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The sharp asymptotics for thé2-quantization errors of Gaussian
measures on a Hilbert space and, in particular, for Gaussian processes is
derived. The condition imposed is regular variation of the eigenvalues.

1. Introduction. The quantization of probability distributions is an old story
which starts in the late 1940s. It has been conceived in order to drastically cut
down the storage of signal data to be analyzed. For a comprehensive survey of the
theory of quantization, including its historical development, we refer to Gray and
Neuhoff (1998). For the mathematical aspects of quantization, one may consult
Graf and Luschgy (2000), and for more applied aspects in the field of information
theory and signal processing, the book of Gersho and Gray (1992) is appropriate.

However, only recently rigorous extensions to the functional quantization of
continuous-time stochastic processes have been obtained for the Gaussian case.
See Luschgy and Pages (2002), Dereich, Fehringer, Matoussi and Scheutzow
(2003), Dereich (2003) and Graf, Luschgy and Pagés (2003). In particular, the
order of convergence to zero of the quantization error has been investigated. The
main result of this paper is the sharp asymptotics offtheuantization error for
a large class of Gaussian processes in a Hilbert space framework. This makes the
high-resolution theory in this setting as precise as in the finite-dimensional theory.

The framework can be stated as follows. Xebe a centered Gaussian random
vector defined on a probability spa@®, -+, P) taking its values in a real separable
Hilbert spaced with scalar product-, -) and norm|| - ||. The distributiorPy of X
will be denoted byP to simplify notations. For € N, the L?-quantization problem
at leveln consists in minimizing

Emin||X —a|?
aco

over all setsx ¢ H with |«| < n, where| - | is for cardinality. The minimakth
gquantization error oP is then defined by

1/2
(1.2) e,,:en(P):inf{(EEpeiQHX—aHZ) ZOtCH,lfloelSn}.
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FUNCTIONAL QUANTIZATION 1575

The L2-error is the most common measure of the performance of a quantization or
lossy data compression system mainly for its simplicity.

Let « € H be a codebook witha| < n. One easily shows that the best
approximation ofX by ana-valued random vector is achieved by applying the rule
of the nearest neighbor which corresponds to the geometric object called Voronoi

partition. So, if
f= Z aly,,
aca
where{A, :a € «} is a Borel measurable partition &f such that, for every € «,
A, is contained in the (closed and convex) Voronoi region

{x eH:|x—al=min|x — b||},
bea
then
2 _ ; 2
EIX = f(XOI°=Emin|X —al*.
Thus one arrives at the representation

(1.2) en =inf(EIIX — FEOPRY?,

where the infimum is taken over allquantizing rulesf, that is, Borel measurable
mapsf : H — H with |f(H)| <n.

We address the issue of high-resolution quantization, that is, the performance
of n-quantizers and the behavior ef asn — oco. Denote byKp C H the re-
producing kernel Hilbert space (Cameron—Martin space) associafeddbserve
that supgP) coincides with the closure & p. Let A1 > A2 > --- > 0 be the or-
dered nonzero eigenvalues of the covariance operatBr(efch written as many
times as is its multiplicity) and lefu;: j > 1} be a corresponding orthonormal
basis of suppP) consisting of eigenvectors. #f :=dimKp < oo, thene, (P) =
en(®9_1 N (0, 1)), the minimalnth quantization error o®4_; A (0, 1) with
respect to thé,-norm onR?, and thus we can read off the asymptotic behavior
of e, from the high-resolution formula

d d N\ a42
(1.3) nli_)moonl/den<®g/\/(0,)»j)>:q(a’)\/Z(H xj) <—
j=1 j=1

’

(d+2)/4
)
whereg (d) is a constant irf0, co) depending only on the dimensidi{Zador, see
Graf and Luschgy (2000)]. Except in dimensi@e= 1 andd = 2, the true value of

q(d) is unknown.
Now assume dink p = co. Consider the Karhunen—Loéve expansion

o
1/2
(1.4) X = Zk/ Zjuj,
j=1
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whereZ; = (X, u )/A , j > 1, are i.i.d..~ (0, 1)-distributed random variables.
[Itis known that the Karhunen Loéve basis is optimal for quantization of Gaussian
measures, see Luschgy and Pagés (2002).] Optimal quantizatiorabfeveln
consists in approximating it by a certain finite numbet d(n) of coefficients and
then-quantization of these coefficients. More preciselygleR?¢ — R denote an
n-optimal quantizer folg);?:1 N (0, 1) and set

d
F 0 =3 (801220, 0% Z0) ju;

j=1
Then

d(n)
Z=EIX - fiX01P= 3 & +en<®w<om)

j=dm)+1

[see Luschgy and Pagés (2002)]. The critical dimensiom) is small when
compared withh but otherwise unknown fat > 3. [Sinced(n) <n — 1, we have
d(l)=0andd(2) =1.]

In this paper we improve some of the results in Luschgy and Pagés (2002) and
derive the sharp asymptoticsgfasn — oo analogously to the finite-dimensional
case (1.3) and with slower rates than any, of course (Theorems 2.1 and 2.2).
This is achieved for regularly varying eigenvalues. The result obtained is even
better than (1.3) since limiting constants can be evaluated.

A simple way of obtaining compression is product quantization. Here the
Karhunen-Loéve coefficients are individually quantized. Thus considering

m(n)
(L5) D0 =327 % (Zpuy,

j=1
wherem = m(n) € N is suitably chosen ang; : R — R aren ;-optimal quantizers
for ¥ (0, 1) with optimally allocatedr; € N such thatll’’_;n; < n, we further
show that, for regularly varying eigenvalues with indeg (the largest possible
index i.e. the slowest possible decreasﬁfﬁ) is asymptotically optimal. This
means that

62

lim
1
" EIX— P02

Furthermore, one shows theE | X — £ (X)|12)¥/2 does follow a sharp rate of
convergence as — oo which in turn is that ofe, (see Theorem 2.1). When
the eigenvalues are regularly varying with index < —1, it turns out that
some product quantizerﬁqfd) with a similar structure but based on quantizing
d-dimensional marginal blocks are asymptotically almost optimal for some large
values ofd and provide sharp asymptotics. Furthermore, it is to be noticed that,
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in that case, the above scalar product quantifé})s still achieve the sharp rate
of convergence. The induced loss is (asymptotically) within a sometimes small
constant multiple of the minimal quantization error. These results are stated in
Theorem 2.2.

