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The Lauricella theoryf multiple hypergeometric functions is used to
shed some light on certain distributional properties of the mean of a Dirichlet
process. This approach leads to several results, which are illustrated here.
Among these are a new and more direct procedure for determining the
exact form of the distribution of the mean, a correspondence between
the distribution of the mean and the parameter of a Dirichlet process,
a characterization of the family of Cauchy distributions as the set of the
fixed points of this correspondence, and an extension of the Markov—Krein
identity. Moreover, an expression of the characteristic function of the mean
of a Dirichlet process is obtained by resorting to an integral representation
of a confluent form of the fourth Lauricella function. This expression is then
employed to prove that the distribution of the mean of a Dirichlet process is
symmetric if and only if the parameter of the process is symmetric, and to
provide a new expression of the moment generating function of the variance
of a Dirichlet process.

1. Introduction. The connections between properties of functionals of a
Dirichlet process and the Lauricella multiple hypergeometric functions have been
investigated in independent papers by Kerov and Tsilevich (1998) and Regazzini
(1998); they also represent the point of departure of the present paper. The
approach undertaken here is quite different from that of recent contributions to the
study of exact distributions of functionals of a Dirichlet process. See, for example,
Regazzini, Guglielmi and Di Nunno (2002). Some specific properties of multiple
hypergeometric functions are extended in such a way as to become significant
properties of the laws of functionals of random measures. This is an unusual
application of the theory of special functions. On the other hand, since these
extensions can be thought of as infinite-dimensional versions of some fundamental
types of special functions, the results presented in the following sections might be
also of some interest from an analytic point of view.
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The main reason for analyzing the interplay between multiple hypergeometric
functions and laws of Dirichlet functionals is twofold: it allows simplifications
in the proofs of some well-known propositions and, more importantly, it leads to
new results concerning the distribution of the above-mentioned functionals. Ties
between the theory of multiple hypergeometric functions and some applied prob-
lems in statistics had been investigated in previous contributions, in addition to the
papers already cited above. Dickey (1968) extends an identity due to Picard and
applies it to Bayesian inference about multinomial cell probabilities, with a prior
expressed by the Savage generalization of the Dirichlet distribution. Hill (1977)
exploits suitable representations of Appell’s hypergeometric functions to exactly
evaluate the posterior moments of parameters of interest for the inference about
variance components. In a problem of Bayesian statistical inference for missing
data, Dickey, Jiang and Kadane (1987) obtain representations of posterior mo-
ments and predictive probabilities in tes of ratios of Carlson’s hypergeometric
functions. Jiang, Kadane and Dickey (1992) explore computational methods for
hypergeometric functions arising in Bayesian analysis. Moreover, an introduction
to Carlson’s functions for statisticians can be found in Dickey (1983).

As far as the present article is concerned, it is organized as follows. Some
integral representations of the Lauricella hypergeometric functions, together with
their probabilistic interpretations, are illustrated in Section 2. The Feigin and
Tweedie existence condition and the Markov—Krein identity are then jointly
restated in Theorem 1 in Section 3. The proof is based on some classical results
concerning Lauricella’s hypergeometric functions. Despite its pure analytic nature,
it is as simple as the proof of Theorem 9 in Tsilevich, Vershik and Yor (2000). See
also Theorem 2 in Tsilevich, Vershik and Yor (2001). Moreover, we prove the
existence of a one-to-one correspondence between the set of nonnull measures,
on R, with given finite total masa > 0 and the set of all probability distributions
(p.d.) of linear functionals of a Dirichlet process with parameter having total
massa. Among recent papers focusing on such a bijection—sometimes referred
to as theMarkov—Krein correspondeneeare those of Diaconis and Kemperman
(1996), Kerov and Tsilevich (1998) and Tsilevich, Vershik and Yor (2000). In
Section 4, elementary properties of gamma processes lead to an expression for
the p.d. of the mean of a gamma process in terms of the p.d. of the mean of a
Dirichlet process. Moreover, it is also seen that the p.d. of the mean of a gamma
process is a generalized gamma convolution and is, hence, infinitely divisible. This
fact suggests a simple proof of the absolute continuity, with respectto the Lebesgue
measure oiiR, of the mean of a Dirichlet procegsee Proposition 2 and Remark 1).

In Section 5, an extension of the Markov—Krein correspondence is deduced
from well-known integral representations of the fourth Lauricella hypergeometric

function. Two applications of this extension are considered in Section 6: the first
determines the exact form of the p.d. of the mean of a Dirichlet process, and the
second is a characterization of the Cauchy distribution. Section 7 is devoted to
a representation of the characteristic function of the mean of a Dirichlet process,
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via a multidimensional extension of Kummer’s confluent hypergeometric function.
The latter can be considered as a confluent form of the fourth Lauricella function
and admits a representation as a contour integral proved by Erdélyi (1937). The
distribution of a vector of means of a single Dirichlet process is examined in
Section 8. The identities given in Section 5 are trivially extended to this setup.
This is also helpful in proving the absolute continuity, with respect to the Lebesgue
measure oifR?, of a vector of means of a single Dirichlet process, a finding which
answers a question raised in Regazzini, Guglielmi and Di Nunno (2002). Finally,
a representation of the moment generating function of the variance of the Dirichlet
process is provided and it would seem a meaningful improvement on previous
contributions to the subject. See, for example, Cifarelli and Melilli (2000).

2. Probabilistic interpretation of the Lauricella fourth function Fp. The
topic of multiple hypergeometric functins was first approached, in a systematic
way, by Giuseppe Lauricella at the end of the 19th century. See, for example,
Exton (1976). He defined four functions which are named after him and have
both multiple series and integral representations. In particulafptiméh of these
functions, denoted byp, admits integral representations of importance in our
treatment. Given ang = (§1,....§,) in R", set|&| for }}_; & and (., ) for
inner product. Moreover, lef, := {u= (u1,...,u,) € R":u; > 0 for everyi and
lu| < 1}. With this notation, an integral representation of Euler type [see (26) in
Lauricella (1893)] is

['(by)---T'(by)I'(a — |b])

ra) Fp(c,by,....bya;x1,...,%,)
2.1)
= ulil—l . uzn—l(l _ |u|)a—\b|—l(1 _ (U, X))—c st]_ L dun,

T,

which is valid for everyx = (x1,...,x,) in [0,1)" andb = (b1, ..., b,) with
strictly positive real part, that is, Re,) > 0 for everyk, and such that Re —
|b]) > 0. A further representation provided by formula (25) in Lauricella (1893) is

Fp(ce,by,....by;a;x1,...,x,)
(2:2) = L—ux) "1 (1= ux,) " B(du; c,a — o),
[0,1]
which holds true whenever R® > 0 and Réa — ¢) > 0, with
51(A), if Re(a —¢) =0,
I'(a)

B(Ajc,a—c)=1{T(c)['(a—c)

X / w1 —w)* " tdu, if Re(a —c) > 0,
AN(0,1)
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for every A in the Borel class ofR, 8(R), ands, standing for the unit point mass
concentrated at. Hence, letting: = ¢, one gets

(2.3)  Fpla,by,....bpia;x1, ..., x,) =1 —x1) 1o (1—x,)70n.

