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ONE-DEPENDENT TRIGONOMETRIC DETERMINANTAL
PROCESSES ARE TWO-BLOCK-FACTORS!

BY ERIK |. BROMAN
Chalmers University of Technology

Given a trigonometric polynomiaf : [0, 1] — [0, 1] of degreem, one
can define a corresponding stationary prodegg;cz via determinants of
the Toeplitz matrix forf. We show that forn = 1 this process, which is
trivially one-dependent, is a two-block-factor.

1. Introduction. We will start by defining a family of probability measure$
on the Borel sets of0, 1} where f:[0, 1] — [0, 1] is a Lebesgue-measurable
function (see [9]). For such af, define the probability of the cylinder sets by

P/[n(e) = =n(ex) =1]
=P/ [{ne{0,1)% n(er) =+ =nlex) = 1]
= del f(e; — e)lr=i,j<k,

whereeq, ..., e, are distinct elements id andk > 1. Heref denotes the Fourier
coefficients off, defined by

r ! i 2k
f k) :=/O Fx)e 2k gy

In [9] it is proven thatP/ is indeed a probability measure. In fact, they showed
this for the more general case ¢f: T¢ — [0, 1], whereT? := R¢/Z%; in this
case, the resulting process is indexedZdy This result rests very strongly on the
results in [8]. Except for the two definitions belof; }; <7z will always denote a
process distributed according to some meaB¥irel hroughout this paper, equality
in distribution will be denoted b)£. Let the functionf : [0, 1] — [0, 1] be of the
form

f(.x): Z ake—l’ZHkx.

k=—m

It is then easily checked that the proc€Xs}; <z corresponding to the probability
measuré®’/ is m-dependent according to the definition below.
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DEFINITION 1.1. A process{X;}iez is called m-dependent if{X;}; o is
independent of X; };>k+n» for all integersk.

We will also need the definition of an-block-factor.

DEFINITION 1.2. The proces$X;};cz is called anm-block-factor if there
exists a functionh of m variables and an i.i.d. proced¥;};ez such that

{Xiliez 2 {h(Yi,....Yixm-1}iez.

We will, as usual, not distinguish between the procé¢Xs};,cz and the
corresponding probability measupé .

Observe that awm + 1)-block-factor is triviallym-dependent. For some time,
it was an open question whether alldependent processes were in fagt+ 1)-
block-factors (see [4—7]). However, in [2] the authors constructed a family of
one-dependent processes which are not two-block-factors, and in [3] the authors
constructed a one-dependent process which is kdilack-factor for any. In [1]
the authors constructed a one-dependent stationary Markov process with five states
which is not a two-block-factor; they also proved that this result is sharp in the
sense that every one-dependent stationary Markov process with not more than four
states is a two-block-factor. In view of the above, it is a natural question to ask
whether a certaim-dependent process is &n + 1)-block-factor or not.

P/ as defined above is an-dependent “trigonometric determinantal probabil-
ity measure.” These probability measures are special cases of general determinantal
probability measures; see [8] or [10] for definitions and results. Determinantal
processes arise in numerous contexts, for example, mathematical physics, random
matrix theory and representation theory, to name a few. For a survey, see [10],
for further results, see [8] and for results concerning the discrete stationary case,
see [9]. In [9], they ask wheth&’ above is arm + 1)-block-factor. In that paper
they say that if one can find sufficiently explicit block factors for all trigonomet-
ric polynomials, then one can find explicit factors of i.i.d. processes giihg
where f is any function such thaf : T — [0, 1]. This in turn would enable one
to use more standard probabilistic techniques when studying s&¢h e an-
swer their question positively foarn = 1 in Theorem 1.3, constructing an explicit
two-block-factor.

THEOREM1.3. If f:[0,1] — [0, 1] isgiven by
f(X) :b+ae—i2nx _i_ceian’

then the corresponding process { X; };<z is a two-block-factor.
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2. Proof of Theorem 1.3. With f as in the statement of the theorem, it
follows thata = ¢, b > 0 and hence it = a1 + iap,

Q)  f(x)=b+2a1c0927x) + 2a2SIN2wx) = b + 2|a| co 2w x — ¢),
for some suitable choice @f. Let, as usualP/ be the corresponding probability
measure, and write

Dy :=delf (j — Dlasi j=k+1,

wherek > 0.

Note that the proces$X;}icz distributed according taP/ is obviously
stationary. SinceP/ is one-dependent, it is easily seen that it is uniquely
determined among the one-dependent processes by the values of

Pllp(i)=--=ni+k)=1=P Q) =---=nQ+k =1]

ask varies over the nonnegative integers.
We have that fok > 2,

ba0 O O --
aba 0 0O -
Dy =delf(j — )< j<kr1=|0db a O -
fQ <i,j<k+ 007 b o
(2) baO 0 O - aa00 O--
aba 0 O ... Oba O O -
_bOc_lba 0 -_QOElba (O
b a b a .

