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ON WEIGHTED U -STATISTICS FOR STATIONARY PROCESSES

BY TAILEN HSING AND WEI BIAO WU

Texas A&M University and University of Chicago

A weighted U -statistic based on a random sampleX1, . . . ,Xn has
the form Un = ∑

1≤i,j≤n wi−j K(Xi,Xj ), whereK is a fixed symmetric
measurable function and thewi are symmetric weights. A large class of
statistics can be expressed as weightedU -statistics or variations thereof.
This paper establishes the asymptotic normality ofUn when the sample
observations come from a nonlinear time series and linear processes.

1. Introduction. Consider the causal process

Xi = F( . . . , εi−1, εi),(1)

where theεj are i.i.d. random elements. Clearly (1) is very general and represents
a huge class of processes. In particular, it contains the linear processXi =∑∞

j=0aj εi−j , where aj are square summable andεj has mean 0 and finite
variance, and many nonlinear processes (cf. Section 3) including the threshold
AR (TAR) models [Tong (1990)], AR with conditional heteroscedasticity (ARCH)
models [Engle (1982)], random coefficient AR (RCA) models [Nicholls and Quinn
(1982)], and exponential AR (EAR) models [Haggan and Ozaki (1981)]. The
main goal of this paper is to consider the asymptotic behavior of the following
statistic:

Un = ∑
1≤i,j≤n

Hi,j (Xi,Xj ) := ∑
1≤i,j≤n

wi−jK(Xi,Xj ),

where K is a fixed symmetric measurable function and thewi are symmet-
ric constants. We refer toUn as a weightedU -statistic. The class of statistics
that can be written in this form or variations of this form is clearly huge. For
example, if Hi1,i2(x1, x2) = [G(x1) + G(x2)]/2, n−1Un is the partial sum of
G(X1), . . . ,G(Xn); if Hi1,i2(x1, x2) = x1x2I (|i1 − i2| = k), then(n − k)−1Un is
the sample covariance function of lagk in {Xi}; if Hi1,i2 = I (i1 �= i2)K andK ,
respectively, for some fixed functionK , thenUn is a (nonnormalized)U - and
V -statistic, respectively.

The study of asymptotic properties of the weighted or even the usualU -statistics
is in general not straightforward. Hoeffding’s decomposition [Hoeffding (1961)]
provides a powerful tool for understanding the large-sample properties of
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U -statistics based on i.i.d. or even weakly dependent observations. See Randles
and Wolfe (1979), Serfling (1980) and Lee (1990). For the i.i.d. case, a small
number of papers consider the asymptotic properties of weightedU -statistics;
recent references include O’Neil and Redner (1993), Major (1994) and Rifi and
Utzet (2000). For weakly dependent processes, the results forU -statistics are
typically developed under mixing conditions; examples of these can be found in
Yoshihara (1976), Denker and Keller (1983, 1986) and a series of recent papers
by Borovkova, Burton and Dehling (1999, 2001, 2002). Laws of large numbers
for U -statistics of stationary and ergodic sequences were considered by Aaronson,
Burton, Dehling, Gilat, Hill and Weiss (1996) and Borovkova, Burton and Dehling
(1999). For long-memory processes,U -statistics and quadratic forms were consid-
ered by Dehling and Taqqu (1989, 1991), Ho and Hsing (1996), Giraitis and Taqqu
(1997) and Giraitis, Taqqu and Terrin (1998), among others.

Using martingale-based techniques, we prove some general results forUn

for processes satisfying (1) in a variety of short- and long-memory situations.
Approaches based on martingales are very effective in dealing with asymptotic
issues of stationary processes. See Woodroofe (1992), Ho and Hsing (1996, 1997),
Wu and Mielniczuk (2002) and Wu (2003) for some recent developments, where
certain open problems are dealt with. Wu and Woodroofe (2004) investigate
approximations to sums of stationary and ergodic sequences by martingales. Based
on such approximations, they obtain necessary and sufficient conditions for such
sums to be asymptotically normal from the martingale central limit theorem.
No mixing conditions will be involved and the results obtained are often nearly
optimal.

Specifically, in Section 2, we will state two general central limit theorems
for a stationary processYi,j , whereYi,j is measurable with respect to theσ -
field generated byεk, k ≤ i ∨ j , wherei ∨ j = max(i, j). An example ofYi,j

is Yi,j = K(Xi,Xj ), but the realm of possibilities goes beyond that. In addition to
the dependence of the processYi,j , thewi introduce another level of dependence
in Un. The two cases of

∑∞
i=0 |wi | < ∞ and

∑∞
i=0 |wi | = ∞ correspond to short-

and long-range dependence, respectively, thereby entailing norming sequences of
different orders of magnitude. We will address both cases.

In Section 3, we apply the results to nonlinear time series that are geometric
moment-contracting. These are “short-memory” processes, which include a large
class of processes mentioned in the beginning of this section, and also processes
that do not satisfy any strong mixing conditions. In Sections 4 and 5, respectively,
our general results are applied to short- and long-memory linear processes. In the
long-memory case, we letYi,j be the remainder of an ANOVA decomposition of
K(Xi,Xj ). The resulting decomposition ofUn is similar in spirit to Hoeffding’s
decomposition, and the asymptotic distribution ofUn can be determined by
identifying the dominant term(s) of the decomposition. In Sections 3 and 4, we
also compare some of our results with related results in Borovkova, Burton and
Dehling (2001). The two sets of results have overlapping but somewhat different



1602 T. HSING AND W. B. WU

ranges of applicability; we explain the differences and, where they overlap, we
point out situations where our results work more effectively.

Detailed proofs are included in Section 6.

2. Notation and main results. Let εi, i ∈ Z, be i.i.d. random elements taking
values in a general state space. Define the shift processesZi = ( . . . , εi−1, εi)

and, for each� ≥ 1, Z̃i = Z̃i,� = (εi−�+1, . . . , εi), where we often suppress�
in Z̃i,� to simplify notation. LetYi,j , i, j ∈ Z, be random variables with zero
means and finite variances, such thatYi,j = Yj,i , Yi,j ∈ σ(Zi∨j ) and (Yi,j ,Zk)

is a stationary process in the sense that the(Yi+t,j+t ,Zk+t ) have the same finite-
dimensional distributions as(Yi,j ,Zk) for eacht ∈ Z; similarly let Ỹi,j , i, j ∈ Z,
be random variables with zero means and finite variances, such thatỸi,j = Ỹj,i ,
Ỹi,j ∈ σ(Z̃i, Z̃j ) and (Ỹi,j , Z̃k) is a stationary process in the sense that the
(Ỹi+t,j+t , Z̃k+t ) have the same finite-dimensional distributions as(Ỹi,j , Z̃k) for
eacht ∈ Z. Define the projection operator

Pt ξ = E(ξ |Zt ) − E(ξ |Zt−1), t ∈ Z,

whereξ is an integrable random variable. Let

Li,j = wi−j Yi,j and L̃i,j = wi−j Ỹi,j .

The two cases where the weightswi are summable and nonsummable have distinct
flavors, and they will be considered separately in Sections 2.1 and 2.2.

2.1. Summable weights. In this section, we consider the asymptotic distribu-
tion of

∑
1≤i,j≤n wi−j Yi,j , where the weightswi are absolutely summable. When

Yi,j = K(Xi,Xj ) − EK(Xi,Xj ), obvious examples of this include partial sums
for whichwi = δi,0 andk-lag sample covariance function for whichwi = δi,k . Let
d→ denote convergence in distribution and let N(0, σ 2) be the normal distribution

with mean zero and varianceσ 2.
For any integersi, j , define

θi,j = ‖P0Yi,j‖.(2)

THEOREM 1. Assume that
∞∑

k=0

∞∑
i=0

|wk|θi,i−k < ∞.(3)

Then
1√
n

∑
1≤i,j≤n

Li,j
d→ N(0, σ 2)(4)

for some σ 2 < ∞.
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REMARK 1. Since θi,j = θj,i and wk = w−k , (3) is equivalent to the
seemingly stronger statement

∞∑
k=−∞

∞∑
i=0

|wk|θi,i−k < ∞(5)

in view of

−1∑
k=−∞

∞∑
i=0

|wk|θi,i−k =
∞∑

k=1

|wk|
∞∑

j=0

θj+k,j

=
∞∑

k=1

|wk|
∞∑
i=k

θi,i−k ≤
∞∑

k=0

∞∑
i=0

|wk|θi,i−k .

2.2. Nonsummable weights. The derivation of the main result, Theorem 3, in
this section for nonsummable weights relies on Theorem 2, which asserts that∑

1≤i,j≤n Li,j can be approximated by
∑

1≤i,j≤n L̃i,j . To consider the asymptotic
behavior of the latter, we apply the idea of the Hoeffding decomposition.

Let

θ̂i,j = sup
�≥1

‖P0Ỹi,j‖

and

δ� := sup
j∈Z

‖Y1,j − Ỹ1,j‖.(6)

Define

Wn(i) =
n∑

j=1

wi−j and Wn =
[

n∑
i=1

W2
n (i)/n

]1/2

.

THEOREM 2. Assume that lim�→∞ δ� = 0, lim infn→∞ Wn/
(∑n

i=0 |wi |) > 0
and

lim
ε→0

sup
k≥0

∞∑
i=0

min(θ̂i,i−k, ε) = 0.(7)

Then

lim
�→∞

lim sup
n→∞

1

nW2
n

∥∥∥∥∥
∑

1≤i,j≤n

(Li,j − L̃i,j )

∥∥∥∥∥
2

= 0.(8)
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THEOREM 3. Assume that
∑∞

i=1 |wi | = ∞ and
∑n

k=0(n − k)w2
k = o(nW2

n ).
Then under the conditions of Theorem 2,

1√
nW2

n

∑
1≤i,j≤n

Li,j
d→ N(0, σ 2)(9)

for some σ 2 < ∞.

