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GLOBAL L,-SOLUTIONS OF STOCHASTIC
NAVIER-STOKES EQUATIONS

BY R. MIKULEVICIUS AND B. L. Rozovskiit
University of Southern California, Los Angeles

This paper concerns the Cauchy problerRéhfor the stochastic Navier—
Stokes equation

U= Au—(U,V)u—Vp+fu) +[(c,V)u—Vp+guwlo W,
u(0) = ug, divu=0,

driven by white noisé#/. Under minimal assumptions on regularity of the
coefficients and random forces, the existence of a global weak (martingale)
solution of the stochastic Navier—Stokes equation is proved. In the two-
dimensional case, the existence and pathwise uniqueness of a global strong
solution is shown. A Wiener chaos-based criterion for the existence and
uniqueness of a strong global solution of the Navier—Stokes equations is
established.

1. Introduction. In this paper we are concerned with the Cauchy problem for
the stochastic Navier—Stokes equation

du=Au— (U, V)u—Vp+fu) +[(o, V)u—Vp+gu)]oW,
(1.1) :
u(0) = up, divu=0,

in R and some generalizations of this equation. In (1W)is a time derivative
of a Hilbert space-valued Brownian motion (e.g., space-time white noise) and the
stochastic integral is understood in the Stratonovich sense. Here and throughout
the rest of the paper, vector fields & are denoted by boldface letters. This
convention also applies if the entries of the vector field are taking values in a
Hilbert space.

Equation (1.1) stems from the dynamics of fluid particles given by the stochastic
flow map

(1.2) (t, x) =u(t, n(t, x)) +o(t, nt, x)) o W, n(0, x) =x,

with undetermined local characteristicgz, x) and o(t,x). The generalized
random field o (¢, x) o W models the turbulent part of the velocity field,

Received April 2003; revised August 2003.

1supported in part by NSF Grant DMS-98-02423, ONR Grant N00014-03-1-0227 and ARO
Grant DAAD19-02-1-0374.

AMS 2000 subject classifications. 60H15, 35R60, 76M35.

Key words and phrases. Stochastic, Navier—Stokes, Leray solution, Kraichnan’s turbulence,
Wiener chaos, strong solutions, pathwise uniqueness.

137



138 R. MIKULEVICIUS AND B. L. ROZOVSKII

while u(z, x) models its regular component. In [27] and [29] it was shown,
following the classical scheme of the Newtonian fluid mechanics, that the regular
componenti(z, x) of the flow map satisfies (1.1).

Our interest in stochastic flows of the forgh.2) is related in part to the recent
progress made on the turbulent transport problem (see, e.g., [14, 15, 20] and
others). In these works, turbulent velocity field is modeled by a stationary isotropic
Gaussian vector field (¢, x) with covariance

EV(#, x)V(s,y) =8 —s)C(x —y).

In the divergence-free case, the spatial covariaficis defined by its Fourier

transform
~ Co zz7
C = ] — — ,
©=@-Dar Izlz)(d+")/2( |z|2)

whereCp > 0 and O< « < 2.
The centered velocity fiel®/ (¢, x) — EV(z, x) can be realized by way of its
identification with the random vector field

(1.3) o) W= o* )ik,

k>0

where {¢%,k > 1} is an orthonormal basis in the reproducing kernel Hilbert
spaceH¢ corresponding to the kernel functi@hand (wi (7))x>1 are independent
one-dimensional Brownian motions. In fa@f¢ is the subset of divergence-free
fields in the Sobolev spadé@¥)/2(R4, R?). It can be shown (see, e.g., [21]) that
eacho* is divergence-free and Holder-continuous of ordg2.

With this application in mind, we studgl.1) with nonsmooth coefficients and
free forces. In particular, for the coefficieatit is sufficient to assume that it is
bounded and divergence-free (in the sense of generalized functions).

The aim of this paper is to develop an analog of the Leray theokyefolutions
for the stochastic Navier—Stokes equation (1.1) and its generalizations.

To this end, in Section 2 we prove the existence of a global weak (i.e.,
martingale) solution of the Cauchy problem for the stochastic Navier—Stokes
equation inR?, d > 2, such that

T
(1.4) E[sup|u(s)|§+ |Vu(s)|§ds] < 00.
s<T 0

In addition, we prove that if = 2 and the free forces are Lipschitz-continuous
with respect ta:, there is a unique strong (pathwise) solution with property (1.4).
In this case, we prove the convergence in probability of the approximating
sequence.

Section 3 deals with Wiener chaos expansions for stochastic Navier—Stokes
equations. In this section we derive a system of deterministic PDEs for projections
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of a solution of stochastic Navier—Stokes equations on the Hermite—Fourier basis
in Lo-space of functions adapted to the filtration generatedbylhis system is
usually referred to as a propagator. We demonstrate that the existence (uniqueness)
of a solution of the propagator is a necessary and sufficient (in certain sense)
condition for the existence (uniqueness) of a strong (pathwise) solution of the
related Navier—Stokes equation.

The existence and uniqueness bj-solutions of stochastic Navier—Stokes
equations was studied by many authors (see, e.g., [2, 5, 6, 8-12, 25, 28, 33-36]).
There is also substantial literature on more regular solutions, invariant measures,
Kolmogorov equations and other related topics that are beyond the scope of this
paper.

The main novel elements in the present paper are as follows:

To the best of our knowledge, all previous results on martinga¢ solutions
for equations similar to (1.1) were limited to bounded domains. An extension to
an unbounded domain is not trivial since in the latter case the direct application of
the compactness method, which is central to the proof, fails.

The existence of a global martingale solution of the Navier—Stokes equation
with random forcing

(1.5) dUu=Au— (U, VIuU—Vp+fu)+gu)oWw

in unbounded domain was proved in ([7], Theorem 1.1). Equation (1.5) does not
include a conceptually important ter@, V)u o W. Accordingly, it does not cover

the case of turbulent flows (e.g., Kraichnan velocity) which is central to our paper.
Also, the related results in [7] are limited to the case wliea2 or 3 and all the
moments of the initial condition are finite. It should be noted that [7] addresses a
number of interesting issues (e.g., solutions in weighted spaces, equations driven
by a homogeneous Wiener process) that are beyond the scope of the present paper.

As it was mentioned before, in contrast to previous work (see, e.g., [11, 25]),
we do not assume any regularity of the coefficients.

In [26] and [29] it was shown (under more restrictive assumptions) that
existence of a strong solution of a Navier—Stokes equation implies the existence
of a solution of the propagator. However, the converse statement, which is in many
ways more desirable, was not known previously even for linear equations.

Some results of the present paper were announced at the recent Trento meeting
(see [29]).

We conclude this section with an outline of some notations that will be used in
the paper.

Let us fix a separable Hilbert spate The scalar product of, y € Y will be
denoted by - y.

If u is a function onR?, the following notational conventions will be used for
its partial derivatives:

u 2 3%u du

— U= —
ot

E)x,- ’ & 8)6,' 8x_,- ’
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and
Vu =0u = (d1u, ..., 0qu)

and 92u = (al.%.u) denotes the Hessian matrix of second derivatives. d_et
(a1, ..., ag) be a multi-index; thed® =17, a5’

Let C§° = C(R?) be the set of all infinitely differentiable functions @f
with compact support.

Fors € (—00, 00), write A® = AS = (1— Y0 92/9x2)%/2.

For p € [1,00] ands € (—o0, 00), we define the spacH, = H;(Rd) as the
space of generalized functionswith the finite norm

luls,p = |Asu|p,

where| - |, is theL, norm. ObvioustHf,’ = L,. Note that ifs > 0 is an integer,
the spaced;, coincides with the Sobolev spae; = W;,(Rd).

If pell oo] ands € (—o0, 00), Hy(Y) = H;(Rd, Y) denotes the space of
Y-valued functions orR? so that the normiglls,p = [IA°glyl, < co. We also
write L,(Y) = L,(R?,Y) = H)(Y) = H)(R?,Y). Let Cg°(Y) be the space of
Y-valued infinitely differentiable functions dR¢ with compact support.

Obviously, the spaceS3°, C§°(Y), H3(R?) andH3 (R, Y) can be extended to
vector functions (denoted by boldface letters). For example, the space of all vector
functionsu = (u%, ..., u?) such than*u’ € L,, 1 =1, ..., d, with the finite norm

1/p
1
|u|s,p=<§ |lu |fp> )
l

we denote by, = HE,(R?). Similarly, we denote byH,(Y) = HS,(R?, Y) the
space of all vector functiong = (g')1</<4, With Y-valued componentg’, 1 <
1 <d,sothat|gls.,= (> 1g'1¥ »)Y? < oo. The set of all infinitely differentiable
vector functionsy = (u1, ..., u?) on RY with compact support will be denoted
by C3°. We denote byC3° (Y) the set of all infinitely differentiable vector functions
u=(ul ..., u?) onR? with compact support (all’ areY-valued).

Whens = 0, HS,(Y) =L, (Y) =L, (R?,Y). Also, in this case, the norifg o, ,
is denoted more briefly byg||,. To forcefully distinguishL ,-norms in spaces of
Y-valued functions, we writd - || ,, while in all other cases a norm is denoted
by |- 1.