Representation (2.1) has an obvious probabilistic interpretation, which was first
stressed and exploited by Carlson (1977), giving rise to what he called “method of
Dirichlet averages,” for unifying a part of the theory of special functions. In point
of fact, letp be a random probability measure supportedSby {0, x1, ..., x,},

with (x1, ..., x,) in (0, 1)", and assume that the random vegfx1}, ..., ¢{x,})

has the Dirichlet distribution®, with parameter(bs,...,b,,a — |b|), and

a — |b| > 0, by > 0 for everyk, that is, the distribution characterized by

I'(a)
L'(b1) - T'(bp)T (@ — b))

X uil_l .. Mﬁn—l(l _ |u|)a—\b|—lHTn (U) st]_ o dun,

wherelp denotes the indicator function of sBt Whence, combination of (2.1)
with (2.3) gives

(2.4) 1)[(1— /S xg?)(dx))_a] :exp{— fs |0g(1—x)a(dx)},

provided thatx is the measure on the power set$tletermined by {x;} = by
for k=1,...,n and «{0} = a — |b|. Here, and in the sequel, given any
probability measure and real-valued functioh such that/ |z| dg < 400, ¢(h)
denotes( i dg.

Equality (2.4) represents the most elementary version of an identity established
by Cifarelli and Regazzini (1979a, b, 1990) famctional Dirichlet processes
with parameterx. Recall that, given a finite measure on (R, 8(R)) with
a = a(R) > 0, a random probability measuig is said to be a (functional)
Dirichlet process with parameter if, for every finite and measurable partition
C1,...,Cpy, Cyy Of R, the random vecto(p(C1), ..., ¢(Cy)) has the Dirichlet
distribution with parameteta(C1), ..., a(Cy), a(C,11)). As for the definition
and the main properties of a functional Dirichlet process, the seminal contribution
in Ferguson (1973) still represents a sound reference.

Throughout the following sections; (w; «, f) will indicate the integral
Jr109(1 + wf (x))a(dx), while logz will denote the principal determination of
the logarithm of the complex number that is, logz = log|z| + i arg(z), where
arg(z) is chosen in(—m, 1.

D(du) =

3. Lauricellatheory and Markov—Kreinidentity. Diaconis and Kemperman
observed that the idéty of Cifarelli and Regazzini ¢ed above is dsely related
to a well-known version of the Markov moment problem. See Akhiezer and Krein
(1962), Diaconis and Kemperman (1996) and Kerov (1998). As a matter of fact,
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some authors refer to this identity as tiarkov—Krein identity Compare, for ex-
ample, Kerov and Tsilevich (1998) and the more recent paper by Tsilevich, Vershik
and Yor (2000). According to Kerov and Tsilevich (1998) and Regazzini (1998),
the Markov—Krein identity extends (2.4) from the (finite-dimensional) Dirichlet
distribution to the functional Dirichlet distribution. Notice that in the real domain
the extension holds true provided that the support of the parameter of the latter
distribution is bounded above. In the complex domain, a variant of the same iden-
tity, which holds for any parameter, istablished in Kerovand Tsilevich (1998)

and in Regazzini, Guglielmi and Di Nunno (2002). In the following section, the
Lauricella theory is exploited to state jointly the Markov—Krein identity and the
Feigin and Tweedie condition for finiteness of the mean of a Dirichlet process.

3.1. The Markov—Krein identity. Given any finite measure on (R, B(R))
such thata(R) = a > 0, let D, denote the functional Dirichlet p.d. with
parametew. A suitable sequence of simple functiagasn > 1, exists that satisfies
E ()M I(x)if x>0, &(x) | I(x) whenx <0 and|&,| 1 ||, where[ is the
identity map ornR. Therefore the sequence of finite measurgsdefined by

an(B) =a{§, € B}, B e B(R)

converges weakly tax, namely o, = «. Now definelP to be the space of
all probability measures onR, B8(R)) endowed with the topology of weak
convergence, and leP be the Borelo-algebra onP. In this way, it follows
that the identity mapp on (P, #, D,) is a random probability measure with
p.d. D,. Moreover,@, := ¢ o £1 has p.d.D,,. A straightforward application

of the Lauricella formula (2.4), combined with a standard analytic continuation
argument, yields

(3.1) /P (L+it0(f 0 &))" Do (dp) = eXpl—2 (it . 1)),

THEOREM1. SettingL :={p € P:o(|I|) :=lim ¢(|§,]) is finite}, one has
Do (L){1— Dy(L)} =0,
and the following two conditions are equivalent
(i) Dy(L)=1.
(i) [log(1+ |x|)a(dx) < +o0.
Moreoverif D, (L) =1,then

(iii) Dy (dp) =exp(—¢(it; o, 1)}, treR.

/ 1
P (1+itp(l))

The equivalence of (i) and (i) was first proved by Feigin and Tweedie
(1989), but it was already contained—at least in part—in Cifarelli and Regazzini
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(19794, b). A complete development of the argument used in the latter paper can
be found in Cifarelli and Regazzini (1996). Here it is shown that both equivalence
of (i) and (ii) and identity (iii) easily follow from (3.1).