A famous notion of information theory is Shannon’s (1949%ntropy (rate-
distortion function) ofP. Fore > 0, it is defined by

R(e) = Rp(e)

= inf{H(QlP ® Q2): Q probability

(1.6)
on H x H with first marginalQ1 = P

and/ Ix — yI2dQ(x, y) < 52},
HxH

whereH (Q|P ® Q>2) denotes the relative entropy (mutual information)

H(QIP® 02)= | log (%5@) d0

if Q is absolutely continuous with respect to the product of the margihasQ-

and equals teo otherwise. The simple converse part of the source coding theorem
[cf. Berger (1971), Theorem 3.2.2, and Graf and Luschgy (2000), page 163] says
that the minimal numbeN (¢) of codewords needed in a codebaolsuch that

E Mingeq | X — a? < £2 satisfies

logN (¢) > R(e).

[In particular, note thaR (e,) < logn.] As an application we obtain that 13g(s)
is preciselyR (¢) in the small distortion regime, that is,
I
im Og N (¢e) _1
e—=0 R(¢e)

(Corollary 2.4). This sharp asymptotics of the rate of dg) is also touched by
Donoho (2000).

A further application concerns the small ball problem and its relation to
Shannon’g-entropy.

The paper is organized as follows. In the next section we state the results
outlined above. Section 3 contains a collection of examples. Section 4 is devoted
to the proofs.

Throughout, all logarithms are natural logarithms dnfldenotes the integer
part of the real number.



1578 H. LUSCHGY AND G. PAGES

2. Statement of results. Now we formulate sharp asymptotic results for
the nth quantization errorg, = ¢,,(P) and determine the asymptotic behavior of

the optimal product quantizeps‘,(l) asn — oo for centered Gaussian measures
with dimK p = oco. It is convenient to use the symboisand <, wherea, ~ b,
meansz, /b, — 1 anda, < b, means limsupa, /b, < 1.

Let us first give a precise definition gﬂ;(l). Givenn,m e N, letn1,...,n, €N
with TI"_jn; < n and letg;:R — R be n;-optimal quantizers forv (0, 1),
jef1,...,m}). Set

m
1/2
@ =Y a/%@pu;.  xeH,
j=1

1/2

wherex; = (x, u])/k . Then|f(H)| <n and, for everyn € N,

EIX - fXO1P= > &; +ZA E(Z; —g,(Z))*

j>m+1
= Y A +Z,\ en; (N0, 1))
j=m+1

< DA +C(1)an] ,
j=m+1

where

C(1) := supkZe (N (0, 1))
k>1

is a universal constant.
By the Zador theorem [cf. (1.3){7 (1) < oco. Finally,

EIIX—f(X)IIZSi}gf nf ( py +C(1)an )
m=h j>m+1

We may first optimize the integer bit allocation given by the for a givenm
and then select some = m(n) (hopefully close to the optlmal one). To this end,
first note that, for a fixeeh € N, the continuous bit allocation problem reads, for
everyn € N,

“ 2 i = 2 2 - "

inf Z)Ljyj_ :yj>O,Hyj§n}:ZAjz; =n" ﬁ”m(“%‘) ,
j=1 j=1 j=1

with

m —1/2m
zj:nl/mxi/z(]_[xj) . j=1...m.
j=1
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One can produce an integer-valued (approximate) solution by setfirg[z;]
providedallz; > 1. Infact, since the sequengeg) is nonincreasing; > - - > z,,
so one simply needs thaj, = nl/mxi/z(n’};mkj)—l/zm > 1. A natural choice for

the dimensiom: is then

X —1/2k
(2.1) m=m(n):= max[kzl:nl/k)»,%ﬂ(n )Lj> Zl},
j=1
m —1/2m
(2.2) nj=n;n):= |:n1/mky2<1_[)\j> :|, jel{d,...,m},
i=1
m(n) 12
(2.3) n(l)(x) = Zk/ gj(xjuj, x€H.
j=1

We need the notion of a regularly varying function. A measurable function
@ (s,00) = (0,00) (s > 0) is said to be regularly varying at infinity with index
b e R if, for everyt > 0,

, t
lim P(ix) _—

X—>00 qo(x)

Regular variation ofp: (0,s) — (0,00) (s > 0) at zero is defined analogously.
Slow variation corresponds to= 0.

THEOREM 2.1. Assumeé.; ~ ¢(j) as j — oo, whereg: (s, 00) — (0, 00) is
a decreasingregularly varying function at infinity of index1 for somes > 0. Set
for everyx > s,

VO =T dy
Then

Y2 _wdogn) Y2 asn— oo.