The duality (-, -); betweenH (R?) andH,*(RY), p > 2,5 € (—00, 0), and
g = p/(p — 1) is defined by

d
(@, ¥)s = (. V)s.p = Z/Rd AP I)AT Y (x)dx,  ¢peH), ¥ €H,".
i=1
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2. Navier—Stokes equation in R?.

2.1. Assumptions and main results. We will consider a stochastic Navier—
Stokes equation oR? in a finite time interval[0, T']. The derivation presented
in [27, 29] suggests the following form of this equation for the unknown functions

u=u)1<i<q. p, p:
dul (1) = 8; (@ (1) ;u’ (1)) — u* (t) g (1) — 3 p (1)
+bI (1) d;u(t, x) + HpOR @) + £, u@®) +0; (1 (1, u@))
+ [o* () Bk (2, x) + g (¢, u()) — A p(1)] - Wy,
u(0, x) = Ug(x), I1=1,...d, divu(r)=0  inRforallz €[0, T],

2.1)

whereW is a cylindrical Wiener process in a separable Hilbert sgadeé (e) is
a complete orthonormal system (CONSYin

o
k
W, => Wfe,
k=1

where W/} are independent standard scalar Wiener processes. In a standard way,
for aY-valued adapted random function

fs = Z fskek’
k
we define a scalar-valued stochastic integral
t t
f £ dW, 22/ rrawk
0 Jo
(in differential form we writef; - Ws).
In vector form, we write (2.1) as
du(t) = 9; (a" (1) 3;u()) — u* (1) dru(t) — V p(1)
+ b (1) d;u(t, x) + 3; (I (1) +F(r, u(r)) + 3, (F/ (£, u@)))
+[o" (@) deu@e, x) +9(1, u@) — V()] - Wy,
u(0) =v, divu(r)=0  inR%forallz €0, T],

where h/ = (h"/)1<i<a, ¥/ = (f")1<1<a, J = 1., d.F = (f1<i<a, 9 =
(g))1<1<q-. Since diw(r) = 0, using the Helmholtz decomposition of vector fields
(see the Appendix) we have

Vit x)=L(u@), 1) = (Li(u@).1)) -
= G (ok (1) deu() +g(z, u(®))

(2.2)
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and
Vp(t, x) = G[—uF @) u) + 8; (a" (1) d;u(®)) (2) +F(z, u(r))
+ b (1) d;u(t) + Li(u(e), )h' (6) + 8 (F (£, u(®)))],

whereg and4 are the projection operators defined in the Appendix.
Thus, instead of (2.1), we can consider the following equivalent equation:

du(r) = 8[8; (a (1) d;u(t)) — uk (1) deu(r) + b (1) d;u(r)
+ Li(u(), t)h' (2) +f(z, u@®)) + 8; (F* (¢, u(®)))]

+8[0" (1) d;u(t) + 9(r. u() ] Wi,
u(0) = up, te[0,T].

(2.3)

Everywhere below it will be assumed that:

() @', b/ are measurable functions @, 7] x R?, %/, f! are measurable
functions on[0, 7] x R x RY;
(i) o/, "7 arey-valued measurable functions (i 7] x R?, ¢! areY -valued
functions on[0, 7] x R? x R4; and
(iii) matrix (a'/) is nonnegative.

In addition we assume the following:

(B1) |a'|, |b7], | f471, lo?ly, | dively, |h!/|y are bounded by a constakit and
there is§ > 0 such that, for alf € R?,

[0 (1. x) = 307 (1. x) - o (6.2}t = 81E 1%

(B2) there exist a constait and a measurable functidfi(z, x) on [0, T] x R¢
such that

L, W+ 1 @ x, w4 g2, x, w)ly < Clul + H (2, x),

and for allz, x, the functionsf'(z, x, u), £/ (¢, x, u), g' (¢, x, u) are contin-
uous inu, where

T
/fH(t,x)zdtdx<oo.
0 R4

REMARK 2.1. Note that in (B1) the derivativedo’ are understood as
Schwartz distributions, but it is assumed thatdaiv= "¢ ; 3;0' is a bounded
Y-valued function. Obviously, the latter assumption holds in the important case
wheny"¢ | 9;0' =0.

The main results of the paper are the following two statements.



GLOBAL SOLUTIONS OF STOCHASTIC NAVIER-STOKES 143

THEOREM 2.1. Let (B1) and (B2) hold and let ug € L. Then there exist
a probability space (2, #,P) with a right-continuous filtration F = (#;) of
o-algebras, a cylindrical F-adapted Wiener process W, in Y, and an IL,-valued
weakly continuous F-adapted process u(¢) such that

T
E[sup|u(s)|§+ |Vu(s)|§ds] <00
s<T 0

and (2.3) holds. Moreover, if d = 2, then u(z) is (strongly) continuousin ¢.

THEOREM 2.2. Letd =2, up € Ly, let (B1), (B2)hold, and for all [, j,z, x
and every u, 0,
|F1 e w) = 1, D)+ 18 (v, u) — gl x, Dy
+ 1M w) = @ x, D)
<K|u-—1a|.
Let (2, ¥, P) be a probability space with a right-continuousfiltration IF = (%;) of
o -algebras and a cylindrical F-adapted Wener process W, in Y.

Then there is a pathwise unique continuous Ly-valued F-adapted solution u(z)
to (2.3) such that

T
E[sup|u(s)|§+ IVu(s)|%ds} < 0.
s<T 0

Moreover, the distributions of the solutions on different probability spaces
coincide.

In fact in two dimensions, we prove the convergence in probability(td of
the approximating sequenog(z) constructed below.

2.2. Approximations of Navier—Stokes equations.
2.2.1. Construction of approximating sequence. Let ¥, ¢ € CP(RY), v,

>0, [Ydx=[edx=1,v,(x) =Y (x/e), ps(x) = Yp(x/e). Let ¢ €
CPMRY), 0<¢ <1, ¢x)=11if x| <1, ¢{(x) =0 if |x| > 2. Using these

functions, we mollify the coefficients and the functions of the equation (2.3). Let

AY(t,x) =a" (t,x) — 307 (t,x) - o' (1, %).
Define
A (1, x) = AY(t, ) * Y1/n(x) = / Y1 (x — YAY (1, y) dy,
ol (t,x) =0l (t,") xY1/n(x) = / Y1 (x — y)od (¢, y) dy,

all (t,x) = Al (t,x) + 30 (t,x) - 5} (2, x).
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Then,
(2.4) [a5 (1, x) — S0, (1, %) - ol (t, x)]&:&; = 81|12
Let
Fhe, x,0) = Ly <my Ly m o i<n) £ X, 1) E(U/n),
T, x,u) = Lo <m L ol<n) £ @ X, W (U/R),
2n(t. X, 0) = 1Lxj<m L a0 <8’ (X, WEU/n),
LT (6, x) = hM9 (1, ) % gy (6) = / Y1 /n(x — WA (2, y) dy,
i) =B 1) () = [ agnr = 306 0, ) dy.
Define

f,i,ga,x,u)=f,{(r,x,-)we(u)=fﬂ<r,x,ﬁ><pg(u—ﬁ)da,
Fedtex = fi @, wpe) = [ @, g - ) dil

gf,,g(z,x,u>=g~i<r,x,-)we<u>=/§f,<r,x,ﬁ>¢s(u—zz>dﬁ,

and choose,, — 0 so that
. r P ~ 2
0:I|m/ /[sup({f,ﬁg (t, x,u) — fi(z,x,u)
nJo u o
(2.5) 0 xuw) = f2 @ x w
~ ~ 2
+ |g;l1,gn(t7x7 U) - gfz(t’xa U)| )+8r211{|X<n}]dx-

~ 1,j 1, ~
Let fr{(t9x7 u) = frf,gn(tv xv u)! f}’l J([vxv u) = f}’l,én(t9x’ u)1 gi,([, xv u) = g;lfl’gn(tv
. i ’ ¥
x,w) andf, = (fDi<i<a. O = (€ 1=1=a. f = (fnD1=1za. N = () 1zi2a.
For eachv € H3, we define

La®v.t) = (Lag (V) 1<ycg = §(0 (1) 93V + Gu (2, V),
An(t, V) = 8[8;(a (t) 3;V) + bl (1) ;v + Ly j (v, )h (1)
+ (1, V) + 3, (L2, V)],

By (t,V) = 8[0)(t) iV + Gu(t, V)]
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and
Ni (1, V) = 81, (V%) v,
wherew,, (v%) = vk % Y1/,
LEMMA 2.3. Let (B1) and (B2) be satisfied. Then there is a constant C
independent of » such that for all v € H,
|An (£, V)|—12 < C[IVI1,2 + [H(#)|2 + | Ha (1) 2],
|Bn(t,V)|-1,2 < C[IVI2+ [H(?)|2 + [Hn(2) 2],

where H,, (1) = H, (¢, x) isadeterministic function so that lim,, fOT |H,,(t)|§dt =0.
Also, for each kg > (d/2) + 1, thereisa constant C independent of n such that
for all v e H3 so that divv =0,

2
[Ny (t, V)| —kp,2 < CIVI5.

