increasing sequences 1≤ i1 < · · · < ik ≤ n. Thus,
f (t) = Efω(t). Also put

g(t) = Egω(t) = E
(

exp(itX1) + · · · + exp(itXn)

n

)k

, t ∈ R.

By Proposition 4.1, we always have|fω(t)−gω(t)| ≤ 6k
n

, so a similar inequality
must hold for corresponding means, that is,

|f (t) − g(t)| ≤ 6k

n
, t ∈ R.(5.1)
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Hence, whenk = o(n), the associated distribution functions must be also close to
each other and we may concentrate on the asymptotic behavior ofg, only.

A probabilistic meaning of each functiongω is very simple. Indeed, given
ω ∈ �, let Y1, . . . , Yk be independent, identically distributed random variables
defined on some probability space(M,Q), whose common distribution is a sample
distribution:

Q{Y1 = Xj(ω)} = 1

n
, 1 ≤ j ≤ n.

Then, by the very definition,gω represents the characteristic function of the
random variable

Tω = Y1 + · · · + Yk√
k

.

It hasQ meanEQTω = √
k�X(ω), where�X(ω) = 1

n

∑n
j=1Xj(ω) is just a sample

mean associated to the “sample”X1, . . . ,Xn, and hasQ variance

σ 2(ω) = VarQ(Tω) = 1

n

n∑
j=1

(
Xj (ω) − �X(ω)

)2
,(5.2)

representing the usual sample variance. For simplicity, in some places we omitω,
hoping this does not lead to confusion.

By the canonical central limit theorem, the random variableTω has a distribution
function,Gω, which is close to the normalN(

√
k �X,σ 2). Hence, the distribution

functionG(x) = EGω(x), associated to the characteristic functiong, is close to
a P mixture of N(

√
k �X,σ 2)-distribution functions. Clearly, this mixture can be

described as the distribution function of a random variable of the form

ξ = √
k �X + σζ,

whereζ is a standard normal random variable independent of all r.v.’sXj . It has
characteristic function

h(t) = Eeitξ = E exp
(√

k �Xit − σ 2t2/2
)
.(5.3)

LEMMA 5.1. If EXj = 0, E|Xj |3 ≤ β (1 ≤ j ≤ n), then

sup
t>0

|f (t) − h(t)|
t

≤ 3
(

k

n

)1/2

+ 6
β1/4

k1/8 .

Let H denote the distribution function ofξ . By Bohman’s inequality (3.5)
applied toF1 = F andF2 = H , we get

L2(F,H) ≤ 6
(

k

n

)1/2

+ 12
β1/4

k1/8
.
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The quantity on the right-hand side is small oncek is large andk
n

is small. In this
case,E(

√
k�X )2 = k

n
is small, as well, and according to (5.3),h(t) is close to the

characteristic function

E exp

{
− t2

2n

n∑
j=1

X2
j

}
.

Thus, we arrive at the following conclusion that includes the statement of
Theorem 1.2. Let(Xj )

∞
j=1 be a sequence of random variables that satisfies the

correlation condition(1.1) and such thatEXj = 0, supj E|Xj |3 < +∞. Assume
that, for some random variableR ≥ 0, asn → ∞,

1

n

n∑
j=1

X2
j → R2

in the sense of the weak convergence of distributions on the real line. Let�R

denote the distribution function of the random variableRζ , whereζ is a standard
normal random variable that is independent onR. Then we have:

THEOREM 5.2. For all (k, n) in the range 1 � k � n, for every δ > 0 and for
all τ ∈ Gn,k except for a set of µ measure at most Ck3/4 exp(−ckδ8), we have

L(Fτ ,�R) < δ + o(1).

