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MODERATE DEVIATION PROBABILITIES FOR OPEN CONVEX
SETS: NONLOGARITHMIC BEHAVIOR

BY UWE EINMAHL 1 AND JAMES KUELBS2

Vrije Universiteit Brussel and University of Wisconsin

Precise asymptotics for moderate deviation probabilities are established
for open convex sets in both the finite- and infinite-dimensional settings. Our
results are based on the existence of dominating points for these sets, a related
representation formula, and asymptotics for the integral term in this formula.

1. Introduction. Let X,X1,X2, . . . be independent, identically distributed
random vectors whereL(X) = µ, andµ is a Borel probability measure on the real
separable Banach spaceB. Let Sn = ∑n

j=1Xj and assumeL(Sn/n1/2) converges
weakly. Then the limit lawγ is necessarily Gaussian with mean zero, andµ also
has mean zero. Let{bn} be a positive sequence such that

bn/n1/2 → ∞ and bn/n → 0.(1.1)

Here we study the asymptotic behavior of{P (Sn/bn ∈ A)} under (1.1). These
probabilities are frequently called moderate deviation probabilities, and there is a
long history of such results in the finite-dimensional setting. There are also results
in the infinite-dimensional setting, but only at the logarithmic level. In particular,
the results by Borovkov and Mogul’skii [6] and by de Acosta [9] are of this type.

Let B∗ denote the topological dual space ofB and define

µ̂(f ) =
∫
B

ef (x) dµ(x), f ∈ B∗,
(1.2)

γ̂ (f ) =
∫
B

ef (x) dγ (x), f ∈ B∗.

Sinceγ is centered Gaussian,γ̂ (f ) = exp{σ 2
f /2}, whereσ 2

f = ∫
B f 2(x) dγ (x).

Furthermore, it is well known that the rate function

λγ (x) = sup
f ∈B∗

[f (x) − log γ̂ (f )], x ∈ B,(1.3)
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is given by

λγ (x) =
{‖x‖2

γ /2, if x ∈ Hγ ⊂ B,

+∞, otherwise.
(1.4)

HereHγ is the Hilbert space generatingγ on B, that is, the completion ofS(B∗)
whereS :B∗ → B is given by the integral

Sf =
∫
B

xf (x) dγ (x), f ∈ B∗,(1.5)

in the norm determined by the inner product〈Sf,Sg〉γ = ∫
B f (x)g(x) dγ (x).

Sinceγ has moments of all order,Sf exists as a Bochner integral. Further details
can be found in Lemma 2.1 of [14].

Let D denote theB-closure ofD and∂D the boundary ofD. Throughout we
assume that

(i) D is an open convex subset ofB.

(ii) D ∩ Hγ 
= φ.

(iii) 0 /∈ D.

(1.6)

Since
∫
B et‖x‖ dγ(x) for all t > 0, then [12], Theorem 1, impliesD has a unique

dominating point with respect toγ (see also [15] and [16]). That is, there exists a
unique pointa0 ∈ ∂D such that

(i) λγ (a0) = infx∈D λγ (x) = infx∈D λγ (x) < ∞.

(ii) For someg ∈ B∗ we haveD ⊂ {x :g(x) ≥ g(a0)}.
(iii) λγ (a0) = g(a0) − log γ̂ (g) and

(iv) a0 = ∫
B x exp{g(x) − log γ̂ (g)}dγ (x), where the integral

exists as a Bochner integral.

(1.7)

Furthermore, if we apply the Hahn–Banach theorem and takef ∈ B∗ such that

sup
{z : λγ (z)≤λγ (a0)}

f (z) = f (a0) < f (x) ∀x ∈ D,(1.8)

then [12], Theorem 1, implies there exists a uniquet0 > 0 such thatg = t0f ,
satisfies (1.7)(ii)–(iv).

In [6], Borovkov and Mogul’skii prove the following result.

THEOREM A. Let X,X1,X2, . . . be i.i.d. B-valued with L(Sn/n1/2) converg-
ing weakly to the Gaussian measure γ and assume D is an open convex subset
of B. If {bn} satisfies (1.1)and

E
(
et|f (X)|) < ∞, 0 < |t| < tf ,f ∈ B∗,(1.9)

then

lim
n→∞nb−2

n logP (Sn/bn ∈ D) = − inf
x∈D

λγ (x),(1.10)

where λγ is given by (1.3).
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Under additional integrability assumptions, a full moderate deviation principle
for open and closed sets (in the sense of Varadhan) is established for{L(Sn/bn)}
by de Acosta in [9]. In addition, the papers [8] and [17] deal with necessary and
sufficient conditions for the upper bound for closed sets in the large deviation
principle for various sequences{bn}. These results are at the logarithmic level and
are quite different from what we establish in the results that follow.

Our interest here is to seek refinements of Theorem A which allow us to
study the behavior ofP (Sn/bn ∈ D) directly, not merely at the logarithmic
level. This will be done via a representation formula, which is elementary to
establish once one has dominating points, and is the analogue of a similar formula
in the large deviation setting. This representation formula becomes useful for
moderate deviation probabilities when, in addition tobn/n1/2 → ∞, we also
assumebn/n2/3 → 0. What we find is that is in this range, the moderate deviation
probabilities are much the same as those whenL(X) = γ . This is standard inR,
but less well understood in the vector space setting.

Our results depend on the shape ofD at the dominating pointa0 ∈ ∂D, and
the difficult part of our arguments involves establishing the appropriate lower
bounds. For upper bounds, replacingD by a half-space is frequently good enough
providedD is sufficiently round ata0.

As usual,an ∼ bn means limn an/bn = 1.

THEOREM 1. Let X,X1,X2, . . . , be i.i.d. B-valued random vectors, where
B is a separable Banach space, and set Sn = ∑n

j=1Xj . Assume {Sn/n1/2}
converges weakly to a nondegenerate probability measure γ on B, and that {bn}
is a sequence of positive constants such that

bn/n1/2 → ∞ and bn/n2/3 → 0.(1.11)

In addition, assume that D satisfies (1.6), (1.9)holds, a0 is the unique dominating
point for (D,γ ), and g = t0f is as in (1.7)and (1.8).Then

P (Sn/bn ∈ D)
(1.12)

∼ exp{−n−1b2
nλγ (a0)}E[

exp
{−g

(
Tn − E(Tn)

)}
I {Tn ∈ b2

nD/n}],
where Tn = bn

n

∑n
j=1Zn,j , and Z(n),Zn,1,Zn,2, . . . ,Zn,n are i.i.d. with Z(n) being

a B-valued random variable such that

dL(Z(n))

dµ
(x) = exp{g(bnx/n)}/µ̂(bng/n),(1.13)

and

E
(
Z(n)) = (bn/n)a0 + O(b2

n/n2).(1.14)

Furthermore,

lim sup
n→∞

n−1/2bnP (Sn/bn ∈ D)exp{n−1b2
nλγ (a0)} ≤ (2πσ 2

g )−1/2,(1.15)

where σ 2
g = E(g2(X)).
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To establish lower bounds comparable to (1.15) we need the following
definition.

DEFINITION 1. Assume (1.6) and leta0 be the unique dominating point ofD

with respect toγ . Then,D contains slices whose diameters neara0 dominate the
function τ (s) if for somef ∈ B∗ satisfying (1.8) there existsx0 ∈ B, andδ > 0
such thatf (x0) > 0, and

{y + sx0 :f (y) = 0,‖y‖ ≤ τ (s),0 < s ≤ δ} ⊂ D − a0.(1.16)

Our first lower bound result is the following theorem.

THEOREM 2. Let {bn} satisfy (1.11)and assume X,X1,X2, . . . , and {Sn} sat-
isfy the assumptions of Theorem 1. Also assume

E
(‖X‖3et|f (X)|) < ∞, 0 < |t| < tf ,f ∈ B∗(1.17)

and that D satisfies (1.6). Let a0 be the unique dominating point for (D,γ ) and
g = t0f be as in (1.7) and (1.8). If {∑n

j=1(Zn,j − E(Zn,j ))/n1/2} is bounded in
probability, where Zn,1,Zn,2, . . . ,Zn,n are as in Theorem 1 and D contains slices
whose diameters near a0 dominate the function τ (s) = β(s| logs|)1/2, β > 0, then

lim inf
n→∞ n−1/2bnP (Sn/bn ∈ D)exp{n−1b2

nλγ (a0)} > 0.(1.18)

We note that ifB is a Hilbert space or more generally a type 2 Banach space,
then the condition on stochastic boundedness follows easily from (1.17). Moreover
in the Hilbert space case, Theorem 2 can be improved as follows.

THEOREM 3. Let {bn} satisfy (1.11)and assume that X,X1,X2, . . . , are i.i.d.
random vectors taking values in a separable Hilbert space H with (1.17)holding
and E(X) = 0. Let D satisfy (1.6) and assume a0 is the unique dominating point
for (D,γ ). If D contains slices whose diameter near a0 dominate the power
function τ (s) = βs1/2, β > 0, then (1.18)holds.

We note that Theorem 3, in particular, applies ifD is a ball in a Hilbert space
satisfying (1.6). (This follows, for instance, from the proof of Theorem 3, [16].)

If H is R
d , then we can obtain more precise estimates of these moderate

deviation probabilities. This is our next result.

THEOREM 4. Let {bn} satisfy (1.11) and assume X,X1,X2, . . . , are i.i.d.
R

d -valued with L(Sn/n1/2) converging weakly to a Gaussian measure γ on R
d

with the support of γ all of R
d . Also assume

E
(
et|〈f,X〉|) < ∞, 0< t < tf , f ∈ R

d,(1.19)
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and let D be as in Theorem 3. Then

lim
n→∞P (Sn ∈ bnD)/P (G ∈ n−1/2bnD) = 1,(1.20)

where L(G) = γ .

If D is a ball we can extend the last result to infinite-dimensional Hilbert space
valued random vectors.

THEOREM 5. Let H be a separable Hilbert space and let X,X1,X2, . . . ,

be i.i.d. H -valued random vectors as in Theorem 3. Let G be a Gaussian random
vector on H with L(G) = γ . If D = {x :‖x − a‖ < R} is a ball in H satisfying
(1.6.ii) and (1.6.iii), where ‖ · ‖ is the Hilbert space norm on H, then we have, for
any sequence {bn} satisfying (1.11),

lim
n→∞P (Sn ∈ bnD)/P (G ∈ n−1/2bnD) = 1.(1.21)

Furthermore, both probabilities are asymptotically equivalent to the quantity

(2πσ 2
g b2

n/n)−1/2 exp{−n−1b2
nλγ (a0)}

∫ ∞
0

e−sP (‖G2‖2 ≤ 2sbR2) ds,(1.22)

where a0 is the unique dominating point for (D,γ ) and g = t0f is as in
(1.7)and (1.8), 1/b = g(a − a0), σ 2

g = E(g2(X)), and G2 = G−G1 is a centered
Gaussian random vector on H with G1 = g(G)E(Gg(G))/σ 2

g .

The remaining part of the paper is organized as follows: We prove Theorem 1
in Section 2. Then we prove Theorem 2 in Section 3, where we use modifications
of arguments from [12] whenbn = n. The proof of Theorem 3 appears in Sections
4 and 5, and follows from Proposition 1, which depends on a Berry–Esseen result
for U -statistics from [1]. Whenbn = n, the analogue of Proposition 1 in [12] was
proved via a Berry–Esseen result forU -statistics due to van Zwet [19], but this
result is no longer applicable when limn bn/n = 0. Hence, we developed a direct
approach (independent ofU -statistics) for proving Proposition 1 in this setting.
A refinement of this method allowed us also to eventually prove Proposition 2,
which is crucial for obtaining the precise results for balls in Hilbert space given
in Theorem 5. Subsequent discussions with V. Bentkus made us aware of some
recent improvements of van Zwet’s Berry–Esseen inequality forU -statistics which
appear in [1] and [2]. Once we had these results at our disposal, the proof of
Proposition 1 now follows along lines similar to the companion result in [12].
However, the exact asymptotics given in Proposition 2 do not follow in this manner
and our “direct” method is still needed for obtaining Theorem 5. Theorem 4 is
proved in Section 6, and Theorem 5 in Sections 7 and 8. Both of these theorems
provide exact asymptotics for certain open convex sets. In view of relation (1.12)
this requires a precise comparison of

E
[
exp

{−g
(
Tn − E(Tn)

)}
I {Tn ∈ b2

nD/n}]
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with a corresponding expectation involving Gaussian random vectors.
To that end, we use, in the finite-dimensional case, an estimate of the

convergence speed in the multivariate central limit theorem due to Zaitsev [20]
among other tools.