PROOF OFTHEOREM 1. In view of the definition of(§,),>1, the operations
of integration and of taking limit can be interchanged to obtain

¢(it; an, 1)
=1 [ log(1+ PZ00)atdx) +i [ arglls, () atdx)
— 3 fR log(1 + 12x?)ar(dx) +i /R argtlxDe(dx),  asm— +oo,
where an infinite real part in the above limiting expression is allowed. Moreover,

fp (14 itp (&) ™ Da(dp)

_ _a 2 2 o
- exp{ % log(1-+ 2915 1) Iaarg(npqsnn)}a)a(dw)

—>/ .;i)a(dq)), asn — +oo,

L (I+1re(I)¢

sincep(|1]) = +o0 if ¢ € L¢. Hence, by (3.1) withf () = | - |, one gets
(3.2) [ (@+irp(r1) Dy (o) = expl—(irs . 11D}

for everyr € R, with the proviso that the right-hand side is 0 whenever the real part
of [log(1+it|x|)a(dx) is infinite. Thus, if [z log(1+ |x|)x(dx) = 400, the right-
hand side of (3.2) is O for every# 0 and, thereforep,, (L) must be 0. On the other
hand, if [ 10g(1 + [x])a(dx) < +oo, thent > exp{— [ l0g(1 + it|x|)a(dx)} is
continuous at = 0, that is,

I|m exp{ / log(1+ It|x|)a(dx)} =1,

and, by taking the limit (as— 0) on both sides of (3.2), one obtains
Dy(L) =1

Finally, if (ii) holds, interchanging the operations of integration and of taking limit
in (3.1), with f = I, yields (iii). O

Identity (iii) in Theorem 1 can be invoked to prove that the p.d. ¢of
characterizes the parameter®f within the class of all measureson (R, B (R))
for which «(R) has some fixed value > 0. This is the essence of the Markov—
Krein correspondence and it is dealt with in Section 3.2. In addition to the papers
listed in Section 1, Andrea Ongaro, in a personal communication, has shown us a
proof of such a correspondence based on a completely different approach.
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3.2. Uniqueness theoremDefine F to be the set of all finite measures on
(R, B8(R)), and put

F, = {a eF:a(R)=a and/RIOQ(l—l- [xDa(dx) < +oo},

M, = {Dy 0 p(I) L:a € F,}

for everya > 0. In words,M,, is the set of all p.d.'s of(7) wheng is a Dirichlet
process with parameter varying if),. Let A stand for the distribution function
associated ter, and A for (a — A)ljg 400y — Al(_0.0)- Clearly, to anya in T,
there corresponds a uniqug := D, o #(I)~L. Moreover, one has

THEOREMZ2. Anya inF, is determined by itg.,.

PROOF  Fix pq, in M, and suppose; € F, is such thajt,, = jte,. Then

expl—¢(ir; oy, 1)) = f ey ()

R (L+irx)e
&) Y _
o ./R (1+itx) Map(dx) [by hypothesis

=exp{—¢(it; az, 1)} [from (iii) in Theorem 1.

Use integration by parts to obtain
it

¢(r05. D =/R 1+itx

which, combined with (3.3) and analytic continuation, yields

Aj(x)dx, telR,j=12,

A1(x) [ Ax) .
(3.4) /RZH dx_/R 2 zeCwith Im@) 0,

Taking,!(z, o) for [R[Aj(x)/(z +x)]dx, j =1, 2, and resorting to the Stieltjes—
Perron inversion formula [see Theorem 12.10d in Henrici (1991)], one has

A1(§) = Zim g%{l(—%‘ —le,01) —I(=§ +ie, 1)}
= i lim{l(—& —ie, a0) — [(—€ + g, a2)}
27i )0
= Aa(&),
provided that is a continuity point for botl1 andA». This suffices to conclude
thata; = a2, sinceq;(R) =qa,i =1,2. O

Theorem 2 states that there is a bijectgnof F, to Ml,. Clearly,M,, c P for
everya > 0 and, more preciselyl, C P for eacha > 0. Namely, for every: > 0,
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there is some probability on B8 (R) which is not the p.d. op(7) for any D, with
a € F,. For example, take

1
u(dx) = 2—77{}1(—1—1;,_1) (%) + L1, 149 (x)} dx

with n > 0. It is easily seen that suchga cannot be the p.d. of the mean of a
Dirichlet process with parameter, for any choice ot in IF, and for every: > 0.

One can argue by noting that the support of the p.d. of the mean of a Dirichlet
process with parametermust coincide with the closure of the convex hull of the
support ofx. This can be proved by combining a result concerning the topological
support of the Dirichlet prior given in Majumdar (1992) and the equivalence of
() and (i) in Theorem 1. We finally remark that general propertiedVpf are
discussed, for example, in Section 2.3 of Kerov (1998).

4. Markov—Krein identity and means of gamma processes. From elemen-
tary properties of the gamma process it follows that the right-hand side of (iii) in
Theorem 1 is the conjugate of the characteristic function of the “mean” of a gamma
process with parametet. See (4.1). It is easy to verify that such a characteristic
function coincides with the Fourier-Stieltjes transform ajeneralized gamma
convolution according to the terminology introduced by Olof Thorin. See, for ex-
ample, the original contributions in Thorin (1977a, b, 1978a, b) and the systematic
treatment in Bondesson (1992). From one of the Thorin results, it is possible to
state the infinite divisibility of the distribution of the mean of a gamma process.
This fact motivates the search for the Lévy—Khintchine representation of the above
characteristic function. And this representation, in turn, allows us to deduce im-
mediately the absolute continuity, with respect to the Lebesgue measure, of the
corresponding distribution.

4.1. Remarks on the characteristic function of the mean of a gamma process.
EndowF with the topology of weak convergence, anddelbe an element af,,
with @ > 0. Denote the Boret-field on F by #, and callfunctional gamma
distribution with parameter the probability measurg, on (F, ¥) defined as
follows. Sety for the identity map orff and say thaf has the functional gamma
distribution with parametew, G, if for every finite and measurable partition
{B1,..., By} of R, the random variabley (B1),...,y(B;) are independent,
with gamma distribution such tha(y(B;)) = Var(y (B;)) = a(Bj), for each
j=1,... k. Itis well known thaty(-)/y (R) is a random probability measure
with p.d. D,. Moreover, one easily obtains the following representation for the
characteristic function of (1) = [ xy (dx):

(4.1) 6o (€7 D) =exp—¢(—it;a, 1)},  1€R.

Thus, according to Section 3.1 in Bondesson (1992), the p.d. of the random
meany (1) is an extended form of generalized gamma convolution, Wibrin
measurer*, wherea™ = o o J~1 andJ (x) = 1/x for anyx in R\ {0}.
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On the other hand, (4.1) can be invoked to establish a representation of the p.d.
of y(I) in terms of the p.du, of ().