PROOF OFLEMMA 5.1. We use the following standard estimate (needed for
the Berry–Esseen theorem; cf., e.g., [29], Chapter V, paragraph 2, Lemma 1):
If Z1, . . . ,Zk are independent r.v.’s such thatEZl = 0, E|Zl |3 < ∞ and B =∑k

l=1 EZ2
l , then∣∣∣∣E exp

(
it (Z1 + · · · + Zk)√

B

)
− exp

(−t2

2

)∣∣∣∣ ≤ 16L|t|3 exp
(−t2

3

)
, |t| ≤ 1

4L
,

whereL = B−3/2 ∑k
l=1 E|Zl|3 (the so-called Lyapunov fraction). Dividing byt

and maximizing the right-hand side over allt > 0, we get

|E exp(it (Z1 + · · · + Zk)/
√

B ) − exp(−t2/2)|
t

≤ 18L,(5.4)

provided that 0< t ≤ 1
4L

. In the caset ≥ 1
4L

, the left-hand side can be estimated
by 2

t
≤ 8L, so (5.4) holds for allt > 0. In particular, if theZl ’s are identically

distributed withEZ2
1 = σ 2 andE|Z1|3 = β, thenB = σ 2k, L = β/σ 3

√
k, and the

above bound yields

max
t>0

|E exp(it (Z1 + · · · + Zk)/
√

k ) − exp(−σ 2t2/2)|
t

≤ 18√
k

β

σ 3 .
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In particular, this inequality can be applied on the probability space(M,Q) to
random variablesZl = Yl − �X. In this case,σ 2 = σ 2(ω) represents the sample
variance (5.2) and similarlyβ(ω) = 1

n

∑n
j=1 |Xj − �X|3. Thus, introducing the

characteristic functionhω(t) = exp(
√

k�Xit − σ 2t2/2), we obtain that

sup
t>0

|gω(t) − hω(t)|
t

≤ 18√
k

β(ω)

σ 3 .(5.5)

Note that bothgω andhω correspond to distributions with expectation
√

k�X and
varianceσ 2. Hence, by Taylor’s expansion around zero,|gω(t)−hω(t)| ≤ σ 2t2 for
all t ∈ R. On the other hand, we always have a trivial bound|gω(t) − hω(t)| ≤ 2.
Combining these, we get

|gω(t) − hω(t)|
t

≤ min
{
σ 2t,

2

t

}
≤ √

2σ, t > 0.

Together with (5.5) and maximizing overσ > 0, this gives, for allt > 0,

|gω(t) − hω(t)|
t

≤ min
{

18√
k

β(ω)

σ 3
,
√

2σ

}
≤ 3β(ω)

k1/8

1/4

.

Averaging overω and using Hölder’s inequality, we obtain that

|g(t) − h(t)|
t

≤ 3

k1/8

(
Eβ(ω)

)1/4
, t > 0,

since h(t) = Ehω(t). To estimateEβ(ω), we may apply Jensen’s inequality,
implying |Xj − �X|3 ≤ 1

n

∑n
l=1 |Xj − Xl|3. Since E|Xj − Xl|3 ≤ 4E|Xj |3 +

4E|Xl|3 ≤ 8β, we arrive atE|Xj − �X|3 ≤ 8β and, therefore,Eβ(ω) ≤ 8β. Hence,

sup
t>0

|g(t) − h(t)|
t

≤ 6β1/4

k1/8 .(5.6)

It remains to involve the characteristic functionf . Combining (5.1) and (5.6),
we get

|f (t) − h(t)| ≤ 6k

n
+ 6β1/4

k1/8 t, t > 0.(5.7)

On the other hand,Eξ = 0 and, by independence ofζ and(X1, . . . ,Xn),

Eξ2 = E
(√

k �X + σζ
)2 = kE(�X)2 + Eσ 2 = 1+ k − 1

n
≤ 2,

soh′(0) = 0 and|h′′(t)| ≤ 2 for all t ∈ R. In addition, the distribution functionF
has mean 0 and variance 1, sof ′(0) = 0 and |f ′′(t)| ≤ 1. Consequently, by
Taylor’s expansion around zero,|f (t)−h(t)|

t
≤ 3t

2 , t > 0. Together with (5.7), the
latter gives

|f (t) − h(t)|
t

≤ 3

2
min

{
t,

4k

nt
+ 4β1/4

k1/8

}
.
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Finally, let us note that, givena, b > 0, a function of the formu(t) = min{t b
t
+ a}

attains its maximum att0 = (a + √
a2 + 4b )/2 and, at this point,u(t0) = t0 ≤

a + √
b. Applying this tob = 4k

n
anda = 4β1/4/k1/8, we arrive at

sup
t>0

|f (t) − h(t)|
t

≤ 3

2

[
2
(

k

n

)1/2

+ 4β1/4

k1/8

]
.