The proof of Theorem 5 (open balls in Hilbert space) is based on Proposition 2
in Section 7. One can rewrite the above expectation as an integral with respect to
the two-dimensional distribution of(‖Sn/n1/2‖2, f (Sn/n1/2)), wheref :H → R

is a continuous linear functional. We then show that this distribution is close
to that of (‖Yn‖2, f (Yn)), whereYn is an appropriate Gaussian random vector.
To accomplish this we need, among other things, a local limit result for a smoothed
and truncated version of(‖Sn/n1/2‖2, f (Sn/n1/2)), see Lemma 18. To prove this
result we use an adaptation of the characteristic function method for proving
Berry–Esseen type results in Hilbert space. For a nice account of this method
refer to [3].

2. Proof of Theorem 1. The proof of Theorem 1 proceeds with a sequence of
lemmas. Throughout this section the conditions of Theorem 1 are assumed. Also
note that sinceD satisfies (1.6), andg = t0f relates toa0 as in (1.7) and (1.8),
we haveσ 2

g = E(g2(X)) > 0.

LEMMA 1. Let Z(n) be defined as in (1.13),where µ = L(X) and g = t0f ∈
B∗ is related to the dominating point a0 is in (1.7)and (1.8).Then

E
(
Z(n)

) = bn

n
a0 + O

(
b2
n

n2

)
,(2.1)

σ 2
g,n:= E

(
g2(Z(n) − E

(
Z(n)

))) = σ 2
g + O

(
bn

n

)
and(2.2)

a0 = E
(
Xg(X)

)
.(2.3)

PROOF. First observe that since{Sn/n1/2} converges weakly toγ , then
µ and γ must have the same covariance function,γ is a mean zero Gaussian
measure,E‖X‖2−ε < ∞ for all ε > 0, andE(X) = 0. Hence,

E
(
Xg(X)

) =
∫
B

xg(x) dγ (x).(2.4)

If h = Sg, S given by (1.5), andL(Y ) = γ , then the Cameron–Martin for-
mula implies

h = E(Y + h) =
∫
B
(x + h)dγ (x) =

∫
B

xeg(x)−σ2
g /2dγ (x).(2.5)

Hence, (2.4), (2.5) and (1.7)(iv) implyh = Sg = a0 and (2.3) holds.
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To verify (2.1) we first observe that sinceE(X) = 0,

µ̂

(
bng

n

)
= E

(
eg(bnX/n)

)
= E

(
1+ bn

n
g(X) + 1

2

(
bn

n

)2

g2(X)eθ(g(bnX/n))

)
,(2.6)

= 1+ b2
n

2n2
E

(
g2(X)eθbng(X)/n

)
,

where|θ | ≤ 1 by Taylor’s formula. SinceE(‖X‖2−ε) < ∞ and (1.9) is assumed,
Hölder’s inequality impliesE(‖X‖e|g(bnX/n)|) exists forn sufficiently large. Thus,
E(Xeg(bnX/n)) exists as a Bochner integral for suchn and sinceE(X) = 0, we
have that∥∥∥∥E(

Xeg(bnX/n)
) − bn

n
a0

∥∥∥∥ =
∥∥∥∥E(

Xeg(bnX/n)
) − E

(
X

(
1+ bng(X)

n

))∥∥∥∥
(2.7)

≤ b2
n

2n2
E

(‖X‖g2(X)e|g(bnX/n|).
In (2.7) we used (2.3), and ifn is large enough, the integralE(Xg2(X)e|g(bnX/n|)
exists as a Bochner integral by an argument similar to that mentioned prior to (2.7).
SinceE(Z(n)) = E(Xeg(bnX/n))/µ̂(bng/n), we have (2.1) becausebn/n → 0 and
the dominated convergence theorem applies. To prove (2.2), we observe

E
(
g2(Z(n)

)) = E
(
g2(X)eg(bnX/n)

)/
µ̂(bng/n)

(2.8)
= E

(
g2(X) + bn

n
g3(X)eθg(bnX/n)

)/
µ̂

(
bng

n

)
,

where |θ | ≤ 1. Hence, by (2.6), (2.1) and the dominated convergence theorem,
bn/n → 0 implies (2.2). �

LEMMA 2. If (1.1)holds, then

lim
n→∞nb−2

n logE
(
ef (bnSn/n)

) = E
(
f 2(X)

)/
2(2.9)

for all f ∈ B∗. Furthermore,

b2
nn

−1[E(
f 2(X)

)/
2− nb−2

n logE
(
ef (bnSn/n)

)] = O(b3
n/n2).(2.10)

PROOF. SinceX,X1,X2, . . . are i.i.d., the argument for (2.6) implies

logE
(
ef (bnSn/n)

) = n logE
(
ef (bnX/n)

)
= n log

(
1+ b2

n

2n2
E

(
f 2(X)

) + b3
n

6n3
E

(
f 2(X)eθf (bnX/n)

))
,
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where|θ | ≤ 1 andf ∈ B∗. Hence, by the dominated convergence theorem and that
log(1+ x) = x + O(x2) asx → 0, we see

logE
(
ef (bnSn/n)) = b2

n

2n
E

(
f 2(X)

) + O

(
b3
n

n2

)
asn → ∞. Hence, (2.9) and (2.10) hold.�

LEMMA 3. Let D satisfy (1.6) and assume a0 is the dominating point
for (D,γ ) with g = t0f ∈ B∗ as in (1.7)and (1.8).Then

P (Sn/bn ∈ D)

= exp
{−b2

nn
−1λγ (a0) − b2

nn
−1[log γ̂ (g) − nb−2

n logE
(
eg(bnSn/n)

)]}
Jn,

where

Jn = E
(
exp{−b2

nn
−1g(Sn/bn − a0)}

(2.11) × eg(bnSn/n)I (Sn/bn ∈ D)
)/

E
(
eg(bnSn/n)

)
.

Furthermore, if bn = o(n2/3), then

P (Sn/bn ∈ D) ∼ exp{−b2
nn

−1λγ (a0)}Jn(2.12)

and

Jn ∼ E
(
e−g(Tn−E(Tn))I (Tn ∈ b2

nD/n)
)
,(2.13)

where Tn = bn

n
(Zn,1 + · · · + Zn,n) and Zn,1,Zn,2, . . . are i.i.d. copies of Z(n) as

defined in (1.13).

PROOF. The proof of the representation formula forP (Sn/bn ∈ D) and (2.11)
is simple algebra once one takes into account (1.7)(iii). Furthermore,
if bn = o(n2/3), then (2.10) with f = g implies (2.12) since loĝγ (g) =
1
2

∫
B g2(x) dγ (x) = 1

2

∫
B g2(x) dµ(x).

To verify (2.13) we observe that

Jn =
∫
Bn

exp
{−g(x1 + · · · + xn)bn/n + b2

nn
−1g(a0)

}
× I (x1 + · · · + xn ∈ bnD)dρ(x1) · · ·dρ(xn),

whereρ = L(Z(n)). Thus,

Jn = E
(
exp{−g(Tn) + b2

nn
−1g(a0)}I (Tn ∈ b2

nn
−1D)

)
= exp

{
g
(
b2
nn

−1a0 − E(Tn)
)}

E
(
exp

{−g
(
Tn − E(Tn)

)}
I (Tn ∈ b2

nn
−1D)

)
.

Now (2.1) impliesE(Tn) = (b2
n/n)a0 + O(b3

n/n2), and, hence, ifbn = o(n2/3),
(2.13) holds. �
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Combining the lemmas. Since (1.14) follows from Lemma 1 and (2.12) and
(2.13) of Lemma 3 imply (1.12), Theorem 1 will follow once (1.15) is shown to
hold. Using (1.12) we will have (1.15) provided

lim sup
n→∞

n−1/2bnE
(
e−g(Tn−E(Tn))I (Tn ∈ b2

nD/n)
) ≤ (2πσ 2

g )−1/2.(2.14)

Now

In ≡ E

[
e−g(Tn−E(Tn))I

(
Tn ∈ b2

nD

n

)]
= E

[
e−g(Tn−E(Tn))I

(
Tn − E(Tn) ∈ b2

n

n

(
D − nb−2

n E(Tn)
))]

(2.15)

= E

[
e−g(Tn−E(Tn))I

(
Tn − E(Tn) ∈ b2

n

n
(D − a0) + O

(
b3
n

n2

))]
,

where the last equality follows from (1.14) and thatTn = bn

n
(Zn,1 + · · · + Zn,n).

If σ 2
Tn

= (b2
n/n)σ 2

g,n denotes the variance ofg(Tn), then

In ≤ E
(
e−g(Tn−E(Tn))I

(
g(Tn − E(Tn)

)/
σTn ≥ O(b3

n/n2)/σTn

)
,

sinceg(x) ≥ 0 for all x ∈ D − a0. Here the termO(b3
n/n2) may be positive or

negative andσTn → ∞. Therefore,

In ≤
∫
]−αn,∞[

e−σTnu dFn(u),

where 0≤ αn = O(b2
n/n3/2) andFn denotes the distribution function ofg(Tn −

E(Tn))/σTn . Thus, with �(u) the distribution function of a standard normal
random variable, we have

In ≤
∫
]−αn,∞[

∫
[u,∞[

σTne
−σTnx dx dFn(u)

=
∫
]−αn,∞[

(
Fn(x) − Fn(−αn)

)
σTne

−σTnx dx

≤
∫
]−αn,∞[

(
�(x) − �(−αn)

)
σTne

−σTnx dx

+ CBEeσTnαnE
(∣∣g(

Z(n))∣∣3)/(√
nσ 3

g,n

)
=

∫
]−αn,∞[

e−σTnu d�(u) + CBEeσTnαnE
(∣∣g(

Z(n))∣∣3)/(√
nσ 3

g,n

)
by the Berry–Esseen theorem. Taking into account thatσTn → ∞ and αn → 0
asn → ∞, it follows after an elementary calculation that, for large enoughn,∫ ∞

−αn

e−σTnu d�(u) = e
σ2

Tn
/2(1− �

(
σTn − αn

))
≤ e

σ2
Tn

/2
e−(σTn−αn)2/2/{(

σTn − αn

)√
2π

}
≤ 1√

2π
eσTnαn

/(
σTn − αn

)
.
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Recalling (1.1) and (2.2), we see thatσTnαn → 0. Moreover, it follows that
σTn ∼ σgbn/

√
n asn → ∞. Thus, we have for allδ > 0 if n ≥ n(δ),

In ≤ (2πσ 2
g )−1/2n1/2b−1

n (1+ δ)[1+ o(1)].
The last inequality follows sinceE(|g(Z(n))|3) ∼ E(|g(X)|3), σg,n → σg and
bn

n
→ 0. Sinceδ > 0 is arbitrary, we have (2.14) and Theorem 1 is proved.

3. Proof of Theorem 2. Applying (1.12), relation (1.18) and, consequently,
Theorem 2 will follow if we show

lim inf
n→∞ n−1/2bnE

(
e−g(Tn−E(Tn))I (Tn ∈ b2

nD/n)
)
> 0.(3.0)

Since 0/∈ D and D contains slices neara0 whose diameters dominateτ (s) =
β(s| logs|)1/2 for 0 < s ≤ δ, we have

Ms ∩ (D − a0) ⊃ {y + sx0 :y ∈ M0,‖y‖ ≤ τ (s)}, 0 < s ≤ δ,(3.1)

where

Ms = {x :g(x) = sg(x0)}, x0 ∈ B,g(x0) > 0, δ > 0, β > 0.

Hereg = t0f ∈ B∗ is related to the dominating pointa0 of D with respect toγ as
in (1.7) and (1.8). Thus, by rescaling (3.1) withr = st,0 < s ≤ δ, we have

Mr ∩ t (D − a0)

= Mst ∩ t (D − a0)

= t (Ms ∩ D − a0) ⊃ {t (y + sx0) :y ∈ M0,‖y‖ ≤ τ (s)}(3.2)

= {w + rx0 :w/t ∈ M0,‖w/t‖ ≤ τ (r/t)}
= {

w + rx0 :w ∈ M0,‖w‖ ≤ βt1/2(r| logr/t|)1/2}.
Hence,

t (D − a0) ⊃ {
x = w + rx0 : w ∈ M0,0< r ≤ tδ,

(3.3)
‖w‖ ≤ βt1/2(r| logr/t|)1/2}.

Settingπg(x) = g(x)/g(x0), we seex − πg(x)x0 ∈ M0, and, thus, (3.3) implies

t (D − a0) ⊃ {
x = x − πg(x)x0 + πg(x)x0 : 0 < πg(x) ≤ tδ,

(3.4)
‖x − πg(x)x0‖ ≤ βt1/2(∣∣πg(x) log

(
πg(x)/t

)∣∣)1/2}
.