PROPOSITION1. Suppose thak is an element irf,, for somea > 0, and
0 < «{0} < a. Then the pd. of 7 (I) is absolutely continuous with respect to the
Lebesgue measure and

|a 1 .
I 96 1o (d
X = L ooO](x) I'(a) |y| e (dy)
+ 10, 4-00) (x )xa i Yy e Y g (dy) =: q(x)
I'(a) J©0.400)

is a density function of such adh
PrROOF Theorem 1(iii) yields

exm—{(—H;a,[H==]£Gs—Hx)ﬂﬂuﬂdx)

1 oo :
=L@k e s

iy 1971
=/ g2l =€/ 11 (dx) dly
—00 F(Cl) (—00,0)

+o00
+ / gl __ x4 g (dx) dy,
I'(a) J©,+00)

where the last equality follows from the application of the change-of-variable
formula, with y = y(z) = zx, and of the Fubini theorem on iterated integrals.
It follows that exg—¢(—it; «, I)} = G (€'7() is the Fourier transform of the
probability density functiow (-). O

Absolute continuity extends t{@,,. We propose a new and simpler proof of this
statement. See Regazzini, Guglielmi and Di Nunno (2002) for a different line of
reasoning.

PROPOSITION2. Suppose that is in F,, for somea > 0, with0 < a{x} <a
for everyx € R. Then the pd. of ¢(I) under D, is absolutely continuous with
respect to the Lebesgue measurdron

PROOF Suppose that, has a singular papt, ; such tha, s[c,c+ A] >0
with A > 0 andc in R. Sincex is nondegenerate, the p.d. functiéfj of y (1 —c)
is absolutely continuous and, by virtue of PropositionG,(A) — G§(0) =

C@) 5" X% [0 100y Y€ G (dy) dx, pg, being the p.d. ofp(I — ¢).
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Without real loss of generality, it suffices to consider the case0. Then, for
any finite class of disjoint intervalgps, o), ..., (om, p,,) With p1 >0, p >
P1s - Pm > P, _q1, and for anys > 0, one has

m

3 [Gal(1+8)0)) = Galp))]

j=1

P} (1+8) ya—1
= Z/ o 7%/ uo(do) dx
I'(a) J©,+00)

P} (1+8) ya—1

>
Z / L(a) Jipjvx/a+8).0}ax1

fp " = L atet b g (do)

o€ o (do) dx

1+5 1 1 ¢ m d
= — g lem olpi, pi]1dE.
/1 et JZJ pj, o1 d

Because of the existence of the singular part (with ¢ = 0), there iss > 0 such
that: With eachy > 0 one can associate a finite class of disjoint intervals, included
in [0, A], (p1,07), -, (Pm, p,,) SUch thatZ(p; — pj) < n and, for some: > 0,

Y alpj. pj1= e. On the other hand, from the absolute continuityf, there

is 7 such tha~{Go (14 8)p}) — Ga(p))} <& [ (T (@)~ 1g9~1e% dg for any
finite class of disjoint mtervals satlsfylrﬁ(pj —pj) < n,Yyielding a contradiction
and, thus, completing the proofl]J

4.2. Lévy—Khintchine representation ekp{—¢}. The next proposition ex-
tends part of Theorem 3.1.1 in Bondesson (1992). It involves the distribution func-
tion A associated witlky, the functiong defined by

gx) = al [H[o +oo)(x)/ e dAG™

+H(_oo,0)(x)/ g dA(y_l)}, xeR
(—00,0)

and the well-known fact that the Lévy—Khintchine representation of an infinitely
divisible characteristic function, determined by the [g&irG), is expressed by
i it 1
t|—>exp{iyt+ (e'”‘—l— uz) +u?
R\ {0} 14+u

wherey € R, and G is nondecreasing, right-continuous wih—oo) = 0 and
G (+00) < 4o00.

dG(u)}

M
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THEOREM 3. Suppose satisfies conditiolii) in Theoreml. Then the char-
acteristic function ofy (1) is infinitely divisible with Lévy—Khintchine representa-
tion determined by the paity, G), wherey = fR\{o} Ix|71g(x)dx and dG(x) =

g(x) dx for everyx € R, g being defined by4.2).In particular, g, (€77()) = 1 if
and only ife = §g.

PROOF The result is first proved for the casg |x|ax(dx) < +o0o0. By
differentiation under the integral sign one gets

d 17 (1) _/ ix
dr l0g§a (€)= o T jx @)

+o00 .
= f ix f e 211 g dA(x)
R 0

_ [ ité( &y —1)
= |/0 € /(O’+oo)e dA(y™) ) d&

0
i it& —&y -1
+ /—oo ¢ (/(—00,0) © dA(y )) dE’

where the application of the Fubini—Tonelli theorem is valid in view of the
above extra-assumption. Next, by definiggas in (4.2), one obtaing > 0,
frg(x)dx < +o0, [ Ix|71g(x) dx < 4+o00. Hence,G (x) := [* oo g(u) du is well
defined for every in R, and it turns out to be nondecreasing wiil{—oo) =0
andG (4o00) < +o00. Moreover, letting

1+ x2

x2

¢Ww:ié@”—n ¢ydr.  reR,

thene?” is an infinitely divisible characteristic function with

y=/ x| ~Lg(x)
R\ {0}

anddG (x) = g(x) dx, such that

d d s
5 ¢ 0 =g 1095 7M),  teR.

The latter can be verified by interchanging the derivative with the integral in the
expression of*(-). It implies thate?” is the characteristic function gf(/) when
Jr [x|a(dx) < 4o0.
The extension of this conclusion to amyuch that/y log(1+ [x|)a(dx) < 400
can be carried out through direct calculationpdt [

REMARK 1. A nice application of this theorem is a further proof of
the absolute continuity of the p.d. gf(I). In fact, under the hypotheses in
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Proposition 2, one haﬁR\{O}x—zg(x) dx = +o0 and this, applying a criterion
due to Tucker (1962), suffices to state the absolute continuity of the (infinitely
divisible) p.d. ofy (I).

5. Extension of the Markov—Krein identity: the Lauricella identity. In
Section 3, the so-called Markov—Krein identity has been obtained as an extension
of the Lauricella formulae (2.1) and (2.2) with= ¢ > 0. The Lauricella general
representations are now employed to prove an identity that holds for all(paifs
of strictly positive numbers. For the remainder of this section,

a+)
I ::/ exp—¢(wt; o, I}b(w; c,a — ¢) dw
0

is to be meant as the integral along the con@@G, as shown in Figure 1, of the
function exd—¢ (iwt; o, I)}b(w; ¢, a — ¢), where
b(w;c,a—rc) = &w“l(l —w)*c1
I'c)I'(a—c)
for everyw in C such that Réw) > 0 and Im(w) # 0 if Re(w) € (0, 1].