Lemma 5.1 and, therefore, Theorem 5.2 are proved.�

6. Exchangeable random variables. Random variablesX1, . . . ,Xk are
called exchangeable (or interchangeable) if the distributionPX of the random
vector X = (X1, . . . ,Xk), as a measure onRk , is invariant under permutations
of coordinates. A similar definition applies in the case of an infinite se-
quence{Xk}∞k=1. In particular, for allk ≥ 1, the distributions of the normalized
sums(Xi1 + · · · + Xik )/

√
k do not depend on the choice of indicesi1 < · · · < ik .

So let

Sk = X1 + · · · + Xk√
k

.

Given that

EX1 = 0, EX2
1 = 1,(6.1)

a well-known theorem due to Blum, Chernoff, Rosenblatt and Teicher [4] asserts
thatSk → N(0,1) weakly in distribution ask → ∞ if and only if

EX1X2 = 0, EX2
1X

2
2 = 1;(6.2)

that is, cov(X1,X2) = cov(X2
1,X

2
2) = 0. Moreover, Berry–Esseen’s bound

sup
x∈R

|P{Sk ≤ x} − �(x)| ≤ c
E|X1|3√

k
,(6.3)

with some universalc, extends from the i.i.d. case to this case as well.
Weaker assumptions than (6.1) and (6.2) with different normalization of the

sums may also lead to asymptotic normality (see, e.g., [22, 24]). However, less
seems to be known in the case of finite sequences of exchangeable variables.
A basic tool that allows study of the various properties of an infinite exchangeable
sequenceX = {Xk}∞k=1 is de Finetti’s representation of the distributionPX of X as
a mixture

PX =
∫
�

µ∞
α dπ(α)(6.4)

of product probability measuresµ∞
α = µα ⊗ µα ⊗ · · · on R∞. Here (�,π) is

some probability space and{µα}α∈� is some family of marginals with the property
that functionsα → µα(B) areπ -measurable for all Borel setsB on the real line.
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In terms of this representation and assuming (6.1) is fulfilled, the central limit
theoremSk → N(0,1) holds true if and only if the measuresµα have mean 0
and variance 1 forπ -almost allα ([4], Lemma 1). The latter is also characterized
directly in terms ofX in the form (6.2).

In the general case of a finite exchangeable sequenceX = (X1, . . . ,Xk), the
finite-dimensional analogue of (6.4),

PX(B) =
∫

µk
α(B)dπ(α), B ⊂ Rk,(6.5)

whereµk
α = µα ⊗ · · · ⊗ µα are product probability measures onRk , is no longer

valid and, in fact, the class of distributions onRk invariant under permutations of
coordinates is much wider. Therefore, it is natural to associate toX a maximum
natural numbern = n(X) such that, for some exchangeable sequenceX̃1, . . . , X̃n

defined perhaps on a different probability space, the random vectors(X1, . . . ,Xk)

and(X̃1, . . . , X̃k) are equidistributed. Ifn can be chosen as large as we wish or,
equivalently, ifPX admits representation (6.5), putn(X) = ∞.

It may occur thatX has no exchangeable extension:n(X) = k. In that case, it
is hardly possible to reach asymptotic normality of the normalized sumSk , even
under moment assumptions such as (6.1) and (6.2). However, whenn(X) � k, the
situation changes considerably. In view of de Finetti’s theorem, it seems natural to
expect in this case thatPX has to be close in some sense to the classMk of mixtures
of product probability measures onRk . That is, there should hold an approximate
equality in (6.5). In terms of the variational distance‖ · ‖TV between probability
measures, this question was studied by Diaconis and Freedman [16]. It was shown,
in particular that, for someQ in Mk,

1

2
‖PX − Q‖TV ≤ 1− k!Ck

n

nk
, n = n(X),(6.6)

and that the bound cannot be improved. Actually, if an exchangeable extension
X1, . . . ,Xn exists on the same probability space(�,P), we can takeQ(B) =∫

µk
ω(B)dP(ω), that is, with

� = �,π = P, µω = δX1(ω) + · · · + δXn(ω)

n
.