Recall thatT̃n = Tn−E(Tn). Now (1.14) implies thatE(Tn) = b2
na0/n+λn, where

‖λn‖ = O(b3
n/n2), and, therefore, we have

E

(
e−g(Tn−E(Tn))I

(
Tn ∈ b2

n

n
D

))
= E

(
e−g(T̃n)I

(
T̃n ∈ b2

n

n
(D − a0) + λn

))
.(3.5)
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Then, for 0< A < B,

θn = (∣∣πg(T̃n − λn) log
(
πg(T̃n − λn)n/b2

n

)∣∣)1/2
,

ψn =
(

b2
n

n

)1/2( A

2g(x0)

)1/2∣∣∣∣ log
2Bn

g(x0)b
2
n

∣∣∣∣1/2

andt = b2
n/n in (3.4) implies forn sufficiently large that

e2BE
(
e−g(T̃n)I

(
T̃n ∈ n−1b2

n(D − a0) + λn

))
≥ P

(
A

2
< g(T̃n) < 2B, T̃n − λn ∈ n−1b2

n(D − a0)

)

≥ P

(
A

2
< g(T̃n) < 2B,0 < πg(T̃n − λn) ≤ b2

nδ

n
,

(3.6)

‖(T̃n − λn) − πg(T̃n − λn)x0‖ ≤ β

(
b2
n

n

)1/2

θn

)
≥ P

(
A < g(T̃n) < B,‖T̃n − πg(T̃n)x0‖ ≤ βψn − ‖λn − πg(λn)x0‖)

≥ P

(
A < g(T̃n) < B,‖T̃n − πg(T̃n)x0‖ ≤ β

2
ψn

)
.

The third inequality in (3.6) requiresn sufficiently large so thatA < g(T̃n) < B

impliesA/(2g(x0)) < πg(T̃n − λn) < 2B/g(x0) ≤ b2
nδ

n
and this is immediate since

λn → 0, πg(x) = g(x)
g(x0)

, andb2
n/n → ∞. The last inequality requiresn sufficiently

large so that

‖λn − πg(λn)x0‖ ≤ β

2

(
b2
n

n

)1/2( A

2g(x0)

)1/2∣∣∣∣log
(

2Bn

g(x0)b2
n

)∣∣∣∣1/2

and this is trivial since‖λn‖ → 0 andb2
n/n → ∞. Thus, forn sufficiently large,

e2BE
(
e−g(T̃n)I

(
T̃n ∈ n−1b2

n(D − a0) + λn

))
≥ P

(
A < g(T̃n) < B

)
(3.7)

− P

(
‖T̃n − πg(T̃n)x0‖

>
β

2

(
b2
n

n

)1/2( A

2g(x0)

)1/2∣∣∣∣log
2Bn

g(x0)b2
n

∣∣∣∣1/2)
.

Defining againσ 2
g = E(g2(X)) andσ 2

g,n = E(g2(Z(n) − E(Z(n)))), it is evident

thatσ 2
n ≡ σ 2

g(T̃n)
= b2

n
n

σ 2
g,n and the Berry–Esseen theorem implies that uniformly in
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u ≤ v andn ≥ 1,∣∣P (
u/σn < g(T̃n)/σn < v/σn

) − P (u/σn < G < v/σn)
∣∣

≤ CBEE
(∣∣g(

Z(n))∣∣3)/(
σ 3

g,n

√
n

)
,

whereG is standard normal. NowE(|g(Z(n))|3) ∼ E(|g(X)|3) andσg,n ∼ σg > 0
asn → ∞. We thus have for largen,

P
(
u/σn < g(T̃n)/σn < v/σn

)
≥ P (u/σn < G < v/σn) − 2CBEE

(|g(X)|3)/(
σ 3

g

√
n

)
.

Sinceσn → ∞, we have

P (u/σn < G < v/σn) ∼ (v − u)/(2πσ 2
n )1/2

and, therefore, if(v − u)/(2π)1/2 > 4CBEE(|g(X)|3)/σ 3
g we have

P (u/σn < G < v/σn) ≥ (1/2)(v − u)/(2πb2
nσ

2
g /n)1/2

becauseb2
n/n < n. TakingA = u, B = v, we have

P
(
A < g(T̃n) < B

) ≥ (1/2)(B − A)n1/2/(2πσ 2
g b2

n)
1/2,(3.8)

for all n sufficiently large.
We now need an upper bound for

P
(‖T̃n − πg(T̃n)x0‖ > (β/2)ψn

) ≤ P
(‖T̃n‖ ≥ (β/2K)ψn

)
,

where K = ‖Q‖ < ∞ and Q :B → B is the continuous operator given by
Q(x) = x − πg(x)x0, x ∈ B.

To that end we first derive an upper bound forE(‖T̃n‖) where the following
lemma comes in handy.

LEMMA 4. Let Y1, . . . , Yn be i.i.d. random variables. Assume that

P

{∥∥∥∥∥
n∑

j=1

Yj

∥∥∥∥∥ ≥ t0

}
≤ 10−4.

Then we have

E

(∥∥∥∥∥
n∑

j=1

Yj

∥∥∥∥∥
)

≤ 122E
(

max
1≤j≤n

‖Yj‖
)

+ 104t0.

PROOF. Using inequality (1.2.4) on page 10 in [10] withs = t = u, it
follows that

P

{∥∥∥∥∥
n∑

j=1

Yj

∥∥∥∥∥ > 61s

}
≤ P

{
max

1≤j≤n
‖Yj‖ > s

}
+ 81

(
P

{∥∥∥∥∥
n∑

j=1

Yj

∥∥∥∥∥ > s

})2
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from which the moment inequality readily follows after integration by parts.�

Since T̃n = Tn − E(Tn) with Tn = bn

n
(Zn,1 + · · · + Zn,n), we have that

{T̃n/(b
2
n/n)1/2} is bounded in probability and Lemma 4, in conjunction with the

Hölder inequality, implies for someα > 0,

lim sup
n→∞

E‖T̃n‖/(b2
n/n)1/2 ≤ 104α,(3.9)

using thatE(max1≤j≤n ‖Zn,j‖3)1/3 ≤ n1/3E(‖Z(n)‖3)1/3 ∼ n1/3E(‖X‖3)1/3.
Thus, the Fuk–Nagaev inequality as given in [11], page 338, and that

| log(n/b2
n)| → ∞ implies

P
(‖T̃n‖ > (β/2K)ψn

)
≤ 9 · 211t−3E

(∥∥Z(n)
∥∥3)/

n1/2 + exp
{−t2/(

96E
∥∥Z(n)

∥∥2)}
,

wheret = (β/2K)(A/(2g(x0)))
1/2| log(2Bn/g(x0)b

2
n)|1/2.

SinceE‖Z(n)‖3 → E‖X‖3 andE(‖Z(n)‖2) → E‖X‖2, we see that by taking
B = 2A andA sufficiently large so thatβ2A/(8g(x0)) > 192K2E‖X‖2, then this
last probability iso((bn/n1/2)−1) asn → ∞. Recalling (3.7) and (3.8), we can
conclude that

e2BE
(
e−g(T̃n)I

(
T̃n ∈ n−1b2

n(D − a0) + λn

)) ≥ A
/(

4(2πσ 2
g b2

n/n)1/2)
for n sufficiently large. Thus, (3.0) holds and Theorem 2 is established.

4. Proof of Theorem 3. Let a0 be the unique dominating point of(D,γ ) and
g = t0f ∈ B∗ be related toa0 as in (1.7) and (1.8). LetTn = bn

n
(Zn,1 + · · · + Zn,n)

andT̃n = Tn − E(Tn) as before. As in the previous section we have to prove that

lim inf
n→∞ n−1/2bnE

(
e−g(T̃n)I (Tn ∈ b2

nD/n)
)
> 0.(4.1)

Under the present assumption on the setD we obtain by the same argument as in
Section 3 that

t (D − a0) ⊃ {
x = x − πg(x)x0 + πg(x)x0 :

(4.2)
0 < πg(x) ≤ tδ,‖x − πg(x)x0‖ ≤ βt1/2|πg(x)|1/2}.

Using again the fact thatETn = b2
na0/n + λn, whereλn ∈ H,λn → 0, we have for

anyA > 0 that

E
(
e−g(T̃n)I (Tn ∈ b2

nD/n)
)

= E
(
e−g(T̃n)I

(
T̃n ∈ n−1b2

n(D − a0) + λn

))
≥ e−2AP

{
A < g(T̃n) < 2A,0< πg(T̃n − λn) ≤ b2

nδ/n,(4.3)

‖(T̃n − λn) − πg(T̃n − λn)x0‖
≤ β(bn/n1/2)|πg(T̃n − λn)|1/2},
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which is forn sufficiently large, greater than or equal to

e−2AP
{
A < g(T̃n) < 2A,

‖(T̃n − λn) − πg(T̃n − λn)x0‖ ≤ β(bn/n1/2)|πg(T̃n − λn)|1/2}.
This follows sinceπg(λn) → 0 andb2

n/n → ∞ imply eventually

{A < g(T̃n) < 2A} ⊂ {
0< πg(T̃n − λn) ≤ b2

nδ/n
}
.

Next, observe that also eventually

{g(T̃n) < 2A} ⊂ {‖x0‖|πg(T̃n)|1/2 ≤ (β/4)bn/n1/2},
which along with the fact that‖λn‖ → 0 implies for largen

P
{
A < g(T̃n) < 2A,

‖(T̃n − λn) − πg(T̃n − λn)x0‖ ≤ β(bn/n1/2)|πg(T̃n − λn)|1/2}
≥ P

{
A < g(T̃n) < 2A,‖T̃n‖ ≤ (β/2)(bn/n1/2)|πg(T̃n − λn)|1/2}.

Moreover, we have on the event{g(T̃n) > A} eventually, |πg(T̃n − λn)| ≥
|πg(T̃n)|/2, hence, the last probability is, for largen,

≥ P
{
A < g(T̃n) < 2A,‖T̃n‖ ≤ (β/3)(bn/n1/2)|πg(T̃n)|1/2}.

Recalling (4.3), we see that for large enoughn,

E
(
e−g(T̃n)I (Tn ∈ b2

nD/n)
)

≥ e−2A
[
P {A < g(T̃n) < 2A}(4.4)

−P
{‖T̃n‖ > (β/3)(bn/n1/2)|πg(T̃n)|1/2, πg(T̃n) ≥ 0

}]
.

In view of (3.8) we have ifA > 4CBE
√

2πE(|g(X)|3)/σ 3
g for largen,

P
(
A < g(T̃n) < 2A

) ≥ (1/2)An1/2/(2πσ 2
g b2

n)
1/2.

Hence, by takingA sufficiently large we will have (4.1), provided we show

lim sup
n→∞

bn

n1/2P
(‖T̃n‖2 >

β2

9

(
n−1b2

nπg(T̃n)
)
, πg(T̃n) ≥ 0

)
< ∞.(4.5)

This will follow from the proposition below. Therefore, by combining
(4.4) and (4.5) we have (4.1), and Theorem 3 is proved.�
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5. Proof of (4.5). We will obtain a slightly more general result than needed.

PROPOSITION 1. Let Xn,1, . . . ,Xn,n, n ≥ 1, be a triangular array of row-
wise i.i.d. random vectors with values in the Hilbert space H such that
E(Xn,1) = 0 and supn≥1 E(‖Xn,1‖3) ≤ M . Let ρn → ∞ such that ρn =
O(n1/2), ‖a‖ = 1, f (x) = 〈x, a〉, and assume that infn≥1 E(f 2(Xn,1)) ≥ δ2 > 0.
If Sn = ∑n

i=1 Xn,i , then

lim
n

ρnP
(‖Sn/n1/2‖2 > ρnf (Sn/n1/2), f (Sn) ≥ 0

)
< ∞.(5.1)

REMARK 1. It is easily checked that we can apply the above proposition with
Xn,i = Zn,i − EZn,i , 1 ≤ i ≤ n, n ≥ 1, so that this result indeed implies (4.4).
[Recall that T̃n = (bn/n)

∑n
i=1(Zn,i − EZn,i).] The linear functionalπg(x) =

g(x)/g(x0) can, of course, be normalized to have norm one without loss
of generality.

REMARK 2. In the special caseρn = n1/2, Proposition 1 above follows from
Proposition 1 in [12] since

P
(‖Sn/n1/2‖2 > ρnf (Sn/n1/2), f (Sn) ≥ 0

)
(5.2)

= P
(
f (Sn) ≥ 0

) − P
(‖Sn/n1/2‖2 ≤ ρnf (Sn/n1/2), f (Sn) ≥ 0

)
.

REMARK 3. If ρn = O(n1/2/(logn)3), Proposition 1 also follows from
Proposition 2 below (see Remark 6). Given that we consider in this paper only
sequencesρn of order o(n1/6), this is more than sufficient for the proof of
Theorem 3. We chose to include the proof viaU -statistics as it allows a slightly
largerρn which may be of future use.

PROOF OFPROPOSITION1. In view of (5.2) it suffices to show that under the
assumptions of Proposition 1 we have∣∣P (‖Sn/n1/2‖2 ≤ ρnf (Sn/n1/2)

) − 1/2
∣∣ = O(ρ−1

n ).