2
en~ (E|X = £, C0O]7)
Moreover
m(n) ~ 2logn.
REMARK 2.1.  Sinc€-32; 4; < oo, the integral/® ¢(y) dy is finite. Observe

also that the above functiof is slowly varying at infinity [see Bingham, Goldie
and Teugels (1987), Bposition 15.9 b]. The most prevalent form fgris

@(x) = cx"L(logx) ™4, a>1¢c>0,x>1.
Theny (x) = (a — 1)(logx)¢~1/c and hence

1/2
en~ (E|X = £P 00?2~ (—1) (loglogn)~“~Y/2 asn — oo,
a —
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The following theorem is devoted to the case of regularly varying eigenvalues
with index—b < —1. Itincludes a wide class of Gaussian processes. As mentioned
in the Introduction, the sharp asymptotics &grin item (a) is now approximately
achieved by/-dimensional marginal block product quantizers. They will be more
precisely defined further on in the proof [see (4.1)—(4.3) in Section 4]. Asymptotic
optimality is obtained for some high valudsof the marginal block dimension.
Furthermore, we show in item (b) that, although no longer asymptotically optimal

like in Theorem 2.1 (setting-b = —1), the scalar product quantizefél) as
defined in (1.5) still provide the sharp rate of convergence to @,for

THEOREM 2.2. Assumeék; ~ ¢(j) as j — oo, whereg: (s, 00) — (0, 00) is
a decreasingregularly varying function at infinity of indexb < —1 for some
s > 0. Set for everyx > s,

¥ (x) :
¥) =
xp(x)
(a) Sharp asymptotics far,. Then
b b-1 b 1/2
ey ™~ <<§) m) lﬁ(|Ogn)_1/2 asn — o0.
(b) Asymptotics of the scalar product quantizgﬂf%). Moreover
2logn
m(n) b

and
(ElX = ;P x0[%)Y*
< ((é)H(i * 4C<1)))1/2¢(Iogn)‘1/2 asn — 0o
~A\2 b—-1 ’
where the real constar (1) is given by(2.1).

The proof combines finite-dimensional quantization theory and Shannon'’s rate-
distortion theory.

REMARK 2.2. (i) We obtain from Theorem 2.2

(EIX - LV X01PY2 _ <1+4C<1><b -1
~ b

12
) asn — oQ.
€n

So, if the indexd is close to l,fn(l) is close to asymptotic optimality. The

constaniC (1) is lower bounded by
2 3m

lim k%, (N (0, 1)) = —— =2.7206...
k— 00 2
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[see Graf and Luschgy (2000), page 124]. There is strong numerical evidence for

c(= @ We computed upper boundsaqf v (0, 1))? using theg;-quantiles,
i €{1,...,k}, of N&(O,3) which are known to be asymptotically optimal. We
thus found

3
sup  k2er (N (0, 1)) < Q
1<k<1000 2

This suggests that the product quantizing rg‘l,él) cannot be dramatically
improved upon for regularly varying eigenvalues.
(i) The most prevalent form fop is

@(x) = cx"?(logx) ¢, b>1aeR, x>maxl, e "}
Then we have from the above that
b

b1 12
en ~ <C<§) b—l) (logn)~®=Y2(loglogn)~*/?  asn — .

A useful equivalence principle can be deduced from the preceding theorems.

COROLLARY 2.3. Assume the situation of Theor@n or 2.2. LetV and W
be centered Gaussian measureghand assume thatim supgV) < co andW is
equivalent toP « V. Then

e, (W) ~e,(P) asn — oo.

Now we consider, foe > 0,
(2.4) N(¢):=min{n > 1:.¢, <&},

and the announced strong equivalence of N@g) and R(e). The following
“flooding” formula for thee-entropy R(¢) of Gaussian measures was originally
given by Kolmogorov (1956) [see also lhara (1993), Theorem 6.9.1]. Fos &

e1= (T2, 4))Y2, let

(2.5) r=r(e):=maxk>1: Z kj+kkk>£2
j=k+1

and lety = 9 (¢) € [A,+1, A,) be uniquely defined by
(2.6) Y o +ro=é2
j>r+1

Theny %2, min{x;, ¥} = £ and

(2.7) R(e)= 3 log(r;/").

j=1
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The “reproducing distributionQ, = Q»(¢) = PY is given by

(28) Y=Y(e):= Zl[x/ (1 — K—j)zj + 191/2(1— x_j) z;}uj,
]:

where Z3, Z5, ... are i.i.d. & (0, 1)-distributed random variables independent
of (Z;)j>1, sinceQ = Q(e) := PX-¥) solves the minimum problem in Shannon’s
R(g), thatis,R(e) = H(Q|P ® Q2).

COROLLARY 2.4. Assume the situation of Theor&®. Then

log N (e) ~ R(e) ase — 0,
R(ey) ~ logn,
2logn
r(e,) ~ asn — oo.

Furthermore R is regularly varying at zero with index2/(b — 1).

REMARK 2.3. (i) Donoho (2000) states Idg(e) ~ R(e) for eigenvalues
Aj~ j~? with b > 1 and argues that this sharp asymptotics is a consequence of
Shannon’s rate-distortion theory. Our proof of (the more general) Corollary 2.4 is
not in the range of the Shannon theory (see Remark 4.1) and therefore, it does not
support Donoho’s assessment.

(i) Let f, be ann-optimal quantizer forP. Then, under the condition of

Theorem 2.2,
entropyP/") ~logn  asn — oo.
This follows from the above result, since
R(ey) < entropy(P/") < logn.

(iii) Since r(e,) = dimsupfgQ2(e,)), the numbetr(e,) plays the role of a
dimension of the levet quantization problem. The same role is played:hy:)
for the leveln product quantization problem. By Theorem 2.2 and Corollary 2.4,
we haven(n) ~r(ey,).

(iv) In caser; ~ cj~P(logj)~* with ¢ > 0, b > 1 anda € R, the Shannon
g-entropy can be computed as

b( cb (b—1\H\YED
R(e)~§<bc 1(7)) e~?/®Dlog(1/e)~/*~V  ase—0

[see, e.g., Binia (1974) and Luschgy and Pagés (2002); cf. also (4.14)].
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(v) In Shannon information theory is also introduced the distortion-rate
function

D@y s=int{( [ I —y||2dQ<x,y>)1/2,

Q probability onH x H, Q1 =P andH(Q|P ® Q) < R},

where H(Q|P ® Q») classically denotes the relative entropy information as de-
fined in the Introduction. One easily checks that it always satigligsgn) < e,,.
Furthermore, under the assumptions of Corollary 2.4, one shows as for the rate-
distortion function that

D(logn) ~ e, asn — oo.

A further application concerns the small ball problem where one tries to find the
asymptotic behavior of the function

(2.9) F(e) =—logP(| X| <)

for smalle > 0. The Shannon-entropy provides an upper bound.