REMARK 2. The assumptions on thewi in Theorems 2 and 3 are very
minor and are satisfied for every situation of practical interest. For example, if
wn ∼ C/nβ , β < 1, then those conditions hold. Note, however, that in Theorem 3,
the second condition

∑n
k=0(n − k)w2

k = o(nW2
n ) cannot be derived from the first

one
∑∞

i=1 |wi | = ∞. For example, letwn = 2k whenevern = 22k
, k ∈ N, and

wn = 0 otherwise. Then
∑∞

i=1 |wi | = ∞ and there exists a constantc′ > 0 such
that

∑n
k=0(n − k)w2

k ≥ c′nW2
n for all n ≥ 4.

The conditions (3) and (7) are closely related throughδ�. The following is useful
in verifying the conditions in certain situations.

PROPOSITION4. The following hold:

sup
k

∞∑
i=0

θi,i−k ≤ 2
∞∑
i=0

δi(10)

and, for any ε,

sup
k

∞∑
i=0

min(θ̂i,i−k, ε) ≤ 4
∞∑
i=0

min
(

sup
�≥i

δ�, ε

)
.(11)

PROOF. Let j ≥ i ≥ � ≥ 0; then Z̃i and Z̃j are independent ofZ0. Thus
Ỹi,j is also independent ofZ0 and P0Ỹi,j = 0. If i ≥ �, j ≤ −1, then Z̃i is
independent ofZ0 andZ̃j is Z−1 measurable. SoE[Ỹi,j |Z0] = E[Ỹi,j |Z−1] and,
again,P0Ỹi,j = 0. Therefore,

θ�,�−k = ‖P0Y�,�−k‖ = ‖P0(Y�,�−k − Ỹ�,�−k)‖
≤ ‖Y�,�−k − Ỹ�,�−k‖ ≤ δ�, k > � ≥ 0,

(12)
θ�+k,� = ‖P0Y�+k,�‖ = ‖P0(Y�+k,� − Ỹ�+k,�)‖

≤ ‖Y�+k,� − Ỹ�+k,�‖ ≤ δ�, k, � ≥ 0,

by Cauchy’s inequality. Hence

∞∑
i=0

θi,i−k =
k−1∑
i=0

θi,i−k +
∞∑
i=0

θi+k,i ≤ 2
∞∑
i=0

δi,
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proving (10). To prove (11), similarly write
∞∑
i=0

min(θ̂i,i−k, ε)

=
k−1∑
i=0

min
(

sup
�≥0

‖P0Ỹi,i−k‖, ε
)

+
∞∑
i=0

min
(

sup
�≥0

‖P0Ỹi+k,i‖, ε
)

(13)

=
k−1∑
i=0

min
(

sup
�≥i

‖P0Ỹi,i−k‖, ε
)

+
∞∑
i=0

min
(

sup
�≥i

‖P0Ỹi+k,i‖, ε
)
.

Now, for 0≤ i ≤ k − 1, by the triangle inequality and (12),

‖P0Ỹi,i−k‖ ≤ ‖P0Yi,i−k‖ + ‖P0(Yi,i−k − Ỹi,i−k)‖ ≤ δi + δ�,

where the same bound holds for‖P0Ỹi+k,i‖ if i ≥ 0. Applying this and the
inequality min(a + b, c) ≤ min(a, c) + min(b, c) for a, b, c ≥ 0, (11) follows
readily from (13). �

It follows from Proposition 4 that if both the|wi | and theδ� are summable,
then (3) holds; if

∑∞
i=0 sup�≥i δ� < ∞, then (7) holds.

3. Nonlinear time series. Let {ε′
j } be an i.i.d. copy of{εj }. We say that

Xn = F(Zn) is geometric moment-contracting if there existα > 0, C = C(α) > 0
and 0< r(α) < 1 such that

E{|F( . . . , ε−1, ε0, ε1, . . . , εn)
(14)

− F( . . . , ε′−1, ε
′
0, ε1, . . . , εn)|α} ≤ Crn(α), n ∈ N.

Without loss of generality, letα < 1 since otherwise we can employ the Hölder
inequality. We may viewX′

n := F( . . . , ε′−1, ε
′
0, ε1, . . . , εn) as a coupled version

of Xn.
Condition (14) is very mild, and is satisfied by a wide class of nonlinear time

series. Note that geometric moment contraction does not even require mixing (see
Example 1). An important special class of (1) is the so-callediterated random
functions such that (14) is satisfied. LetXn be defined recursively by

Xn = F(Xn−1, εn),(15)

whereF(·, ·) is a bivariate measurable function with the Lipschitz constant

Lε = sup
x′ �=x

|F(x, ε) − F(x′, ε)|
|x − x′| ≤ ∞(16)

satisfying

E(logLε) < 0.(17)



1606 T. HSING AND W. B. WU

Then the Markov chain (15) admits a unique stationary distribution ifE(Lα
ε ) < ∞

andE[|x0 − F(x0, ε)|α] < ∞ for someα > 0 andx0 [Diaconis and Freedman
(1999)]. The same set of conditions actually also imply the geometric-moment
contraction (14) [cf. Lemma 3 in Wu and Woodroofe (2000)]. The condition (17)
indicates that the iterated random function (15) contracts on average, which is
satisfied for many popular nonlinear time series models such as TAR, RCA, ARCH
and EAR under suitable conditions on model parameters.

Recall that Zk = ( . . . , εk−1, εk) and Z̃k,� = (εk−�+1, . . . , εk). Let Z′
k =

( . . . , ε′
k−1, ε

′
k).

LEMMA 5. The geometric moment-contraction condition (14) holds if and
only if there exist F1,F2, . . . , with each F� being an �-variate measurable function,
such that, for some C < ∞,

E{|F(Zk) − F�(Z̃k,�)|α} ≤ Cr�(α), � ∈ N.(18)

PROOF. The “⇒” direction. Assume (14). Then for each�, there exists a
realizationZ′

0 = z0 such thatE(|X� − X′
�|α|Z′

0 = z0) ≤ Cr�(α). So (18) holds by
definingF�(·) = F(z0, ·), which is clearly measurable. The “⇐” direction follows
easily from

E(|X� − X′
�|α) = E[|F(Zk) − F(Z′

k−�, Z̃k,�)|α]
≤ E[|F(Zk) − F�(Z̃k,�)| + |F(Z′

k−�, Z̃k,�) − F�(Z̃k,�)|]α

≤ E[|F(Zk) − F�(Z̃k,�)|α] + E[|F(Z′
k−�, Z̃k,�) − F�(Z̃k,�)|α]

= 2E[|F(Zk) − F�(Z̃k,�)|α],
where we have applied the inequality|a + b|α ≤ |a|α + |b|α for 0< α ≤ 1. �

In Lemma 5, we can often choosez0 arbitrarily in definingF�. This can be
illustrated by the correlation integral example in Theorem 7.

We remark that conditions similar to (14) and (18) have appeared in the
literature. Denker and Keller (1986) assumed thatF is Lipschitz-continuous in
the sense that there exists aρ ∈ (0,1) for which

|F( . . . , zn−1, zn) − F( . . . , z′
n−1, z

′
n)| ≤ const. · ρn(19)

if z1 = z′
1, . . . , zn = z′

n. For the two-sided extension, see Definition 1.3 in
Borovkova, Burton and Dehling (2001). Comparing with our condition (14), (19)
is stronger and it does not allow models likeXn = ρXn−1 + εn, where|ρ| < 1
and the random variablesεn are i.i.d. with unbounded support. Borovkova, Burton
and Dehling (2001) proposed a weaker version of (19), termedr-approximation
condition, which requires

dl(r) := E|X0 − E(X0|ε−l , . . . , εl)|r → 0 as� → ∞,(20)



WEIGHTEDU -STATISTICS 1607

for somer ≥ 1. To make this weaker version operational, one needs to implicitly
assumeE|X0| < ∞, which excludes the case thatεn does not have a mean. Our
formulation has the advantage that heavy-tailed distributions are allowed.

As before, writeXi = F(Zi), and for a fixed choice of�-variate function
F� from Lemma 5, defineX̃i = X̃i,� = F�(Z̃i,�); let Yi1,i2 = K(Xi1,Xi2) −
E[K(Xi1,Xi2)] andỸi1,i2 = K(X̃i1, X̃i2) − EK(X̃i1, X̃i2) and recall thatLi1,i2 =
wi1−i2Yi1,i2 andL̃i1,i2 = wi1−i2Ỹi1,i2. Then Theorems 1 and 3 imply (i) and (ii) of
the following result, respectively, in view of Proposition 4.

THEOREM 6. Suppose that for each � ≥ 1, there exists an �-variate func-
tion F� such that (18) holds and

∑∞
i=0 sup�≥i δ� < ∞.

(i) If
∑ |wi | < ∞, then

n−1/2
n∑

i,j=1

wi−j [K(Xi,Xj ) − EK(Xi,Xj )] d→ N(0, σ 2)

for some σ 2 < ∞.
(ii) Let

∑∞
i=1 |wi | = ∞. If we also have lim infn→∞ Wn/(

∑n
i=0 |wi |) > 0 and∑n

k=0(n − k)w2
k = o(nW2

n ), then

(nW2
n )−1/2

n∑
i,j=1

wi−j [K(Xi,Xj) − EK(Xi,Xj )] d→ N(0, σ 2)

for some σ 2 < ∞.

The inequality (18) implies that the distance betweenXi and X̃i,� decays
exponentially fast to 0 in�. Thus under certain continuity conditions onK , δ� is
expected to vanish sufficiently quickly. For an application of Theorem 6, consider
the correlation integral

Nb =
n∑

i1,i2=1

1|Xi1−Xi2|<b,

which measures the number of pairs(Xi,Xj ) such that their distance is less than
b > 0. Correlation integral is of critical importance in the study of dynamical
systems; see Wolff (1990), Serinko (1994) and Denker and Keller (1986) for
further references.