This follows by applying the version of Theorem 1 of Alberink appearing on
page 522 of [1]. Applying this result exactly as in the proof of Proposition 1 in [12],
one obtains after some obvious modifications Proposition 1 above.�

6. Proof of Theorem 4. We prove this result ford ≥ 2 only, though our proof
can be modified to include the cased = 1 as well. However, in this case the result
is well known and it can be proved more directly.

First observe thatHµ = R
d and (1.19) implies thatE(et‖X‖) < ∞ for some

t > 0, where‖ · ‖ is the usual Euclidean norm onRd . Hence, all possible moments
of X are finite, and Theorem 1 implies

P (Sn/bn ∈ D) ∼ exp{−n−1b2
nλγ (a0)}In,(6.1)



MODERATE DEVIATION PROBABILITIES 1331

where

In = E
(
e−g(Tn−E(Tn))I (Tn ∈ b2

nD/n)
)
.(6.2)

Recalling (1.14) and thatTn = bn

n
(Zn,1 + · · · + Zn,n), we also have

In = E
(
e−g(Tn−E(Tn))I

(
Tn − E(Tn) ∈ b2

nn
−1(D − a0) + αn

))
,(6.3)

whereαn is a deterministic vector such thatαn = b2
nn

−1a0 − E(Tn) and‖αn‖ =
O(b3

n/n2) = o(1). Nown1/2b−1
n (Tn −E(Tn)) = ∑n

j=1(Zn,j −E(Zn,j ))/n1/2 and,

hence, if G′
n is a mean zero Gaussian random vector with values inR

d and
cov(G′

n) = cov(Z(n)), thenn1/2b−1
n (Tn − E(Tn)) can be approximated byG′

n.
In particular, if we use the main result of Zaitsev [20] we have ifn is large enough
for ε > 0 and all Borel-subsetsA of R

d ,

P
(
n1/2b−1

n

(
Tn − E(Tn)

) ∈ A
) ≤ P (G′

n ∈ Aε) + c1 exp(−c2n
1/2ε/τ ),(6.4)

where as usualAε = {x ∈ R
d :∃y ∈ A :‖x − y‖ < ε}. Here c1, c2 are positive

constants depending ond , andτ > 0 depends on the distribution ofX. To see this
we note that fromE(e‖X‖/τ ) < ∞ for τ sufficiently large anddL(Z(n))/dµ(x) =
eg(bnx/n)−logµ̂(bng/n) with bn/n → 0, it follows that the distributions ofZ(n) satisfy
the hypothesis of Theorem 1.1 of Zaitsev [20] forn ≥ n0 andτ sufficiently large.
This requires an elementary argument which we leave for the reader.

Hence, if we assume that the underlyingp-space (�,F ,P ) is rich enough,
we can infer via the Strassen–Dudley theorem that for large enoughn and any
givenε > 0, one can construct a mean zero Gaussian random vectorG′

n,ε with the
same distribution asG′

n so that

P
(∥∥G′

n,ε − n1/2b−1
n

(
Tn − E(Tn)

)∥∥ ≥ ε
) ≤ c1 exp(−c2n

1/2ε/τ ).(6.5)

To simplify our notation we setρn = bn/n1/2. Choosingε = εn = 1
2ρ

−3/2
n and

writing G′
n instead ofG′

n,εn
, we thus have ifn is large enough,

P
(∥∥G′

n − ρ−1
n

(
Tn − E(Tn)

)∥∥ ≥ ρ−3/2
n /2

)
(6.6)

≤ c1 exp(−c2n
1/2ρ−3/2

n /2τ ) = o(n−1).

We furthermore can assume thatG′
n = BnZ, whereZ is normal(0, I )-distributed

andBn is a positive semi-definite, symmetric matrix so thatB2
n = cov(G′

n). (I is
the identity matrix.)

Set G = BZ, where B is a positive definite, symmetric matrix so that
B2 = cov(X) andZ is as above. Arguing as in the proof of (2.2), we find that

‖B2
n − B2‖ = ∥∥cov

(
Z(n)

) − cov(X)
∥∥ = O(bn/n),(6.7)

where ‖D‖ = sup‖x‖≤1‖Dx‖ = sup‖x‖≤1 |〈x,Dx〉| for symmetric (d, d)-mat-
ricesD.
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Using the fact thatB is positive definite, one can infer (see Lemma 11) that

‖Bn − B‖ = O(bn/n),(6.8)

which in turn via a standard exponential inequality for normal random vec-
tors implies

P (‖G − G′
n‖ ≥ ρ−3/2

n /2) ≤ P
(‖Z‖ ≥ ρ−3/2

n /(2‖Bn − B‖)) = o(n−1),(6.9)

and we can conclude that

P
(∥∥G − ρ−1

n

(
Tn − E(Tn)

)∥∥ ≥ ρ−3/2
n

) = o(n−1).(6.10)

SetC = D − a0. Returning to the integral (6.3), we can now infer that

In ≤ I ′
n + I ′′

n ,(6.11)

where

I ′
n = E

(
e−g(Tn−E(Tn))I

(
ρ−1

n

(
Tn − E(Tn)

)) ∈ ρnC + αn/ρn,

‖ρnG − Tn + E(Tn)‖ ≤ ρ−1/2
n

)
and

I ′′
n = E

(
e−g(Tn−E(Tn))I

(
ρ−1

n

(
Tn − E(Tn)

)) ∈ ρnC + αn/ρn,

‖ρnG − Tn + E(Tn)‖ > ρ−1/2
n

)
.

Using the fact thatg(u) ≥ 0, u ∈ C, we readily obtain from (6.6) that

I ′′
n ≤ e|g(αn)|o(n−1) = o(n−1).

On the other hand, we have

I ′
n ≤ exp(‖g‖ρ−1/2

n )E
(
e−ρng(G)I

(
G ∈ (ρnC)δn

))
,

whereδn = ‖αn‖ρ−1
n + ρ

−3/2
n = o(ρ−1

n ). As g ≥ −‖g‖δn on (ρnC)δn , it easily
follows from the subsequent Lemma 10 that

E
(
e−ρng(G)I

(
G ∈ (ρnC)δn

)) ≤ E
(
e−ρng(G)I (G ∈ ρnC)

) + e‖g‖δnO(δn),

which in combination with the above estimates implies that

In ≤ exp(‖g‖ρ−1/2
n )E

(
e−ρng(G)I (G ∈ ρnC)

) + o(ρ−1
n ).(6.12)

Changing in the proof of (6.12) the roles ofG andρ−1
n (Tn − E(Tn)) and setting

αn = 0, we similarly get for largen,

E
(
e−ρng(G)I (G ∈ ρnC)

) ≤ exp(‖g‖ρ−1/2
n )In + o(ρ−1

n ).(6.13)

More precisely, note that (6.10) implies that

P
(
ρ−1

n

(
Tn − E(Tn)

) ∈ (ρnC)δn
) ≤ P

(
G ∈ (ρnC)2δn

) + o(n−1),
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which is on account of Lemma 10 and by a second application of (6.10), less than
or equal to

P
(
G ∈ (ρnC)−2δn

) + O(δn) ≤ P
(
ρ−1

n

(
Tn − E(Tn)

) ∈ ρnC
) + O(δn).

As Theorem 3 implies that lim infn→∞ Inρn > 0, it is now evident that asn → ∞,

In ∼ E
(
e−ρng(G)I (G ∈ ρnC)

)
,(6.14)

whereG is a mean zero Gaussian random vector with covariance equal to that
of X.

By the Cameron–Martin formula we have

P {G ∈ ρnD} = exp
(−n−1b2

nλγ (a0)
)
E

(
e−ρng(G)I (G ∈ ρnC)

)
,(6.15)

which in combination with (6.1) and (6.14) implies Theorem 4.

LEMMA 10. Let G be a centered, R
d -valued, Gaussian random vector with

covariance V and support all of R
d . If λ is the minimal eigenvalue of V , then for

all ε > 0 and all convex sets C, there exists a constant cd depending only on d

such that

P (G ∈ Cε \ C−ε) ≤ 2cdλ
−1/2ε,(6.16)

where Cε = ⋃
x∈C B(x, ε) and C−ε = {x :B(x, ε) ⊆ C}.

PROOF. If the covariance matrixV is the identity matrixI , then this follows
from Corollary 3.2 in [5] withλ = 1. Otherwise, letA be a symmetric positive
definite matrix such thatA2 = V −1. ThenZ = AG has covarianceI on R

d , and
sinceA has full rank,

P (G ∈ Cε \ C−ε) = P
(
Z ∈ TA(Cε) \ TA(C−ε)

)
,

whereTA :Rd → R
d is the linear operator determined byA. Noting that by an

elementary argument,

TA(Cε) ⊆ TA(C)λ
−1/2ε(6.17)

and

TA(C−ε) ⊇ (
TA(C)

)−λ−1/2ε
,(6.18)

we have by Corollary 3.2 in [5] that

P (G ∈ Cε\C−ε) ≤ P
(
Z ∈ (

TA(C)
)λ−1/2ε∖(

TA(C)
)−λ−1/2ε)

≤ 2cdλ−1/2ε.

Hence, the lemma follows.�

We finally state a lemma from linear algebra which was needed for the
above proof.
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LEMMA 11. Let A,E be symmetric (d, d)-matrixes so that A and A + E

are positive definite. Then we have for the positive definite square root matrices√
A and

√
A + E, ∥∥√A + E − √

A
∥∥ ≤ C‖E‖,

where C is a positive constant depending on the smallest eigenvalue of A and
A + E.

PROOF. The lemma is very easy to prove ifAE = EA. In general, it follows
from relation (X.46) on page 305 of [4] settingr = 1/2. �

7. Proof of Theorem 5. We still need the following lemma.

LEMMA 12. Let G be a centered Gaussian random variable on a separable
Hilbert space H and D = {x :‖x − a‖ < R}, where 0 < R < ‖a‖, is an open ball
in H satisfying (1.6.ii) and (1.6.iii). Assume that a0 ∈ ∂D is the unique dominating
point for D with respect to γ (= distribution of G) and let g be as in (1.7)and (1.8).
Then we have the following for any positive sequence {bn} satisfying (1.1) and
ρn = bn/n1/2:

(i) P (G ∈ ρnD) = exp(−ρ2
nλγ (a0))E(e−ρng(G)I (G ∈ ρn(D − a0)) and

(ii) E(e−ρng(G)I (G ∈ ρn(D − a0)) ∼ ∫ ∞
0 e−sP (‖G2‖2 ≤ 2sbR2) ds/

(2πσ 2
g ρ2

n)1/2, as n → ∞, where σ 2
g = E(g2(G)),G2 = G − G1, b = 1/g(a − a0)

and G1 = g(G)E(Gg(G))/σ 2
g .

(iii) If Gn is centered Gaussian with cov(Gn) = cov(Z(n)), where Z(n) is
defined as in Theorem 1, then

E
(
e−ρng(Gn)I

(
Gn ∈ ρn(D − a0)

))
(7.1)

∼
∫ ∞

0
e−sP (‖G2‖2 ≤ 2sbR2) ds/(2πσ 2

g ρ2
n)1/2

as n → ∞, where G1,G2, σ
2
g and b are as in (ii).

PROOF. Part (i) follows directly from the definition “dominating point” and a
simplification of the representation formula whenµ is centered Gaussian. A key
fact is that in this special case the law ofZ(n) is that ofG + bna0/n. This follows
from the Cameron–Martin formula by an argument as in (2.5).

The proof of (ii) will follow along lines similar to those for (iii), so we now turn
to the proof of (iii).

The proof of (iii) is as follows. Recallσ 2
g,n = E(g2(Gn)) = E(g2(Z(n))) = σ 2

g +
O(bn/n), and writeGn = Gn,1 + Gn,2, whereGn,1 = g(Gn)E(Gng(Gn))/σ

2
g,n

andGn,2 = Gn − Gn,1.
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Note thatg(Gn,1) = g(Gn), soGn,2 has support in{x :g(x) = 0}. Furthermore,
Gn,1 andGn,2 are independent Gaussian random vectors and, hence, if

In(G) = E
(
e−ρng(G)I

(
G ∈ ρn(D − a0)

))
,

then for alln sufficiently large,

In(Gn) = (2πσ 2
g,n)

−1/2
∫ ∞

0
e−ρnuh̃(n,u)exp{−u2/2σ 2

g,n}du,

where

h̃(n,u) = P
(
Gn,2 ∈ ρn(D − a0) − uE

(
Gn,1g(Gn,1)

)/
σ 2

g,n

∣∣g(Gn,1) = u
)
.

Thus, for sufficiently largen,

In(Gn) = (2πρ2
nσ 2

g,n)
−1/2

∫ ∞
0

e−sh(n, s)exp{−s2/(2ρ2
nσ 2

g,n)}ds(7.2)

wheres = ρnu, and sinceGn,2 andGn,1 are independent,

h(n, s) = P
(
Gn,2 ∈ ρn(D − a0) − ρ−1

n sE
(
Gn,1g(Gn,1)

)/
σ 2

g,n

)
.(7.3)

Now D − a0 = {x :‖x − x0‖ < R}, wherex0 = a − a0, and ifg(x0) = 1/b, we
see thatbx0 − E(Gn,1g(Gn,1))/σ

2
g,n is in {x :g(x) = 0}.