COROLLARY 2.5. Assume the situation of Theor&®2. Then

F(e) S R(e) ase — 0.

REMARK 2.4. Under the same condition as above, the lower estimate

b/(b-1)
(m) R(S) 5 F(S) ase— 0
follows from Theorem 2.5 in Dereich (2003). Simple examples (e.g., Brownian
motion and H = L2([0, 1], dr)) show that neitherF(e) ~ R(g) nor F(g) ~
(52)?®=DR(e) ase — O is true.

3. Examples. We consider centered?(P)-continuous Gaussian processes
X = (X;):e; With I = [0, 1]¢. ThenX can be seen as a centered Gaussian random
vector with values in the Hilbert spadé = LZ(I, dt).

3.1. Stationary Gaussian processd&drnstein—Uhlenbeck process and frac-
tional Ornstein—Uhlenbeck processeset X = (X;);c0,1) be a centered sta-
tionary Gaussian process (restricted@p1]) with covariance functiorC (s, t) =
y (s —t), wherey : R — R is continuous, symmetric and positive definite. Assume
that the spectral measure admits a (symmetric) Lebesgue dérsitthat

C(s,;)=/Re“<’—5'>hmd,\=/Rcos(m—s))h(x)dx.
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THEOREM 3.1 [Rosenblatt (1963)]. Under the conditiork € L2(R, d1) (whe-
re d). denotes the Lebesgue measure on the rea) lamel the high-frequency
condition

(3.1) h(\) ~cx™”  asi— +oo

for somec > 0,5 > 1,the asymptotic behavior of the eigenvalues of the covariance
operator is as follows

(3.2) Aj~2en 07t asj s .
Therefore,
p NP1 p 12
(33) e, ~ (2C(2—) b—l) (|Ogn)_(b_l)/2 asn — o0.
7'[ J—

Condition (3.1) comprises a broad class of one-dimensional processes including
processes with rational spectral densities, the Matérn class [see the discussion
in Stein (1999)] and fractional Ornstein—Uhlenbeck processes (but excludes, e.qg.,
bandlimited processes).

The fractional Ornstein—Uhlenbeck process with index (0,2) corre-
sponds to

C(s,t) =exp(—als —t|?), a>0.

The spectral measure of this process is a symmetritable distribution. Its
Lebesgue density is (symmetric) continuous and satisfies

h(A) ~ca~ P ash — +oo
with

o al'(1+ p) sin(p/2)
- ,

wherel’ denotes the gamma function. Consequently,

- 1/2 /2
2aT (p) sin(p/2)(1+ p)) (1 + p)" (logn)~*/2
T 2

e, (FOU) ~ (

(3.4)
asn — o0.

If p =1, one gets the standard stationary Ornstein—Uhlenbeck procg8sign
In this case,

2
(3.5) e, (0OU) ~ ﬁ -172 asn — oo.
b

(logn)
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3.2. Brownian motionintegrated Brownian motiongaussian diffusions and
fractional Brownian motions. (i) Brownian motion.Let B = (B;);c[0,11 be
a standard Brownian motion. Its covariance operator has eigenvalues

m=mk—23)"2 k=1

This gives

(3.6) en(BM) ~ */;(logn)—l/z asn — oo.

(if) m-integrated Brownian motiorzorm € N, let X = (X;);¢[0,1) bem-times
integrated Brownian motion:

t Sm 1
K= [ [ [ Badssds,
0 Jo 0

1 t
D /0 (t —s)" 1B, ds.

Its covariance function reads
1 SAL m m
C(s,t):W/O (s—r)"(@t—r)"dr.

Ritter (2000,page 79) [see also Freedman (1999)#oe 1 and Gao, Hanning
and Torcaso (2003)] has derived the asymptotic behavior of the eigenvalues of the
covariance operator:

A~ (k)" @2 ask — oo.

Theorem 2.2 then implies that

_ 2m+2\Y?
B7) en(IBM,,) ~x D 1y 2(TE2) T ogn) /2
The generain-times integrated BM as considered by Gao, Hanning and Torcaso
(2003) exibits the same asymptotics of the eigenvalues and heage of
(i) Gaussian diffusionNext, letX be the unique solution of the equation

dX; =A@)X;dt + dB;, Xo=¢&, t €[0, 1],
whereA e L2([0, 1], dt) and£ is N (0, o2)-distributed witho2 > 0 and indepen-
dent of B. We find the same asymptotics as #r

-1/2 asn — oQ.

NG
en, ~ —(logn)
T
This follows from Corollary 2.3. One only has to note that in cage= 0 (i.e.,
& = 0), the distribution ofX is equivalent to the Wiener measure, and in case
o2 > 0, it is equivalent to the distribution &f+ B.
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(iv) Fractional Brownian motionThe fractional Brownian motion (FBM) with
Hurst exponens € (0,1) is a centered continuous Gaussian proces$0of]
having the covariance function

Cs,0) = 3% +1% — |s — 1|?P).

Using the spectral representation

dxr

o _ishygq _ —itay_ €
C(s,t)—fhe/R(l e’ )(1—e )|)\|1+2,3 )

where

1 _ I'(1+2B)sin(zp)

T 41— cosnyn @2 g, 21
one shows the following proposition.

ProPOSITION3.2. The ordered eigenvalues of the FBM covariance operator
satisfy

M ™~ 2c 2B —(1+26) ask — oo.

PrRooOF A different proof has been found independently by Bronski (2003).
For the sake of simplicity we denote by the same lefteat covariance function
and its associated kernel operator. The method of proof consists in checking that
the eigenvalues of the covariance operataf the FBM are (strongly) equivalent
to those of the stationary covariance kernel

. c
Co(s, 1) = / e =2 dh.
[-1.1J¢ |A|1+28

Then, the announced result follows straightforwardly from (3.2) sihgg ~
2cr~2Pp~A428) asn — oo. To show this equivalence, we will rely on the
following comparison lemma [see, e.g., Rosenblatt (1963)].