THEOREM 7. Suppose that Xn defined in (1) satisfies (14), and for some
κ > 1,

sup
j �=0, x∈R

P (x < X0 − Xj ≤ x + τ ) ≤ C log−2κ τ−1(21)

for all 0< τ < 1/2. Then [Nb − E(Nb)]/n3/2 d→N(0, σ 2) for some σ 2 < ∞.
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PROOF. Let K(x,y) = 1|x−y|<b andwi ≡ 1. By Lemma 5, for each� there
exists an�-variate measurable functionF�(·) such that (18) holds. Next we shall
verify that (18) together with (21) implies thatδ� = O(�−κ ), which is summable
and thus completes the proof in view of (ii) of Theorem 6. To this end, let
u = r(α)1/(2α) < 1. Then by (18) and the Markov inequality,‖1|X0−X̃0|≥u�‖2 ≤
u−α�E|X0 − X̃0|α ≤ Cr(α)�/2, where, as usual,̃Xi = X̃i,�. For any 0< u < 1,
observe that∥∥[K(X0,Xi) − K(X̃0, X̃i)]1max(|X0−X̃0|, |Xi−X̃i |)<u�

∥∥
≤ P 1/2(b − 2u� ≤ |X0 − Xi | ≤ b) + P 1/2(b ≤ |X0 − Xi | ≤ b + 2u�)

which, by (21), is bounded by 2C1/2 log−κ(2u�)−1 = O(�−κ ). Since|K| ≤ 1,

‖[K(X0,Xi) − K(X̃0, X̃i)]‖
≤ ∥∥[K(X0,Xi) − K(X̃0, X̃i)]1max(|X0−X̃0|, |Xi−X̃i |)<u�

∥∥
+ ∥∥[K(X0,Xi) − K(X̃0, X̃i)]1max(|X0−X̃0|, |Xi−X̃i |)≥u�

∥∥
= O(�−κ) + O[r(α)�/4],

proving thatδ� = O(�−κ). �

EXAMPLE 1. LetXn = (Xn−1 + εn)/2, whereεn are i.i.d. Bernoulli random
variables with success probability 1/2. Then Xn admits Uniform(0, 1) as a
stationary distribution. This process is not strong mixing. Now we show that (21) is
satisfied. Assumej ≥ 1. LetU = ∑j

i=1 εi/2j−i . ThenU is uniformly distributed
over {0,1/2j , . . . , (2j − 1)/2j } andXj = X0/2j + U . Hence (21) holds in view
of

P (x < X0 − Xj ≤ x + τ )

= EP [(x + U)/(1− 2−j ) < X0 ≤ (x + τ + U)/(1− 2−j )|U ]
≤ τ/(1− 2−j ) ≤ 2τ.

The processXn is related to the doubling mapT x := 2x mod1 in the following
way. Let Y0 be a Uniform(0, 1) random variable and define recursivelyYi =
2Yi−1 mod1 fori ≥ 1. Then(X1, . . . ,Xn) has the same distribution as(Yn, . . . , Y1)

and henceNb andMb = ∑n
i,j=1 1|Yi−Yj |<b are identically distributed. The limiting

distribution of the empiricalU -process{Mb, 0 ≤ b ≤ 1} was discussed in
Borovkova, Burton and Dehling (2001); see Section 6 therein.

Our Theorems 6 and 7 are closely related to certain results by Borovkova,
Burton and Dehling (2001), which considered nonweightedU -statistics for two-
sided processesXn = F((εn+k)k∈Z), where(εn)n∈Z is stationary and absolutely
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regular (or weak Bernoulli). To make a specific comparison, we state here their
Theorem 7, a central limit theorem. Let

βk = 2 sup
n

{
sup{P (A|ε1, . . . , εn) − P (A) :A is σ(εn+k, εn+k+1, . . .)-measurable}}

be the mixing coefficients, letαk = [2∑∞
i=k dk(1)]1/2 with dk(1) defined by (20),

and letK(·, ·) be a bounded, symmetric function such that

sup
1≤k≤∞

E
{|K(X0,Xk) − K(X′,Xk)|1|X0−X′|≤τ

} ≤ φ(τ )

with limτ→0 φ(τ ) = 0, whereX′ is identically distributed asX0 and X∞ is
interpreted as an independent copy ofX0. See Definitions 1.2, 1.4 and 2.12 in
Borovkova, Burton and Dehling (2001). Then the asymptotic normality ofUn

holds provided

∞∑
k=1

k2(βk + αk + φ(αk)
)
< ∞.(22)

This result has a number of similarities with our Theorem 6. However, the two
results do not imply one another. Theorem 6 assumes one-sided processes with
i.i.d. innovations while their result allows the innovations to be two-sided and
weakly dependent; on the other hand, Theorem 6 allows unboundedK , general
weightswi and processXk for which the mean is infinite, whereas their result
requiresK to be bounded,wi = 1 andE|X0| < ∞. Let us make a more specific
comparison in the context of Theorem 7 of the present paper where both results are
applicable. Applying the central limit theorem in Borovkova, Burton and Dehling
(2001) toNb for one-sided processes with i.i.d. innovations satisfying (18) with
α = 1 and (21), we haveβn = 0 andαn ≤ Cρn for all n ≥ 1, whereρ ∈ (0,1). By
Example 2.2 in Borovkova, Burton and Dehling (2001),

φ(τ ) = sup
1≤k≤∞

P (b − τ ≤ |X0 − Xk| ≤ b + τ ) ≤ 2C log−2κ τ−1.

Thus condition (22) is reduced to
∑∞

k=1 k2 log−2κ(1/ρk) < ∞, namelyκ > 3/2,
which is stronger than the conditionκ > 1 imposed in Theorem 7.

4. Short-memory linear processes. Let (an)n≥0 be square summable, let
(εn)n≥0 be i.i.d. random variables with mean 0 and finite variance and let

Xn =
∞∑
i=0

aiεn−i .(23)

If
∑∞

i=0 |ai| < ∞, then the covariance function�(n) = E(X0Xn) is summable
and we say thatXn is short-memory. In this section, letYi,j = K(Xi,Xj ) −
EK(Xi,Xj ). For short-memory processes, we shall utilize the linearity structure
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and provide conditions onK(·, ·) such that (3) and (7) hold by computing the
quantitiesθi,j in (2) andθ̂i,j in (7). In Section 5, we shall discuss the case when
Xn is long-memory, which has a very different flavor. Note that

∑∞
�=0 δ� < ∞ is

not guaranteed by
∑∞

i=0 |ai | < ∞, and we need more refined computations, which
is feasible by the linearity ofXn.

Let ãi = aiI (i < �), X̃n = ∑∞
i=0 ãiεn−i andỸi,j = K(X̃i, X̃j ) − EK(X̃i, X̃j ).

Also defineX′
i,j1,j2

= Xi,j1,j2 − aiε0 + aiε
′
0, where the truncated process

Xi,j1,j2 =



∑
j1≤j≤j2

ai−j εj , −∞ ≤ j1 ≤ j2 ≤ ∞,

0, −∞ ≤ j2 + 1 ≤ j1 ≤ ∞.

Define the convolutions

Ki1,i2,j (x1, x2) = EK
(
x1 + Xi1,j+1,∞, x2 + Xi2,j+1,∞

)
,

(24)
Ki1,j (x1, x2) = EK

(
x1 + Xi1,j+1,∞, x2

)
, x1, x2 ∈ R.

Let K̃i1,i2,j , K̃i1,j , X̃i,j1,j2 and X̃′
i,j1,j2

be defined similarly toKi1,i2,j , Ki1,j ,

Xi,j1,j2 andX′
i,j1,j2

with Zi replaced bỹZi .

PROPOSITION8. Assume that supi,j ‖K(Xi,Xj )‖ < ∞ and supi,j,� ‖K(X̃i ,

X̃j )‖ < ∞. Further, assume that there exist n0 ∈ N and C < ∞ such that, for all
i1, i2, � ≥ n0,∥∥K̃i1,i2,0

(
X̃′

i1,−∞,0, X̃
′
i2,−∞,0

) − K̃i1,i2,0
(
X̃i1,−∞,0, X̃i2,−∞,0

)∥∥
(25)

≤ C
(∣∣ai1

∣∣ + ∣∣ai2

∣∣)
and

sup
k≤−1

∥∥K̃i1,0
(
X̃′

i1,−∞,0,Xk

) − K̃i1,0
(
X̃i1,−∞,0,Xk

)∥∥ ≤ C
∣∣ai1

∣∣.(26)

Then the following hold.

(i)

θ̂i,j ≤
{

C(|ai | + |aj |), i, j ≥ n0,

C|ai |, i ≥ n0, j < 0.