Furthermore,{x :g(x) = 0} is tangent to the sphereD − a0 at the origin and,
hence,x0 is perpendicular to the hyperplane{x :g(x) = 0} asD is a ball in Hilbert
space. Thus, by the Pythogorean theorem, ifg(x) = 0, then

x ∈ k(D − a0) − bsx0/k iff ‖x‖2 < (kR)2 −
(
k −

(
s

k

)
b

)2

R2,

iff ‖x‖2 < 2sbR2 − R2b2s2/k2.

SettingEn = ρn(D − a0) andk = ρn in the above, we therefore have

h(n, s) = P
(
Gn,2 ∈ En − ρ−1

n sbx0 + ρ−1
n s

(
bx0 − E

(
Gn,1g(Gn,1)

)/
σ 2

g,n

))
= P

(∥∥Gn,2 − ρ−1
n s

(
bx0 − E

(
Gn,1g(Gn,1)

)/
σ 2

g,n

)∥∥2

≤ 2sbR2 − R2b2sρ−2
n

)
.

Using the continuity of the distribution of the norm of a Gaussian random vector in
a separable Hilbert space, and thatGn,2 converges weakly toG2 on {x :g(x) = 0},
we thus see that

lim
n→∞h(n, s) = P (‖G2‖2 ≤ 2sbR2)(7.4)

for 0 < s < ∞. Combining (7.2)–(7.4), we thus have (7.1) since limn σ 2
g,n = σ 2

g .
Hence, part (iii) of Lemma 12 is proved.

To verify the same asymptotics forIn(G) is quite similar withG2 and G1
replacingGn,2 andGn,1 throughout the argument. Hence, Lemma 12 is proved.

�
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Conclusion of the proof of Theorem 5. We first prove that

lim sup
n→∞

P (Sn ∈ bnD)/P (G ∈ ρnD) ≤ 1.(7.5)

If H is finite-dimensional, this follows from Theorem 4 and the usual isometry
betweenH andR

d .
If H is infinite-dimensional, take{e1, e2, . . .} to be a complete orthonormal

sequence forH with e1 = v/‖v‖, wherev is the unique vector inH so that
g(·) = 〈v, ·〉, andg is as in (1.7). Define the orthogonal projection

πd(x) =
d∑

j=1

〈ej , x〉ej , d ≥ 1.(7.6)

Theng(x) = g(πd(x)) for all x ∈ H andd ≥ 1.

Applying (1.12), we have

P (Sn ∈ bnD) ∼ exp
(−ρ2

nλγ (a0)
)
In,(7.7)

where

In = E
(
exp

(−g
(
Tn − E(Tn)

)
I (Tn ∈ ρ2

nD)
))

.(7.8)

Sinceπd :H → H satisfiesg(x) = g(πd(x)), we easily have

In ≤ E
(
exp

(−g
(
Tn − E(Tn)

)
I
(
πd(Tn) ∈ ρ2

nπd(D)
)))

(7.9)
= E

(
exp

(−g
(
πd(Tn)

) − E
(
πd(Tn)

))
I
(
πd(Tn) ∈ ρ2

nπd(D)
)) =: In,d .

Now by the proof of Theorem 4 [which also applies to the finite-dimensional
spaceπd(H) by isometry],

In,d ∼ In

(
πd(G)

)
,(7.10)

where

In

(
πd(G)

) = E
(
exp

(−ρnπd(G)
)
I
(
πd(G) ∈ ρnπd(D − a0)

))
(7.11)

and G is a mean zero Gaussian random vector with covariance equal to
that of X. Crucial to this last claim is the fact thatπd(x0) = x0, πd is an
orthogonal projection,

πd(D − a0) = {πd(y) :‖πd(y − x0)‖ < R}
(7.12)

= {πd(y) :‖πd(y) − x0‖ < R},
wherex0 = a − a0, and the Radon–Nikodym derivative of the law ofπd(Z(n))

with respect to the law ofπd(X) is the same as that of the law ofZ(n) with respect
to the law ofX. [Note thatπd(x0) = x0, sinceD being a ball in Hilbert space
implies thatv = λx0 for someλ > 0 as the hyperplane{x :g(x) = 0} is tangent to
D − a0 at zero.]
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Hence, by Lemma 12(ii) applied toπd(G) in the subspaceπd(H), we have

In

(
πd(G)

) ∼ (2πσ 2
g ρ2

n)−1/2
∫ ∞

0
e−sP

(‖πd(G2)‖2 ≤ 2sbR2)ds,(7.13)

whereg(πd(x0)) = g(x0) = 1/b, σ 2
g = E(g2(X)) = E(g2(πd(X))), and G2 =

G − G1 is a centered Gaussian random vector onH with

G1 = g(G)E
(
Gg(G)

)/
σ 2

g .(7.14)

[Note thatπd(G1) = g(G)E(πd(G)g(G))/σ 2
g .]

Thus, whenD is a ball as indicated, for alld ≥ 2 we have by (7.7), (7.9), (7.10),
(7.13) and Lemma 12 that

lim sup
n→∞

P (Sn ∈ bnD)

P (G ∈ ρnD)
≤

∫ ∞
0 e−sP (‖πd(G2)‖2 ≤ 2sbR2) ds∫ ∞

0 e−sP (‖G2‖2 ≤ 2sbR2) ds
.(7.15)

Letting d → ∞, it easily follows by the dominated convergence theorem that the
right-hand side approaches 1, which implies (7.5).

It remains to be shown that

lim inf
n→∞ P (Sn ∈ bnD)/P (G ∈ ρnD) ≥ 1.(7.16)

But this follows from (1.12) in combination with Lemma 12 and the following
proposition applied when the law ofXn,1 is equal to the law ofZ(n) −E(Z(n)). To
be more specific, letAn = Sn/n1/2, with Sn as in Proposition 2,f (x) = 〈x, x0〉,
x ∈ H and notice that then

In = E
(
e−ρng(An)I

(
An ∈ ρn(D − a0) + αn/ρn

))
= E

(
e−ρng(An)I

(‖An − αn/ρn − ρnx0‖2 ≤ ρ2
n‖x0‖2))(7.17)

= E
(
e−λρnf (An)I

(‖An − αn/ρn‖2 ≤ 2ρnf (An − αn/ρn)
))

becauseg(x) = 〈x, v〉 = λ〈x, x0〉 = λf (x). Also, recall thatαn = (b2
n/n)a0 −

E(Tn) satisfies‖αn‖ = o(1).
Similarly, it follows that

In(Gn) = E
(
e−ρng(Gn)I

(
Gn ∈ ρn(D − a0)

))
(7.18)

= E
(
e−λρnf (Gn)I

(‖Gn‖2 ≤ 2ρnf (Gn)
))

.

Hence, if cov(Gn) = cov(Xn,1), then by Lemma 12(ii) and (iii) we haveIn(Gn) ∼
In(G) and by Proposition 2 (applied witha = x0/‖x0‖ andρn replaced by‖x0‖ρn)
that lim infn In/In(Gn) ≥ 1, so the end result is that lim infn In/In(G) ≥ 1, which
proves (7.16). Thus, Theorem 5 follows once Proposition 2 is proved.

PROPOSITION2. Let Xn,1, . . . ,Xn,n, n ≥ 1 be a triangular array of row-wise
i.i.d. random vectors with values in the Hilbert space H such that E(Xn,1) = 0
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and supn≥1 E(‖Xn,1‖3) ≤ M . Let λ > 0 be a constant and ρn → ∞ such
that ρn = O(n1/2/(logn)3), f (x) = 〈x, a〉, where ‖a‖ = 1 and assume that
infn≥1E(f 2(Xn,1)) ≥ δ2 > 0. If zn is a sequence in H with ‖zn‖ = o(ρ−1

n ) and
Sn = ∑n

i=1 Xn,i , then

lim inf
n→∞ E

[
exp

(−λρnf (Sn/n1/2)
)
I
{‖Sn/n1/2 + zn‖2 ≤ 2ρnf (Sn/n1/2 + zn)

}]/
Jn

≥ 1,

where Jn = E[exp(−λρnf (Yn))I {‖Yn‖2 ≤ 2ρnf (Yn)}] and Yn is a Gaussian
mean zero random vector with covariance equal to that of Xn,1.

REMARK 4. It is also possible to prove that

lim sup
n→∞

E
[
exp

(−λρnf (Sn/n1/2)
)
I
{‖Sn/n1/2 + zn‖2 ≤ 2ρnf (Sn/n1/2 + zn)

}]/
Jn

≤ 1,

so that we actually have an asymptotic equivalence. We did not work out the details
since for the upper bound part of Theorem 5, it seems much more efficient to use
the projection method as in the first part of Section 7.

REMARK 5. Given a fixed sequenceρn, one can replace the third moment
assumption by some uniformity condition on the moments of order 2+ η, where
0 < η ≤ 1 has to be determined depending onρn.

REMARK 6. The subsequent proof also works forλ = 0. Following the proof
until the inequality after (8.49), one sees that

P
{‖Sn/n1/2 + zn‖2 ≤ 2ρnf (Sn/n1/2 + zn)

}
≥ P

{‖Qn(Y
′
n)‖2 ≤ 2ρnf (Y ′

n)
} − o(ρ−1

n ),

where‖Qn(Y
′
n)‖2 and f (Y ′

n) are independent andY ′
n is a Gaussian mean zero

random vector. Choosingzn = 0 and replacingρn by ρn/2, one readily obtains via
Lemma 13 and the Berry–Esseen inequality that lim supn→∞ ρnP {‖Sn/n1/2‖2 >

ρnf (Sn/n1/2), f (Sn) ≥ 0} < ∞ provided thatρn = O(n1/2/(logn)3).

The proof of Proposition 2 is quite long. So it might be useful to give first an
outline of the basic steps. To simplify our notation let

In := E
[
exp

(−λρnf (Sn/n1/2)
)
I
{‖Sn/n1/2 + zn‖2 ≤ 2ρnf (Sn/n1/2 + zn)

}]
.

From the proof of Theorem 3 it follows thatIn is of orderO(ρ−1
n ) so that it is

sufficient to derive lower bounds up to terms of ordero(ρ−1
n ).
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We first show in step (i) that

In ≥ In,1 = E
[
exp

(−λρnf (S̃n/n1/2)
)
I
{‖S̃n/n1/2‖2 ≤ (2− εn,1)ρnf (S̃n/n1/2)

}]
+ o(ρ−1

n ),

where S̃n are sums of truncated, centered random variablesX̃n,i andεn,1 → 0.

Note that this also shows that we can discard the vectorszn.
Then we choose in step (ii) vectorswn so that the variablesf (X̃n,i) and

Qn(X̃n,i) are uncorrelated and we show that

In,1 ≥ In,2 = E
[
exp

(−λρnf (S̃n/n1/2)
)

× I
{‖Qn(S̃n/n1/2)‖2 ≤ (2− εn,2)ρnf (S̃n/n1/2)

}] + o(ρ−1
n ),

whereQn(x) = x − f (x)wn, x ∈ H andεn,2 → 0.

In step (iii) we smooth the variablesf (S̃n/n1/2) and‖Qn(S̃n/n1/2)‖2 by adding
small independent normal variables and we show that

In,2 ≥ In,3 = E
[
exp(−λρnWn)I

{
Vn ≤ (2− εn,3)ρnWn,Wn > 0

}] + o(ρ−1
n ),

whereWn andVn are the smoothed variables andεn,3 → 0.

In step (iv) we make the crucial transition to the Gaussian case. We show that
we can replace the variablesWn,Vn by smoothed versions̄Wn and V̄n of f (Y ′

n)

and‖Qn(Y
′
n)‖2, respectively. That is, we prove that

In,3 ≥ In,4 = E
[
exp(−λρnW̄n)I

{
V̄n ≤ (2− εn,3)ρnW̄n, W̄n > 0

}] + o(ρ−1
n ),

whereY ′
n is mean zero Gaussian with cov(Y ′

n) = cov(X̃n,1). The crucial result for
proving this last inequality is a certain local limit theorem, Lemma 18.

The proof of this lemma can be found in part (v) of the proof. As already
mentioned in the Introduction we use an adaptation of the characteristic function
method for proving Berry–Esseen type results in Hilbert space. In particular, we
use a modification of a symmetrization lemma of Götze [13] [see (8.39)].

In step (vi) we then show that we can remove the smoothing variables, that is,
we prove that

In,4 ≥ In,5 = E
[
exp

(−λρnf (Y ′
n)

)
I
{‖Qn(Y

′
n)‖2 ≤ (2− εn,3)ρnf (Y ′

n)
}]

+ o(ρ−1
n ).