LEMMA 3.3. LetAj, A2 be two symmetric completely continuous transforma-
tions on a Hilbert spacéf . Denote the nth nonnegative eigenvaluelpfi =1, 2,
andA1+ A bykifn anda;’, respectivelyand thenth nonpositive eigenvalue df;,

i=12andA1+ As byk;n andx, . Then for everyn, m > 1,

+ + + + —
(38) }‘n—i—m—l = }‘l,n + }‘Z,m and }‘1—1’_ = )‘l,n—&-m—l + }‘Z,m‘

First, we decomposé€ := C — (g as follows:
C(s,1)=Ca(s, 1) + Ca(s, 1)
with

Ci(s, 1) = mef . (L1—e "M (A—e™)u(dr)
]
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and
Ca(s,t) = / (1—cogtr) — cogsA))u(dr),
[-1,1)¢

whereu(dr) := \Ml+2ﬁ d.

The operatoC; is nonnegative s@1 , = AIn, n > 1. The range of operatar,
has obviously dimension 2 since it map%([o, 1], dr) onto (1, y) with y(¢) :=
[[ L1 costA)u(dAr). Hence/\2 = 0 as soon asn > 3 and it follows from
inequalities (3.8) that, for every> 3

+ ~_
A2 =< )‘l,n <Ain-2 and )‘l,n =0.

To estimate the eigenvalugs, of the operatoCy, one first notes that

_ (= 1) 2k_ Y S ! 2(k—p)—1
Ci(s, 1) = —2c ,;(Zk)v (s —1) )fo A dX

D D L SN
‘LB

R =S G A " 2%

__Ckzl(Zk)!(k—ﬂ)(s +1% — (s — 1))

::Cl n(s,1)

(=D* % | 2k oo 2k
HEO L G T om0,

=:C, (5.1)

One checks thaf'1 ,, mapsL2([0, 1], dt) into the (2n — 1)-dimensional space
Ro»—1)[X] of polynomial functionsP such thatlegre€P) < 2(n — 1). The above
lemma implies that

.20 < AL 20 A1 = A1 = ||S|l|Jp1—/0 2 C1a(s, Du(s)u(r)dsdt.

Now, using thatis% + 1% — (s — 1)%| < 3 for everys, ¢ € [0, 1], one easily
derives that
1 - 3c Z
@k —B) " k+1-8

>2(n+1)

1

0< )Vl,Zn <3c Z
k>n+1

- 3c 1 3c 1
“n+l1-B@n+1Cn+1)! 2mZ@2n+1)
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The sequencéry ,),>1 being nonincreasing, it follows that; , = o(xg,) and
consequently.,” = o(Ag,,). Finally, one derives the announced conclusion from
the equalityC = Co + C and inequalities (3.8) of the lemma:

An=A"=xon+o0(o,)  asn— oo.

This yields

I'(28)sin(zB)(1+ 2/3))1/2<1 + 2lg)lg(logn)_’g

e, (FBM) ~ (
T 2

(3.9)

asn — o0.

It is interesting to observe that the quantization error of the fractional Brownian
motion exhibits the same asymptotic behavior as that of the fractional Ornstein—
Uhlenbeck process with covariance éxjs — 1|2# /2).

3.3. Gaussian sheetsWe consider centeredL?(P)-continuous) Gaussian
fields X = (X;),¢0,1« With covariance function of tensor product form

d
C(s,t)= H Ci(sj,tj),
j=1

where C; are covariance functions di®, 1]. Let 11(j) > 22(j) > --- > 0 and
A1 > Az > ---0 denote the ordered nonzero eigenvalues associat€g émd C
respectively. We rely on the following proposition.

PrROPOSITION3.4 [Papageorgiou and Wasilkowski (1990))f A (j) ~ cjk—b
ask — oo foreveryj € {1,...,d}, wherec; > 0,b > 1,then

d
A~ (]‘[ c;)((d — 1) kP (logh)? @Y ask — co.
j=1

e Fractional Ornstein—Uhlenbeck she&he fractional Ornstein—Uhlenbeck
sheet on[0, 1] with index p € (0,2) corresponds to the following covari-
ance function

d
C(s,t)= 1_[ eXp(—a‘,-|sj — lj|'0), aj > 0.
j=1

By Example 3.1 and Proposition 3.4, the eigenvalues of its covariance opera-
tor satisfy

d ; d d—1\ 1+
Ak~ (l_[ aj) (2F(1+ P) sm(n,o/Z)) ((Iogk) ) ’ ask — oo.
j=1

glte d-Dk
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Therefore,
d d/2
2F(1+ p) sin(zrp/2) —(14p)/2
€n(FOUS ~ (l_[la/> 7-[1+,0 ) ((d _ 1)y) (A+p)/
]:
P 1/2
(3.10) X ((1 > p) 1+p) (logn)~"/?(loglogn) 17 @-1/2

asn — oo.
If p =1, one gets the stationary Ornstein—Uhlenbeck shef,dri’. In this case

2(d+1)/2

d 1/2
e, (0OUS ~ (Elaj) m(logn)

-1/2 yd—1

(loglogn

(3.11)
asn — oQ0.

The 2-parameter O.U.-sheet has been successfully used as model for image
compression [see, e.g., Rosenfeld and Kak (1976)].

e Fractional Brownian sheetThe fractional Brownian sheet with Hurst
exponents € (0, 1) is a centered continuous Gaussian field@yi]¢ having the
covariance function

d
— 2
Cls.ty =2 L6342 — iy ).
j=1

By Propositions 3.2 and 3.4, the eigenvalues of th FBS covariance operator satisfy

A~ <F(1+ 2B) Sin(ﬂﬂ))d((d B 1)!)—(1+2/3)k—(1+2ﬁ)(Iogk)(l—i-Zﬂ)(d—l)

T 1+28

ask — oo.