In view of the Cauchy integral theorem, this contour can be deformed into the
path of integration consisting of: (A) the straight line segment x — it with x
varying in (0,1 — ¢), (C) the circle 1+ ¢€? with 6 € (— + n, 7 — ), for a
suitablen > 0 and (&) the straight line segment = x +iz. Thus, ifc and(a — ¢)
are strictly positive, with(a — ¢) different from 12,..., one can lett — 0 to
obtain

. 1
(5.1) IL1=(1- ezﬂ'(“_c))/o exp{—¢(iwt; o, }b(w; ¢, a — ¢) dw.

This is required to state the following extension of point (iii) in Theorem 1, which
we shall callLauricella' s identity The symbolsB andu, appearing in this identity
have the same meaning as in Sections 2 and 3, respectively.

FiG. 1.
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THEOREM4. If, for someu > 0,« isinF,, then
(5.2) /R(l +itx) e (dx) = /[O y exp{—¢(iut; o, I}B(du; c,a — ¢)
ifa>c>0and |
[ @+ itn = na@

(5.3)
_Tlc—a+Dl(a) (3D
N 27l (c)

expl—¢ (iwt; o, D}w ™ (w — D4 Ldw
if c>a>0.

PROOFE First note that, if O< ¢ < a, the following equality holds true by
virtue of analytic continuation of both sides of (2.1) and (2.2):

/.;i)a(dgo):/ exp{—¢ (iut; oy, D}B(du; c,a — c).
P (1+itp(6n))° [0,1]

Next, argue as in the proof of Theorem 1 and apply the basic limit theorems of
integration theory to obtain (5.2).

Finally, suppose that > ¢ > 0 and use what has just been proved and (5.1) to
state the equality

/ 1 (dx) = I
B (L+ix)e @ T T "o
whena — ¢ # 1,2, .... Now, take Euler’s reflection formul& (z)I'(1 — z) =

m(sinz)~! to obtain

1
fR Tt

_T(c—a+Dl(a) 1+)

B 21T (c) 0
Notice that the right-hand side of the previous equality, as a function, i
analyticon{c € C:Re(c) > 0,Re(a —¢) ¢ {0, 1, 2,...}}. Hence, such an equality
can be extended to amywith ¢ > a. This completes the proof.C]

we(w — D Lexp—¢(iwt; o, 1)} dw.

The Lauricella identity establishes that the Stieltjes transform (of arde0)
of u, can be viewed as a mixture of the Stieltjes transforms (of arjlerf p.d.’s
of means of Dirichlet processes with parametg(-) := a{x : wx € -}. Apropos of
this, recall that

Fc—a+DI' (@) D
27l (c) 0
Compare, for example, 3.1.27 in Slater (1960).

wtw — D) Tdw =1.
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6. Applications of the previousresults.

6.1. Exactforms of the p.d. gfx@(dx). Much work has been done on the ex-
act form of the p.d. ofp(I). As the following arguments show, Lauricella’s identity
considerably simplifies the solution of the problem. First, rewrite Theorem 4 with
¢ =1 andx suchthatr{x} < «(R) for everyx. Denoting a density function fqr,,
by m, and settingL (w) := [ (w + x)~tmy (x) dx, one has

w_1/ expl—cuw Lo, D}B(du: La—1), ifa>1,
[0,1]

wlexp—c(w Y, 1), if g =1,

L =
) w1 — exp(2ri(a — })

1+)
X / exp{—{(uw‘l; o, D}b(u;1,a—1)du, if a e (0,1),
0

for everyw e C for which Im(w) # 0. Thus, the Stielties—Perron inversion formula
yields

( ]—llimlm " 1 exp{ ( L 1)}dx
HaltL Xm0 Ly Ca—ie) N
if a=1,

Mo (X1, x2]

a—1. x2 1
= limIm _—
T &el0 x1 (A —lg)

! u . a—2
X/O exp{—((_)\_ie,a,lﬂ(l—u) du di

if a > 1, and
//La(XJ_, x2]

Limim [ !
= —1lImim -
Z a0 ) A= @Dy (—a e

1+ w
x/ exp{—;( - ;a,l)}b(w;l,a—l)dwdk
0 —A—le

if @ € (0,1). In particular, wher: = 1, one obtains

&) 1 limIm = exp{ ( 1 I)}
mg(§) = — — —| i, ;
T el (=& —lg) 3 —£ —1le
if a > 1 and the saltus oA at each discontinuity point is strictly smaller than 1,
one has

1. 1 u
mot(é:) = ;ISI?(]) Immf[o’l]e)(p{—{<_g — ig,Ot, I)}B(du, 1,61 — 1)
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At this stage we can achieve the same results as in Proposition 9(ii) and (iii) of
Regazzini, Giglielmi and Di Nunno (2002), by a simple application of the change-
of-variable formula.

EXAMPLE 1. (a) Leta(dx) = Cy ,2(dx) be the Cauchy density function with
parameters € R ando > 0, that is,

o
714+ 02(x —0)32)

It is also convenient to identify’y +~, with the degenerate distributiosy. By
resorting to the expression af, given above when = 1, it is easily verified that,
foranyx in R,

Cy y2(dx) == dx, x eR.

1 e
my(x) = - exp{— /R\{x} log|p — x|C9,6(dp)} sm(z + arctarfo (x — 9)))
o o
T (14 02(x —6)?)

if o € (04 00), whereasu,, is degenerate & if o = 4+o00. In other terms, ifx

coincides withCy 2 for somet € R ando € (0, +-o0], thenu, = o, awell-known

result stated by Yamato (1984). In Section 6.2 the converse will be proved.
(b) If a(dx) = al(p 1)(x) dx with a > 1, then, for any¥ € (0, 1),

(@a—1A-g)+te*

me(§) =

du.