(ii) There exists some constant C′ < ∞ such that

sup
k≥0

∞∑
i=0

θi,i−k ≤ C′
∞∑
i=0

sup
j≥i

|ai|,

and for any ε > 0,

sup
k≥0

∞∑
i=0

min(θ̂i,i−k, ε) ≤ C′
[
ε +

∞∑
i=0

min
(

sup
j≥i

|ai|, ε
)]

.
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PROOF. Fix i1, i2 ≥ n0. First we remark that if� < n0, then the left-hand sides
of (25) and (26) are both equal to 0 so that the inequalities trivially hold. Writing

E
[
K̃i1,i2,0

(
X̃′

i1,−∞,0, X̃
′
i2,−∞,0

)∣∣Z0
] = K̃i1,i2,−1

(
X̃i1,−∞,−1, X̃i2,−∞,−1

)
,

we have by Cauchy’s inequality that∥∥P0K
(
X̃i1, X̃i2

)∥∥
= ∥∥K̃i1,i2,0

(
X̃i1,−∞,0, X̃i2,−∞,0

) − K̃i1,i2,−1
(
X̃i1,−∞,−1, X̃i2,−∞,−1

)∥∥
= ∥∥E[

K̃i1,i2,0
(
X̃i1,−∞,0, X̃i2,−∞,0

) − K̃i1,i2,0
(
X̃′

i1,−∞,0, X̃
′
i2,−∞,0

)∣∣Z0
]∥∥

≤ ∥∥K̃i1,i2,0
(
X̃′

i1,−∞,0, X̃
′
i2,−∞,0

) − K̃i1,i2,0
(
X̃i1,−∞,0, X̃i2,−∞,0

)∥∥.
Similarly, ‖P0K(X̃i1, X̃k)‖ ≤ ‖K̃i1,0(X̃

′
i1,−∞,0,Xk) − K̃i1,0(X̃i1,−∞,0,Xk)‖,

which completes the proof of (i) in view of (25) and (26).
The first inequality in (ii) follows simply from

∞∑
i=0

θi,i−k =
k−1∑
i=0

θi,i−k +
∞∑
i=0

θi+k,i ≤ C′ + 2
∞∑

i=n0

sup
j≥i

|ai|,

whereas the second inequality there can be derived similarly.�

REMARK 3. Note thatX̃′
i1,−∞,0 − X̃i1,−∞,−1 = ai1(ε

′
0 − ε0), conditions (25)

and (26) can be interpreted as the “Lipschitz continuity” ofK̃i1,i2,0 and K̃i1,0.
Discontinuous functionsK are allowed since these are convolutions ofK and the
distribution functions of(X̃i1,1,∞, X̃i2,1,∞) and (X̃i1,j+1,∞,0), respectively. For
example, ifK is a bounded function andfε, the density function ofε1, satisfies∫ |f ′

ε(t)|dt < ∞, then it is easily seen that (25) and (26) hold. Observe that degree
of smoothness of the distributions of the above random vectors increases with
i1, i2. Thus, by only requiring (25) and (26) to hold for largei1, i2, an additional
dimension of flexibility is in place.

Proposition 8 together with Theorems 1 and 3 immediately yield

THEOREM 9. Assume that
∑∞

i=1 supj≥i |aj | < ∞. Also assume that

supi,j ‖K(Xi,Xj )‖ < ∞ and supi,j,� ‖K(X̃i, X̃j )‖ < ∞ and that the regularity
conditions (25) and (26) hold.

(i) If
∑∞

i=0 |wi | < ∞, then

n−1/2
n∑

i,j=1

wi−j [K(Xi,Xj ) − EK(Xi,Xj )] d→ N(0, σ 2)

for some σ 2 < ∞.



1612 T. HSING AND W. B. WU

(ii) Suppose that
∑∞

i=1 |wi | = ∞ with lim infn→∞ Wn∑n
i=0 |wi | > 0 and

∑n
k=0(n −

k)w2
k = o(nW2

n ). Assume also that lim�→∞ δ� = 0. Then

(nW2
n )−1/2

n∑
i,j=1

wi−j [K(Xi,Xj ) − EK(Xi,Xj )] d→ N(0, σ 2)

for some σ 2 < ∞.

REMARK 4. Consider the special case in whichan = n−β for n ≥ 1 and
β > 1 andεi are i.i.d. standard normal random variables. Then by (20),dn(1) ∼
c1n

1/2−β for somec1 > 0. Hereγn ∼ βn is meant as limn→∞ γn/βn = 1. So
αn ∼ c2n

3/4−β/2 and the condition (22) of Borovkova, Burton and Dehling (2001)
necessarily requires

∑∞
n=1n2αn < ∞, orβ > 15/2. In comparison, our Theorem 9

only imposesβ > 1.

5. Long-memory linear processes. In (23), let aj = j−βL(j)I (j ≥ 1) for
someβ ∈ (1/2,1) and slowly varying functionL. Thus,aj is regularly varying
at ∞ with index −β. This represents a rich class of processes. In particular,
it contains the important time series model fractional autoregressive integrated
moving average (FARIMA) process. See Granger and Joyeux (1980). Note that
{Xi} is long-range dependent in the sense that the covariances are not summable
[cf. Beran (1994)].

Let K = {0} ∪ {k = (k1, . . . , kr ) : r = 1,2, . . . , ki ∈ {1,2}} and let |k| be the
length ofk (|0| = 0). We assume throughout the section that integerρ ≥ 1 satisfies

∞∑
n=1

n−β(ρ+1)+ρ/2|L(n)|ρ+1 < ∞.(27)

Condition (27) allows simultaneous consideration of two cases: (i)(ρ + 1)

(2β − 1) > 1 and (ii) (ρ + 1)(2β − 1) = 1 and
∑∞

n=1 |Lρ+1(n)|/n < ∞. Case (i)
has been widely studied [see Ho and Hsing (1997)], while the boundary case
(ρ + 1)(2β − 1) = 1 has been overlooked in the literature. Our approach allows
us to investigate the boundary case for which the limiting behavior depends on the
growth of the slowly varying functionL.

Denote byCρ(R2) the class of all functionsg such that the partial derivatives
Dkg = ∂rg/∂xk1 · · · ∂xkr exist for allk = (k1, . . . , kr ) ∈ K for which |k| ≤ ρ. For
eachi1, i2, let

Yi1,i2 = K
(
Xi1,Xi2

) −
ρ∑

r=0

∑
|l|=r

DlKi1,i2,−∞(0,0)
∑

j1>···>jr

r∏
s=1

ails −js εjs

andLi1,i2 = wi1−i2Yi1,i2. Let Ỹi,j , L̃i,j be defined asYi,j ,Li,j with ãi = aiI (i < �)

replacingai . Let Ki1,i2,j , Ki1,j , Xi,j1,j2, K̃i1,i2,j , K̃i1,j andX̃i,j1,j2 be defined as
in Section 4.
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Write

Un =
n∑

i1,i2=1

Li1,i2 +
ρ∑

r=0

Zn,r,(28)

where

Zn,r := ∑
|l|=r

n∑
i1,i2=1

wi1−i2DlKi1,i2,−∞(0,0)
∑

j1>···>jr

r∏
s=1

ails −js εjs .

Observe thatZn,r ,1≤ r ≤ ρ, are well-structured, and can be shown to follow non-
central limit theorems under mild regularity conditions on theDlHi1,i2,−∞(0,0).
Our main results, Theorems 10 and 11, show that the normalized

∑n
i1,i2=1 Li1,i2

follows a central limit theorem under mild conditions. These two pieces of
information will then combine to give a comprehensive picture of the asymptotic
behavior ofUn. We refer to

∑n
i1,i2=1 Li1,i2 and

∑ρ
r=1Zn,r , respectively, as the

short- and long-memory components ofUn.
We now state the technical conditions for our main results. In the following, let

Ai(k) =
∞∑
j=i

ak
j , k = 2,4, i ≥ 0.

(K1) There existsn0 ∈ N such thatKi1,i2,0(·, ·) ∈ Cρ(R2) wheni1, i2 ≥ n0, and
for all k ∈ K with |k| ≤ ρ,

E
[
DkKi1,i2,0

(
Xi1,−∞,0,Xi2,−∞,0

)∣∣Z−1
]

(29)
= DkKi1+1,i2+1,0

(
Xi1,−∞,−1,Xi2,−∞,−1

)
.

(K2) For i1, i2 ≥ n0, there existsC < ∞ such that, for allk ∈ K with |k| < ρ,∥∥DkKi1,i2,0
(
Xi1,−∞,0,Xi2,−∞,0

) − DkKi1,i2,−1
(
Xi1,−∞,−1,Xi2,−∞,−1

)
− 〈∇DkKi1,i2,−1

(
Xi1,−∞,−1,Xi2,−∞,−1

)
,

(
ai1ε0, ai2ε0

)〉∥∥(30)

≤ C
(
a2
i1

+ a2
i2

)
,

and, for|k| = ρ,∥∥DkKi1,i2,0
(
Xi1,−∞,0,Xi2,−∞,0

) − DkKi1,i2,−1(0,0)
∥∥2

(31)
≤ C

[
Ai1(2) + Ai2(2)

]
.

(K3) For i1 ≥ n0, there existsC < ∞ such that

sup
k≤−1

∥∥P0K
(
Xi1,Xk

)∥∥
(32)

= sup
k≤−1

∥∥Ki1,1
(
Xi1,−∞,0,Xk

) − Ki1,0
(
Xi1,−∞,−1,Xk

)∥∥ ≤ C
∣∣ai1

∣∣.
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Similarly, we define
(K4) There existsn0 ∈ N such that, for eachy, Ki,0(·, y) ∈ Cρ(R) when

i1 ≥ n0, i2 ≤ −1, and, for allk ≤ ρ,

E
[
K

(k,0)
i1,0

(
Xi1,−∞,0,Xi2

)∣∣Z−1
] = K

(k,0)
i1+1,0

(
Xi1,−∞,−1,Xi2

)
.(33)

(K5) For i1 ≥ n0, i2 ≤ −1, there existsC < ∞ such that, for allk < ρ,∥∥K(k,0)
i1,0

(
Xi1,−∞,0,Xi2

) − K
(k)
i1,i2,−1

(
Xi1,−∞,−1,Xi2

)
(34)

− K
(k+1,0)
i1,−1

(
Xi1,−∞,−1,Xi2

)
, ai1ε0

∥∥ ≤ Ca2
i1
,

and, for allk ≤ ρ,∥∥K(k,0)
i1,0

(
Xi1,−∞,0,Xi2

) − K
(k,0)
i1,−1

(
0,Xi2

)∥∥2 ≤ CAi1(2).(35)

(K6)

lim
�→∞

sup
j≥1

‖K(X1,Xj ) − K(X̃1, X̃j )‖ = 0.(36)

REMARK 5. The conditions (K1) and (K4) state that we can interchange
the order of differentiation and integration. The other conditions are smoothness
conditions onKi1,i2,0 andKi1,0 for large i1, i2. For the latter, Remarks 3 and 4
are still relevant. These conditions are left in the form in which they are directly
applied in the proofs. Finding sufficient conditions that are easy to work with in
specific contexts should be straightforward. See Ho and Hsing (1997), Koul and
Surgailis (1997) and Giraitis and Surgailis (1999).