PROOFE Forv e H2, we have, by Lemma A.1,
|8[6i (a] (1) 9;v) + 8 (F, (7. W))]| 1
< C[I8[(af ® 8;v) + 1, W]|,]
< [l(af @ 83;0") + £ . v)],]
<C[Vlr2+ [H@®)|2+ [Hn(2)]2].
Similarly,
1816](1) 0,V + L i (v, DN (1) + (1, V]| 1,2
<|8[b}(1) 8V + L i (v, DN (1) + (1, V]2
< CIbi (1) ;0" + Lui (v, DN (1) + (2, V)2
< C[IVlL2+ [H(®)]2+ | Hy (1) 2].
Sincelo;o) (t)| < K, we have by (2.8) and Lemma A.1,
18[0,; (1) V]| —1,2 < [9; (0, (IV)]—1,2 + |di0 (1)V]2 < C|V2,
18109 (1. V)]1l2 < CLIVI2 + | H (1) |2+ | Ha(1)]2].
Letko > (d/2) + 1. Then, obviously,
810, (V) V]| kg2 < W (vVF) V] g 2.

Sincew,, (v%) 3V = 3 (¥, (v*)v), we have for eachi e C IHI’;O

(90 (04 30V, i = = [ (B ()V, 367) dx
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and by Sobolev’'s embedding theorem,
[ (04) 01y, D)t < SUPIVT)] [ 10,04yl dx
X

< C ¥k 2l Wn (V) [2IVI2 < C[VIgg 2IVI5.
So,
|8[W, (v%) V]| —go,2 < CIVI5. O
Now we construct a sequence of approximations. For egole find u =
(') 1<1<q = un = (U™ 14 <4 by SoOlving
du (1) = 0 (ay (1) 3’ (1)) — W (" (1)) Opd’ (1)
— i p (1) + b (1) djut (1) + Ly j (U@), )R (1)
(2.6) + fa(eu) + 8 (£ (1. u))
+ [0l () iu' (1) + &1 (2, u@®)) — 3 p(6) | Wy,
u(0) = ug,, divu@@) =0 forallr € [0, T],

where W, (uk (1)) = uk(t,) * Y1/u(x), uon = uo * Y1/n. Equivalently, u,(t)
satisfies

dqu(t) = 8[3; (a (1) d;u(r)) — W, (u* (1)) deu(r)
+bI() 3;u(t) + Ly, j (u(®), 1)I (1) + F, (e, u()) + 8; (F (1, u()))]

+ 8[a] (1) dju(t) + gu (1, u@®)) ] Ws,
u(0) = ug,, forall z.

2.7)

PROPOSITION2.4. Let (B1), (B2)be satisfied and let E|uo|§ < 0o. Then for
each n, there exists a unigue ILo-valued continuous solution u,,(z) of (2.6) such
that fy |Vun(s)|3ds < oo, divu,(t) = 0for all 1, P-a.s. Moreover,

T
supE[sup|un(t)|§ + |Vu,,(z)|§dt] < 00.
n t<T 0

PROOF. ltis readily checked that for eaeh) there is a constark,, so that for
all ¢, x,u.0, |o| <2,

10%a’ (¢, x)| + 10%a) (t, x) || + [0°bI (1, x)| < Ky,
|fha, x,u) = fla, x, @+ 11 @ x,u) = f59 (e, x,0)] < Ky |u — ),

gl (¢, x,u) — g (¢, x, B)|y < KpJu—0|
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and
[all (t, x) = 3(0}] (1. ), 0} (1, %)) y J&i & > 381€1°.
Also, there is a constaiit independent o& such that
@] (2, )| + b/ (2, x)| + |o)] (2. )|y < C,
(28) | fa (o x, W+ 0 (8, x, W)+ |gh (4, x, Wy < H(1, x) + Hy (x) + Cul,
where g |H(t)|3dt < oo, and H, (x) = C&21x|<n). According to (2.5),
(2.9) lim |H,|3dt = 0.
For eachv, V € H3, ¢,
(L, j v 1) = Lo (. 0)NI (D] g 5
< [8: [ (0§ (0, (O v =) ;]| 1
+[8: [ (0, )V = D), ]|,

+ Cl3i0" (1)(V — V) |2+ gn (. V) — gn (2, V)2
< K,|lv—Vl2.

Since all the assumptions of Propositions 1 and 3 in [29] are satisfied, there is a
uniquelL»-valued continuous solutiom, (¢) of (2.6) such thayfoT |Vun(r)|§ds <
00, P-a.s. Obviously, diw, (1) = divW¥, (u,(t)) =0 for all z, and

t
[ [ a0 ) vy 3t () s =0,
0
Therefore, by the 1t6 formula fqun(t)@, we have
t . )
U ()13 = Juol + /O / (2= (s) Bl (5) — £19 (5, Un ()] 90 (5)

+ 2[bLE () Bl (5) + fL(s, Un(s))
(2.10) + L (5, un(s)) - REF(s) ], (5)
+ |5[0,{ () a,-ui,(s) + g,l1 (s, un(s))]}lz,} dxds

+ Z/Ot / [0/ () 3ul, () + gL (5, Un(s))]uel, (s) dx AW,

Let T be an arbitrary stopping time such that

T 2
(2.11) E/ ‘/[Gl’j(s)ajufl(s)—f—gl(s, Uy ()]l (s) dx| ds < oo.
0 Y



148 R. MIKULEVICIUS AND B. L. ROZOVSKII
Since, by Lemma A.1,

[ 181175 5) + &' (5, un )]} dx

< cf o (5) 81l (5) + &' (s, Un () 2 dix,

using standard arguments (see, e.g., [30], Section 4.1), we obtain that there are
constantg, C > 0 independent af andt such that for alt,

TAL
E[|un(t A r)|§+s/0 |Vun(s)|%ds:|

INT

<Eluol3+ CEfO (1H ()13 + U (s)13) ds.

So, by Gronwall's inequality, there is a const@hindependent of, T such that

TNt
E[|un(t m)|§+/ Iaun(s)lgds} <C.
0

Sincer is an arbitrary stopping time satisfying (2.11), by Fatou’s lemma, far, all

(2.12) E[lun(t)lg + s/Ot |8un(S)|%ds} <C.

Using (2.12), (2.10) and Burkholder’s inequality, we easily obtain that

SUPE sup|uy (s)[3 < oo,

n s<T

and the estimate of the solution follows]

REMARK 2.2. Note thai, (¢) is a solution of the following equation:

dUn (1) = An(t,Un(1)) — Nu(t, Uy (1)) + Bu(t, Un () - Wi,
(2.13)
U, (0) = ug p, divu,(r) =0.

Therefore, combining Proposition 2.4 and Lemma 2.3, we have the following
obvious statement.

COROLLARY 2.5. Let (Bl), (B2)besatisfied, and let E|uo|§ < oo. Thenthere
isa constant C independent of n such that dr x d, P-a.e,,

[An(t, Un ()] _1 5 < ClIUa ()12 + [H(O)2+ | Hyl2],

|Bu(t, u())|_y 5 < ClIU () 12+ [H (1) |2+ | Hyl2],

where H,, = H,(x) isa deterministic function so that lim,, | H, |2 = 0.
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Also, for each kg > (d/2) + 1, thereisa constant C independent of » such that
dt x d, P-ae,

[N (2, Un(D)| o2 < ClUn ().

2.2.2. Weak compactness of approximations. For eachn, the solutionu,
of (2.6) induces a measur®” on some trajectory space determined by the
estimates of Proposition 2.4.

Denote bylL; oc the spacéd., with a topology ofL,-convergence on compact
subsets oR?. It is defined by the seminorms

V]2 g =/ V|2 dx, R>0.
[x|<R

FixU = Hg", ko > (d/2)+ 1. Denote by, . the spacd/’ with a topology defined
by the seminorms

l9ly7, r = sup|g(v)|:v e Cy°, |V|y <1, suppv C B}, 0< R < o0,

whereBg = {x:|x| < R}.
LEMMA 2.6. Theembedding L, — U, is compact.

PROOF Let {X}x>1 be a bounded set ifLp. Then there exist a subset
{Xk'}>1 C {Xk}k=1 andx € Ly such that

(2.14) klim Xirs 2= (X, )2 forany f € Lo.
'—00
Let {e/};>1 be an orthonormal basis ]Bﬁz_kO(BR). Obviously,

2 2 2

2O =X @) R = X = XI5io g D I8l t0(p

i=N i>N

(2.15) )
A —ko/24, (2

=C ) 180 e g,
i>N

whereAy is the Laplace operator ditp(Bg) with zero boundary conditions. Since

(—Ag)~%/2 is a Hilbert—-Schmidt operator, then for any- 0, there isN, such

that the right-hand side of (2.15) is less thafor all N > N.. Now, compactness

follows by (2.14). O

We remark that the lemma holds also for arbitrégy- 2. This could be proved
using arguments similar to those in Remark 111.3.2 in [32].