Here it is very helpful that the variablesf (Y ′
n) and‖Qn(Y

′
n)‖2 are independent

due to the choice ofwn in step (ii).
In the following step (vii) we remove the sequenceεn,3, that is, we prove that

In,5 ≥ In,6 = E
[
exp

(−λρnf (Y ′
n)

)
I
{‖Qn(Y

′
n)‖2 ≤ 2ρnf (Y ′

n)
}] + o(ρ−1

n ).

In the final step (viii) we use independence and the inequality of Anderson to
prove that

In,6 ≥ Jn + o(ρ−1
n ).
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8. Proof of Proposition 2. (i) Let X′
n,i = Xn,iI (‖Xn,i‖ ≤ δn1/2), X̃n,i =

X′
n,i − EX′

n,i , 1≤ i ≤ n, n ≥ 1, and denote the corresponding sums byS′
n andS̃n,

respectively.
Then it is easy to see that

In ≥ I ′
n − exp(λρn‖zn‖)P (Sn 
= S′

n),(8.1)

whereI ′
n = E[exp(−λρnf (S′

n/n1/2))I {‖S′
n/n1/2+zn‖2 ≤ 2ρnf (S′

n/n1/2+zn)}].
[Note thatf (S′

n/n1/2 + zn) ≥ 0 impliesf (S′
n/n1/2) ≥ −‖zn‖.]

We have trivially, by Markov’s inequality,

P (Sn 
= S′
n) ≤ nP (Xn,1 
= X′

n,1) ≤ Mδ−3/
√

n.

Next, setz′
n = ES′

n/n1/2, z′′
n = zn + z′

n and observe that

‖z′
n‖ ≤ n1/2E

(‖Xn,1‖I (‖Xn,1‖ > δn1/2)
) ≤ Mδ−2/

√
n.

We can then further conclude from|f (x)| ≤ ‖x‖ that

I ′
n = E

[
exp

(−λρnf (S̃n/n1/2 + z′
n)

)
I
{‖S̃n/n1/2 + z′′

n‖2 ≤ 2ρnf (S̃n/n1/2 + z′′
n)

}]
≥ exp(−λρn‖z′

n‖)I ′′
n ,

whereI ′′
n = E[exp(−λρnf (S̃n/n1/2)I {‖S̃n/n1/2 + z′′

n‖2 ≤ 2ρnf (S̃n/n1/2 + z′′
n)}].

Let An be the event{‖S̃n/n1/2 + z′′
n‖2 ≤ 2ρnf (S̃n/n1/2 + z′′

n)}. Then we
clearly have

An ⊃ {‖S̃n/n1/2‖2 + 2‖z′′
n‖‖S̃n/n1/2‖ + ‖z′′

n‖2

≤ 2ρn

(
f (S̃n/n1/2) + f (z′′

n)
)} =: A′

n.

Let Bn = {f (S̃n/n1/2) ≤ ‖z′′
n‖ε−1

n }, whereεn ↘ 0 will be specified later. Consider
further the eventCn = {‖S̃n/n1/2‖2 ≤ (2−εn)(1+εn)

−2ρnf (S̃n/n1/2)}. Note that
we have on the eventCn ∩ Bc

n,

‖S̃n/n1/2‖ ≥ f (S̃n/n1/2) > ‖z′′
n‖ε−1

n

and, consequently,

‖S̃n/n1/2‖2 + 2‖z′′
n‖‖S̃n/n1/2‖ + ‖z′′

n‖2 ≤ ‖S̃n/n1/2‖2(1+ εn)
2.

Furthermore, we have on this event|f (z′′
n)| ≤ εnf (S̃n/n1/2) and, thus,

2ρn

(
f (S̃n/n1/2) + f (z′′

n)
) ≥ (2− εn)ρnf (S̃n/n1/2).

We see thatCn ∩ Bc
n ⊂ A′

n, which in turn impliesIAn ≥ ICn − ICn∩Bn .
Using the elementary inequality(2− εn)(1+ εn)

−2 ≥ 2− 5εn, we find that

I ′′
n ≥ E

[
exp

(−λρnf (S̃n/n1/2)
)
I
{‖S̃n/n1/2‖2 ≤ (2− 5εn)ρnf (S̃n/n1/2)

}]
− E

[
exp

(−λρnf (S̃n/n1/2)
)
ICn∩Bn

]
.
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Recalling thatf (S̃n/n1/2) ≥ 0 onCn, we further have

E
[
exp

(−λρnf (S̃n/n1/2)
)
ICn∩Bn

]
≤ P (Cn ∩ Bn) ≤ P

{
0 ≤ f (S̃n/n1/2) ≤ ‖z′′

n‖ε−1
n

} =: pn.

We need an upper bound forpn. To that end we first note that

σ̃ 2
f,n = E

(
f 2(X̃n,1)

) ≥ E(f 2(Xn,1)) − 2E
(
f 2(Xn,1)I (‖Xn,1‖ ≥ δn1/2)

)
≥ δ2 − 2Mδ−1/n1/2 ≥ δ2/2,

provided that 4Mδ−3/n1/2 ≤ 1. Using the Berry–Esseen inequality, it now
follows that

pn ≤ ‖z′′
n‖ε−1

n δ−1 + CBEE|f (X̃n,1)|3(δ2/2)−3/2/n1/2.

Employing the inequalities

E|f (X̃n,1)|3 ≤ E‖X̃n,1‖3 ≤ 8M,(8.2)

we find that

pn ≤ ‖z′′
n‖ε−1

n δ−1 + 83/2CBEMδ−3/n1/2,

which is trivially true if 4Mδ−3/n1/2 > 1.
Thus, pn has the orderO(n−1/2 ∨ ‖z′′

n‖ε−1
n ), which is of ordero(ρ−1

n ) if

εn converges slowly enough to 0. (For instance, we can setεn = ‖z′′
n‖1/2ρ

1/2
n .)

(ii) Let wn = σ̃−2
f,nE(X̃n,1f (X̃n,1)) andQn(x) = x −f (x)wn for x ∈ H . If Y ′

n is
a mean zero Gaussian random vector with cov(Y ′

n) = cov(X̃n,1), we have,Qn(Y
′
n)

andf (Y ′
n)wn are independent and Gaussian. This implies

E(‖Y ′
n‖2) = E(‖X̃n,1‖2) = E

(‖Qn(X̃n,1)‖2) + ‖wn‖2σ̃ 2
f,n,(8.3)

hence,‖wn‖2 ≤ 4(M/σ̃ 3
f,n)

2/3 ≤ 8(M/δ3)2/3 if 4Mδ−3/n1/2 ≤ 1.

As ‖S̃n/n1/2‖2 ≤ ‖Qn(S̃n/n1/2)‖2 + 2‖Qn(S̃n/n1/2)‖|f (S̃n/n1/2)|‖wn‖ +
‖wn‖2|f (S̃n/n1/2)|2, it follows that

E
[
exp

(−λρnf (S̃n/n1/2)
)
I
{‖S̃n/n1/2‖2 ≤ (2− 5εn)ρnf (S̃n/n1/2)

}]
≥ E

[
exp

(−λρnf (S̃n/n1/2)
)

× I
{‖Qn(S̃n/n1/2)‖2 ≤ (2− 7εn)ρnf (S̃n/n1/2)

}]
(8.4)

− P
(‖wn‖2|f (S̃n/n1/2)| > εnρn

)
− P

(
2‖wn‖‖Qn(S̃n/n1/2)‖ ≥ εnρn

)
.

Using Chebyshev’s inequality along with (8.2) and (8.3), we have

P
(‖wn‖2|f (S̃n)/n1/2| > εnρn

)
(8.5)

≤ ‖wn‖4σ̃ 2
f,nε

−2
n ρ−2

n ≤ 4M2/3‖wn‖2ε−2
n ρ−2

n ,
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where‖wn‖ is bounded as following (8.3). Likewise, it follows that

P
(
2‖wn‖‖Qn(S̃n/n1/2)‖ ≥ εnρn

) ≤ 16M2/3‖wn‖2ε−2
n ρ−2

n .(8.6)

Assuming thatεnρ
1/2
n → ∞, we see that these two probabilities are of or-

dero(ρ−1
n ).

(iii) Before we can proceed with the proof we need further lemmas.

LEMMA 13. Let Z1 and Z2 be independent random variables and c, d > 0.
Then

P (Z1 ≥ cZ2,Z2 ≥ 0) ≤ r2(d)[P (Z1 ≥ 0) + E(Z+
1 )/(cd)],(8.7)

where r2(d) = supx≥0 P (x ≤ Z2 < x + d).

PROOF. Using the independence ofZ1 andZ2, it follows that

P (Z1 ≥ cZ2,Z2 ≥ 0)

=
∞∑

j=1

P
(
Z1 ≥ cZ2, (j − 1)d ≤ Z2 < jd

)

≤
∞∑

j=1

P
(
Z1 ≥ (j − 1)cd

)
P

(
(j − 1)d ≤ Z2 < jd

)

≤ r2(d)

∞∑
j=1

P
(
Z1/(cd) ≥ j − 1

) ≤ r2(d)[P (Z1 ≥ 0) + E(Z+
1 )/(cd)],

and the lemma is proved.�

LEMMA 14. Let Vn = ‖Qn(S̃n/n1/2)‖2 + αnG1, where G1 is a standard
normal random variable independent of Xn,1, . . . ,Xn,n, αn → 0. If ε′

n = 7εn +
αn log(1/αn), then

E
[
exp

(−λρnf (S̃n/n1/2)
)
I
{‖Qn(S̃n/n1/2)‖2 ≤ (2− 7εn)ρnf (S̃n/n1/2)

}]
≥ E

[
exp

(−λρnf (S̃n/n1/2)
)
I
{
Vn ≤ (2− ε′

n)ρnf (S̃n/n1/2), f (S̃n) > 0
}]

− o(ρ−1
n ).

PROOF. As{‖Qn(S̃n/n1/2)‖2 ≤ (2− 7εn)ρnf (S̃n/n1/2)
}

⊃ {
Vn ≤ (2− ε′

n)ρnf (S̃n/n1/2)
} ∩ {f (S̃n) > 0}

∩ {
G1 ≥ − log(1/αn)ρnf (S̃n/n1/2)

}
,
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andG1 is symmetric, it is enough to show that

P
(
G1 ≥ log(1/αn)ρnf (S̃n/n1/2), f (S̃n) > 0

) = o(ρ−1
n ).

Arguing as in part (i) (when estimatingpn), we see that

rn(d) = sup
x

P
(
x ≤ f (S̃n/n1/2) ≤ x + d

) ≤ dδ−1 + CBE83/2Mδ−3/n1/2.(8.8)

Applying Lemma 13 withZ1 = G1,Z2 = f (S̃n/n1/2), cn = log(1/αn)ρn, dn =
1/cn, we find that the above probability is≤ rn(dn)(1 + E[|G1|]/2) = o(ρ−1

n ).
�

LEMMA 15. Let Wn = f (S̃n/n1/2) + α′
nG2, where G2 is a standard normal

random variable independent of Xn,1, . . . ,Xn,n,G1 and βn := α′
nρn → 0. If ε′′

n =
ε′
n + β

1/2
n , we have

E
[
exp

(−λρnf (S̃n/n1/2)
)
I
{
Vn ≤ (2− ε′

n)ρnf (S̃n/n1/2), f (S̃n) > 0
}]

≥ exp(−λ2β2
n/2)

(
E

[
exp(−λρnWn)

× I
{
Vn ≤ (2− ε′′

n)ρnWn,Wn > 0
}] − o(ρ−1

n )
)
.

PROOF. By independence we obviously have

E
[
exp(−λρnWn)I

{
Vn ≤ (2− ε′

n)ρnf (S̃n/n1/2), f (S̃n) > 0
}]

= exp(λ2β2
n/2)E

[
exp

(−λρnf (S̃n/n1/2)
)

× I
{
Vn ≤ (2− ε′

n)ρnf (S̃n/n1/2), f (S̃n) > 0
}]

.

We further have{Vn ≤ (2− ε′
n)ρnf (S̃n/n1/2)} =: An ⊃ Bn ∩ Cn, where

Bn = {
Vn ≤ (2− ε′

n − β1/2
n )ρnWn

}
, Cn = {

2α′
nG2 ≤ β1/2

n f (S̃n/n1/2)
}
.