Under the product measures, the distribution of the functionx → (x1 + · · ·
+ xk)/

√
k is nearly normal (under proper moment conditions), so the inequal-

ity (6.6) can be used to study the asymptotic normality ofSk . However, as
emphasized in [16], the expression on the right-hand side in (6.6) is of orderk2/n

for k = o(
√

n ), while it is of order 1 for larger values ofk. Hence, only the range
k = O(

√
n ) can be taken into consideration or other metrics that better react on

the weak convergence of distributions should be examined in the casek > O(
√

n).
In part concerning half-spaces of the formB = {x ∈ Rk :x1 + · · · + xk ≤ c}, the
closeness ofPX(B) to Q(B) can be estimated by virtue of Proposition 4.1. As a
consequence, we can derive:
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PROPOSITION 6.1. Let X = (X1, . . . ,Xk), k ≥ 2, be an exchangeable
sequence that satisfies the moment hypotheses (6.1) and (6.2). Then

sup
x∈R

|P{Sk ≤ x} − �(x)| ≤ c

[(
k

n(X)

)p

+ (E|X1|4)1/6

kq

]
,(6.7)

for some universal c > 0 and p,q > 0.

Although this is not as sharp as (6.3), we can still control closeness to normality
for finite sequences under the same hypotheses. The assumptionEX4

1 < +∞
is technical and can be a little relaxed (to the third moment, e.g.). The second
assumption in (6.2) can be weakened toEX2

1X
2
2 ≤ 1. Although a strict inequality

is impossible here for infinite exchangeable sequences, it does hold for some
interesting finite exchangeable sequences (cf., e.g., [3]).

PROOF OF PROPOSITION 6.1. Let X have an exchangeable extension
X1, . . . ,Xn on (�,P). By exchangeability,F(x) = P{Sk ≤ x} represents the
average distribution function (1.1), and its characteristic functionf appears
in (4.1). Note that, under the measureQ(B) = ∫

µk
ω(B)dP(ω), the functionx →

(x1 + · · · + xk)/
√

k has distributionG considered along the proof of Theorem 5.2.
Moreover, by Lemma 5.1 and Hölder’s inequality,

sup
t>0

|f (t) − h(t)|
t

≤ 3
(

k

n

)1/2

+ 6
(EX4

1)
1/4

k1/8
,

where we recall thath(t) = E exp(
√

k�Xit − σ 2t2/2) represents the characteristic
function of ξ = √

k�X + σζ with ζ ∈ N(0,1) independent of(X1, . . . ,Xn). By
Bohman’s inequality (5.3) and using

√
a + b ≤ √

a +√
b (a, b ≥ 0), we may write

down a bound on the Lévy distance,

L(F,H) ≤ √
6
(

k

n

)1/4

+ √
12

(EX4
1)

1/8

k1/16
(6.8)

for the associated distribution functions. Note that we have used the assumptions
EX1 = EX1X2 = 0 andEX2

1 = 1 in this step.
To quantify closeness of the distribution functionH to �, we writeξ = ζ + η

with a small “error” η = √
k �X + (σ − 1)ζ . We apply the following general

observation: For all random variablesζ andη,

L(Fζ+η,Fζ ) ≤ (Eη2)1/3,(6.9)

where Fζ+η and Fζ are corresponding distribution functions. Indeed, there is
nothing to prove ifδ ≡ (Eη2)1/3 ≥ 1. In the other case, since for allx ∈ R and
h > 0,

