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ONE-DEPENDENT TRIGONOMETRIC DETERMINANTAL
PROCESSES ARE TWO-BLOCK-FACTORS1

BY ERIK I. BROMAN

Chalmers University of Technology

Given a trigonometric polynomialf : [0,1] → [0,1] of degreem, one
can define a corresponding stationary process{Xi}i∈Z via determinants of
the Toeplitz matrix forf . We show that form = 1 this process, which is
trivially one-dependent, is a two-block-factor.

1. Introduction. We will start by defining a family of probability measuresPf

on the Borel sets of{0,1}Z wheref : [0,1] → [0,1] is a Lebesgue-measurable
function (see [9]). For such anf , define the probability of the cylinder sets by

Pf [η(e1) = · · · = η(ek) = 1]
:= Pf [{η ∈ {0,1}Z :η(e1) = · · · = η(ek) = 1}]
:= det[f̂ (ej − ei)]1≤i,j≤k,

wheree1, . . . , ek are distinct elements inZ andk ≥ 1. Heref̂ denotes the Fourier
coefficients off , defined by

f̂ (k) :=
∫ 1

0
f (x)e−i2πkx dx.

In [9] it is proven thatPf is indeed a probability measure. In fact, they showed
this for the more general case off :Td → [0,1], whereT

d := R
d/Z

d; in this
case, the resulting process is indexed byZ

d . This result rests very strongly on the
results in [8]. Except for the two definitions below,{Xi}i∈Z will always denote a
process distributed according to some measurePf . Throughout this paper, equality
in distribution will be denoted byD= . Let the functionf : [0,1] → [0,1] be of the
form

f (x) =
m∑

k=−m

ake
−i2πkx.

It is then easily checked that the process{Xi}i∈Z corresponding to the probability
measurePf is m-dependent according to the definition below.

Received September 2003; revised September 2003.
1Supported in part by the Swedish Natural Science Research Council.
AMS 2000 subject classification. 60G10.
Key words and phrases. Determinantal processes,k-dependence,k-block-factors.

601



602 E. I. BROMAN

DEFINITION 1.1. A process{Xi}i∈Z is called m-dependent if{Xi}i<k is
independent of{Xi}i≥k+m for all integersk.

We will also need the definition of anm-block-factor.

DEFINITION 1.2. The process{Xi}i∈Z is called anm-block-factor if there
exists a functionh of m variables and an i.i.d. process{Yi}i∈Z such that

{Xi}i∈Z

D={h(Yi, . . . , Yi+m−1)}i∈Z.

We will, as usual, not distinguish between the process{Xi}i∈Z and the
corresponding probability measurePf .

Observe that an(m + 1)-block-factor is triviallym-dependent. For some time,
it was an open question whether allm-dependent processes were in fact(m + 1)-
block-factors (see [4–7]). However, in [2] the authors constructed a family of
one-dependent processes which are not two-block-factors, and in [3] the authors
constructed a one-dependent process which is not ak-block-factor for anyk. In [1]
the authors constructed a one-dependent stationary Markov process with five states
which is not a two-block-factor; they also proved that this result is sharp in the
sense that every one-dependent stationary Markov process with not more than four
states is a two-block-factor. In view of the above, it is a natural question to ask
whether a certainm-dependent process is an(m + 1)-block-factor or not.

Pf as defined above is anm-dependent “trigonometric determinantal probabil-
ity measure.” These probability measures are special cases of general determinantal
probability measures; see [8] or [10] for definitions and results. Determinantal
processes arise in numerous contexts, for example, mathematical physics, random
matrix theory and representation theory, to name a few. For a survey, see [10],
for further results, see [8] and for results concerning the discrete stationary case,
see [9]. In [9], they ask whetherPf above is an(m+ 1)-block-factor. In that paper
they say that if one can find sufficiently explicit block factors for all trigonomet-
ric polynomials, then one can find explicit factors of i.i.d. processes givingPf ,
wheref is any function such thatf :T → [0,1]. This in turn would enable one
to use more standard probabilistic techniques when studying such aPf . We an-
swer their question positively form = 1 in Theorem 1.3, constructing an explicit
two-block-factor.

THEOREM 1.3. If f : [0,1] → [0,1] is given by

f (x) = b + ae−i2πx + cei2πx,

then the corresponding process {Xi}i∈Z is a two-block-factor.
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2. Proof of Theorem 1.3. With f as in the statement of the theorem, it
follows thatā = c, b ≥ 0 and hence ifa = a1 + ia2,

f (x) = b + 2a1 cos(2πx) + 2a2 sin(2πx) = b + 2|a|cos(2πx − φ),(1)

for some suitable choice ofφ. Let, as usual,Pf be the corresponding probability
measure, and write

Dk := det[f̂ (j − i)]1≤i,j≤k+1,

wherek ≥ 0.