In the following, we consider two special cases of
∑

i |wi |< ∞ and
∑

i |wi |= ∞.
Generalizations are possible at the expense of additional details.

THEOREM 10. Assume that
∑∞

i=1 |wii
1−βL(i)| < ∞, E(ε4

1) < ∞ and
supj ‖K(X0,Xj )‖ < ∞. Then under the regularity conditions (K1)–(K3),we have

n−1/2 ∑
1≤i1,i2≤n Li1,i2

d→N(0, σ 2) for some σ 2 < ∞.

THEOREM 11. Let wi ≡ 1, and assume that E(ε4
1) < ∞, and supi,j ‖K(Xi,

Xj )‖ < ∞, supi,j,� ‖K(X̃i, X̃j )‖ < ∞. Then under the regularity conditions

(K1)–(K6), we have n−3/2∑
1≤i1,i2≤n Li1,i2

d→N(0, σ 2) for some σ 2 < ∞.

We conjecture that Theorems 10 and 11 can be made more general by dropping
the restrictions on thewi . While that generality is not achieved in this paper, the
two theorems do already cover a wide range of interesting results. In particular,
numerous limit theorems for the partial sum in the context of long-memory linear
process [cf. Ho and Hsing (1997)] are special cases.
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As explained earlier, the asymptotic distribution ofUn is determined by one
term or a combination of terms on the right-hand side of (28). The asymptotic
behavior ofUn is described by Theorems 10 and 11, while those for the “non-
central” termsZn,r are typically more straightforward but must be considered case
by case. Let us take anyl1, . . . , lr ∈ {1,2} with 1 ≤ r ≤ ρ and(r1, r2) = (p, q),
and consider two special cases for the purpose of illustration.

First let us consider the case where|wt | is summable. Note that under general
conditions we expect

K0,t,−∞(x1, x2) → G(x1, x2) := EK(X̂1 + x1, X̂2 + x2),

whereX̂1, X̂2 are i.i.d. that have the same distribution asX1. Hence we assume
that thewtDl1,...,lr K1,t,−∞(0,0) are absolutely summable int and

lim
n→∞

(
w0Dl1,...,lr K1,1,−∞(0,0) + 2

n∑
t=1

wtDl1,...,lr K0,t,−∞(0,0)

)

= C ∈ (−∞,∞).

Then it is not difficult to see [cf. Surgailis (1982) and Major (1980)] that∥∥∥∥∥
∑

1≤i1,i2≤n

wi1−i2Dl1,...,lr Ki1,i2,−∞(0,0)
∑

j1>···>jr

r∏
s=1

ails −js εjs

∥∥∥∥∥
2

= ∑
j1>···>jr

( ∑
1≤i1,i2≤n

wi1−i2Dl1,...,lr Ki1,i2,−∞(0,0)

r∏
s=1

ails −js

)2

∼ C2
∑

j1>···>jr

[
n∑

t=1

r∏
s=1

at−js

]2

∼ C2n2−r(2β−1)L2r(n)

∫
u1>···>ur

[∫ 1

x=0

r∏
s=1

(x − us)
−β
+ dx

]2

du1 · · ·dur

and

n−1+r(β−1/2)L−r (n)

× ∑
1≤i1,i2≤n

wi1−i2Dl1,...,lr Ki1,i2,−∞(0,0)
∑

j1>···>jr

r∏
s=1

ails −js εjs(37)

d→ |C|
∫
u1>···>ur

[∫ 1

x=0

r∏
s=1

(x − us)
−β
+ dx

]
dB(u1) · · ·dB(ur),

where the limit is expressed in the form of a multiple Wiener–Ito integral withB

denoting standard Brownian motion andy+ = max(y,0). Note that applying
Theorem 10, the rate of

∑n
i1,i2=1 Li1,i2 in this case isn1/2, which is lower than

that of
∑

1≤i1,i2≤n Dl1,...,lr Hi1,i2,−∞(0,0)
∑

j1>···>jr

∏r
s=1 ails −js εjs .
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As a second example, we consider an application in connection with Theo-
rem 11 by assuming

wi ≡ 1 and Dl1,...,lr K0,t,−∞(0,0) → C ∈ (−∞,∞).(38)

Under this assumption,

∥∥∥∥∥
∑

1≤i1,i2≤n

Dl1,...,lr Ki1,i2,−∞(0,0)
∑

j1>···>jr

r∏
s=1

ails −js εjs

∥∥∥∥∥
2

∼ C2n4−r(2β−1)L2r (n)

×
∫
u1>···>ur

[∫ 1

x1=0

∫ 1

x2=0

r∏
s=1

(
xls − us

)−β
+ dx1dx2

]2

du1 · · ·dur

and

n−2+r(β−1/2)L−r(n)
∑

1≤i1,i2≤n

Dl1,...,lr Ki1,i2,−∞(0,0)
∑

j1>···>jr

r∏
s=1

ails −js εjs

d→ |C|
∫
u1>···>ur

[∫ 1

x1=0

∫ 1

x2=0
(x2 − x1)

−β(39)

×
r∏

s=1

(
xls − us

)−β
+ dx1dx2

]
dB(u1) · · ·dB(ur).

Now Theorem 11 implies that the rate of
∑n

i1,i2=1 Li1,i2 is n3/2, which is dominated

by that of
∑

1≤i1,i2≤n Di1,...,ir Ki1,i2,−∞(0,0)
∑

j1>···>jr

∏r
s=1 ails −js εjs .

In view of these examples and Theorems 10 and 11, in (28) one can refer
to

∑n
i1,i2=1Li1,i2 the short-memory component, and

∑ρ
i=1 Zn,r the long-memory

component ofUn.
Numerous applications result from these two simple cases. The following are

some illustrations.

(a) Sample covariance function. Suppose

Un =
n∑

i=1

T (Xi)T (Xi+k),

where T is some function.n−1Un is an estimator ofE[T (X1)T (X1+k)].
So Hi1,i2(x1, x2) = wi1−i2K(x1, x2), where w|i1−i2| = I (|i1 − i2| = k) and
K(x1, x2) = T (x1)T (x2). Thus Theorem 10 applies, where the asymptotic
distribution rests onT . Let us consider an example by assumingk ≥ 2, T (x) = x2
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andE(X1X
j
1+k) = 0, j = 1,2. It is easy to see that

wtDl1,...,lr K0,t,−∞(0,0) =



2E(X2
1), if t = k and

(l1, . . . , lr ) = (1,1) or (2,2),

0, otherwise.

If β ∈ (3/4,1), then
∑ρ

i=1 Zn,r = 0 and hence

1√
n
(Un − EUn)

d→ N(0, σ 2).

If β ∈ (1/2,3/4), then
∑ρ

i=1 Zn,r is dominated by the term

Zn,2 = ∑
1≤i1,i2≤n

(D1,1 + D2,2)Hi1,i2,−∞(0,0)
∑

j1>···>jr

r∏
s=1

ails −js εjs

= 8E(X2
1)

n−k∑
i=1

∑
j1>jr

ai−j1ai+k−j2εj1εj2.

Hence (37) and the discussion leading to it give

[8E(X2
1)]−1n−1+2(β−1/2)L−2(n)(Un − EUn)

d→
∫
u1>u2

[∫ 1

x=0
[(x − u1)+(x − u2)+]−β dx

]
dB(u1) dB(u2).

(b) U - andV -statistics. The asymptotic distribution of statistics of the form∑
1≤i1 �=i2≤n

K
(
Xi1,Xi2

)
or

∑
1≤i1,i2≤n

K
(
Xi1,Xi2

)

can be considered using Theorems 10 and 11. Note that the partial-sum theory
developed in Ho and Hsing (1997) is readily recovered here by lettingK(x1, x2) =
(h(x1) + h(x2))/2. We give another example here, the Wilcoxon one-sample
statistic and the signed-rank statistic, for which the asymptotic distribution is not
seen elsewhere.

Let

Ki1,i2(x1, x2) = I (x1 + x2 > 0).

Then [n(n − 1)]−1 ∑
1≤i1 �=i2≤n K(Xi1,Xi2) is called the Wilcoxon one-sample

statistic. Let us assume for simplicity thatεj has a normal distribution and that
the marginal of{Xi} is standard normal. Simple calculations give

Ki1,i2,−∞(x1, x2) = P
(
Xi1 + Xi2 > −(x1 + x2)

) = 1− �

(
− x1 + x2√

2(1+ ρi1−i2)

)
,
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whereρn = EX1X1+n andφ is the standard normal p.d.f. Hence,

K
(1,0)
i1,i2,−∞(0,0) = 1√

2(1+ ρi1−i2)
φ(0) → 1

2
√

π
as|i1 − i2| → ∞.

With C = 1/(2
√

π ) in (38), it follows from (39) that, for eachβ ∈ (1/2,1),

nβ−5/2L−1(n)(Un − EUn)
d→ 1√

π

∫
u∈�

∫ 1

x=0
[(x − u)+]−β dx dB(u),(40)

which has a normal distribution. A related statistics is the signed-rank statistic

Wn =
n∑

i=1

�iR
+
i ,

where�i = sign of Xi andR+
i = the rank of|Xi | among|X1|, . . . , |Xn|. It can

be shown [cf. Randles and Wolfe (1979)] thatWn = Un(1+ op(1)) and hence the
asymptotic distribution can be derived in exactly the same way.