This yields

(14 2p)sin(xp)\*/? —(142p)/2
en(FBS ~ ( —%5 ) ((d— 1y~ 2P/
28 1/2
(3.12) X <<1 + Zﬂ) 1+ 25) (logn)~* (log logn)+26)d~1)/2
2 28

asn — oQ.

If = % one gets Brownian sheet where

d
C(s,t)=[](s; At)).

j=1
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In this case

V2
md(d —1)!
The same asymptotic behavior of the eigenvalues and subsequengly isf
obtained for the completely tucked Brownian sheef@r]?, where

(3.13) e,(BS ~ (logn)~Y?(loglogn)¢~  asn — .

d
C(s,t)=[](sj Aty —sjt)).

j=1

4. Proofsof results. We need an extension of the quantizing ryfﬁ) based
now on quantizing blocks of Karhunen—Loéve coefficients of fixed block lesigth
Fixd,neNandsetb; :=A;_14+1,j = 1. Let

x —d /2%
4.1) m=mn,d):= max{kzl:nl/kv,f/2<n vj> Zl},
j=1

m —d/2m
4.2) nj=nj@n,d):= [nl/mvi/z(nv,-) i| jell,...,m},
i=1

and

d
[P @) = Z Zk(, Da+k (87 (X(G-Dd+1: - - Xja)) g (j-vd+k: X €H,
j=lk=1

whereg; :R? — R denotes an ;-optimal quantizer foww (0, 1,). SettingZ/) :=
(Z(-vd+1s ---» Zja), We get

(4.3) (d)(X) ZZ)‘(J Dd+k (g ( Z )))k“(/’—l)d—l-k’
j=1k=1

nj=1M_nj<n and| £\’ (H)| < n. Ford > 2, the procedure (4.3) is worse
than quantizing/-blocks of coefficientajl./zzj but good enough for our purpose.
For the evaluation of the error cﬁ,(d), we need the constant

(4.4) C(d) := supk?4er (N (0, 1))
k>1

By the Zador theorem [see (1.3¥](d) < oo.

LEMMA 4.1. Foreveryd,n e N,
EIX-— P02 Y aj+4YCdmy,
j=md+1
withm =m(n, d) from(4.1)andv,, = Agn—1)d+1-
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PROOE We have

m d
2 i 2
E|X=fPX0) = Y 2+ > r-nakE(ZG-nark — (&;(Z2)),)

jzmd+1 j=1k=1
m . . 5
< 2 A+ viE|ZY —g;(ZY)]
j=md+1 j=1
-z 2
= > A+ Y vien, (NO, Ip)".
j>md+1 j=1

Moreover, by (4.2),

> vjen, (N O, 1)’ <C@) Y VJnfz/d

m 11 2/d
=C(d) Y vj(n;+ 1)—2/d<u>
. .
j=1 J

m 1/m
< 4t (dymn=2/dm (]‘[ uj>
j=1

< 4YiC(dymv,,. O
A Shannon-type lower bound is as follows.

LEMMA 4.2. Foreveryn € N,

2
e, > Aj+mApy1
j>m+1

with m = m(n) from (2.1).
[Note thatm(n) =m(n, 1).]

PROOFE Setting

k k 1/k 1k
(4.5) ay = = log Aj /Ak == "log(X;/Ai),
2 i} 2‘/.:1

J
we see that

(4.6) m=m(n) =maxk > 1:.a; <logn}.
On the other hand, by (2.8) fer< e,
R(&) > ar(e),
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so that by the converse source coding theorem, for every,
logn > R(e,) > are,)-
Consequently; (e,,) < m(n) and, using (2.5), this yields
2> Y Aj+m+Dhpir= > Aj+minil.
j=m+2 j=m+1

The assertion is also true faor = 1 sincem = m(1) equals the multiplicity
of A1 and

o0

e%: Z)\] = Z )‘j +mAy, > Z }‘j + mAp41-
Jj=1 j=m+1 j=m+1 O

PROOF OFTHEOREM 2.1. The subsequent arguments already occur (some-
what hidden) in Luschgy and Pages (2002). We repeat them for completeness and
the reader’s convenience. By Lemma 4.1, we have, for everiy,

C<E|X—fPX[*< 3 A +4CLmin
j=m+1

with m = m(n), where the approximation error is the dominating term. In fact, it
follows from the assumption on the eigenvalues thatgajodefined in (4.5), we
havea; ~ k/2 ask — oo and hence by (4.6),

m(n) ~ 2logn asn — o0.
This yields

Yo aj~ym) Tt ~y(logn)Tt  asn— .
j>m+1

Moreover,
xp(x) = 0(1//(x)_1) asx — oo
[cf. Bingham, Goldie and Teugels (1987), Proposition 1.5.9 b] and thus
E|X — fYX)|?<ydogn)™t  asn— oo.
The lower estimate
e2>y(logn)™t  asn— oo
follows from Lemma 4.2. [J
Now we turn to the proof of Theorem 2.2. Lét(d) denote the quantization co-

efficient (of order 2) of thel-dimensional standard normal distributian(0, 1),
that is,

4.7) Od) = lim n?e,(N (0, I1))*
[see (1.3)].
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PROPOSITION4.3. The sequenc@(d)) =1 satisfiedim,_. o, Q(d)/d =1.
PrROOF See Graf and Luschgy [(2000), Proposition 9.5]]

The key property is the following-asymptotics of the constant§d) defined
in (4.4).