Therefore,

E
[
exp(−λρnWn)IAn∩{f (S̃n)>0}

]
(8.9)

≥ E
[
exp(−λρnWn)IBn∩{f (S̃n)>0}

] − P
(
Cc

n ∩ {f (S̃n) > 0}).
To bound the above probability we use once more Lemma 13. Settingdn = 1/cn =
β

1/2
n ρ−1

n , it follows that

P
(
2α′

nG2 ≥ β1/2
n f (S̃n/n1/2), f (S̃n) > 0

) ≤ rn(dn)(1/2+ 2E[G+
2 ]).(8.10)

Recalling (8.8), we see thatrn(dn) = o(ρ−1
n ) so that it suffices to show that

E
[
exp(−λρnWn)IBn∩{f (S̃n)>0}

]
(8.11)

≥ E
[
exp(−λρnWn)IBn∩{Wn>0}

] − o(ρ−1
n ).
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To that end we first note that

E
[
exp(−λρnWn)IBn∩{f (S̃n)>0}

]
≥ E

[
exp(−λρnWn)IBn∩{Wn>0}∩{f (S̃n)>0}

]
= E

[
exp(−λρnWn)IBn∩{Wn>0}

]
− E

[
exp(−λρnWn)IBn∩{Wn>0}∩{f (S̃n)≤0}

]
≥ E

[
exp(−λρnWn)IBn∩{Wn>0}

] − P
(
Wn > 0, f (S̃n) ≤ 0

)
.

Next, observe that

P
(
Wn > 0, f (S̃n) ≤ 0

) ≤ P
(
α′

nG2 ≥ −f (S̃n/n1/2),−f (S̃n) ≥ 0
)
,

which in view of Lemma 13 is bounded above byr ′
n(α

′
n)(1/2 + E[G+

2 ]), where
r ′
n is defined asrn with f replaced by−f . It is obvious that the upper bound

in (8.8) also applies tor ′
n and we see that the above probability is of order

O(α′
n) = o(ρ−1

n ). This shows that (8.11) holds and Lemma 15 has been proven.
�

(iv) Recall thatY ′
n is a centered Gaussian random vector with covariance equal

to that ofX̃n,1. Assuming thatY ′
n is independent ofG1, G2, we set

V n = ‖Qn(Y
′
n)‖2 + αnG1,

(8.12)
Wn = f (Y ′

n) + βnρ
−1
n G2.

The purpose of this part of the proof is to show that

E
[
exp(−λρnWn)I

{
Vn ≤ (2− ε′′

n)ρnWn,Wn > 0
}]

(8.13)
= E

[
exp(−λρnWn)I

{
V n ≤ (2− ε′′

n)ρnWn,Wn > 0
}] + o(ρ−1

n ).

To that end we first prove the following lemma.

LEMMA 16. We have

E[exp(−λρnWn)I {Wn > 0}] = E[exp(−λρnWn)I {Wn > 0}] + O(n−1/2).

PROOF. Integration by parts yields that

E
[(

1− exp(−λρnWn)
)
I {Wn > 0}] = λρn

∫ ∞
0

exp(−λρnu)P {Wn ≥ u}du.

Using the corresponding formula forE[(1 − exp(−λρnWn))I {Wn > 0}], we
readily obtain that∣∣E[exp(−λρnWn)I {Wn > 0}] − E[exp(−λρnWn)I {Wn > 0}]∣∣

≤ λρn

∫ ∞
0

exp(−λρnu)|P {Wn ≥ u} − P {Wn ≥ u}|du

+ |P {Wn > 0} − P {Wn > 0}|,
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which is obviously≤ 2 supu |P {Wn ≥ u} − P {Wn ≥ u}|. By conditioning on the
independent variableG2, we see that the last term in turn is bounded above by

sup
x

∣∣P {f (S̃n/n1/2) ≥ x} − P {f (Y ′
n) ≥ x}∣∣ ≤ 2CBE83/2Mδ−3/n1/2,

where we have used once more the Berry–Esseen inequality.�

In view of Lemma 16 it is clear that (8.13) is proven once we have established
the subsequent lemma.

LEMMA 17. We have

E
[
exp(−λρnWn)I

{
0 < (2− ε′′

n)ρnWn < Vn

}]
(8.14)

= E
[
exp(−λρnWn)I

{
0 < (2− ε′′

n)ρnWn < V n

}] + o(ρ−1
n ).

PROOF. We first note that

P (Vn ≥ x) ≤ P (G1 ≥ x/2) + P
(‖Qn(S̃n)‖ > (nx/2)1/2),

and choosingc > 0 sufficiently large, we have from (8.2) and the Fuk–Nagaev type
inequality presented in [11], page 338, that forn large

P (Vn ≥ c logρn)

≤ exp
{
−(c logρn)

2

8

}
+ 72· 211nMq3

n

(cn logρn/2)3/2 + exp
{
− cn logρn

768nM2/3

}
= o(ρ−1

n ),

where we have used thatE(‖Qn(X̃n,1)‖2) ≤ 4M2/3, which follows from
(8.2) and (8.3). The latter relation also implies thatqn = ‖Qn‖ ≤ 1 + ‖wn‖ is
bounded. Therefore,

E
[
exp(−λρnWn)I

{
0 < (2− ε′′

n)ρnWn < Vn

}]
(8.15)

= E[exp(−λρnWn)I {(Vn,Wn) ∈ An}] + o(ρ−1
n ),

whereAn = {(v,w) : 0≤ w < (2− ε′′
n)−1v/ρn ≤ (2− ε′′

n)−1c(logρn)/ρn}.
By an obvious modification of the above argument we find that also

E
[
exp(−λρnWn)I

{
0< (2− ε′′

n)ρnWn < V n

}]
(8.16)

= E[exp(−λρnWn)I {(V n,Wn) ∈ An}] + o(ρ−1
n ).

It thus suffices to prove that

E[exp(−λρnWn)I {(Vn,Wn) ∈ An}]
(8.17)

= E[exp(−λρnWn)I {(V n,Wn) ∈ An}] + o(ρ−1
n ).
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Let fn,1 be the (two-dimensional) Lebesgue density function of(Vn,Wn) andfn,2
that of (V n,Wn). (These exist because we added an independent normal random
vector.) Then we obviously have that the absolute difference of the two last
expectations is bounded above by

‖fn,1 − fn,2‖∞ Area(An).

Since An is the triangle in the(v,w) plane with basec logρn and height
(2− ε′′

n)−1c(logρn)/ρn, we obviously have ifε′′
n ≤ 1,

Area(An) ≤ c2(logρn)
2/(2ρn),

and relation (8.17) immediately follows from the subsequent Lemma 18.�

LEMMA 18. If fn,1, fn,2 are as above, where αn = βn = (logρn)
−1, then we

have for some γ > 0,

‖fn,1 − fn,2‖∞ = O(ρ−γ
n ).(8.18)

PROOF. First, observe that by the inversion formula it is enough to show the
characteristic functionsφn,1 andφn,2 of (Vn,Wn) and(V n,Wn), respectively, sat-
isfy ∫ ∫

R2
|φn,1(s, t) − φn,2(s, t)|ds dt = O(ρ−γ

n ).(8.19)

To verify (8.19) let

In,1 =
∫
|s|≤(logρn)2

∫
|t|≤nτ

|φn,1(s, t) − φn,2(s, t)|ds dt,

In,2 =
∫
|s|≤(logρn)2

∫
nτ≤|t|≤ρn(logρn)2

|φn,1(s, t) − φn,2(s, t)|ds dt,

In,3 =
∫
|s|≥(logρn)2

∫
t∈R

|φn,1(s, t) − φn,2(s, t)|ds dt,

In,4 =
∫
s∈R

∫
|t|≥ρn(logρn)2

|φn,1(s, t) − φn,2(s, t)|ds dt,

whereτ > 0 will be specified later.
It is obviously enough to show fork = 1,2,3,4 and someγ > 0, that

In,k = O(ρ−γ
n ).(8.20)

Proof of (8.20)when k = 1. Let Yn,1, . . . , Yn,n be i.i.d. copies ofY ′
n and for

−∞ < s, t < ∞ andx ∈ H , define

F(x) = exp
{
is‖Qn(x)‖2 + itf (x)

}
.
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Then F(·) is Frechét differentiable inx, and Taylor’s formula with integral
remainder, see [7], page 70, implies

F(x + h) = F(x) + DF(x)(h) + 1
2D2F(x)(h,h)

(8.21)
+ 1

2E[(1− τ )2D3(x + τh)(h,h,h)],
whereτ is uniform on[0,1] andDkF(x) is thekth derivative ofF at x. Thus, by
a standard argument we can conclude that

∣∣E(
F(S̃n/n1/2) − F(Y ′

n)
)∣∣ ≤

n∑
k=1

Jk,(8.22)

where

Jk = ∣∣E(
F(Wk + n−1/2X̃n,k)

) − E
(
F(Wk + n−1/2Yn,k)

)∣∣(8.23)

and

Wk = (X̃n,1 + · · · + X̃n,k−1 + Yn,k+1 + · · · + Yn,n)/n1/2,(8.24)

for k = 1,2, . . . , n. Recall thatYn,k,1 ≤ k ≤ n are independent Gaussian random
vectors with the same distribution asY ′

n, which can be chosen independently
of the random vectorsX̃n,k,1 ≤ k ≤ n. Using (8.21), we expand the terms
in Jk with x = Wk and h = X̃n,k/n1/2 or h = Yn,k/n1/2, respectively. Since
X̃n,k andYn,k are independent ofWk andX̃n,k andYn,k both have mean zero with
common covariance functions, the terms containing derivatives up to second order
coincide so that

Jk ≤ n−3/2(J ′
k + J ′′

k ),(8.25)

where

J ′
k = 1

2

∣∣E(
(1− τ )2D3F(Wk + τ X̃n,k/n1/2)(X̃n,k, X̃n,k, X̃n,k)

)∣∣
and

J ′′
k = 1

2

∣∣E(
(1− τ )2D3F(Wk + τYn,k/n1/2)(Yn,k, Yn,k, Yn,k)

)∣∣.
Since‖f ‖ = 1, we have

|DF 3(x)(h,h,h)|
≤ 12s2‖Qn(h)‖3‖Qn(x)‖ + 6|st|‖Qn(h)‖2‖h‖

+ 22(8|s|3‖Qn(x)‖3‖Qn(h)‖3 + |t|3‖h‖3)
,
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and, therefore, since 0≤ τ ≤ 1 (and settingqn = ‖Qn‖), we have

J ′
k ≤ 1

2E
[
32|s|3‖Qn(X̃n,k)‖3‖Qn(Wk + τ X̃n,k/n1/2)‖3

+ 6|st|‖Qn(X̃n,k)‖2‖X̃n,k‖ + 4|t|3‖X̃n,k‖3

+ 12s2‖Qn(X̃n,k)‖3‖Qn(Wk + τ X̃n,k/n1/2)‖]
(8.26)

≤ 1
2E

[
32|s|3q3

n‖X̃n,k‖3{
4(q3

n‖Wk‖3 + q3
n‖X̃n,k‖3/n3/2)

}
+ 6|st|q2

n‖X̃n,k‖3 + 4|t|3‖X̃n,k‖3

+ 12s2q4
n‖X̃n,k‖3(‖Wk‖ + ‖X̃n,k‖/n1/2)

]
.

Now P (‖X̃n,k‖ ≤ 2δn1/2) = 1, E(‖X̃n,k‖3) ≤ 8M , and X̃n,k and Wk are
independent, so

J ′
k ≤ [

512Mq6
n|s|3E(‖Wk‖3 + 8δ3)

(8.27)
+ (24Mq2

n|st| + 16M|t|3) + 48Ms2q4
nE(‖Wk‖ + 2δ)

]
.

We need an upper bound forE(‖Wk‖3). To that end we first note that by convexity
and that theYn,k ’s are independent and identically distributed Gaussian random
vectors, we have

E‖Wk‖3 ≤ 4E(‖S̃n‖3)/n3/2 + 4E(‖Yn,1‖3).(8.28)

Applying Proposition 6.8 of [18], we have

E(‖S̃n‖3) ≤ 2 · 438δ3n3/2 + 2(4b0)
3,(8.29)

where

b0 = inf

{
b :P

(
max

1≤j≤n

∥∥∥∥∥
j∑

m=1

X̃n,m

∥∥∥∥∥ > b

)
≤ (2 · 43)−1

}
.

Using Proposition 1.1.2 in [10], we further have

P

(
max

1≤j≤n

∥∥∥∥∥
j∑

m=1

X̃n,m

∥∥∥∥∥ > b

)
≤ 3 max

1≤j≤n
P

(∥∥∥∥∥
j∑

m=1

X̃n,m

∥∥∥∥∥ > b/3

)
.