Let Cjo,71(Ujyc) be the set ot/ -valued trajectories with the topology of the
uniform convergence ofD, T']. Let Cjo,71(L2,,) be the set ofLp-valued weakly
continuous functions with the topologyp of the uniform weak convergence
on[0, T']. LetLy ., (0, T; ]HI%) be the set oH%—vaIued square integrable functioiys
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on [0, T'] with a topology7> of weak convergence on finite intervals, that is, the
topology defined by the maps

T
f, —>/ (e, Q)1 ds,
0

whereg is H *-valued such thafy 185121 pds < 0o. LetL(0, T: Laoc) be the
space of square integrable functions with a topol@ggenerated by seminorms

T
|u|2;T,R=f/ lu(t, x)|?dx dt, R > 0.
0 J|x|<R

LEMMA 2.7 (Cf [25, 33]) Let Z = C[OvT](UI,OC) N C[O,T](LZ,w) N szw(O, T;
H%) NL2(0, T; La,10c) and let T be the supremum of the corresponding topologies.
Then K C Z is 7 -relatively compact if the following conditions hold:

(@) suURck SUR <7 |xs]2 < 00,
T
(b) SURck fo |%55 pds < oo,
(c) lims—oSup.cx SUR; <5, s, t<T |x; — x5]yr =0.

PrROOF It can be assumed thét is closed in7". The topologiesr, 71, 72,
T3 are metrizable oK. Consider a sequengg”) in K. Obviously, (c) yields that
K is compact ir7; topology. By Lemma 2.6, the imbeddifig C Uy, is compact.
Therefore, by (a), (c) and the Arzela—Ascoli theorem for functions taking values in
a Fréchet space, there exist a subsequerfégand a functiorx such thakt — x
in Cro,71(Ujpe) NLi2,w (0, T ]HI%) with respect to the supremum @f and7>.

Since, for allu € C3°, (X5*, U)1,, = (Xs*, u) —> (X, u), we have

SUP|Xs|2 = Sup sup (Xs, u)/|u|2 < supliminf |[x{*|2 < oco.
s<T s<T ueCg s<T k=00

Next, for everyu e C3° there existsR < oo so that

sup|(xs — X, W), | < suplxs — X |y U]y
s<T s<T

It is readily checked now that for evewe U,

lim supl(x; — X%, v)2| =0.

k_>00s§T
Thusx™ — xin Cio,11(L2,,) as well. Obviously, for eactyp > 0, R > 0,
T
(2.16) /0 X = X[, ods — O

ask — oo. We claim that for each > O, R, there is a constarit = C, r such that
for all u € H3,

(2.17) ulg. g <€luld,+ Cluld g
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Indeed, if (2.17) does not hold, there exists 0, R > 0 and a sequenag, € U
such that

2 2 2
lUn 12, g > €lUnlT 2 + nlUnlp. g-
Then forv, = U, |5 % u, we have
2 2
1> elvpll o+ nlValy. g-

Thus (v,) is a bounded sequencem} and|v,|y.g — 0 asn — oo. Since the
embeddingHI% — L joc IS compact|v,|2.g — 0. On the other handy,|>.g =1
for all n, and we have a contradiction. Thus (2.17) holds. Since

T
2 2
Sup‘/o (lX?ll’z + |XS|1?2) dS < 00,
n

it follows by (2.16), (2.17) that
IX"* —X|2.7,r = O. O
Let X(1) = X(t,x) = X(t,w) = w(t) = w(t,x), w € Cpo,71(Ujpo)- Let Dy =

o(X(s), s <t),D=(Ds+)o<t<7, D =Dr.
For eachn, the solutioru, to (2.6) defines a measuRé on (Cio,71(Uj,.), D).

COROLLARY 2.8. Theset {P", n > 1} isrelatively weakly compact on (Z, 7).

PrRoOF By Remark 2.2P"-a.s.,
dX; =[An(t. X(0) — Nu(t, X(1))]dt +d M},
X (0, x) = up(x),

whereM} is Hgl C U’-valued martingale such that for eack U,
t
2
<M;1,v>§—/o (B (s, X (5)). V2 ds € Mioe(D, P").

Let 7, = 1,(X) be a sequence of stopping times such that T. Let§, be a
sequence of numbers so that 5, | 0. We have by Corollary 2.5,

2
2
P'IMy s — My |7, =

Tn

T (Up)+6p
| [ Bu(s, Un(s)) - AW,
T

n(Un)

-12

2 Ty (Up)+0p 2
§CE[8n suplu, (s)[5 + IH(l)Izdl]

s<T Tn (Un
2
+ T|Hy,l5.

Here and below, with a slight abuse of notation, we wifitg for an integral of a
measurable functioff with respect to the measul¥.
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So,
H /1 n n |2 _
(2.18) |I9’I P |Mrn+5n —M7 | ,= 0.

By Corollary 2.5 and the Holder inequality,
T +8n
P”/ |An(r, X(1))|_q ,dt
T ’

‘[”(Un)‘f‘(sn
_E / | An (. Un(D))|_q pdt
T,

n(Un)

T 1/2
ECE[a,}/Z(/O |un(t)|i2dz>

12 T 5 1/2
+8Y (/O (|H(t)|2 + | Hyl2) dt) dr].
Therefore,
fn+6n
(2.19) lim P”/ |An(t. X(0))|_y pdt =0,
n T d

Also, by Corollary 2.5,

T+, Tn (Up)+6p
P”f |Nu(2, X(®))|, dt =E | N (2, up ()| dt
Tn

T (Un)

< C8,E sup|u, (s)]3.

s<T

This and (2.18), (2.19) imply that
(2.20) Iirrln P Xz 48, — X1, | =0.

Let P! be the natural restriction d®, to o (X (7)). By Lemma 2.6, Proposi-
tion 2.4 and Prokhorov’s theorem for Fréchet spaces (see [1]), the family of mea-
sures(P}, n > 1} is relatively compact o/, .. Also, by the Aldous criterion, (2.8)
yields that for eacl” > 0,5 > 0,

lim supP”< sup |X; — Xslyr > 77) =0.

§—0 n ls—t]<8
s,t<T

Therefore, the relative compactness of meas{iPésn > 1} on Z with supremum
topologyJ follows by Lemma 2.7 in a standard way (cf. [25, 33])
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2.2.3. P" asa solution of a martingale problem. Forv e Cg"(Rd), denote
QDX(S, X) =io(An(s, Xs) — Nu(s, Xy), V)ko - %|(Bl’l(sa Xs), V)ko,Y 2

Ya
whereié = —1. (Letusrecall = Hgo, ko > d/2.) Notice that

(An(s, Xs), Vg = — / (@ () ; Xy + 1 (s, Xy), 8(3;v)) dx
+/(b,{(s)ajxs + L, j (X5, 8) -0/ (5) + (s, X,), 8(V)) dx,
(N (s, Xs), Vikg = (W (X5) 9 X5, 8(V)) o = — / (W, (X5 Xy, 8(0pv)) dx,

(Bu(s, Xs) V)io.y = / (07(5) 3 X5 + Gu (s, Xy), $(V)) dx.

Applying the 1t6 formula to the scalar semimartingal&;,v) = (X;,V)o =
[ X! dx, we obtain the following obvious statement.

LEMMA 2.9. For eachn, P" isameasureon Z such that for each test function
v e CP(RY),

t
LY = eoXeV) /O O XOVIQV(s, X)ds € Mfe(D, P").
[Wesay P" isa solution of the martingale problem (1o, A, By).]

Forv e H3, we set
A(t, V) = 8[3; (a” (1) 3;v) + b7 (t) 3,V + L;(v, )/ (1)
+1(t,v) +9;( (¢, )],
N (V) = 8[vF V]

and
B(t,v) = $[c' () 3;v + g(t, V)],
where
Lov,t) = (Li(v, )12 g = $10" ) BV + g2, V)],
Let

. 2
0V(s, X5) = io(A(s, Xy) — N(s, Xs), Vikg — 3[(B(s, X5), V)ko.v |5

DEFINITION 2.1. We say a probability measuReon Z is a solution of the
martingale problentug, A, B) if for eachv e Cgo(Rd),

t
LY = oKy _ /o eOXOVIQV (s X () ds € M, (D, P),

andXg = ug, P-a.s.



154 R. MIKULEVICIUS AND B. L. ROZOVSKII

2.3. Existence of weak global solutions. In a standard way, we obtain the
following statement.

THEOREM 2.10. Assume (B1) and (B2) are satisfied. Then for each ug € L
thereisa measure P on Z solving the martingale problem (uq, A, B) such that

(2.21) [supp{(m2 + IX(s)Irizds} < 0.
t<T
Moreover, if d = 2, then P-a.s.

T
/ |A(s, Xg) — N(s, X;)|? 1 nds < oo.
A :

PrROOF We follow the lines of the proof in [25]. Since the 4&¥',n > 1) is
relatively compact, we can assume that a sequence of meg8ipesonverges
weakly to some measufeon Z. Letw,, — w in Z. Then, by Lemma 2.7,

T
(2.22) sup{ sup(lon (]2 + 0 (5)I2) + fo (|wn(s>|i2+|w<s>|%,2)ds} < o0,

and for eachk > 0, v e Cj°

T
/ / |60n(S,X)—a)(S,x)|2dxds
0 [x|<R

(2.23)
/(wn(s,x) — w(s,x), V(x))dx

+ sup — 0,

s<T

asn — oo. Also, for eachw e Ly([0, T]; H b,

T
(2.24) /O (W(s), wn(s) — @(s))1ds — O,

asn — 00.