PROPOSITION4.4. The sequenc@ (d)),>1 satisfiediminf,;_,C(d)/d =1

PROOE Since C(d) > Q(d) for everyd € N, it follows from Proposi-
tion 4.3 that

(4.8) liminf €@ > 1.

d—o00 d
Again by Proposition 4.3, the converse inequality is trueC{@) = Q(d) for
all but finitely manyd’s. So assume thaf'(d) > Q(d) for all members in a
subsequence afC(d), Q(d))s. (No special notation for subsequences is used.)
Sete, (d) := e, (N (0, 1)) and

kZ/dek(d)Z

—

If for d e N, C(d) > Q(d) holds, then choose > 0 such thatC(d) > Q(d) + 7.
By (4.7), there exist$p € N such that

sup kZen(d)? < Q(d) +1.
k>ko+1

A, k) =

Consequently,C(d) = sup,,k*?ex(d)> and hence, there exists(d) € N
such that

cd

% =A(d, p(d)).
We claim that for every sequen¢e(d)), in N,
4.9) Iidminf A(d, k(d) <1

The proof of (4.9) which d#les the proposition is given by a sequence of steps.

STEP1. Assume

fiminf 295@ _q
d—o0
By taking a subsequence, we may assume tha;jmm%# = 0. Using the

rough upper bound

ek(d) d)? <e1(d)?=d,
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one gets
A(d, k(d)) < k)",
Consequently,
lim inf A(d, k(d)) < dleook(d)Z/d =1

Step2. Ford > 0 ande € (0, 1), consider the special sequence

(4.10) k(d) = [exp(d(8 + R1(¢)))].
whereR1(¢) denotes the-entropy ofA (0, 1) given by
(4.11) R1(e) =log(1/e).

The direct part of Shannon’s source coding theorem says that

ex(a)(d)? .

limsup
d—o0
[see Dembo and Zeitouni (1998), Theorem 3.6.2]. A careful reading of the proof
shows that their large deviation approach also works for the unbounded (squared)
error function in our setting. Since lim, o k(d)%¢ = (1/¢)? exp(25), one gets
(4.12) limsupA(d, k(d)) < exp(26).

d—o0

STEP3. Assume

logk(d
0 < liminf 29%(@) _
d—o0
By taking a subsequence, we may assume that
logk
jim 295 _
d—o0 d

with 0 < ¢ < 0.

Chooser; € (0, ¢) ands € (0, ¢1). Then ford Iarge,% > ¢1 and hence
k(d) > exp(dc1) = exp(dé + d(c1 — §)).
Sete :=exp(§ —c¢1) and
qg(d):= [exp(d(6 + Rl(e)))].
Then ford large ,k(d) > q(d) and

k(d)Z/d k(d)Z/d

q(d)?/d

Ald, k(d)) < eqa)(d)? = Ad, q(d)).

By Step 2, we have
limsupA(d, g(d)) < exp(25).

d—o00
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Since limy_ o0 k(d)%?4 = exp(2¢) and limy_ o0 ¢ (d)%/? = exp(2c1), one obtains
limsupA(d, k(d)) < exp(2(c — c1) + 25).

d—o00

Lettingd — 0 and therr1 — ¢ yields

limsupA(d, k(d)) < 1.

d— o0
STEP4. Assume
logk(d
jim 1°295@ _
d— 00 d

Fix m € N and proceed by a block-quantizer design consisting diocks of
lengthm for quantizing (0, I,,,4). Set

s = s(d) := [k(md)Y9].
Thens? < k(md) and
ek(ma)(md)? < ea(md)? < dey(m)2.

Consequently, for every € N,

1
mes(m)Z_.
m

1/d~\ 2/m
Almd. k(md)) < k(md)Z/mdes(m)Z% — (M) §2/

Sinces(d) — oo asd — oo, it follows from the Zador theorem that
lim s(d)?"es(a)(m)* = Q(m)
d—o00

[see (4.7)]. This implies

liminf A(md., k(md)) < Q:nm) .

d— 00

Using Proposition 4.3ve deduce that

Ildrr_1>|g10f A(d, k(d)) < 1. .

REMARK 4.1. We emphasize that Step 4 of the above proof is not in the range
of the Shannon theory.

PROOF OFTHEOREM2.2. By Lemma4.1, we have, for evedyn € N,

E<E|X-fP0P< Y aj+4YC@ymoy,
j=>md+1
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with m = m(n, d). Setting
k 1/k
ap(d) := Iog((]_[ ) /v,‘f),
j=1

mn,d) =maxk > 1:a;(d) <logn}.

we see that

The assumption on the eigenvalues implig&l) ~ bdk/2 ask — oo and hence,
for everyd e N,

2logn
mn,d) ~ asn — oo.
Consequently,
2 —b
Vi ™~ And ™~ (E) (p(|OgI’l),
2 1-b
m, dvy ~ <E> y(logn)~t
and

mdg(md) 1 2\ _
Yoo~ b(p T3 1(5) v(dlogn)™t  asn — .
j=md+1 - -

We deduce that, for everye N,

b\'"tr 1 4aYic(a)
s sraors ()
[X = L0175 (5 1t

)wlogn)—l
(4.13)
asn — oQ.

Note that ford = 1, (4.13) gives the desired upper estimateﬁﬁl). Now it follows
from Proposition 4.4 that

p\>~1 b
6,21 S <§> bj_%b‘(logl’l)_l asn — oQ.
The lower estimate
b\~ b
e2> (§> b—lw(logn) ' asn— o0

is a consequence of Lemma 4.2

Finally, we prove Corollaries 2.3-2.5.
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PROOF OF COROLLARY 2.3. Letp; > p2 > --- > 0 denote the nonzero
eigenvalues of the covariance operatorRafV and letd := dimsupgV). Then,
by the minimax characterization [see (3.8)] of eigenvalues, for eyeriy,

Pj+d =Aj = pj.

Regular variation of the eigenvalug@s implies p; ~ A; asj — oo. Let 3 >
u2 > --- > 0 denote the nonzero eigenvalues associate® torheorem 2 in
Ihara (1970) and regular variation pf imply thatu; ~ p; as j — oo. Thus
the assertion follows from Theorems 2.1 and 2.21

PROOF OFCOROLLARY 2.4. By Theorem4.12 in Luschgy and Pages (2002),
we have

b—1
2~ (é) Ll//(R(en))_l asn — oo
n\2) b-1 ’

with the functiony from Theorem 2.2. Combining this with Theorem 2.2 gives

¥V (R(en)) ~ ¥ (logn) asn — oo.