1 et (=5uya=2gin(gr (1 — £)(1 — u))
/o [(1—&)u + EJes+ad=u[(1 - £)(1— u)]*A-5HA-w

() If a(dx) =a(c21)~ 1exp{— > (x —0)?}dx, for anyo > 0,6 € R and
a > 1, then application of 2.6.22.1 |n Prudnikov, Brychkov and Marichev (1986)
yields

(a—Dgt

T
a-wsifarfi- o501
x/o(l—u) sinfam 1—d>< - )
a (& —ub)?
XeXp{—G\/ZeX —7214202 }

x a—((ua) 2-(/21 )w<; ; %)) u:l}d”’

for any & > 0, where® denotes the distribution function of a Gaussian random
variable with zero mean and variance equal to 1 @ni the Tricomi confluent

my(§) =
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hypergeometric function. On the other hand, letting 0, one has

-1 a—1
ey -~ 0D

X /Ol(l— )2 Sil’l|:arrfb<g ;:9)}

ex 9 ex (5 —u)?
x p{_a\/g %2 }

y %(WG)UZ—(U/@W(%’ %; (& ;au20)2)>

} du.
v=1

6.2. Characterization of the Cauchy distributionWe prove the characteriza-
tion of the Cauchy distribution already mentioned in Example 1(a). The proof is
based essentially on the result in Theorem 4. As in Theorefp B, the bijection
of M, onF,,.

THEOREMS5. The class of all fixed points of the bijectignis {C, ,2:6 € R,
o2 € (0, 4+00]}.

In other terms, itx € Fq, thenu, = « if and only if « is Cauchy or degenerate.
In Section 4 of Cifarelli and Regazzini (1990) another characterization is given
under stronger hypotheses, that is: A nondegenerate probability is a fixed point
of g, for every aif and only it is Cauchy.

PrROOF OFTHEOREM5. In the light of Example 1(a), it suffices to prove that

the condition $ necessary. Suppose that = « € F1. Thenu,, = o for every
n € N. Indeed, by the Markov—Krein identity,

1 .
(6.1) /- +iyoz<dy>=exp{— [ Iog<s+|y>a<dy>}

holds for everys € R \ {0} by virtue of the above hypothesis. Differentiate both
sides to obtain

| ! a(dy)zexp{— [ Iog<s+iy>a<dy>} | Ly
R (s +iy)? R RS+iy

:exp{—Z /R Iog(s+iy)o¢(a’y)} by (6.1).

Hence, the result holds true far= 2. Assume that it is valid for alkk < n. Then

[ eriretan =exef-a - [ logis +iviatan]
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and, by differentiation,

a(dy) =exp{—<n -1 [ loges +iy>a<dy>} [ ——aw@y

/ 1

R (s +iy)” s+iy

=exp{—n/ IOg(s—l-iy)a(dy)} [by (6.1).
R

By induction one can conclude that, = « for everyn > 1. Next, this statement
and Theorem 4, withh = 2 andc = 1, give

: : ' iut; n—2
n— 1/]% 1+itx Mna (dx) —/O exp{—¢(iut; no, 1}(L—u)" “du

where, by hypothesis,

/ ! <dx>=f L e(dx) = exp—c (it 1)),
R14irx" ™ R1+itx"© T

Hence,

! u\" 2
eXp{—{(il‘;O{, I)}:/ eXp{—g‘(iu;no{’ ])}(1__) du.
n—1 0 p
In particular, lettingz (it; &, I) = p(¢) andn = 2, one has
te_ﬂ(l‘) — /t e—Zp(x) dx, teR.
0

Differentiation of both sides gives?® — tp/(1)e?® = e=2°®) that s,
o) =log(1+ wt)

for somew € C. Hence, exp- [z l0g(s + ix)a(dx)} = (s + w)~1 holds true for
everys > 0, and by (6.1) one gets

(s+w)_1=/R(s+iy)_1oz(dy)=/O+ooe_”</];§e_igyoz(dy)) dé.

The left-hand side is the moment generating functioa d* Lo 1) (x) for every
s > —Re(w), implying e™"* = g€ "Ya(dy), for everyx > 0. Analogously,
e = [ e""a(dy) is valid for anyx < 0. Therefore,

a(dy) =Cp2(dy),  yeR,
whereo = 1/Im(w), Im(w) > 0 andd = Re(w). O
REMARK 2. Richard Olshen has drawn the attention of the authors to the

following problem. Let(X,),>1 be a sequence of exchangeable real-valued
random variables, whose p.H.is supposed to be characterized by

6.2) P(ALx - x Ay x R®) = /PP(Al) - p(A) Da(dp),
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nelN, Ay e B(R) for k =1,...,n, « being any element of';. Then, by
de Finetti's representation theorem and the strong law of large numbers for i.i.d.
random variables, one has

d

3 Xe/n — G| — 0‘@) -1 as.”P,
k=1

which entails
1 n
=Y Xi— f x@(dx) a.s.P.
i1 R

Thus, the limiting p.d. ofy_}_; Xi/n coincides with the law ofp(1), that is,
with . Moreover, recall that eacki; has p.da. A natural question is whether
the above limiting p.d. may coincide witta. An answer can be deduced from
Theorem 5, that istf (X,),>1 iS a sequence of exchangeable random variables
with a law characterized by6.2), then the limiting distribution of the empirical
mean} ;_, X;/n is « if and only if o« is an element of(Cy ,2:0 € R,0? €

(0, +o0]}.

7. Characteristic function of [ x@(dx). Letb,..., by be strictly positive
numbers such thdb| < a, and letxq, ..., x, be arbitrary real numbers. Erdélyi
(1937) defines a confluent form of the fourth Lauricella functjgin, through the
following limiting process:

WD, ..., by a;itxy, ..., itx,) = Iiirg) FD(e_l; bi,...,by;asistxy, ..., lstxy,),
&€

wheret is any real number. From (8.5) in Erdélyi (1937) and the definitiomef
we get
WD, ..., by a;itxy, ..., 1tx,)
_ I'(a)
~ T(by)---T By (a — |bl)

n
X / ulil_l,..uZn_l(l— |u|)a—b—1exp[it Zxkuk} duyq - -~ du,
T,

0 k=1
=i)a<exp{it/x<f)(dx)}>,

whereg is a Dirichlet process with parameterdefined bya{x;} = by, k = 1,
...,n,anda{0} = a — |b|. Hence,® can be viewed as the characteristic function
of the mean of a Dirichlet process with a parametsupported by a finite set.