It follows from (2.22) and (2.23) that the sequenggt) is weakly relatively
compact mLz([O T, H) This and assumptions (B1) and (B2) imply that
the sequencéL)(w,)) is equicontinuous i with respect ton. Indeed, by
Lemma 2.3, there exists a const@hindependent of so thatdr-a.e.,

}Nn(a)n(t),t)| koz_c|wm([)|2,

|An(t, 0n(0))|_1 » < Cllon )12+ [H(0)]2+ | Hy 2],

| Bu(t, 00 ()| _1 5 < Cllwn ()2 + |H (@) |24 | Hal2].
So,dt-a.e.

¥ (t, wn ()| < C(IVlkg,2 + VI3 )
(2.25)

X (|wn(l)|1,2 + suplan ()5 + |H ()2 + |Hn|2)-

s<T
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Therefore, by the Holder inequality, there is a constant independenswth that
for eachr < s,

S
[ o0 1w, w0) di| < Cr = sl +1r =512,

r

and equicontinuity in of the sequenceL’"Y (w,)) follows.
Now we prove that for eache [0, T1,

(2.26) LYY (wp) — LY (o).
By (2.22), (2.23) and (2.25),

sup|el@n V) _ gol@®v| _, o

s<T
T
/0 |et0len@ VIV (¢ o, (1)) dt — e OV oV (2, w, (1))| dt — O,
asn — 0o. Also, notice

/i,,,j(w,,(z), t) - (hi(t), 8(v))dx
(2.27) . |
= / [0 (1) 8j0n (1) + Gu (1, 0 ()] - §L (AL ) EW)) ] dx.

Since
. T . .. 2 . . 2
0= nM) (I(a? (1) — al (1)) 80, v) |2+ | (b3 (1) — bT (1) B(W) |2

+lof (1) - §L(hE DY) ; — 0T (1) - G D SW)) )31,
it follows by (2.22) and (2.24) that

t .. .
Iirrln/O e‘°<w<s>’v>/[—a;lf(s)ajwﬁ,(s)s(ajv)’+b-,/,(s) 3wl (s)8(w) ] dx ds
t

_ /0 oY) / [—ail () 90 (5)8(8;v) + b (5) 300! (5)8(v)' ] dx

and

lim /Ot e‘O(w(“)’V)/G,{(s) a,-wn(s)-g[(h,f;l(s)g(v)l)j]dx ds
t

=/0 eLO(w(S)’W/Gj(s)aja)(s)-9[(hj’l(s)5(v)l)j]dxds.
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By (2.5) and (2.23), it follows for each > 0,

T
lim sup/o / |(F1 (2, wn (1)) — f(2, 0 (1)), 8(V))|dx dt

1/2

< C[Iimsgp/oT </|.x|<m |fn(t, wn (1)) —1(z, a)(t))|2dx)

T 1/2
+nmsgp/0 (|fn(t,wn(t))|2+|f(t,a)(t))|2)<_/| |5(v)|2dx) ]

Sincem is arbitrarily large, for each,

im /0 t [ O 61, 0n)), 5 dx

|>m

(2.28) t
— to{w(s),v)
_/0 fe (F(r, 0(5)). 8(V)) dx.
Similarly,
t
; o{w(s),V) (fi .
||91/0 /e (F1 (1, wn (5)), 3 8(V)) dx
[ otV i
=f0 /e (F (1, 0(s)), % 8(V)) dx
and

lim fot e‘0<w<s)’v>/g,,(s,wn(s))-g[(h{;”(s)g(v)l)j]dxds

'
_ (w(s5),V) il l
—/(; e't /g(s,a)(s)).g[(h] ()8(v) )j]dxds.
Therefore, for each,
t t
|i£ﬂ/ e‘°<“’”(s)’v)(An(s,a)n(s)),v>k0ds:/ e‘0<“’(s)’v>(A(s,w(s)),V)kOds.
0 0
Since

Ons) = / (07 (5) B;0(5) + Qu (5, 0 (5))) - $(V) dx

= [ [(@:(s. 00)) = 8107/ G)eon ) - 3V

— o) (S)wn(s) - 3;8(v)]dx,
by (2.22) and (2.23), we see that there is a congfaimdependent of such that
|0n ()] < C(1+[H(s)l2).
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As in the case of (2.28), we obtain

t
Iim/ 0OV 9 (5)]2 ds
n

_IImf 0@ V(B (s, wp(s)), v )koY|§’ds

_ / L0l (5).V)
0

.
:/ ezo(w(s),V>|<B(S,a)(s)),v>ko Y|12/ds'
0 ,

Finally, we prove that for each

IIm/ 0@EIVHN, (s, wn(s)), )Ods

= f e COVN (5, w(s)), V>k0 ds
0

Let¢ € C(RY), 0<¢ <1,¢(x)=11f |x| <1,¢(x) =0if |x| > 2. First of all,
for eachm > 0O,

2
/(aj(s)aja)(s) +d(s, w(s))) - 8(v)dx| ds
Y

(2.29)

lim /0 t £0(@®).V) / (W (F (5))wn (5), 8(OkV))E (x/m) dx
(2.30) .
:/O e‘0<w(s)’v>/(a)k(s)a)(s),/3(8kv))§(x/m)dx.

Indeed,
/ / (% (@ (5)) — ok (5))0n (). 8(BeV)) (x /m)| dx

<c@/n [0 Vo (s) 2lon(s)l2ds < C/n— 0,
asn — oo, and by (2.23),
[ [ lekon) ok ol /max - o
Thus, (2.30) follows. On the other hand,
/ (| (W (@) () @n ()] + [ ()0 ()] 8 (@rV) (L = ¢ (x /m))|) dx
= Clon ()17 + [0 ()[2) SUPS@V) (L= £ (x/m)|

< Csup|8(aV)(1—¢(x/m))| — 0,
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asm — oo (by Sobolev’'s embedding theorem). So, (2.29) holds and (2.26) is
proved. Since the sequenté (w,) is equicontinuous im,

(2.31) sup| L™V (") — LY (w)| — 0.

s<T
Thus for each compact s&t C Z,

sup |L"V(w) — L{(w)] — 0.
s<T,wekK

Since{P",n > 1} is relatively compact, by Prokhorov's theorem for topological
vector spaces (see [1]), for eagh- O,

(2.32) I|m P”<sup|L" VLY > n) =0.
s<T

For M > 0O, define
=inf(z:|L}| > M).
Lett" =inf(: LY — LY| > 1), , = v A T". Then we have by (2.32),

(2.33) P'(r" <1) < P”(sup|L’;"’ — LY > 1) — 0,
s<T
asn — o0. Also, obviously,
R
(2.34) i’usp|L’;M2| <M+1
Let P(ty = ty—) = 1, wherety_ = |im5¢0 tv—s. If ty(w) = Ty_(w) and

o" — win Z, we have by (2.31) for each > 0,

(2.35) sup|LMTM(wn)(a) ) = Ly pp (@) (@) = 0.

Lets <r and letf be a bounded;-measurablé-a.s continuous function. Then,
by (2.32)—(2.35),

0=P"[£ (L%, = Linen)] = PLF(Liney = Ling,)]

Thus,P is a solution of the martingale problefng, A, B).
In the casel = 2, the following inequality holds for alW € H%:

(2.36) Vla < 2Y4 vy 2 w32,
By the Hélder inequality, for eacheCg°,

(/|X(t)| dx>1/2</|Vv|dx>l/2

= CIX(®)|2VX(1)l2|V]1,2,

‘/X"(t) X (vt dx| <
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dt x d, P-a.s. So,
1XK(1) 3 X (1) —1.2 < CIX (D12 VX (1) |2,
and
T T
/ 1 XK(t) 0k X (1) L pdt < cSup|X(z)|§/ VX (1)|3dt < oo,
0 ’ t<T 0

P-a.s. Then, obviously¥-a.s.,
T
|14 X0 = N XD Ry pds < oo,
o ,

and by [30],X; has arlLy-valued (strongly) continuous modification &f. (Also,
the 1td formula holds fotX,|3.) O

Now we shall prove Theorem 2.1.

PROOF OFTHEOREM2.1. According to Theorem 2.10, there is a measure
on Z such that (2.21) holds ariéla.s. for eaclv € C°,

(X1, V) = (Uo, V) + /(;<A(s, Xg) — N(s, Xg), V)iods + M,
whereM, € Mioc(D, P) and
|MY|? — /ot [(B(s. X,), V)io.v |7 ds € Mioc(D, P).
Since
(B, X0 Vkor = [ (058X, + (5, X,), 5(v) dx

and

T
P/O 0% () 8: X + 9(s, X)[3ds

T
< CP/0 (VX2 + X2+ | H(s)[2) ds < oo,

there is arilL,-valued continuous martingald; such that-a.s.(M;, v) = M}’ for
all z. Indeed, we simply take dh; basis(e;) and define

M=) Me.
k

Thus,P-a.s.,

0: Xy =A@, Xy) — N(t, Xy) + 0, My,

2.37
( ) X (0) = uo.