There are situations where
∑n

i1,i2=1 Li1,i2 as well asZn,r ,1 ≤ r ≤ ρ, all equal
zero. Then the asymptotic distribution will be determined by the lowest-order non-
trivial Zn,r . This is exemplified by certainU -statistics with degenerate kernels,
kernels which satisfy

∫
x1

K(x1, x2) dF (x1) = 0 for all x2. See Dehling and Taqqu
(1989, 1991) and Ho and Hsing (1996). The approach in those references overlaps
and complements the approach described here.

6. Proofs

PROOF OFTHEOREM 1. Let

ξm(Zt ) =
t+m∑

i=t−m

Lt,i andSn(ξm) =
n∑

t=1

ξm(Zt ), m ≥ 1.

Then (5) implies

∞∑
t=0

∥∥P0
(
ξm(Zt )

)∥∥ ≤
∞∑
t=0

t+m∑
i=t−m

|wt−i |θt,i ≤
∞∑
t=0

m∑
k=−m

|wk|θt,t−k < ∞

which entailsSn(ξm)/
√

n ⇒ N(0, σ 2
m) for some σ 2

m < ∞ by Theorem 1 in
Woodroofe (1992) [see also Lemma 5 in Wu (2003)].

Let LIM be lim supm→∞ lim supn→∞. It remains to verify that

LIM
1√
n

∥∥∥∥∥
∑

1≤i1,i2≤n

Li1,i2 − Sn(ξm)

∥∥∥∥∥ = LIM
1√
n

∥∥∥∥∥
∑

|i1−i2|>m,1≤i1,i2≤n

Li1,i2

∥∥∥∥∥ = 0.(41)
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To this end, note that the projectionsPt are orthogonal and hence∥∥∥∥∥
∑

|i1−i2|>m,1≤i1,i2≤n

Li1,i2

∥∥∥∥∥
2

=
n∑

t=−∞

∥∥∥∥∥Pt

∑
|i1−i2|>m,1≤i1,i2≤n

Li1,i2

∥∥∥∥∥
2

≤
n∑

t=−∞

[ ∑
|i1−i2|>m,1≤i1,i2≤n

∥∥PtLi1,i2

∥∥]2

(42)

≤ 2

(
n∑

t=1

+
0∑

t=−∞

)[
n∑

i2=1

n∑
i1=i2+m+1

∥∥PtLi1,i2

∥∥]2

.

Making use of the fact thatPtLi1,i2 = 0 for t ≥ i1 ∨ i2,

n∑
t=1

(
n∑

i2=1

n∑
i1=i2+m+1

∥∥PtLi1,i2

∥∥)2

=
n∑

t=1

[
n−1∑

k=m+1

n−k∑
i=t−k

‖PtLi+k,i‖
]2

=
n∑

t=1

[
n−1∑

k=m+1

n−t∑
i=0

|wk|θi,i−k

]2

(43)

≤ n

[
n−1∑

k=m+1

n∑
i=0

|wk|θi,i−k

]2

,

and similarly,

0∑
t=−∞

[
n∑

i2=1

n∑
i1=i2+m+1

∥∥PtLi1,i2

∥∥]2

=
0∑

t=−∞

[
n−1∑

k=m+1

n−k∑
i=1

‖PtLi+k,i‖
]2

≤
∞∑
t=0

[
n−1∑

k=m+1

n−k∑
i=1

|wk|θi+k+t,i+t

]2

(44)

≤ C

∞∑
t=0

n−1∑
k=m+1

n−k∑
i=1

|wk|θi+k+t,i+t ≤ C

∞∑
k=m+1

n∑
i=1

∞∑
t=0

|wk|θi+k+t,i+t

≤ C

∞∑
k=m+1

n∑
i=1

∞∑
j=0

|wk|θj,j−k = Cn

∞∑
k=m+1

∞∑
j=0

|wk|θj,j−k,

in view of
n−1∑

k=m+1

n−k∑
i=1

|wk|θi+k+t,i+t ≤
∞∑

k=1

|wk|
∞∑
i=1

θi+k+t,i+t

≤
∞∑

k=1

|wk|
∞∑

j=1

θj,j−k =: C < ∞.
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Hence (41) follows from from (3), (42)–(44).�

PROOF OF THEOREM 2. By Cauchy’s inequality, we have‖P0(Li1,i2 −
L̃i1,i2)‖ ≤ |wi1−i2|δ�. By the triangle and Cauchy’s inequalities, we also have∥∥P0

(
Li1,i2 − L̃i1,i2

)∥∥ ≤ C
∣∣wi1−i2

∣∣θ̂i1,i2.

Thus there exists aC > 0 such that, for alli1, i2, �,∥∥P0
(
Li1,i2 − L̃i1,i2

)∥∥ ≤ C
∣∣wi1−i2

∣∣min
(
θ̂i1,i2, δ�

)
.(45)

In the sequel let LIM stand for lim sup�→∞ lim supn→∞, and letC stand for a
constant which may vary from line to line. By the proof of Theorem 1, we have

� := LIM
1

nW2
n

∥∥∥∥∥
∑

1≤i1,i2≤n

(
Li1,i2 − L̃i1,i2

)∥∥∥∥∥
2

≤ I + II ,

where

I = LIM
C

nW2
n

n∑
t=1

[
n−1∑
k=0

n−t∑
i=0

|wk|min(θ̂i,i−k, δ�)

]2

,

II = LIM
C

nW2
n

∞∑
t=0

[
n−1∑
k=0

n+t∑
i=1+k+t

|wk|min(θ̂i,i−k, δ�)

]2

.

By the assumptions, we have

I ≤ C lim sup
�→∞

sup
k≥0

∞∑
i=0

min(θ̂i,i−k, δ�) = C lim
δ→0

sup
k≥0

∞∑
i=0

min(θ̂i,i−k, δ) = 0,

and

II ≤ LIM
C

nW2
n

∞∑
t=0

(
n−1∑
k=0

n+t∑
i=1+t

|wk|min(θ̂i,i−k, δ�)

)(
n−1∑
k=0

∞∑
i=1

|wk|min(θ̂i,i−k, δ�)

)

≤ C lim
δ→0

(
sup
k≥0

∞∑
i=0

min(θ̂i,i−k, δ)

)2

= 0.

Thus� = 0 follows. �

PROOF OFTHEOREM 3. The plan of the proof is to show that, for every fixed
� ≥ 1,

(nW2
n )−1/2

∑
1≤i1,i2≤n

L̃i1,i2

d→ N(0, σ̃ 2) asn → ∞(46)
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for some finiteσ̃ 2. It follows then from Theorem 2 that̃σ 2 is Cauchy in� and
hence converges to a finite constant as� → ∞. By this and another application of
Theorem 2, we conclude that (9) holds withσ 2 = lim�→∞ σ̃ 2 ∈ (0,∞). Thus, we
will focus on proving (46) for a fixed�. Observe that

∥∥∥∥∥
∑

1≤i1,i2≤n,|i1−i2|≤�

L̃i1,i2

∥∥∥∥∥ = O

(√
n

�∑
k=0

|wk|
)

= o[(nW2
n )1/2]

sinceWn → ∞. Thus it suffices to show that

(nW2
n )−1/2

∑
1≤i1,i2≤n,|i1−i2|>�

L̃i1,i2

d→ N(0, σ̃ 2) asn → ∞(47)

for some finiteσ̃ 2. Fix i1, i2 with |i1 − i2| > �, and observe that̃Zi1 andZ̃i2 are
i.i.d. Now defineJ̃i1,i2(Z̃i1) = E[L̃i1,i2|Z̃i1] and

R̃i1,i2 = L̃i1,i2 − J̃i1,i2

(
Z̃i1

) − J̃i1,i2

(
Z̃i2

)
.

Let i1 = r1 + q1� and i2 = r2 + q2�, where integers 0≤ r1, r2 ≤ � − 1 and
0 ≤ q1 �= q2 ≤ q = �n/��. SinceR̃r1+q1�, r2+q2� are uncorrelated for different pairs
q1 < q2,

∥∥∥∥∥
∑

1≤q1<q2≤q

R̃r1+q1�, r2+q2�

∥∥∥∥∥
2

≤ C
∑

1≤q1<q2≤q

w2
r1+q1�−r2−q2�

,

which in conjunction with Cauchy’s inequality by summing overr1, r2= 0,

. . . , � − 1 yields that

∥∥∥∥∥
∑

1≤i1,i2≤n,|i1−i2|>�

R̃i1,i2

∥∥∥∥∥
2

≤ C
∑

1≤r1,r2≤�

∑
1≤q1<q2≤q

w2
r1+q1�−r2−q2�

= C
∑

1≤i1,i2≤n

w2
i1−i2

≤ C

n∑
k=0

(n − k)w2
k = o(nW2

n ).

So (47) will follow from

(nW2
n )−1/2

∑
1≤i1,i2≤n,|i1−i2|>�

J̃i1,i2

(
Z̃i1

) d→ N(0, σ̃ 2) asn → ∞(48)

for some finiteσ̃ 2, which can be easily shown to hold by the central limit theorem
for �-dependent processes.�
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PROOF OFTHEOREM 10. We verify (3). By Lemmas 12(iii) and 13, we have,
for k ≥ 0,

∞∑
i=k

θi,i−k ≤ C

∞∑
i=k

ψi−k = C

∞∑
i=0

ψi < ∞.