Note that the process{Xi}i∈Z distributed according toPf is obviously
stationary. SincePf is one-dependent, it is easily seen that it is uniquely
determined among the one-dependent processes by the values of

Pf [η(i) = · · · = η(i + k) = 1] = Pf [η(1) = · · · = η(1+ k) = 1]
ask varies over the nonnegative integers.

We have that fork ≥ 2,

Dk = det[f̂ (j − i)]1≤i,j≤k+1 =

∣∣∣∣∣∣∣∣∣∣∣∣

b a 0 0 0 · · ·
ā b a 0 0 · · ·
0 ā b a 0 · · ·
0 0 ā b a . . .
...

...
...

. . .
. . .

. . .

∣∣∣∣∣∣∣∣∣∣∣∣

= b

∣∣∣∣∣∣∣∣∣∣∣∣

b a 0 0 0 · · ·
ā b a 0 0 · · ·
0 ā b a 0 · · ·
0 0 ā b a . . .
...

...
...

. . .
. . .

. . .

∣∣∣∣∣∣∣∣∣∣∣∣
− a

∣∣∣∣∣∣∣∣∣∣∣∣

ā a 0 0 0 · · ·
0 b a 0 0 · · ·
0 ā b a 0 · · ·
0 0 ā b a . . .
...

...
...

. . .
. . .

. . .

∣∣∣∣∣∣∣∣∣∣∣∣
= bDk−1 − |a|2Dk−2,

(2)

where the determinant on the left-hand side of the third equality has size(k + 1)×
(k + 1), and the two on the right-hand side have sizek × k. Furthermore,

D0 = |b| = b,(3)

D1 =
∣∣∣∣b a

ā b

∣∣∣∣ = b2 − |a|2.(4)

The characteristic equation corresponding to (2) is

r2 − br + |a|2 = 0,(5)

which has two roots

r1 = b

2
+

√
b2

4
− |a|2(6)
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and

r2 = b

2
−

√
b2

4
− |a|2.(7)

Case 1. Assume thatr1 = r2 = r so thatr = b
2 and

b2

4
= |a|2,

and so (sinceb, |a| ≥ 0)

b = 2|a|.
We have by (1) that

max
x∈[0,1]f (x) = max

x∈[0,1]
(
b + 2|a|cos(2πx − φ)

) = b + 2|a| = 2b,

and sincef : [0,1] → [0,1], we getb ≤ 1
2 and so|a| ≤ 1

4.

With r1 = r2 = r, it follows from the basic theory of difference equations that
the solution to (2) is

Dk = (C1k + C2)r
k ∀ k ≥ 0,

for some constantsC1,C2 yet to be determined. Using (3) and (4), we get that
C2 = D0 = b = 2r , and using this, we get(C1 + 2r)r = D1 = b2 − |a|2 =
b2 − b2/4= 3r2. HenceC1 = r and so

Dk = (kr + 2r)rk ∀ k ≥ 0.(8)

We will now construct a two-block-factor which we will show to be distributed
according toPf . Let {Yi}i∈Z be i.i.d. uniform on[0,1]. Defineh : [0,1]× [0,1] →
[0,1] by h = IA, where

A = [
0, 1

4

] × [0, r] ∪ [
0, 1

4

] × [1
2, 1

2 + r
] ∪ [

0, 1
4

] × [3
4, 3

4 + r
]

∪ [1
4, 1

2

] × [1
4, 1

4 + r
] ∪ [1

4, 1
2

] × [1
2, 1

2 + r
] ∪ [1

4, 1
2

] × [3
4, 3

4 + r
]

∪ [1
2, 3

4

] × [1
2, 1

2 + r
] ∪ [3

4,1
] × [3

4, 3
4 + r

]
.

A is depicted as the gray area of Figure 1. Observe thatr = |a| ≤ 1
4.

We will show that

P[h(Yi, Yi+1) = · · · = h(Yi+k, Yi+k+1) = 1] = Dk ∀ k ≥ 0.

Since{h(Yi, Yi+1)}i∈Z is one-dependent, this gives us{h(Yi, Yi+1)}i∈Z

D= Pf as
desired. We first observe that the size of the shaded area of Figure 1 is 81

4r =
2r = b, so thatP[h(Yi, Yi+1) = 1] = D0.