160 R. MIKULEVICIUS AND B. L. ROZOVSKII

According to Lemma 3.2 in [25], there exists a cylindrical Wiener prod€sa Y
[possibly in some extension of the probability spate D7, P)] such that

t .
Mf=/0 8(0' (5. X(9)) 8 X () + 9(t. X(9))) - W,

thatis,d;, M, = 8(c' (s, X (t)) 3; X (t) +9(t, X (t))) - W;. Thus, Theorem 2.1 follows
from Theorem 2.10. O

2.4. Existence and uniqueness of strong global solutions in two dimensions.
To prove Theorem 2.2, we will follow the ideas in [17], where a finite-dimensional
stochastic differential equation was considered. First of all, we prove the pathwise
unigueness of the solution in two dimensions.

PROPOSITION 2.11. Let d = 2, ug € Lo, let (B1), (B2) hold and for all
[, j,t,x and every u, U,

Lf @, x,u) — flLe,x, 0) 4 g, x,u) — g' (e, x, Oy
+ 1 @, u) = fH @, x, 0
< K|u—1u|.

Assume that on some probability space (2, #,P), with a right-continuous
filtration of o-algebras F = (#;) and cylindrical Wiener process W in Y, we have
two solutions Uy, Us to the Navier—Stokes equation (2.3) such that P-a.s.,

Ssgf|uz<s)|%+ OT IVUi(9)[3ds <0, 1=1,2
Then P-ass.,, U1(_t) = Us(¢) for all 7.
PrROOF LetU=U; — U,. We apply the Ité formula forU(t)|§:
UOB= V0B + [ (2146, Uz(s) = A, Us(s)), UG,
—2[N(s, Ua(s)) — N(s,U1(s)), U(s))y,

(2.38) .
+ || B(s, Ua(s)) — B(s, U1(s))||5] ds

t
+ 2/0 (B(s, Ua(s)) — B(s, U1(s)), U(s))O’Y -dW;.
Notice
/ (UK () 9, UL(r) — US (1) 9 UL () (UL(r) — Ub(t)) dx

= / (UK@t) — US (1) 9 UL(0) (UL(r) — UL (1)) dx

= / Uk @) sy UL () U (1) dx.
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Using (2.36), we find that for eachthere is a constart, such that

’ / (UK UL (1) — US () US0)) (UL(r) — Ub(1)) | dx

2.39) < </|U(t)|4dx>1/2</|VU2(t)|2dx>

< C(UM2IVU®)]2]VUzl2) < &|VU|5+ C.|U@)|3VU2(1) 5.
Let r be an arbitrary stopping time such that
T .
E/O /[al’J(s)ale(s) + 8! (s, Ua(s)) — g' (s, Ua())]U'(s) dx| ds < oo.
Y

By (2.38), (2.39) and our assumptions, there are some constamaisd C
independent ot such that for alk,

1/2

2

TAL INT
e[ lueani+e [ VUGB | < cE [ U6 Bda,

wherei; =s + [ |VU2(r)|§dr. The pathwise unigueness now follows (see, e.g.,
Lemma 2in [16]). O

Let (2, F,P) be a probability space with a right-continuous filtration of
o-algebradF = (¥;) and a cylindrical Wiener procesg in Y. Let (B1) and (B2)
be satisfied and IeE|uo|§ < 00. Then, according to Proposition 2.4, for each
there exists a uniqué.,-valued continuous solutiom, () of (2.7) such that
fOT |Vun(s)|§ds < oo and divu,, (t) = 0 for all ¢, P-a.s. Moreover,

T
supE[sup|un(r)|§+ |Vun(t)|%dt} < 0.
0

n t<T
PROPOSITION2.12. Assume d = 2, ug € Ly, (B1), (B2) hold and for all
[, j,t,x and every u, 0,
| xu) = 1@ x, )] + 180 x,u) — gl x, Dy
+ 1@ uy = @ x|
<K|u—al.

Then there exists a unique Ly-valued continuous solution u(z), ¢t € [0, T], of
(2.3) on (2, F,P) such that Jg |Vu(s)|3ds < oo, divu(r) = 0 for all r P-as.
Moreover, for eachv e C§(R?),i =1,2, R > 0,

T
Supl(U, (1) = U@ Vol + [ [ Juate ) ue 0 Pdxar
t 0 Jlx|=R
(2.40) T
+ ‘/ (9;Up () — 8,-u(t),v)0dt‘ -0
0
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in probability, asn — oo.

PROOE Let(e,) be a CONS of the separable Hilbert spacerhen,

2

o0 o0
5 y
Y=HY=Zykek1yk€R, Zk—]§<00}
=1 k=1

is a Hilbert space with the norm
o\ 1/2
Yk
Iyly = <Z ﬁ) )
k
andW, is aY-valued continuous process. Consider
E=ZxZx Cior(Y)

with the product of corresponding topologies and denQXé, Xf—, W;) the
canonical process if. Foro = (w, @, w) € E,

Xl=xlr,0)=w@), X2=X%t,0)=a@), W, (®) =uw().
Let& =o(X5, s <H@a(XZ, s <)@ (Ws, s <1), E=(E1)osi<T, € = €7

For eachm, [, the processu,,, u;, W) induces a measur@™! on (E, €). For
ve CPRY), k=1,2,y €Y, denote

, . 2
O (5, X5) = i0(An(s, X5) — Nau(s, X5), Vg — 51(Bu(s, X5), Vo, +]7.
wherei3 = —1. Let

— t —
LBV — olXEV+W () / eto((Xf,V)-FWr(y))(pl‘(’:z(s, x5 ds.

0
k=1,2,n> 1. Applying the It6 formula to the scalar semimartingal, v) +
W, (y) = (X{‘,v)o + Wi(y), k = 1,2, we obtain that for each test functione
CERY, yey,

(2.42) LYY Ly e Mo, P,

Since the sefP", n > 1} of probability measures o is relatively compact
(see Corollary 2.8), the s@®”! :m > 1,1 > 1} is relatively compact. Assume that
for some subsequences(n) — oo, [(n) — oo, P 5 P asp — co. We
will prove now that

(2.42) P(X}'=Xx21€[0,T)) =1
Obviously, W, is a cylindrical Wiener process i with respect to the filtration
E on the probability spacér, &, P). Let

.y . 2
o0 (5, X5 = io(AGs, X5 — N (s, X5, V)i — 2[(B (s, X5), kg v + 315,
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k=1,2,ve CFRY),yecY.Define

LAV = o (Xe+ W) _ / t OXOVETON G-V (¢ X ) dis.
0

In a standard way, (2.41) implies (see Theorem 2.10) that
(2.43) LY L2V e MEL(E.P),
which means that both ! and X2 satisfy (2.3). Indeed, (2.43) implies that for all
v e CP(RY),
t
(X¥,v) = (ug, v) +f (A(s, X5 — N(s, X5, vy ds + MFY,

0

whereM*Y € Mioc(E, P),
t —
MR = B G. X5 V)i [} ds € Mioo(E.P),
and finally
t i
MY = [ (B X Vg W,

k =1, 2. Therefore, by Proposition 2.11, (2.42) holds.
Let

T
Inlzl=/ / |Um(t,x)—uz(t,x)|2dxdt,
’ 0 [x|<R

2, = SUPI (U (1) — (1), V)1,

T
In?;,l = ‘/0 (0iUp (1) — 0 Uy (1), V)odt|,

R>0,veCPRY,i=12 Let F(x) = |x| A 1, x € R. From the weak
convergence ol to0 P and (2.42), it follows that

EF (L)1)
asn — oo, j =1, 2,3. Since this is true for an arbitrary converging subsequence,
we have the convergence in probability zbj,’,, j =123 asm,l - oo.
Therefore, there exists dmp-valued weakly continuous proces§), ¢ € [0, T,
on (2, F,P) such thatfoT IVu(s)I%ds < 00, divu(r) = 0 for all ¢, P-a.s. and
(2.40) holds. For each andv € Cg (R?),

3 (U (1), V) = (An (2, Uy (1)), V) — (Nu (2, Un (1)), V) + (By (2, Un (1)), V>0’Y Wy,
U, (0) = Uo n, divu,(t) =0,

)0,
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and passing to the limit, as— oo, in this equation we see thafr) satisfies (2.3).
According to Theorem 2.1Q(¢) is strongly continuous ifi., and the statement
follows. O

Now we can prove Theorem 2.2.

PROOF OFTHEOREM2.2. Assume that on some probability sp&ee 7, P),
with a right-continuous filtration oé -algebrasF = (¥;) and cylindrical Wiener
processW in Y, we have a solutiom to the Navier—Stokes equation (2.3) such
thatP-a.s.,

sup|u(s)|2+ |Vu(s)|§ds < 0.

s<T
By Propositions 2.11 and 2.12, we have the convergence (2.40) for the approxi-
mating sequence, (¢). Sinceu, (t) can be constructed by iterations (see [23]), the
distribution of allu, () and therefore the distribution af(z) are uniquely deter-
mined byug. O

3. Wiener chaos and strong solutions. In this section we will derive a
system of deterministic PDEs for Fourier coefficients of the Wiener chaos
expansion of a solution of stochastic Navier—Stokes equation (2.1). This system
is usually referred to as the propagator. We will demonstrate that the existence
of a solution of the propagator is a necessary and sufficient condition for the
existence of a strong (pathwise) solution of the related Navier—Stokes equation.
Similarly, the uniqueness of a solution of the propagator is equivalent to the
pathwise unigqueness of the related stochastic Navier—Stokes equation.