{ζ ≤ x} = {ζ ≤ x,η ≤ h} ∪ {ζ ≤ x,η > h} ⊂ {ζ + η ≤ x + h} ∪ {η > h},
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by Chebyshev’s inequality, we getFζ (x) ≤ Fζ+η(x + h) + Eη2/h2. Applying the
latter to another couple of random variables(ζ + η,−η) and tox − h in the place
of x, we also haveFζ+η(x − h) ≤ Fζ (x) + Eη2/h2. All this together withh = δ

yields

Fζ+η(x − δ) − δ ≤ Fζ (x) ≤ Fζ+η(x + h) + δ,

which is exactly (6.9).
Thus, returning to our specific random variables(ζ, η), sinceFξ = H and

Fζ = �, we may conclude that

L(H,�) ≤ (Eη2)1/3.(6.10)

Now, sinceEX1X2 = 0 andEX2
1 = 1, we haveEη2 = E(

√
k �X)2 + E(σ − 1)2 =

k−1
n

+2E(1−σ). Also note 1−σ = (1− σ 2)/(1+ σ) = (1− �X 2 + (�X)2 )/(1+ σ),
so |1 − σ | ≤ |�X 2 − 1| + (�X)2, where �X 2 = 1

n

∑n
j=1X

2
j . By the assumption

EX2
1X

2
2 = 1 and sinceE�X 2 = 1,

E|�X 2 − 1|2 = Var(�X 2) = EX4
1

n
+ n(n − 1)cov(X2

1,X
2
2)

n
= EX4

1

n
.

Therefore,E|�X 2 − 1| ≤ (EX4
1)

1/2/
√

n andE|1 − σ | ≤ (EX4
1)

1/2/
√

n + 1
n
. Thus,

we getEη2 ≤ (k + 1)/n + (2(EX4
1)

1/2)/
√

n and by (6.10),

L(H,�) ≤ 2
(

k

n

)1/3

+ 2(EX4
1)

1/6

n1/6 .

Combining this with (6.8) and making use ofk ≤ n and (EX4
1)

1/8 ≤ (EX4
1)

1/6

(since the fourth moment is greater than or equal to 1), we obtain that

L(F,�) ≤ c1

(
k

n

)1/4

+ c2
(EX4

1)
1/6

k1/16 .

Finally, we always have‖F −�‖∞ ≤ 2L(F,�), so we arrive at (6.7) withp = 1
4,

q = 1
16. This completes the proof.�

REFERENCES

[1] A LON, N. and MILMAN , V. D. (1985). λ1, isoperimetric inequalities for graphs and
superconcentrators.J. Combin. Theory Ser. B 38 73–88.

[2] A NTTILA , M., BALL , K. and PERISSINAKI, I. (2003). The central limit problem for convex
bodies.Trans. Amer. Math. Soc. 355 4723–4735.

[3] BALL , K. and PERISSINAKI, I. (1998). Subindependence of coordinate slabs in�n
p balls.Israel

J. Math. 107 289–299.
[4] BLUM , J. R., CHERNOFF, H., ROSENBLATT, M. and TEICHER, H. (1958). Central limit

theorems for interchangeable processes.Canada J. Math. 10 222–229.



2906 S. G. BOBKOV

[5] BOBKOV, S. G. (2003). On concentration of distributions of random weighted sums.Ann.
Probab. 31 195–215.

[6] BOBKOV, S. G. (2003). Concentration of distributions of the weighted sums with Bernoullian
coefficients.Geometrical Aspects of Functional Analysis. Lecture Notes in Math. 1807
27–36. Springer, Berlin.

[7] BOBKOV, S. G. (2004). Generalized symmetric polynomials and an approximate de Finetti
representation.J. Theoret. Probab. To appear.

[8] BOBKOV, S. G. and KOLDOBSKY, A. (2003). On the central limit property of convex
bodies.Geometrical Aspects of Functional Analysis. Lecture Notes in Math. 1807 44–
52. Springer, Berlin.

[9] BOBKOV, S. G. and TETALI , P. (2003). Modified log-Sobolev inequalities, mixing and hy-
percontractivity. InProceedings of the 35th Annual Symposium on Theory of Computing
287–296. ACM Press, New York.

[10] BOBKOV, S. G. and TETALI , P. (2003). Modified logarithmic Sobolev inequalities in discrete
settings. Preprint.