If h(Yi, Yi+1) = · · · = h(Yi+k, Yi+k+1) = 1, then(Yi+l, Yi+l+1) must be in one
of the boxes marked 1 through 8 of Figure 1∀ l ∈ {0, . . . , k}. If (Yi, Yi+1) is
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FIG. 1. This figure shows A (the shaded area).

in the box marked 1, thenYi+1 ∈ [0, r] and so(Yi+1, Yi+2) must be in one of
the boxes marked 1, 3 or 5 because otherwise(Yi+1, Yi+2) /∈ A. Similar “rules”
apply if (Yi, Yi+1) is in one of the other seven boxes. We see that for anyω

such thath(Yi(ω),Yi+1(ω)) = · · · = h(Yi+k(ω),Yi+k+1(ω)) = 1, there is a natural
sequence,j0j1 · · · jk(ω) ∈ {1, . . . ,8}k+1 associated to it, where the value ofjl

indicates that(Yi+l(ω), Yi+l+1(ω)) is in the box marked with that value. In any
such sequence, the number 1 can only be followed by 1, 3 or 5, as described
above, while the number 2 can only be followed by 2, 4 or 6. Additionally, any
one of the numbers 3, 4 or 7 must be followed by a 7, while any one of 5, 6 or 8
must be followed by an 8.

We claim that the number of sequencesj0j1 · · · jk described above is(4k + 8).

To see this, observe that every such sequence withjk /∈ {1,2} can be extended into
a sequencej0j1 · · · jk+1 in only one way, while ifjk ∈ {1,2}, it can be extended in
three ways. Observe also that there are only two sequencesj0j1 · · · jk ending in 1
or 2.

The set ofω giving a specific sequencej0j1 · · · jk ∈ {1, . . . ,8}k+1 has proba-
bility 1

4rk+1 sinceYi must be in an interval of length14, while Yi+1, . . . , Yi+k+1
all must be within intervals of lengthr. Hence the total probability of having
h(Yi, Yi+1) = · · · = h(Yi+k, Yi+k+1) = 1 is (4k + 8)1

4rk+1 = (kr + 2r)rk. Com-
paring with (8), we see that

P[h(Yi, Yi+1) = · · · = h(Yi+k, Yi+k+1) = 1] = Dk

∀ k ≥ 0, and we conclude that{h(Yi, Yi+1)}i∈Z

D= Pf and so this case is proved.
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Case 2. It remains to considerr1 �= r2. According to (6) and (7),

r1 + r2 = b

and

r1r2 = |a|2.
In this case the solution to (2) is, again, from basic difference equation theory,

Dk = C1r
k
1 + C2r

k
2 ∀ k ≥ 0,

for some constantsC1,C2 yet to be determined. Using this with (3), we get

C1 + C2 = D0 = r1 + r2,

and using (4), we get

C1r1 + C2r2 = D1 = b2 − |a|2 = (r1 + r2)
2 − r1r2 = r2

1 + r1r2 + r2
2 .

A straightforward calculation yields

C1 = r2
1

r1 − r2

and

C2 = − r2
2

r1 − r2
,

and therefore fork ≥ 1,

Dk = rk+2
1 − rk+2

2

r1 − r2
= rk+2

1 − rk+1
1 r2 + r2(r

k+1
1 − rk+1

2 )

r1 − r2
= rk+1

1 + r2Dk−1.(9)

Assume thatb ≤ 1
2 so that 2(r1+r2) ≤ 1. We will now construct a two-block-factor

which we will show to be distributed according toPf . Let {Yi}i∈Z be i.i.d. uniform
on [0,1] and again takeh : [0,1]× [0,1] → [0,1] to be the functionh = IA, where
A is now

A = [0,Cr1] × [0, r1] ∪ [0,Cr1] × [2Cr1,2Cr1 + r2]
∪ [0,Cr1] × [2Cr1 + Cr2,2Cr1 + Cr2 + r2]
∪ [Cr1,2Cr1] × [Cr1,Cr1 + r1]
∪ [Cr1,2Cr1] × [2Cr1,2Cr1 + r2]
∪ [Cr1,2Cr1] × [2Cr1 + Cr2,2Cr1 + Cr2 + r2]
∪ [2Cr1,2Cr1 + Cr2] × [2Cr1,2Cr1 + r2]
∪ [2Cr1 + Cr2,1] × [2Cr1 + Cr2,2Cr1 + Cr2 + r2]
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FIG. 2. This figure shows A (the shaded area).

andC = 1
2(r1+r2)

≥ 1. A is the shaded area of Figure 2.
Again we will show that

P[h(Yi, Yi+1) = · · · = h(Yi+k, Yi+k+1) = 1] = Dk ∀ k ≥ 0.

Since again{h(Yi, Yi+1)}i∈Z is one-dependent, this gives us{h(Yi, Yi+1)}i∈Z

D= Pf.

We observe that the size of the shaded area of Figure 2 equals

2Cr1r1 + 4Cr1r2 + 2Cr2r2 = 2C(r1 + r2)
2 = r1 + r2

by our choice ofC, and soP[h(Yi, Yi+1) = 1] = D0.