First we shall introduce additional notation and recall some basic facts of the
Wiener chaos theory (see, e.g., [18, 19, 22], etc.).

Let us fix a positive humbefl < oco. Let {my, k > 1} be an orthonormal
basis inL»(0, T) and let{¢;, k > 1} be an orthonormal basis in. Write 5{‘ =
fOT m;(s)dwk(r), wherewy(r) = (W(t),ﬁk)y. Let o = {a{‘, k>0;i>1} be a
multi-index; that is, for every(i k), a eN={0,1,2,...}. We shall consider only
sucha that|a| = Y ; o < oo, thatis, only a finite number off are nonzero, and
We denote byg the set of all such multi-indices. Obwouslyafe 4, the number

=[x @f! is well defined. For € ¢, write

o0
= [T Hp@h,
i,k=1

whereH, is thenth Hermite polynomial. The random varialglg is often referred
to as the (unnormalized)th Wick polynomial.

The most important feature of the Wick polynomiats is that the set
{¢o/Na!,a € g} is an orthonormal basis ih(Q2, F7, P), wheref; = o (W (s),
s <1t) (see, e.g., [4, 22]). This result is often referred to as the Cameron—Martin
theorem.
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By Lemma 15 in [29], the process, (1) = E[{,|F;] satisfies the following
eqguation:
(3.1) dia(t) = Deo(t) - dW (1),

whereD¢, (t) = m,-(t)ozf;a(i,k)(t)zk is the Malliavin derivative ot (¢); the multi-
indexa(i, j) € § is defined by

ak, if (k,I) (j,i)ork=0,
(k-1 vo, if (kD)=(j,i).
Fora, B € ¢, definela — B| = (lax — Bil, laz — Bal, ...).

(3.2) ali, j)f =

DEFINITION 3.1 (cf. [29]). We say that a triple of multi-indices, 8, y) is
complete, writter(«, 8, v) € C, if all the entries of the multi-index + 8 + v are
even numbersand — 8| <y <a + 8.

It is readily checked that the following criterion holds:

LEMmA 3.1. Atriple («, 8, y) iscompleteif and only if o« + 8 + y = 2p for
somepedandp <a AB.

For (a, B, y) € C, we define

s =((“5EN (YY)

Obviously, ®(«, 8, v) is invariant with respect to permutations of the argu-
ments.

Fora e ¢, writeU* ={y,B e ¢ :(a, B,y) € C}.

Now we can derive the Wiener chaos expansion for a strong solution of
stochastic Navier—Stokes equati@hl).

For the sake of simplicity, in addition to assumptions of Section 2.1, throughout
this section we will assume

(C1) Functionsf! = fi(t,x), 47 = fLi(t,x) andg! = gl(z, x) do not depend
onu.

THEOREM 3.2. Let d > 2 and ug € L. Assume that (2.1) has a weakly
continuous strong solution u(¢) such that

T
(3.3) SUPE|u(s)|3 + A E|Vu(s)|3ds < oo.
s<T
Then
O (1)
(3.4) u@ =>_

—=&a,
aed \/(?
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and the Hermite—Fourier coefficients G, () are L»-valued weakly continuous
functions so that

(3.5) IUa(S)Ig f ZIVUa(S)Izd

Y<Ta€g

Moreover, the set of functions {ua(t,x),a € g} satisfies the propagator
equation

3 0,(1) =8 [a,- (@ (1) 3;04(1))
— > &l (0805 ®(a, B, y)

y,BeU*
+b'(1) 3; 04 () + L; (04 (1), £)h (1)

(3.6) + L0y (F0) + 3,7 (£, u(0)))

+m (1) (o™ (1) 0 0 1) (1) + I{Ialzl}gk(t)):|: 1€ (0, TY;

O (0) = I{jo|=0}Uo,
where gk (1) = (9(2), £x)y, and
L(u(@). 1) = (Li(u(®). 1)1y = $(c* @) eu@) + 91)).

PROOFE Let us fix a complete orthonormal systdey, £ > 1} in Ly so that
everye € H3.

Let u be a strong global solution of (2.1) whichlis-weakly continuous and so
that (3.3) holds. By the Cameron—Martin theorem, for every

(3.7) O (1) = D _E[(u0), &) ta(®)]e
i=1
and

1 (0]
Eluniz=> al’ Z [(U(), &) 520 (1)])

acd

1
=2 Sl0e @3 < oo,
txegl
Let us fixa € g. Owing to (3.3), for any v € L and any sefr,} of points
in [0, T], the sequencés, (u(t,),Vv)} is uniformly P-integrable. Therefore, the
weak continuity ofu(7) implies thatl, (¢) is also weakly continuous iho.
The same arguments as before yield that for almost all

(3.8) (a u()), ZE [(3ju(r), &)Lu()]e

i=1
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and

T 1 — ’ T 5
fozauaju)a(t)bdr:/o Eld;u(n)|5dt < oo.

acg

By (3.3) and the Fubini theorem, for alle Cgo(Rd) and almost alt < T,

[, (@), ) ax == [ E@@).d)cadx == [ (0. 09)dx.

Thus, for almost alt < T,

(3.9) 304 (1) = (3;u(0)),,

and
T 1 T

(3.10) / 3 —|ao,(z)|§2dt=f Eju(t)|2 pdt < oo.
0 aed al 7 0 7

DenoteV :={p:¢ € (Cgo(Rd), divyp = 0}. Obviously, for everyr in (0, 7] and
every test functiop € V, P-a.a.,

fRd (u(), p)dx
t ..
— _ 1) . .
_/Rd(uo, @) dx /0 fRda (s)(3ju(s), dip) dx ds
t . ~ .
@)+ [ [ (o~ 6)0us) + 5 6 du6) + Lifus). ) ()
+1(s) + 3 (s)) dx ds

t .
+/0 _/;Qd (‘P,o’(s)aiu(s)+g(s))dxdWs.

By (3.1) and the I1t6 formula, we have

dZa (1) fRd (U@, p) dx
:/Rd (@' (1) ;u(1)a (1), 3i0) dx d
+ [, @O(e.—t 0 000 + 5 0 ()
+ Li (u(@), O)hi (2) +(t) + 8;F' (1)) dx dt
) [ (0.0" 0 000) + g) dx W,
+ de (@, u(t) D&y (1)) dx dW,

+ [, 0050, (0% 0 0801400 + Ija- @) di .
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whereo’* = (6, €y)y.
This together with (3.9) and (3.10) yields

/Rd (Oe (1), @) dx

= L{ja=0) /Rd (U0). ) dx

t ..
[ [ 1@ 6)3,0u09). 10)

(3.12) + (. — (uk (5) Bu(s)),,
+ b (5) ;0 (5) + L; (O (5), £)N (s)
+ I =0y (F(s) + ;")

+m () (0" (1) 3 0(s)aij b + [al=19())) } dx ds.

Mimicking the derivation in [29] [see (4.20) and (4.21)], one can easily
demonstrate thats dx-a.s.,

(3.13) k() u()), = Y ()% 0p(5)D(y, B, @)arl.
y,peU%
This completes the proof.[]

Obviously, Theorem 3.2 and the Cameron—Martin theorem yield the following
result:

COROLLARY 3.3. The first and second moments of a solution of (2.1) are
given by Eu(t) = Qg(¢) and

|06 ()12
Eu®>=Y_ —

acd

Now we will prove that the existence of a solution of the propagator equation
is not only necessary but also sufficient for the existence of a strong solution of a
turbulent stochastic Navier—Stokes equation.

THEOREM 3.4. Let d > 2 and ug € L. Assume that equation (3.6) has a
solution {04 (2, x), @ € ¢} ontheinterval (0, 7] sothat for every «, (4 (¢) isweakly
continuousin L., and the inequality

5 G |Vua<s>|
S S e <

aeg aed
holds.
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Then any ¥;-adapted process of the form

(3.14) i =y %0,

!
weg @

is a global strong solution of (2.1). Moreover, for every v € Lo, (U(¢), V)2 is
continuousin L»(€2) and

SUPE|(s)[3 + E|(vu(s))y§ds < o0.
s<T

PROOF By (3.5), sup.r E|U(t)|§ < oo. Next, we shall prove thaE x

Jo Iva@)3dr < .
Write

1/2
Wll2= ([, @+ REIFVC )

whereFv()) := W Jra €XP{—i (x, 1)}v(x) dx.
Since the norm§ - [|1.2 and|v|1 2 are equivalent, we have

T T
e [ (Vo) = CE [ 1awiF pd

—C/ S N0u ()12 5/t dt

acg

<c / 3 10a ()2 /et dr < o,
aed
Now let us show that, for every € Ly, (U(¢), V)1, IS @ mean-square continuous
stochastic procesdndeed, let{gy} be an increasing system of finite subsets
of g so thatgy t g. Write GV (1) := ¥yeq, Oa(0)és/va!. For every N,
ZaegN(Ua(f)»V)iZ is a continuous function of; consequently(l]]\’(t),v)]L2 is
continuous inL(2). Moreover,
. _N _ 2
Aim_ SUpE| (07 (), V), — (00, V)|

= lim sup > (0. (D), v)? /el =

N=00 1 wegrgn

Thus, (t(1), V)1, is also a continuous processfin(£2).
Now we shall prove thaii(z) is a global solution of (2.1). LeZ be the set of
real-valued sequences= (Zf-‘)kz1 such that only a finite number of are not zero.