Next for i ≥ 0 and j ≤ −1, we have by (K3) that‖P0K(Xi,Xj )‖ = O(|ai |)
uniformly. It is easily seen that, for the “well-structured” partK(Xi,Xj ) − Yi,j ,
we also have‖P0[K(Xi,Xj ) − Yi,j ]‖ = O(|ai |) uniformly. Hence, fork ≥ 0,

k−1∑
i=0

θi,i−k ≤
k−1∑
i=0

|ai| ≤ Ck1−βL(k)

by Karamata’s theorem. Hence

∞∑
k=0

|wk|
k−1∑
i=0

θi,i−k ≤ C

∞∑
k=0

|wk|k1−βL(k) < ∞.
�

PROOF OFTHEOREM 11. For eachi1 ≥ i2, let

Yi1,i2 = K
(
Xi1,Xi2

)

−
i1∑

t=i2+1

ρ∧(t−i2)∑
r=1

K
(r,0)
i1,i2,i2

(
Xi1,−∞,i2,Xi2

) ∑
t=j1>···>jr≥i2+1

r∏
s=1

ai1−js εjs

−
ρ∑

r=0

∑
|l|=r

DlKi1,i2,−∞(0,0)
∑

i2≥j1>···>jr

r∏
s=1

ails −js εjs

andYi1,i2 = Yi2,i1 if i1 < i2. We first apply Theorem 3 to show that

1

n3/2

n∑
i1,i2=1

Yi1,i2

d→ N(0, σ 2)(49)

for some σ 2 < ∞. For the process{Yi,j }, it follows easily from (36) that
lim�→∞ δ� = 0. Hence we focus on verifying the condition (7). Observe that for
i1 ≥ i2, PtYi1,i2 is equal to

PtK
(
Xi1,Xi2

) −
ρ∧(t−i2)∑

r=1

H
(r,0)
i1,i2,i2

(
Xi1,−∞,i2,Xi2

) ∑
t=j1>···>jr≥i2+1

r∏
s=1

ai1−js εjs

if i2 < t ≤ i1, and is equal toPtYi1,i2 if t ≤ i2. Hence by Lemmas 12 and 14, for
i1 ≥ max(0, i2),

θ̂i1,i2 = sup
�≥0

P0Ỹi1,i2 ≤
{

Cξi1,i2, i2 < 0 ≤ i1,

Cψi2, i2 ≥ 0.
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Note thatξi1,i2 = ψi1 if i2 ≤ −ρ. Thus

∞∑
i=0

min(θ̂i,i−k, ε) =
k−1∑
i=0

min(θ̂i,i−k, ε) +
∞∑
i=0

min(θ̂i+k,i , ε)

≤ C

(
ε +

∞∑
i=0

min(ψi, ε)

)
→ 0 asε → 0,

since theψi are summable by Lemma 13. Hence the condition (7) is proved for
{Yi,j } and the proof for (49) is complete.

Next observe that

Yi1,i2 = Yi1,i2 + Wi1,i2

:= Yi1,i2 +
ρ∑

r=1

Ri1,i2,r

i1∑
t=i2+r

∑
t=j1>···>jr≥i2+1

r∏
s=1

ai1−js εjs ,

where

Ri1,i2,r = K
(r,0)
i1,i2,i2

(
Xi1,−∞,i2,Xi2

)

−
ρ−r∑
r ′=0

∑
|l|=r ′

DlK
(r,0)
i1,i2,−∞(0,0)

∑
i2≥j1>···>jr′

r ′∏
s=1

ails −js εjs .

Hence the conclusion of the theorem follows from (49) and Lemma 15.�

For k ∈ K with |k| ≤ ρ, define

M
(k)
i1,i2

= DkKi1,i2,0
(
Xi1,−∞,0,Xi2,−∞,0

)

−
ρ−|k|∑
r=0

∑
|l|=r

DlDkKi1,i2,−∞(0,0)
∑

0≥j1>j2>···>jr

r∏
s=1

ails −js εjs .

LEMMA 12. Assume that E(ε4
1) < ∞, and (K1) and (K2) hold. Then there

exists a constant C, independent of i1, i2 ≥ n0, such that

(i) for all k ∈ K with |k| ≤ ρ − 1,∥∥P0M
(k)
i1,i2

∥∥2 ≤ C
[
a4
i1

+ a4
i2

+ a2
i1

∥∥M(1,k)
i1,i2

∥∥2 + a2
i2

∥∥M(2,k)
i1+1,i2+1

∥∥2];
(ii) for all k ∈ K such that |k| ≤ ρ,∥∥M(k)

i1,i2

∥∥2 ≤ C
[
Ai1(4) + Ai2(4) + A

ρ−|k|+1
i1

(2) + A
ρ−|k|+1
i2

(2)
];

(iii) ‖P0Yi1,i2‖2 ≤ C(ψ2
i1

+ ψ2
i2
), where ψi = |ai|[|ai | +

√
Ai+1(4) + A

ρ
i+1(2) ].



1624 T. HSING AND W. B. WU

PROOF. We first prove (i). Define

Bk(i1, i2) =
ρ−|k|∑
r=1

∑
|l|=r

DlDkKi1,i2,−∞(0,0)
∑

0=j1>j2>···>jr

r∏
s=1

ails −js εjs ,

B1,k(i1, i2) =
ρ−|k|∑
r=1

∑
|l|=r−1

DlD1,kKi1,i2,−∞(0,0)
∑

−1≥j2>···>jr

r∏
s=2

ails −js εjs ,

B2,k(i1, i2) =
ρ−|k|∑
r=1

∑
|l|=r−1

DlD2,kKi1,i2,−∞(0,0)
∑

−1≥j2>···>jr

r∏
s=2

ails −js εjs .

Then Bk(i1, i2) = ai1ε0B1,k(i1, i2) + ai2ε0B2,k(i1, i2). Observe that, forι = 1
and 2,∥∥Dι,kKi1,i2,−1

(
Xi1,−∞,−1,Xi2,−∞,−1

) − Bι,k(i1, i2)
∥∥ = ∥∥M(ι,k)

i1+1,i2+1

∥∥.
Hence by the triangle inequality,∥∥〈∇DkKi1,i2,−1

(
Xi1,−∞,−1,Xi2,−∞,−1

)
,
(
ai1ε0, ai2ε0

)〉 − Bk(i1, i2)
∥∥

≤
2∑

ι=1

∣∣aiι

∣∣∥∥Dι,kKi1,i2,−1
(
Xi1,−∞,−1,Xi2,−∞,−1

) − Bι,k(i1, i2)
∥∥(50)

=
2∑

ι=1

∣∣aiι

∣∣∥∥M(ι,k)
i1+1,i2+1

∥∥.
By (29) and the triangle inequality,∥∥P0M

(k)
i1,i2

∥∥
≤ ∥∥DkKi1,i2,0

(
Xi1,−∞,0,Xi2,−∞,0

)
− DkKi1,i2,−1

(
Xi1,−∞,−1,Xi2,−∞,−1

)
− 〈∇DkKi1,i2,−1

(
Xi1,−∞,−1,Xi2,−∞,−1

)
,
(
ai1ε0, ai2ε0

)〉∥∥
+ ∥∥〈∇DkKi1,i2,−1

(
Xi1,−∞,−1,Xi2,−∞,−1

)
,
(
ai1ε0, ai2ε0

)〉 − Bk(i1, i2)
∥∥,

from which (i) follows in view of (30) and (50).
To establish (ii) we will adopt a backward induction argument. First, for|k| = ρ,

sinceM
(k)
i1,i2

= DkKi1,i2,0(Xi1,−∞,0,Xi2,−∞,0) − DkKi1,i2,−∞(0,0), (ii) follows
from (31). Next we make the induction assumption that (ii) holds for allk with
|k| = m ≥ 1 and we wish to show that it holds for all|k| = m − 1. By (i) we have,
for anyk with |k| = m − 1,∥∥P0M

(k)
i1,i2

∥∥2 ≤ C
[
a4
i1

+ a4
i2

+ a2
i1

∥∥M(1,k)
i1,i2

∥∥2 + a2
i2

∥∥M(2,k)
i1+1,i2+1

∥∥2]
.
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Since the projectionsPt are orthogonal andPtM
(k)
i1,i2

= 0 for t ≥ 1,

∥∥M(k)
i1,i2

∥∥2 =
0∑

t=−∞

∥∥PtM
(k)
i1,i2

∥∥2 =
∞∑
t=0

∥∥P0M
(k)
i1+t,i2+t

∥∥2

≤ C

([
Ai1(4) + Ai2(4)

] +
∞∑
t=0

(
a2
i1+t + a2

i2+t

)[
Ai1+t (4) + Ai2+t (4)

]

+
∞∑
t=0

(
a2
i1+t + a2

i2+t

)[
A

ρ−m+1
i1+t (2) + A

ρ−m+1
i2+t (2)

])

by the induction assumption. Now the induction is complete since
∑∞

t=0 a2
i+t ×

Ai+t (4) = o[Ai(4)] and
∑∞

t=0 a2
i+tA

ρ−m+1
i+t (2) = O[Aρ−m+2

i (2)].
Finally, (iii) follows readily from parts (i) and (ii) of this lemma by noting that

Pt Yi1,i2 andP0Yi1−t,i2−t = P0M
(0)
i1−t,i2−t have the same distribution.�

LEMMA 13. If ρ and L(·) satisfy (27), then
∑∞

i=1 ψi < ∞.

PROOF. By Karamata’s theorem,

An(k) = O(nak
n) for k ≥ 2.(51)

So the lemma easily follows from (27) after elementary calculations.�

For all i1 ≥ 0≥ i2, define

N
(k)
i1,i2

=
0∑

t=i2+1

PtN
(k)
i1,i2

,

wherePtN
(k)
i1,i2

is equal to

PtK
(k,0)
i1,i2,t

(
Xi1,−∞,t ,Xi2

)

−
(ρ∧(t−i2))−k∑

r=1

K
(k+r,0)
i1,i2,i2

(
Xi1,−∞,i2,Xi2

) ∑
t=j1>···>jr≥i2+1

r∏
s=1

ai1−js εjs

if 0 ≤ k ≤ ρ ∧ (t − i2) and 0 otherwise. The following lemma is very similar to
Lemma 12.

LEMMA 14. Assume that E(ε4
1) < ∞ and conditions (K4) and (K5) hold.