The function,® admits an interesting representation, as a single contour
integral, which Erdélyi achieved by resorting to the following argument. Take the
Laplace transform of

¢*(0) = (T(a) Yo L@ (b1, ..., by a;itoxy, ..., itox,),
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namely,

+00
/ ¢*(0)e "% do
0

1 @ ptoe . -
= Fﬂa[%/o a“_lexp{—wa +ito /x(p(dx)} dai|

[Re&(w) > 0]
—/ ! Dy (do)
“Jrw—it fxgdxpa 2
1

w

_ir {1— iﬂ}_bk.
k=1

w4 w

== exp{— /R |og<1— I%)a(a’x)} [by Theorem 1]

The well-known complex inversion formula for the Laplace transform [see, e.g.,
Henrici (1991), page 278] yields

xa—l

I'(a)

:Doz (eiz‘([)([)) — 90*()6)

. 1 [v+R 1L itxg ) Pk
= |im —/ et — {1——} d 0,
R—+00 211 Jy—iR w4 n v V=

which, lettingx = 1, gives

L. B . y—+iR 1 n il —by
i)o,(e'"”“)):i,) lim ew—l_[{l—ﬁ} dw
2wi R—+o00Jy—iR we w
r ytico 1 it
= (a.)PV ew—exp{—g(——;a,l)}dw,
27i y—ioo w? w

PV/ denoting principal value integral Moreover, from the Cauchy integral
theorem, the path of integration can be deformed into any contour which consists
of a simple loop,¢;, beginning and ending atoo, and encircling all the finite
singularities of the integrand, that is;ifx;, ..., izx,. See Figure 2.

The above discussion leads to a first representation—under some restrictions—
for the characteristic function @f(1).

THEOREM 6. Letwa be a measure with a bounded supp8rt R, and, for
anyr in R, let S; be the closure of the convex hull ffx :x € S}. Then with
a=uoa(S) >0,

) T y+ioco 1 i
P ¢ w

2ri y—ioo w
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A

FiG. 2.

holds for everyy > 0. Moreoveyif €, is any contour consisting of a simple lqop
beginning and ending at oo, and encirclings; in such a way that; N ¢, = &,

then
feeroaan =52 [, vaeef-¢( i)
P w

27 Je, we

PROOF In view of the previous discussion, the statements are trueig
finite. More in general, ifS is bounded, resort to the approximating functigps
used in the proof of Theorem 1, to write

/eit‘”([)ﬁ)a(d(p)= lim /e"%"(fn)i)a(d(p)
P n—+oo Jp

F@ im [ & exp{ ( I I)}d
= — exXpy —¢ | ——; o, w.
27l n—+oo Jg, w4 ¢ w o

Next, interchanging limit and integral gives

) e¥ it ev it
lim —ex —;‘(——;ozn,l) dw = —ex —{(——;a, I) dw.
n—+oo Jg, w w ¢, wé w

Finally, by the Cauchy integral theorem, one has

» . ytioo g .
e—exp{—((—z;a,l)}dw:PV e—exp{—{(—z;a,l)}dw
¢, we w y—ico w4 w

foreveryy > 0. O

To deal with general parametezs assume that condition (ii) in Theorem 1 is
satisfied and, for ank in N, definea® as

a® () =8_r(a(—o0, —k] 4+ a(- N (=k, k) + 8 (Dalk, +00).
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It can be proved that the distribution gfx¢y(dx), where g, is the Dirichlet
process with parametef®), converges weakly to the mean of the Dirichlet process
with parametetr, ask tends to+oo. Hence, by the continuity theorem,

(7.1) / DD g (dp) — / dvD Dy (dp), 1eR k— +oo.
P P

From Theorem 6 it follows
. r y+ico g
(7.2) / DD (dp) = (“_)P —exp{ ;(—— a®, I)}d
P w

27T| y— oo wé

which proves

THEOREM7. Leta be ameasureiff,, for somez > 0. Then

AN

+ico gW i
= lim F(a_)PV ! e—exp{—g(—g;a(k),lﬂdw
w

k—+oo 2rmi y—ioco w4

(7.3)

holds for every in R and for any strictly positiver.

REMARK 3. Principal value integral in the right-hand side of (7.3) reduces to
Lebesgue integral & > 1. This is the case when, in the presence of exchangeable
observations, one is interested in the Fourier transform of any conditional p.d.
of ¢(I), given those observations.

As a first application of this result, consider the problem of characterizing
symmetric p.d.’s ilVl, for some fixed: > 0. It is well known that the p.d. @f(1),
underDy, is symmetric ifx is symmetric. See, for example, Regazzini, Guglielmi
and Di Nunno (2002). Here, in addition to a simple proof of this fact, we prove the
converse.

THEOREMS8. Leta be anelementiif,. Then the distribution, of the mean
of a Dirichlet process with parameteris symmetric if and only i is symmetric

PROOF Suppose that in F, is symmetric. Then, for any € N,
I y—Hoo W
(a.) & exp{ / Iog( ) dA® (x)} dw

2ri y ico w4

_lrw, V*'wiexp{ / Iog(l— —) (a— AW x))}

Zm y o W

which, by the change of variable= —x, can be shown to be equal to
I y—Hoo W
(a_) & exp{ / Iog(l + ) dA(k)(y)} dw,

2ri y ico w4
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thus implying, by virtue of Theorem 7, that the characteristic functio@ @ is
real-valued.
Conversely, ifi,, in M, is symmetric, one has

lim F(a,)PV yflmﬂexp{ /Io (1——) d(a _A(k)(_x))}dw

k—+o0 2r7i y—ioco w4

+ioco w
= |im F(a,)PV g —exp /Iog<1+—)dA(k)(x) dw

k—+oo 27mi y—ico w4
(by change of variable
r y+ico gWw i
= lim (a)P e—exp —/ Iog(l— It—x) dA® (x) § dw
k—+oo 27Ti y—ico w4 R w
(by symmetry ofi,,).

The proof is concluded by resorting to Theorem 2 (uniqueness).

Another application concerns the problem of determining the p.@.(@) =
J/ fd@, when ¢ has the functional Dirichlet distributio®,, and f is any
measurable real-valued function. Het®, can be understood as the functional
Dirichlet distribution of a random probability measufeon a probability space
(2, F); thatis,2 andF need not coincide witlR and B (R), respectively. In this
general frameworky must be afinite measure ¢f2, ¥) satisfyinga = «(2) > 0.
If f is bounded, then the discretization process used to prove Theorem 6 can be
applied to give
.. oo gW
i)a(eltm(f)) = l"(a.) y+ s exp{ / |Og<l— —)oe of~ (a’x)}
2ri y ico w4
allowing an obvious generalization of Theorem 8.

THEOREM 9. Let m be a random probability measure off2, ) with
distribution D,, and let f be a measurable function from2 to R such that
Jolog(1 + | f]) da < 4+00. Then the pd. of m(f) is the same as thegh of ¢(7),
whereg is a random probability measure ai, B8 (R)) with p.d. D, ;1.