Forh(s,z) = z{.‘m,’ ()£, write

t t
p@=exp| [ s awes)— 4 [ s, ol as).
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It is readily seen (see, e.g., [24]) that

(3.15) p@) =Y el
vy @
Obviously,(3.15) yields
(3.16) 0 (1) = E00p @) = Y 0a() ;.
acd :

Thus, taking into account thad, (r), « € 4} verifies (3.6), it is easily checked
that for everyr € (0, T] and every test functiop € 'V,

|, @@, 0)dx
= I{jq|=0} /Rd (U(0), @) dx

t .
s l(a’f<s)aj01<s>,ai<p)
+<¢,— TS (@) tp() Bl B y)

aed y,BeU¥
+ b (5)3;0%(s) + L; (T°(s), £)h' (s5)

+ Ljai=0) (F(1) + 0,f (1, UU))))

. n ZO{

’ (mj(s)a/;‘p’ o0 Y 30 ()

aed (04

ZO{
+ Z I{|a|=1}g(5)a> } dxds,
acy
P-a.a.
Owing to (3.15),

t
Ept(z)fo fRd (¢, it (s) O T(s)) dx ds

o t
=T 5 B o at) deas

aeld

Now, by mimicking the proof of (3.13), one can show

t
Ept(z)/o fRd (¢, it (s) O T(s)) dx ds

1 .
=Zza/O/Rd Y (@ (). 3i05(5))@(y, B. @) dx ds.

aeyd y,BeU
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Next, let us consider

Fi(t) —Z f / Z 0,0 (1) 804, k)(s))mj(s)oz dx ds.

aE(‘i

Denote ' (s) := (¢, >; o' (1) 9;U(s)) and write y'™* = (¥', &)y, wa(j,k)(S) =
Elp”‘(s)go,(j 1 (no summation ovet is assumed here). It is readily checked that

Fi(t) = Z oz’/ /;;dzwa(] k)(s)mj(s)a dxds

aed

(3.17) —/ /Rdz Z Ol(] ol a(jvk)(s)mj(s)dxds

:E|:P1(Z)/(; ;{jz’;mj(s)/m wik(s)dxds:|.

On the other hand, by the 1t6 formula and (3.17),

t . t .
elp@ [ [, w’(s)dxdvvs}E[p,(z) A > m /. dx/ﬂ"(s)dxds]

= F' (7).
Similarly, one can prove
/ f ((p Y lijal=t 9(S)—> dxds
Re ved
=Ep@ [ [ (o.gw)draw,

Thus, we have proved that for everyg (0, T] and every test functiop € 'V,

Ep@) [, (00).9)dx
= EPZ(Z){I{lale} /Rd (u(0), @) dx

+/Ot fRd [(a(s)8;T(s). ;)
(3.18) + (¢, —it* (s) 3 U(s) + b’ (s) 3;0%(s)
+ L (T (s), 1)hi (5)
+ Ijaj=0y (F(2) + 8,/ (£, u(r))))] dx ds

t ; )
+/0 /Rd (w,lZa (t) a,-u(s)+g(s)> dxdWs}
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P-a.a.
Now, it is not difficult to show that the linear subspace generatefppiz)}, is
dense inLo($2, ¥, P). Thus,u(z) is a strong solution of (2.1).01

Now we can prove that the uniqueness of a solution of (2.1) is equivalent to the
uniqueness of a solution of (3.6).

THEOREM 3.5. A strong LLy-weakly continuous solution of (2.1) with the
property (3.3)is pathwise unique if and only if a solution of (3.6)isuniquein the
class of ILp-weakly continuous functions {0, (¢, x), @ € ¢} such that (3.5) holds.

ProOOF Under the assumptions of Theorem 3.2, any strong solution of (2.1)
is given by

u(e) — Z uo(;(t)ga'

|
acd :

Therefore, the uniqueness of a solution of the propagator equation yields pathwise
uniqueness of a strong solution of (2.1).

If {Gi(t,x),oz €d} and{ﬂf,(z,x),a € ¢} are two solutions of equation (3.6)
such that inequality (3.5) holds, then, by Theorem 3.4, a strong weakly continuous
solution of (2.1) with the property (3.3) is pathwise unique if and only if a
solution of (3.6) is unique in the class bp-valued weakly continuous functions
{Qq (2, x), @ € ¢} such that (3.5) holds.

Let {01 (7, x),a € g} and {02 (, x), @ € g} be two solutions of (3.6) with the
property (3.5). Then, by Theorem 3.47(1) = Y ycq 03 (1o /a! and U?(r) =
>Yweg 02(t)¢/a! are strong solutions of (2.1) with the property (3.3). The
uniqueness of the strong solution of (2.1) yields that for ewery

03 (1) = EU' (1) o = EUP(1) 8y = 05(1). O

One could give another proof of Theorem 2.2 using Theorems 3.4 and 3.5
(in this regard, see Remark 3.1). We expect that this approach would be useful
in proving the existence of a strong global solution of the Navier—Stokes
equation (2.1) in the three-dimensional case.

REMARK 3.1. Ifu= (u’)lflfd is anlLy-weakly continuous solution of (2.1)
such that

T
SUPE|u(s)|3 + A E|Vu(s)|3ds < oo,

s<T

then

E sup|u(s)|3 < oo.
s<T
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Indeed, letp € CP(RY), 9 >0, [pdx =1, s (x) = e ~¢p(x/e). Applying the
1t6 formula for |u. (1)|3 = |u(t) * ¢¢|3, we have

U (115 = |us (0)[3
! i j I l,j 1
—|—/O f{Z[—a’J(s) diu' (s) — [ (s, u(s))], djug(s)
+ 2[b"K(s) B’ () + f1 (s, u(s))
+ (s, uy - nl R (s) ] ul (s)
+ (07 (s)0ju! (5) + &' (5, u(s)) — L (U, ), |5} dx ds

+ Z/OI/[GJ@) dju' (s) + &' (s, u(s))], ul(s) dx d Wy,
where
[—a" (s) du' (s) — £ (s, u())],
= [—a" (s) i (s) — £/ (s, u(s))] * e,
= [b""(s) B’ (5) + £ (s, u(s)) + LE(s, u) - b ()],
= [b""(s) B! (5) + £ (s, u(s)) + LE(s, u) - hH¥(9)] % e,
(o () 9ju'(s) + &' (5, u(s)) — L' (u, 5))
= (07 () 9ju' (s) + &' (5, u(®)) — L' (U, 9)) * e,
= [0/ () 8ju’ (5) + g (5, u(®))],
=[o/(s)8ju' () + g' (5, U(s))] * @e.
Since, for eachy > 0,

&

)
(
(
(

Esup

t<T

/Ot /[Gj(s) 8jul(s) + g'(s, u(s))]sulg(s)dx dWg

T
< nEsup|ug(t)|5 + C”E/o IVu(s)[3+ |g(s, us)) [5ds,

(<T
we derive easily that

E sup|u(s)|3 < oo.
s<T

APPENDIX

For the reader’s convenience, we summarize below some useful facts regarding
Helmholtz’s decomposition of vector fields (see, e.qg., [13, 23]).
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The Riesz transform will be used for the definition of the projections. For
feLxR4,Y), set

R; = li N
F0) = e f|yze ly

with ¢, = G($L) /7@ +D/2 (G is the gamma function)R; is called a Riesz
transform. According to [31], Chapter Ill, formula (8), page 58,

|d+1f(x—y)dy, j=1,....d,

(R ) (x)=—i=L. f,
where
F©& = F(f) = @n)412 / =€ £(x) dix.

Given a function f € Lp(Rd, Y), we define a vector Riesz transforRf =

(R1f, ..., Raf).
Forvelo(Y), set

G(V)=—RRjv/,  8(V)=V—G(V).
Then (see Lemma 2.7 in [23]),2(Y) is a direct sum
La(Y) = §(L2(Y)) @ $(La(Y)),
8(L2(Y)) = {geLa(Y):divg=0},

andg.(LL2(Y)) is a Hilbert subspace orthogonal 40L2(Y)).

The functionsg.(v) and $(v) are usually referred to as the potential and the
divergence-free projections, respectively, of the vector field

The following statement holds.

LEMMA A.1l (see Lemmas 2.11 and 2.12 in [23])4,$ can be extended
continuously to all H5(Y), s € (—oo, 00): there is a constant C so that for all
v e H5(Y),

15 ls,2 < ClIVlls,2, [$MWls,2 < ClIVls,2-
Moreover, the space H(Y) can be decomposed into the direct sum
2(Y) = G(H(Y)) @ $(H5(Y)),
and, if f e g(H5(Y)), g € $(H, " (Y)), then
(A1) {f, 9>H5(Y),H2—~Y(Y) = (f,g)s =0.
Also,
(A.2) S(H5(Y)) = {v e H(Y) :divv = 0}.
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