Let i1 ≥ n0 > 0 > i2 and write ρ′ = ρ ∧ (−i2). Then there exists a constant C,
independent of i1, i2, such that
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(i) for all 0 ≤ k ≤ ρ′ − 1,∥∥P0N
(k)
i1,i2

∥∥2 ≤ C
[
a4
i1

+ a2
i1

∥∥N(k+1)
i1+1,i2+1

∥∥2];
(ii) for all 0 ≤ k ≤ ρ′,

∥∥N(k)
i1,i2

∥∥2 ≤ C
[
Ai1(4) + A

ρ′−|k|+1
i1

(2)
];

(iii) ‖P0Yi1,i2‖2 ≤ Cξ2
i1,i2

, where ξi1,i2 = |ai1|[|ai1| +
√

Ai1+1(4) + A
ρ′
i1+1(2)].

PROOF. We first prove (i). Fixk ≤ ρ′ − 1. By the triangle inequality and (33),∥∥P0N
(k)
i1,i2

∥∥ ≤ ∥∥K(k,0)
i1,i2,0

(
Xi1,−∞,0,Xi2

) − K
(k,0)
i1,i2,−1

(
Xi1,−∞,−1,Xi2

)
− ai1ε0K

(k+1,0)
i1,i2,−1

(
Xi1,−∞,−1,Xi2

)∥∥
+

∥∥∥∥∥ai1ε0K
(k+1,0)
i1,i2,−1

(
Xi1,−∞,−1,Xi2

)

−
ρ′−k∑
r=1

K
(k+r,0)
i1,i2,i2

(
Xi1,−∞,i2,Xi2

) ∑
0=j1>j2>···>jr≥i2+1

r∏
s=1

ai1−js εjs

∥∥∥∥∥.
The first term on the right-hand side is bounded byC|wi1−i2|a2

i1
by the

assumption (34). The second term on the right-hand side is bounded by

∣∣ai1

∣∣
∥∥∥∥∥K(k+1,0)

i1,i2,−1

(
Xi1,−∞,−1,Xi2

) − K
(k+1,0)
i1,i2,i2

(
Xi1,−∞,i2,Xi2

)

−
ρ′−k−1∑

r=1

K
(k+1+r,0)
i1,i2,i2

(
Xi1,−∞,i2,Xi2

) ∑
−1≥j1>···>jr≥i2+1

r∏
s=1

ai1−js εjs

∥∥∥∥∥
≤ ∣∣ai1

∣∣∥∥N(k+1)
i1+1,i2+1

∥∥ + ∣∣ai1

∣∣∥∥Wi1,i2,k − N
(k+1)
i1+1,i2+1

∥∥,
where

Wi1,i2,k = K
(k+1,0)
i1+1,i2+1,0

(
Xi1+1,−∞,0,Xi2+1

)
− K

(k+1,0)
i1+1,i2+1,i2+1

(
Xi1+1,−∞,i2+1,Xi2+1

)

−
ρ′−k−1∑

r=1

K
(k+1+r,0)
i1+1,i2+1,i2+1

(
Xi1+1,−∞,i2+1,Xi2+1

)

× ∑
0≥j1>···>jr≥i2+2

r∏
s=1

ai1+1−js εjs .
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Observe that∥∥Wi1,i2,k − N
(k+1)
i1+1,i2+1

∥∥
≤

0∑
t=i2+1

ρ′−k−1∑
r=(ρ∧(t−i2))−k+1

∥∥∥∥∥K(k+1+r,0)
i1+1,i2+1,i2+1

(
Xi1+1,−∞,i2+1,Xi2+1

)

× ∑
t=j1>···>jr≥i2+2

r∏
s=1

ai1+1−js εjs

∥∥∥∥∥
≤ C

∣∣ai1

∣∣.
Hence (i) follows.

To establish (ii), we will adopt a backward induction argument. First, fork = ρ′,
(ii) follows from (35) in view of

N
(ρ′)
i1,i2

= K
(ρ′,0)
i1,i2,0

(
Xi1,−∞,0,Xi2

) − K
(ρ′,0)
i1,i2,i2

(
Xi1,−∞,i2,Xi2

)
.

Next we make the induction assumption that (ii) holds fork = m ≥ 1 and we wish
to show that it holds fork = m − 1. By (i) we have∥∥P0N

(m−1)
i1,i2

∥∥2 ≤ C
[
a4
i1

+ a2
i1

∥∥N(m)
i1,i2

∥∥2]
.

Since the projectionsPt are orthogonal,

∥∥N(m)
i1,i2

∥∥2 =
0∑

t=i2+1

∥∥PtN
(m)
i1,i2

∥∥2 =
−i2−1∑
t=0

∥∥P0N
(m)
i1+t,i2+t

∥∥2

≤ Cw2|i−j |

(
Ai1(4) +

∞∑
t=0

a2
i1+tAi1+t (4) +

∞∑
t=0

a2
i1+tA

ρ′−m+1
i1+t (2)

)

by the induction assumption. Now the induction is complete since
∑∞

t=0 a2
i+t ×

Ai+t (4) = o[Ai(4)] and
∑∞

t=0 a2
i+tA

ρ′−m+1
i+t (2) = O[Aρ′−m+2

i (2)].
Finally, (iii) follows readily from parts (i) and (ii) of this lemma by noting that

PtYi1,i2 andP0Yi1−t,i2−t = P0N
(0)
i1−t,i2−t have the same distribution.�

LEMMA 15. Under the conditions of Theorem 11,

n−3/2
n∑

i,j=1

Wi1,i2

p→ 0.

PROOF. Recall that

Ri1,i2,r = K
(r,0)
i1,i2,i2

(
Xi1,−∞,i2,Xi2

)

−
ρ−r∑
r ′=0

∑
|l|=r ′

DlK
(r,0)
i1,i2,−∞(0,0)

∑
i2≥j1>···>jr′

r ′∏
s=1

ails −js εjs ,
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and hence we have fori1 ≥ i2 ≥ 0,∥∥P0Ri1,i2,r

∥∥ = ∥∥P0M
(r,0)
i1,i2

∥∥ ≤ C
∣∣ai2

∣∣[∣∣ai2

∣∣ +
√

Ai2+1(4) + A
ρ−r
i2+1(2)

]
∼ Cai2

(
iai2

)(ρ−r)/2 ∼ i2
−δLρ−r+1(i2) =: ηi2,

where δ = (ρ − r + 1)(β − 1/2) + 1/2 by Lemma 12 and (51). Projecting
iteratively, we obtain∥∥∥∥∥

n∑
i1≥i2=1

Ri1,i2,r

∑
i2+r≤t≤i1

∑
t=j1>···>jr≥i2+1

ai1−j1

r∏
s=1

ai1−js εjs

∥∥∥∥∥
2

= ∑
n≥t1>···>tr≥1

∥∥∥∥∥
n∑

i1=t1

tr−1∑
i2=1

r∏
s=1

ai1−tsRi1,i2,r

∥∥∥∥∥
2

= ∑
n≥t1>···>tr≥1

tr−1∑
t ′=−∞

∥∥∥∥∥
n∑

i1=t1

tr−1∑
i2=1∨t ′

r∏
s=1

ai1−ts Pt ′Ri1,i2,r

∥∥∥∥∥
2

≤ C
∑

n≥t1>···>tr≥1

tr−1∑
t ′=−∞

(
n∑

i1=t1

tr−1∑
i2=1∨t ′

r∏
s=1

ai1−ts ηi2−t ′

)2

.

Now approximating summations by integrals, the last expression can be seen to be
asymptotically equal toCnr+5−2(rβ+δ)(L(n))2(ρ−r+1) × INT for largen, where

INT =
∫

1>t1>···>tr>0

∫ tr

t ′=−∞

(∫ 1

x=t1

r∏
s=1

(x − ts)
−β

)2(∫ tr−1

y=0∨t ′
(y − t ′)−δ

)2

.

Since

r + 5− 2(rβ + δ) = 4− (ρ + 1)(2β − 1) ≤ 3,

where the equality holds only ifL(n) → 0 by (27), the result will follow if we can
show thatINT < ∞, which is what we will do. First,∫ 1

x=t1

r∏
s=1

(x − ts)
−β dx

≤ (t1 − t2)
−(rβ−1)

∫ ∞
0

x−β(x + 1)−β
r∏

s=3

(
x + t1 − ts

t1 − t2

)−β

dx

≤ (t1 − t2)
−(rβ−1)

r∏
s=3

(
t1 − ts

t1 − t2

)−β ∫ ∞
0

x−β(x + 1)−β dx

≤ C(t1 − t2)
−(2β−1)

r∏
s=3

(t1 − ts)
−β.
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Hence we have

INT ≤ C

∫
1>t1>···>tr>0

(t1 − t2)
−2(2β−1)

r∏
s=3

(t1 − ts)
−2β

×
∫ tr

t ′=−∞

(∫ tr−1

y=0∨t ′
(y − t ′)−δ

)2

.

Writing
∫ tr

t ′=−∞

(∫ tr−1

y=0∨t ′
(y − t ′)−δ dy

)2

dt ′

=
(∫ −1

t ′=−∞
+

∫ 0

t ′=−1
+

∫ tr

t ′=0

)(∫ tr−1

y=0∨t ′
(y − t ′)−δ dy

)2

dt ′,

it is easy to see that all three integrals are uniformly bounded since 1/2 < δ < 1.
Also, integrating iteratively fromtr to t3, we obtain

∫
t2>···>tr>0

r∏
s=3

(t1 − ts)
−2β dt3 · · ·dtr ≤ C(t1 − t2)

−(r−2)(2β−1).

Sincer(2β − 1) < 1,∫
1>t1>···>tr>0

(t1 − t2)
−2(2β−1)

r∏
s=3

(t1 − ts)
−2βdt1 · · ·dtr

≤ C

∫ 1

t1=0

∫ t1

t2=0
(t1 − t2)

−r(2β−1) dt1dt2 < ∞.

Hence we conclude thatINT < ∞ and the proof is complete.�
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