[11] BOHMAN, H. (1961). Approximate Fourier analysis of distribution functions.Ark. Mat. 4 99–
157.

[12] BOROVKOV, A. A. and UTEV, S. A. (1983). On an inequality and a related characterization of
the normal distribution connected with it.Probab. Theory Appl. 28 (2) 209–218.

[13] BREHM, U. and VOIGT, J. (2000). Asymptotics of cross sections for convex bodies.Beiträge
Algebra Geom. 41 427–454.

[14] BREHM, U., HINOW, P., VOGT, H. and VOIGT, J. (2002). Moment inequalities and central
limit properties of isotropic convex bodies.Math. Z. 240 37–51.

[15] DIACONIS, P. (1988).Group Representations in Probability and Statistics. IMS, Hayward, CA.
[16] DIACONIS, P. and FREEDMAN, D. (1980). Finite exchangeable sequences.Ann. Probab. 8

745–764.
[17] DIACONIS, P. and FREEDMAN, D. (1984). Asymptotics of graphical projection pursuit.Ann.

Statist. 12 793–815.
[18] DIACONIS, P. and SALOFF-COSTE, L. (1996). Logarithmic Sobolev inequalities for finite

Markov chains.Ann. Appl. Probab. 6 695–750.
[19] DIACONIS, P. and SHAHSHAHANI , M. (1987). Time to reach stationarity in the Bernoulli–

Laplace diffusion model.SIAM J. Math. Anal. 18 208–218.
[20] GAO, F. and QUASTEL, J. (2003). Exponential decay of entropy in the randomtransposition

and Bernoulli–Laplace models.Ann. Appl. Probab. 13 1591–1600.
[21] GROMOV, M. and MILMAN , V. (1983). A topological application of the isoperimetric

inequality.Amer. J. Math. 105 843–854.
[22] JIANG, X. and HAHN, M. G. (2002). Empirical central limit theorems for exchangeable

random variables.Statist. Probab. Lett. 59 75–81.
[23] KARLIN , S. and MCGREGOR, J. (1961). The Hahn polynomials, formulas and an application.

Scripta Math. 23 33–46.
[24] KLASS, M. and TEICHER, H. (1987). The central limit theorem for exchangeable random

variables without moment assumptions.Ann. Probab. 15 138–153.
[25] LEDOUX, M. (1996). Isoperimetry and Gaussian analysis.Ecole d’Eté de Probabilités de

Saint-Flour XXIV. Lecture Notes in Math. 1648 165–294. Springer, Berlin.
[26] LEDOUX, M. (1999). Concentration of measure and logarithmic Sobolev inequalities.

Séminaire de Probabilités XXXIII. Lecture Notes in Math. 1799 120–216. Springer,
Berlin.

[27] LEE, T. Y. and YAU, H. T. (1998). Logarithmic Sobolev inequality for some models of random
walks.Ann. Probab. 26 1855–1873.



CONCENTRATION OF DISTRIBUTIONS 2907

[28] NAOR, A. and ROMIK , D. (2003). Projecting the surface measure of the sphere of�n
p . Ann.

Inst. H. Poincaré Probab. Statist. 39 241–261.
[29] PETROV, V. V. (1987).Limit Theorems for Sums of Independent Random Variables. Nauka,

Moscow. (In Russian.)
[30] PRASOLOV, V. V. (1999).Polynomials. Nauka, Moscow. (In Russian.)
[31] SUDAKOV, V. N. (1978). Typical distributions of linear functionals in finite-dimensional spaces

of higher dimension.Soviet Math. Dokl. 19 1578–1582.
[32] VON WEIZSÄCKER, H. (1997). Sudakov’s typical marginals, random linear functionals and a

conditional central limit theorem.Probab. Theory Related Fields 107 313–324.

SCHOOL OFMATHEMATICS

UNIVERSITY OF MINNESOTA

127 VINCENT HALL

206 CHURCH ST. S.E.
MINNEAPOLIS, MINNESOTA 55455
USA
E-MAIL : bobkov@math.umn.edu