There exists a functiofr which is regularly varying at infinity of index/tb — 1)
such that

Y (x) ~x  asx — oo
[cf. Bingham, Goldie and Teugels (1987), Theorem 1.5.12]. Hence
R(en) ~ V(¥ (R(en))) ~ ¥ (¥ (logn)) ~logn  asn — oo.
In particular,
logN () ~ R(en(e)).
logN () ~log(N(e) —1) ~ R(en)—-1)  ase — O.

Sincee < ey(e)—1 for e < ey andey() < ¢ and thusR(e) > R(en()-1) and
R(g) < R(en(e)), We obtain

logN(g) ~ R(¢e) ase — 0.
Using Theorem 2.2, this implies

b—1
22 (b LW(R(S))_l ase - 0
NeE -\ 2 b—1 '

Consequently,
wor-7((5) 55
2 b—-1
b

b /(-1 _
~ §<—b 1) U(e?)  ase—0,

(4.14)



1598 H. LUSCHGY AND G. PAGES

and thereforeR is regularly varying at zero of index2/(b — 1). Finally, by (2.8),
R(en) ~ ar(e,) ~ r(en)b/2 asn — oo with g; from (4.5) and thus

2logn

r(e,) ~ asn — oo. 0

PROOF OFCOROLLARY 2.5. Forevery1 e N, c € (0, 1), we have

e, > cF_1<|0g< " ))
1—¢2

[see Dereich, Fehringer, Matoussi and Scheutzow (2003) or Graf, Luschgy and
Pages (2003)]. Consequently,

en n
F(—) < Iog(—) ~ logn asn — oo.
c 1—¢2

By Corollary 2.4, this implies

F<5> < F(M> <logN(e) ~ R(e)
C

C

and thus
F(e) <R(ce)~c b DR)  ase— 0.

Letting c — 1 yields the assertion.[J

Acknowledgment. We wish to thank Bianca Kramer for doing some compu-
tations.

REFERENCES

BERGER T. (1971).Rate Distortion TheoryPrentice-Hall, Englewood Cliffs, NJ.

BINGHAM, N. H., GoLDIE, C. M. and TEUGELS, J. L. (1987).Regular Variation Cambridge
Univ. Press.

BINIA, J. (1974). On the-entropy of certain Gaussian procesd&EE Trans. Inform. Theorg0
190-196.

BRONSKI, J. C. (2003). Small ball constants and tight eigenvalue asymptotics for fractional
Brownian motionsJ. Theoret. Probahl6 87-100.

DEmMBO, A. and ZEITOUNI, O. (1998).Large Deviations Techniques and Applicatip2ad ed.
Springer, New York.

DEREICH, S. (2003). Small ball probdhiies around radom centers of Gaussian measures and
applications to quantizatiod. Theoret. Probahl6 427—-449.

DEREICH, S., FEHRINGER, F., MATOUSS|, A. and SHEUTZOW, M. (2003). On the link between
small ball probabilities and the quantization problem for Gaussian measures on Banach
spacesJ. Theoret. Probahl6 249-265.

DoNoOHO, D. L. (2000). Counting bits with Kolmogorov and Shannon. Technical Report 38,
Stanford Univ.

FREEDMAN, D. (1999). On the Bernstein-von Mises theorem with infinite—dimensional parameters.
Ann. Statist27 1119-1140.



FUNCTIONAL QUANTIZATION 1599

GAO, F., HANNING, J. and DRCASQ, F. (2003). Integrated Brownian motions and exagtsmall
balls.Ann. Probab31 1320-1337.

GERSHO, A. and GRAY, R. M. (1992).Vector Quantization and Signal Compressidtiuwer,
Boston.

GRAF, S. and WSCHGY, H. (2000). Foundations of Quantizatiorof Probability Distributions
Lecture Notes in Mathl730. Springer, Berlin.

GRAF, S., LUSCHGY, H. and RRGES, G. (2003). Functional quantizati@nd small balprobabilities
for Gaussian processek.Theoret. Probahl6 1047-1062.

GRrAY, R. M. and NeuHOFF, D. L. (1998). Quantization]EEE Trans. Inform. Theoryl4
2325-2383.

IHARA, S. (1970). Ore-entropy of equivalent Gaussian proces$émgoya Math. J37 121-130.

IHARA, S. (1993)Information TheoryWorld Scientific, Singapore.

KoLMOGOROY, A. N. (1956). On the Shannon theory of information transmission in the case of
continuous signaldRE Trans. Inform. Theorg 102—-108.

LuscHGY, H. and RGES, G. (2002). Functional quantization of Gaussian processésinct. Anal.
196 486-531.

PAPAGEORGIOU, A. and WASILKOWSKI, G. W. (1990). On the average complexity of multivariate
problems.J. Complexitye 1-23.

RITTER, K. (2000).Average-Case Anslysis of Numerical Probleirscture Notes in Math1733.
Springer, Berlin.

ROSENBLATT, M. (1963). Some results on the asymptotic behavior of eigenvalues for a class of
integral equations with translation kern&l.Math. Mech12 619-628.

ROSENFELD, A. and Kak, A. C. (1976).Digital Picture ProcessingAcademic Press, New York.

SHANNON, C. E. and WEAVER, W. (1949).The Mathematical Theory of Communicatidsniv.
lllinois Press, Urbana.

STEIN, M. L. (1999).Interpolation of Spatial DataSpringer, New York.

FB IV-M ATHEMATIK LABORATOIRE DE PROBABILITES

UNIVERSITAT TRIER ET MODELESALEATOIRES

D-54286 TRIER UNIVERSITEPARIS 6

BR DEUTSCHLAND CNRS-UMR 7599

E-MAIL : luschgy@uni-trier.de 4 PLACE JUSSIEUCASE 188
F-75252 RRIS CEDEX 05
FRANCE

E-MAIL : gpa@ccr.jussieu.fr