00a
_ 2
=bDy-1— |a|*Dy-2,

where the determinant on the left-hand side of the third equality hasisizé) x
(k + 1), and the two on the right-hand side have size k. Furthermore,

3) Do = |b| =,

_ b a 12 _ 2
@) Di=|75]=p? a2
The characteristic equation corresponding to (2) is
(5) r2—br +1al?>=0,
which has two roots

b b2

(6) ri=o+,/ - —lal?

2 4
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and

b b2
7 == — = —|al2
(7) 2= 2 lal
Casel. Assume thaty =r; =r so that- = § and

? 2
— =lal%,

4
and so (sincé, |a| > 0)

b=2|al.
We have by (1) that

rrEgol( fx)= rTEax (b+2alco92nx — ¢)) =b+ 2la| =2b
and sincef : [0, 1] — [0, 1], we geth < 5 L and sOla| < %1

With r1 = r» = r, it follows from the basic theory of difference equations that
the solution to (2) is

Dk = (Clk + C2)l"k vk > O,

for some constant€'1, C»> yet to be determined. Using (3) and (4), we get that
C> = Do = b = 2r, and using this, we getC1 + 2r)r = D1 = b? — |a|? =
b% — b%/4=3r?. HenceC1 = r and so

(8) Dy = (kr +2r)r*  Vk>D0.

We will now construct a two-block-factor which we will show to be distributed
according tP/ . Let {Y;};cz be i.i.d. uniform or[0, 1]. Definex : [0, 1] x [0, 1] —
[0, 1] by h = I4, where

A=[0,7]x[0,71U[0, 3] x [3, 3 +r]U[0, ] x [3. 2 + /]
U5 3] x[3.3+7]0[5 3l x [3. 3 +r]Ul3. 3] [3. 3 + 7]
Ul3. 3] x (5.2 +r1U[3. 2] x [§. 3 +7]

A is depicted as the gray area of Figure 1. Observerthala| < %
We will show that
Plh(Y:, Y1) = =h(Yik, Yigpr) =1 =Dy~ Vk=0.

Since{h(Y;, Yi11)}icz is one-dependent, this gives Us(Y;, Y;i11)}icz 2p/ as
desired. We first observe that the size of the shaded area of Figure%l is 8
2r =b, sothatP[h(Y;, Yi11) =1]=

If h(Y;, Yit1) =+ =h(Yigk, Yizrs1) = 1, then(Y;4y, Yi41) must be in one
of the boxes marked 1 through 8 of Figurevl € {0, ..., k}. If (Y;,Y;11) is
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I4 12 354 1

Fic. 1. Thisfigure shows A (the shaded area).

in the box marked 1, thei;.1 € [0, ] and so(Y;+1, Yi+2) must be in one of
the boxes marked, 13 or 5 because otherwis&; 1, Y;12) ¢ A. Similar “rules”
apply if (¥;,Y;+1) is in one of the other seven boxes. We see that for @any
such that:(Y; (w), Yit1(w)) = -+ - = h(Y;j 11 (w), Yisrr1(w)) = 1, there is a natural
sequenceyjoji--- jr(w) € {1, ..., 8kt associated to it, where the value pf
indicates thatY;;(w), Y;i+;+1(w)) is in the box marked with that value. In any
such sequence, the number 1 can only be followed ,bg dr 5 as described
above, while the number 2 can only be followed hy42or 6. Additionally, any
one of the numbers, 3! or 7 must be followed by a, Wvhile any one of 56 or 8
must be followed by an.8

We claim that the number of sequengegg: - - - jx described above &k + 8).
To see this, observe that every such sequence jwigh{1, 2} can be extended into
a sequencgyp i - - - jr+1 in only one way, while ifj; € {1, 2}, it can be extended in
three ways. Observe also that there are only two sequepges - jr ending in 1
or 2.

The set ofw giving a specific sequencgji - - - jx € {1, ..., 81 has proba-
bility r**1 since¥; must be in an interval of length, while Y;1, ..., Yijxt1
all must be within intervals of length. Hence the total probability of having
h(Yi, Yig1) = - = h(Yisk, Yigrs1) = 1 is (4k + 8) 375 = (kr + 2r)rk. Com-
paring with (8), we see that

Plh(Yi, Yit1) = =h(Yitk, Yigr+1) = 1] = Dy

Vk > 0, and we conclude thdk (Y;, Yi11)}icz L pf and so this case is proved.
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Case2. Itremains to considern # r». According to (6) and (7),

ri+ra=>b

and
rirz = lal?.

In this case the solution to (2) is, again, from basic difference equation theory,

Dy=Cirf +Cary  Vik>0,
for some constant§y, C» yet to be determined. Using this with (3), we get
Ci1+Co=Do=r1+r2,
and using (4), we get
Cir1+ Corz = D1=0b%—|a|* = (r1 + r2)* — rara = rf + rira + 1.