For anyω such thath(Yi(ω),Yi+1(ω)) = · · · = h(Yi+k(ω),Yi+k+1(ω)) = 1,
there is a natural sequencej0j1 · · · jk(ω) ∈ {1, . . . ,8}k+1 associated to it, as before.
Let {ω : j0j1 · · · jk(ω)} denote the set ofω giving a specific sequencej0j1 · · · jk,

and for convenience we will writeP[j0j1 · · · jk] instead ofP[{ω : j0j1 · · · jk(ω)}].
Assume thatjk−1 ∈ {3,4,5,6,7,8}; we get

P[j0j1 · · · jk] = r2P[j0j1 · · · jk−1],
sincejk is either 7 or 8 (depending on the value ofjk−1). If insteadjk−1 = 1, then
jk must be either 1,3 or 5 and of coursejl = 1 for all l ≤ (k − 1). Hence in this
case

P[j0j1 · · · jk] = r2P[j0j1 · · · jk−1] = r2P[11· · ·1︸ ︷︷ ︸
k

] = r2Crk+1
1

if jk is equal to 3 or 5, and

P[j0j1 · · · jk] = P[11· · ·1︸ ︷︷ ︸
k+1

] = Crk+2
1
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if jk = 1. Similarly, if jk−1 = 2, thenjk must be either 2,4 or 5 and of course
jl = 2 for all l ≤ (k − 1). Hence

P[j0j1 · · · jk] = r2P[j0j1 · · · jk−1] = r2P[22· · ·2︸ ︷︷ ︸
k

] = r2Crk+1
1

if jk is equal to 4 or 6, and

P[j0j1 · · · jk] = P[22· · ·2︸ ︷︷ ︸
k+1

] = Crk+2
1

if jk = 2.

Let Ak be the set of all sequencesj0j1 · · · jk corresponding to the event
h(Yi, Yi+1) = · · · = h(Yi+k, Yi+k+1) = 1. We have that

P[h(Yi, Yi+1) = · · · = h(Yi+k, Yi+k+1) = 1]
= ∑

Ak

P[j0j1 · · · jk]

= ∑
Ak

jk−1/∈{1,2}

P[j0j1 · · · jk] + ∑
Ak

jk−1∈{1,2}

P[j0j1 · · · jk]

= r2
∑
Ak−1

jk−1/∈{1,2}

P[j0j1 · · · jk−1] + 4r2Crk+1
1 + 2Crk+2

1

= r2

( ∑
Ak−1

jk−1/∈{1,2}

P[j0j1 · · · jk−1] + P[11· · ·1︸ ︷︷ ︸
k

] + P[22· · ·2︸ ︷︷ ︸
k

]
)

+ 2r2Crk+1
1 + 2Crk+2

1

= r2
∑
Ak−1

P[j0j1 · · · jk−1] + 2Crk+1
1 (r1 + r2)

= r2P[h(Yi, Yi+1) = · · · = h(Yi+k−1, Yi+k) = 1] + rk+1
1 .

Comparing this to (9), and usingP[h(Yi, Yi+1) = 1] = D0, we see that

P[h(Yi, Yi+1) = · · · = h(Yi+k, Yi+k+1) = 1] = Dk

for all k ≥ 0, and so this case is also proved.
Finally the caseb > 1

2 remains. Take

g(x) = 1− f (x) = 1− b − 2|a|cos(2πx − φ) = 1− b + 2|a|cos(2πx − φ′),

for some suitable choice ofφ′. Since 1− b ≤ 1
2, it follows from above that we can

construct a two-block-factor{h(Yi, Yi+1)}i∈Z such that

{h(Yi, Yi+1)}i∈Z

D= Pg.
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With h̃ = 1 − h, we get a new two-block-factor{h̃(Yi, Yi+1)}i∈Z with ones
and zeros flipped. Lemma 2.4 in [9] then shows that{h̃(Yi, Yi+1)}i∈Z has
distributionP1−g, which in turn isPf . �

When trying to generalize Theorem 1.3 to the case wheref is a trigonometric
polynomial of degreem, one must consider not only the values of

Pf [η(1) = · · · = η(1+ k) = 1],
but also the values of

Pf [η(e1) = · · · = η(ek) = 1],
whereei ∈ Z ∀ i ∈ {1, . . . , k}, but whereei is not necessarily equal toei−1 + 1.

Analyzing these new cylinder events adds to the complexity of the problem
and therefore, in our opinion, the generalization of Theorem 1.3 (if indeed the
generalization is true) does not seem to be trivial.

Acknowledgment. I would like to thank my supervisor Jeffrey Steif for
presenting me the problem and for all the help I received during the writing of
this paper.
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