8. Vector of means of a single Dirichlet process. Let (2, #, P) and D,
be those defined in the final part of the previous section, andgiilet ., f; be
measurable functions frof to R satisfying

8.1) /Iog(l+|fk|)da<+oo, k=1,....d.
Q

For anyt = (t1, ...,77) in RY, definea sy [with f = (f1,..., fz)] as the image
measure—defined ofR, B8 (R))—of «, through the measurable functiginf) :=
Z(jzl lj fj, that iS,

o fy =ao(t, f)_l
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If m is a random probability measure d®, ) with distribution D, then
Theorem 9 states that the p.d. of

d
;iz((t,f)):/Qszf, drit
j=1

coincides with the p.d. ofp(7), where ¢ is a random probability measure
on (R, 8(R)) having p.dDy,, -

8.1. Multidimensional Lauricella identity. These remarks, combined with
a straightforward application of Theorem 4, yields the followimgltidimen-
sional form of the Lauricella identitythat is: Supposg8.1) holds true with
a=a(2) > 0, and denote the p.d. @ (f1),...,m(fs)) by uqs. Then for any
t=(r1,...,17) in R?, one has

[———
Re (1410t x)e

= exp{—/ |Og(1+iu(t,f))da}B(du;c,a—c)
[0,1] Q

if a >c >0, and

Re (Lt )
_Tlc—a+DI'(a)

2il' (c)

(1+)
X/ ' eXp{_/ Iog(l"‘iw(t,f))da}wc_l(w — D Ldw
0 Q

if c>a>0.

This proposition ks also been proved in RegazziGuglielmi and Di Nunno
(2002) whena = ¢ and in Kerov and Tsilevich (1998) when= ¢ = 1. The
following sections illustrate two applications. The former concerns the proof
of absolute continuity, with respect to the Lebesgue measurBQrof 1 +.
Regarding this point, Firmani (2002) has determined a density functipg pby
inversion of the above identities with= 2, and for suitable choices ¢f and f».

The latter application deals with the problem of determining an expression for the
moment generating function of the variance of a Dirichlet process.

8.2. Absolute continuity oft, f. In view of Proposition 2 and of the remarks
at the beginning of this section, the p.d. @{(t, f)) is absolutely continuous
with respect to the Lebesgue measurebonf f := (f1,..., f4) is not affinely
a-degeneratethat is to say, there are noin R? \ {0} and b in R for which
af(v,f) = b} =a. As far as absolute continuity of, ¢ is concerned, the following
statement is valid.
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THEOREM 10. Suppose andf satisfy(8.1)and assume thdtis not affinely
a-degenerateThen the @. pq ¢ Of (m(f1), ..., m(fz)) is absolutely continuous
with respect to the Lebesgue measuréRdn

PROOF The contrapositive statement will be proved. Indeeduifs is
not absolutely continuous, there ase> 0 and, for everys > 0, a setA =

U,’f’lAk with A; = x?_,@”, b)), AinA; =@ if i #j, and A9(A) =
M, ® — a®) < 8, such thatD, (i (f) € A} = g 1(A) > e. Denote
the Lebesgue measure dﬁ?’ by 24 and choosey, ..., t; in such a way that

0<tj <min<g<y [Tic@n. . j—1.j+1.. (b(’) (’))/d. Then,
M d ,
Z Z I (b](c]) _ a(]) Z Z b(/) (]) <5
k=1j=1 k=1j=1

and, therefore, letting’ = |} l(tlaz )+ +tda,gd),t1b +- +tdb(d)) one

has),l(A) < M 121 11 —aly < 5. MoreoverA C {x e RY: (t,x) € A')
ande > 0 is such that, Wlth each > 0, one can associate a sét € 8(R)
satisfying AY(A’) < § and D, {m((t,f)) € A’} > ¢, contradicting the absolute
continuity of the p.d. ofu((t,f)). O

(€3]

8.3. Moment generating function of the varianceg@f If « satisfies condi-
tion (ii) in Theorem 1, then the random variance

5 = 2.
V= /R(x ¢(1)) @ (dx)

is finite, a.s.®,. Some of the results given in Section 7 are employed here
to determine an expression for the moment generating functign,of V.

The definition used fog; coincides with the one formulated, for instance, in
Section 13.5 in Fristedt and Gray (1997), so that

(8.2) gy(1)= Do (€)= Da(exp{—1(6(f2) — G(/D)D))). 1=0,

where f1(x) = x and f>(x) = x2 for everyx in R. After observing thae’™” is the
moment generating function, at of a Gaussian-distributed random variable with
zero mean and variance equal tQ &oply Fubini’s theorem to obtain

e—uz/(4t)i)a (emﬂ(fl)—"ﬂ(fz)) du.

1
227t Jr
If the support ofx is bounded, by using arguments similar to those employed in
the proof of Theorem 6 and by resorting to Theorem 9, with ufy, — tfo, it is
straightforward to prove that

Dy (ew(fl)—ﬂp(fz))

r Yu, (+ioo _
_rL@ PV e exp{ / |og< X )a(dx)} dz
2ri Vur ico 2%

gy(t) =




DIRICHLET PROCESS AND HYPERGEOMETRIC FUNCTIONS 1493
holds, provided thag, ; is any element of0, +o00) satisfying

Vur > SUp (ux — txz).
xesupfa)

The resulting expression for the moment generating function isf

V}/v,r“‘ioo el

M) e ’/4py — exp{—; (% a,tfy — yﬁfl) } dzdy

473/2 Jr Yyi—ioo Z

andy)’,’, is any element of0, +o00) satisfying

Vyu > SUP (yv/1x —1x?).
XESupfo)

An extension of this representation to cases in which the supperisarbitrary
can be obtained by considering the sequence of truncated meastitgs.1, as
defined in Section 7. Since the distribution of the variance of the Dirichlet process
with parametewr®) converges weakly to the distribution of the variance of the
Dirichlet process with parameter, ask tends to+oo, a continuity theorem for
moment generating functions yields

I'(a)
4773/?

gy ()=

. 2
% lim g /4

k—+o00 JR
Yy tioo 1
xPV/ ' —aexp{—g“(—;a(k),tfz—y«/;fl)}dzdy.
Y. V4

;.
vt —100 Z

See, for example, Fristedt and Gray [(1997), page 262].
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