A straightforward calculation yields

2
,
C1=—1
ri—r2
and
2
,
Cr= 2
ri—r2
and therefore fok > 1,
k+2 k42 k+2  k+1 k+1  k+1
r —-r r —ry ro+ro(r —r57)
Q) D=1 2 _n 1 1 2 — r11<+1 ¥ roDp_1.
r1—1ro rL—r2

Assume thab < % so that 2r1 +r2) < 1. We will now construct a two-block-factor

which we will show to be distributed according®d . Let {Y;};cz be i.i.d. uniform
on[0, 1] and again také : [0, 1] x [0, 1] — [0, 1] to be the functiork = 14, where
A is now

A=1[0,Cr1] x[0,r1]U[O, Cr1] x [2Cr1, 2Cr1 + 12]
U[0, Cr1] x [2Cr1+ Cr2,2Cr1 4+ Cra + 2]
U[Cr1,2Cr1] x [Cr1, Cr1+ r1]

U[Cr1,2Cr1] x [2Cr1, 2Cr1 + 12]

U[Cr1,2Cr1] x [2Cr1+ Cr2,2Cr1+ Cra + r2]
U[2Cr1,2Cr1+ Cr2] x [2Cr1, 2Cr1 + 2]
U[2Cr1+4 Cr2,1] x [2Cr1 4 Cr2,2Cr1 + Cra +r2]
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FiG. 2. Thisfigure shows A (the shaded area).

andC = Ti@ > 1. A is the shaded area of Figure 2.

Again we will show that
Pla(Yi, Yiy1) = =h(Yisk, Yisr41) =11=Dr ~ Vk=0.

Since agaifh(Y;, Y1) }icz is one-dependent, this givessY;, Yi+1)}icz L ps
We observe that the size of the shaded area of Figure 2 equals

2Crir1 +4Criro + 2Crorp = 2C(r1 + r2)2 =r1+r

by our choice ofC, and soP[k(Y;, Y;+1) = 1] = Dy.

For anyw such thath(Y;(w), Yi11(@)) = -+ = h(Yix (@), Yigpr1(@) =1,
there is a natural sequengss - - - jx (w) € {1, ..., 8}t associated to it, as before.
Let {w: joj1--- jk(w)} denote the set ab giving a specific sequencji - - - jk,
and for convenience we will writ[joj1 - - - jx] instead ofP[{w: joj1-- - jk(w)}].
Assume that;_1 € {3,4,5, 6, 7, 8}; we get

Pljoji---jkl =r2Pljoji- - - jik-1l,
sincejy is either 7 or 8 (depending on the valuejpf 1). If insteadj;_1 = 1, then
Jx must be either 13 or 5 and of coursg; = 1 for all/ < (k — 1). Hence in this
case

Pljoj1--- jil =r2Pljoji- - jk—1] = r2P[A1--- 1] = roCri+t

k
if jx isequal to 3 or 5, and
Pljoji---jel = P[11--- 1] = Crk+2
k+1
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if jr = 1. Similarly, if j,_1 = 2, thenj, must be either 24 or 5 and of course
=2forall/ <(k—1). Hence

Pljoji--- jkl =r2Pljoj1- -+ jk—1] = r2P[22--- 2] = roCr Tt
k

if ji is equalto 4 or 6, and
Pljoji-++ji] =Pl22:--2] = Cr{ ™2

k+1
if jk =
Let ,Ak be the set of all sequencegji--- jix corresponding to the event
h(Y;, Yl+l) = h(YH—ka z+k+l) =1 We have that
Pla(Y:, Yit1) = = h(Yitk, Yitr+1) = 1]
= Pljoj1--- il
A
= Z Pljoji--jxl+ . Pljoji--Jil
A
Jk— 1¢{121 jeget.2)
Y Pljoji--ji-1l+4r2Critt 4 2Cr+2
Ak—1
Jk—1#{1,2}
= Vz( > Pljoji--- j-1]+Pl1L:-- 1] + P[22- - 2])
Ak—1 k k
Jk—1¢11,2}
+ 2r2CrkJrl + 2Crk+2
=r2 Y Pljoji-+ jk-11+2Cry T (r1+r2)
Ag—1
=raPlh(Y;, Yit1) = - = h(Yiho1, Yigr) =+ i+
Comparing this to (9), and usirifA(Y;, Yi+1) = 1] = Do, we see that
Plh(Y;,Yit1) = =h(Yitk, Yigx+1) = 1] =

for all k > 0, and so this case is also proved.
Finally the casé > % remains. Take

gx)=1— f(x)=1—b—2|alco2rx —¢) =1—b+2alcos2rx — ¢'),

for some suitable choice @f. Since 1- b < 2, it follows from above that we can
construct a two-block-factqi:(Y;, Y;+1)}iez such that

{h(Y;,Yis)}iez L ps.
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With » =1 — h, we get a new two-block-factofi(Y;, Y;41)}icz With ones
and zeros flipped. Lemma 2.4 in [9] then shows thatY;, Y 1)}icz has
distributionP1~¢, which in turn isP/. O

When trying to generalize Theorem 1.3 to the case wifeiea trigonometric
polynomial of degree:, one must consider not only the values of

P/ In@) =---=n+k=1],

but also the values of

P/ ner) =--- = n(ex) =11,

wheree; € Z Vi € {1, ..., k}, but wheree; is not necessarily equal 9_1 + 1.
Analyzing these new cylinder events adds to the complexity of the problem
and therefore, in our opinion, the generalization of Theorem 1.3 (if indeed the
generalization is true) does not seem to be trivial.
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this paper.
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