Since we are in a Hilbert space, we have

max
1≤j≤n

E

(∥∥∥∥∥
j∑

m=1

X̃n,m

∥∥∥∥∥
2)

≤ nE(‖X̃n,1‖2) ≤ 4M2/3n(8.30)

and via Markov’s inequality, it follows thatb0 ≤ 144M1/3n1/2.
Employing the trivial inequalityδ3 ≤ M , we see that

E(‖S̃n‖3) ≤ AMn3/2,(8.31)
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whereA is a universal constant.
Using the equivalence of the moments of Gaussian random variables (see, e.g.,

Corollary 3.2 of [18]), we also have

E(‖Yn,1‖3) ≤ A′E(‖X̃n,1‖2)3/2 ≤ 8A′M,(8.32)

where A′ is another universal constant. SinceE(‖Wk‖) ≤ (E(‖Wk‖3))1/3,
by combining (8.28), (8.31) and (8.32) we have if 4Mδ−3/n1/2 ≤ 1 and,
consequently,qn ≤ 1+ ‖wn‖ ≤ 1+ √

8M1/3δ−1,

J ′
k ≤ C1[|s|3 + |t|3 + 1],(8.33)

whereC1 is a finite constant depending only onM andδ.
Here we have used that|st| ≤ (s2 + t2)/2, s2 ≤ |s|3 + 1 andt2 ≤ |t|3 + 1.
Similarly, it follows that if 4Mδ−3/n1/2 ≤ 1, we have

J ′′
k ≤ C2[|s|3 + |t|3 + 1],(8.34)

whereC2 is another finite constant depending only onM,δ.
Combining (8.22), (8.25), (8.33) and (8.34) withC3 = C1 + C2, we see that

under the assumption 4Mδ−3/n1/2 ≤ 1,∣∣E(
F(S̃n/n1/2) − F(Y ′

n)
)∣∣ ≤ C3n

−1/2[|s|3 + |t|3 + 1].(8.35)

Enlarging the constantC3 if necessary, we finally see that this is also the case if
4Mδ−3/n1/2 > 1. [Use the trivial fact that|E(F (S̃n/n1/2) − F(Y ′

n))| ≤ 2.]
By independence we obviously have

|φn,1(s, t) − φn,2(s, t)|
= ∣∣E(

eisαnG1+itα′
nG2

)∣∣ · ∣∣E(
F(S̃n/n1/2) − F(Y ′

n)
)∣∣(8.36)

≤ ∣∣E(
F(S̃n/n1/2) − F(Y ′

n)
)∣∣.

Thus, (8.35) and (8.36) imply

In,1 ≤ 4C3n
−1/2

∫ (logρn)2

0

(∫ nτ

0
(s3 + t3 + 1) dt

)
ds = O

(
n−1/2+4τ (logn)2),

which is of orderO(n−1/4) = O(ρ
−1/2
n ), provided 0< τ < 1/16. Thus, (8.20)

holds fork = 1 with γ = 1/2 if 0 < τ < 1/16.

Proof of (8.20)when k = 2. Let �n = ∑kn

j=1 X̃n,j /n1/2 andUn = S̃n/n1/2 −
�n, wherekn ≤ n will be specified later. Then

φn,1(s, t) = E
(
exp[is‖Qn(�n + Un)‖2 + itf (�n + Un) + isαnG1 + itα′

nG2]),
and we also define

φ̃n,1(s, t) = E
(
exp

[
is‖Qn(�n)‖2 + 2is〈Qn(�n),

Qn(Un)〉 + itf (�n + Un) + isαnG1 + itα′
nG2

])
.
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Then, since|eix − 1| ≤ |x|, we have because of (8.3),

|φn,1(s, t) − φ̃n,1(s, t)| ≤ E
(∣∣eis‖Qn(Un)‖2 − 1

∣∣)
(8.37)

≤ |s|E(‖Qn(Un)‖2) ≤ |s|E(‖X̃n,1‖2)

(
1− kn

n

)
.

Next observe that

|φ̃n,1(s, t)|2 = ∣∣E(
E

(
(· · ·)|�n

)∣∣2)exp(−αn
2s2 − α′

n
2
t2)

≤ E
(∣∣E(

(· · ·)|�n

)∣∣2)(8.38)

= E
(∣∣E(

exp
{
2is〈Qn(�n),Qn(Un)〉 + itf (Un)

}∣∣�n

)∣∣2),
where(· · ·) = exp(is‖Qn(�n)‖2 + 2is〈Qn(�n),Qn(Un)〉 + itf (�n +Un)). Thus,
if U ′

n is an independent copy ofUn which is also independent of�n, we readily
obtain that

|φ̃n,1(s, t)|2 ≤ E
(
e2is〈Qn(�n),Qn(U∗

n )〉+itf (U∗
n )

)
,(8.39)

whereU∗
n = Un − U ′

n is the symmetrization ofUn.
Denoting the distribution ofQn(�n) by µn, we have

E
(
exp

{
2is〈Qn(�n),Qn(U

∗
n )〉 + itf (U∗

n )
})

=
∫
H

E[exp{2is〈Qn(U
∗
n ), x〉 + itf (U∗

n )}]dµn(x)(8.40)

=
∫
H

[
E

(
cos[(2s/n1/2)〈Qn(X̃

∗
n), x〉 + (t/n1/2)f (X̃∗

n)])]n−kn dµn(x),

whereX̃∗
n = X̃n,1 − X̃n,2 is the symmetrization of̃Xn,1.

Now for eachx ∈ H ,

E
(
cos[(2s/n1/2)〈Qn(X̃

∗
n), x〉 + (t/n1/2)f (X̃∗

n)]
)

≤ 1− 1
2E

((
(2s/n1/2)〈Qn(X̃

∗
n), x〉 + (t/n1/2)f (X̃∗

n)
)2)

+ 1
6E

(|(2s/n1/2)〈Qn(X̃
∗
n), x〉 + (t/n1/2)f (X̃∗

n)|3)
≤ 1− (

t2/(2n)
)
E

(
f 2(X̃∗

n)
) + 2

3(|t|3/n3/2)E
(|f (X̃∗

n)|3)
+ 16

3 (|s|3/n3/2)E
(‖Qn(X̃

∗
n)‖3)‖x‖3

≤ 1− (t2/n)E
(
f 2(X̃n,1)

) + 64
3 M(|t|3 + 8q3

n‖x‖3|s|3)/n3/2,

where we first have used that〈Qn(X̃
∗
n), x〉 and f (X̃∗

n) are uncorrelated by
our choice of wn and then relation (8.2), along with the convexity of the
functionu → |u|3.
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If 4Mδ−3/n1/2 ≤ 1 so thatE(f 2(X̃n,1)) ≥ δ2/2, we have for‖x‖≤ |t|/(2|s|qn),

E
(
cos[(2s/n1/2)〈Qn(X̃

∗
n), x〉 + (t/n1/2)f (X̃∗

n)])
≤ 1− t2δ2/(2n) + 128

3 (|t|3/n3/2)M(8.41)

≤ 1− t2δ2/(4n),

provided|t| ≤ (3/512)δ2n1/2/M .
Combining (8.37) with (8.39)–(8.41) and that 1− x ≤ e−x , we see that

|φn,1(s, t)| ≤ |φ̃n,1(s, t)| + |s|E(‖X̃n,1‖2)(1− kn/n)

≤ |s|E(‖X̃n,1‖2)(1− kn/n)

+ (
E

(
exp

{
2is〈Qn(�n),Q(U∗

n )〉 + itf (U∗
n )

}))1/2(8.42)

≤ |s|E(‖X̃n,1‖2)(1− kn/n) + exp{−t2δ2(n − kn)/(8n)}
+ (

P
{‖Qn(�n)‖ ≥ (2qn)

−1|t/s|})1/2
,

if |t| ≤ (3/512)δ2n1/2/M and|s| ≤ (logρn)
2.

Taking kn = n − [n/|t|3/2] − 1, we thus have by (8.3) and the Fuk–Nagaev
inequality as given in [11] and suchs, t that

|φn,1(s, t)| ≤ 4|s|M2/3(|t|−3/2 + n−1) + exp{−t2δ2|t|−3/2/8}
+ [9 · 217M(|t/s|)−3q3

n]1/2n−1/4

+ exp
{−|t/s|2/(

768E(‖X̃n,1‖2)
)}

(8.43)

≤ 4|s|M2/3(|t|−3/2 + n−1) + exp{−|t|1/2δ2/8}
+ C4

{|s/t|3/2n−1/4 + exp{−C5|t/s|2}}.
In the first inequality of (8.43) when we apply the Fuk–Nagaev inequality, we
use the fact that forIn,2, the ratio |t/s| ≥ nτ/(logρn)

2, and thatE(‖�n‖) ≤
E(‖S̃n‖2)1/2/n1/2 ≤ M1/3 < ∞. Also, recall thatqn ≤ 1 + √

8M1/3/δ if n is
large enough.

As f (Y ′
n),‖Qn(Y

′
n)‖,G1 andG2 are independent random variables, we readily

obtain for−∞ < s, t < ∞ (assuming 4Mδ−3/n1/2 ≤ 1),

|φn,2(s, t)| ≤ E
(
exp

(
itf (Y ′

n)
)) = exp

(−t2E
(
f 2(X̃n,1)/2

))
(8.44)

≤ exp(−t2δ2/4),

which is for|t| ≥ 1 dominated by exp{−|t|1/2δ2/8}. It thus follows that for largen,

|φn,1(s, t) − φn,2(s, t)|
≤ C6(|s||t|−3/2 + |s|n−1) + C7 exp{−C8|t|1/2}(8.45)

+ C4|s/t|3/2n−1/4 + C4 exp{−C5|t/s|2},
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provided that|s| ≤ (logρn)
2 andnτ ≤ |t| ≤ (3/512)δ2n1/2/M .

The constantsCi depend onM andδ only and are strictly positive and finite.
Integrating over the region related toIn,2, we haveIn,2 = O(n−τ/2(logn)4).

Thus, (8.20) holds fork = 2 with γ = 0.9τ (say).

Proof of (8.20)when k = 3,4. Recalling the definition ofVn, Wn, V n andWn

and thatαn = (logρn)
−1, α′

n = (ρn logρn)
−1, we see that

In,3 ≤ 2
∫
|s|≥(logρn)2

∫
t∈R

exp(−α2
ns

2/2− α′
n

2
t2/2) ds dt

≤ 4

logρn

exp
(−(logρn)

2/2
)√

2πρn logρn,

which is obviously of ordero(ρ−1
n ). A similar calculation shows finally that

In,4 = o(ρ−1
n ), thereby completing the proof of Lemma 18.�

(vi) Given (8.13) we now investigate the asymptotic behavior of

E
[
exp(−λρnWn)I

{
V n ≤ (2− ε′′

n)ρnWn,Wn > 0
}]

.

We first show that we can remove the smoothing variableαnG1. Arguing as in the
proof of Lemma 14, we find that

E
[
exp(−λρnWn)I

{
V n ≤ (2− ε′′

n)ρnWn,Wn > 0
}]

≥ E
[
exp(−λρnWn)I

{‖Qn(Y
′
n)‖2 ≤ (2− 2ε′′

n)ρnWn

}]
− P {αnG1 ≥ ε′′

nρnWn,Wn > 0},
where we haveP {αnG1 ≥ ε′′

nρnWn,Wn > 0} = o(ρ−1
n ) by Lemma 13. [Recall

thatε′′
n/αn → ∞ and use the fact that the densities of the random variablesWn ∼

normal(0, σ̃ 2
f,n + α2

n) are uniformly bounded.]

Letgn,1 andgn,2 be the (normal) densities off (Y ′
n) andWn, respectively. Then,

using the inversion formula for densities, we see that
√

2π‖gn,1 − gn,2‖∞ = σ̃−1
f,n − (σ̃ 2

f,n + α′
n

2
)−1/2 = o(ρ−2

n ).(8.46)

Let furtherνn be the distribution of‖Qn(Y
′
n)‖2. By independence of the variables

‖Qn(Y
′
n)‖2, f (Y ′

n), andG2, we have then

E
[
exp(−λρnWn)I

{‖Qn(Y
′
n)‖2 ≤ (2− 2ε′′

n)ρnWn

}]
(8.47)

=
∫ ∞

0

∫ ∞
x/[(2−ε′′

n)ρn]
exp(−λρnz)gn,2(z) dz dνn(x)

and

E
[
exp

(−λρnf (Y ′
n)

)
I
{‖Qn(Y

′
n)‖2 ≤ (2− 2ε′′

n)ρnf (Y ′
n)

}]
(8.48)

=
∫ ∞

0

∫ ∞
x/[(2−ε′′

n)ρn]
exp(−λρnz)gn,1(z) dz dνn(x).
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Combining (8.46)–(8.48), we can infer that

E
[
exp(−λρnWn)I

{‖Qn(Y
′
n)‖2 ≤ (2− 2ε′′

n)ρnWn

}]
(8.49) = E

[
exp

(−λρnf (Y ′
n)

)
I
{‖Qn(Y

′
n)‖2 ≤ (2− 2ε′′

n)ρnf (Y ′
n)

}] + o(ρ−2
n ).

(vii) Next, observe that

E
[
exp

(−λρnf (Y ′
n)

)
I
{‖Qn(Y

′
n)‖2 ≤ 2ρnf (Y ′

n)
}]

− E
[
exp

(−λρnf (Y ′
n)

)
I
{‖Qn(Y

′
n)‖2 ≤ (2− 2ε′′

n)ρnf (Y ′
n)

}]
=

∫ ∞
0

∫ x/[(2−2ε′′
n)ρn]

x/(2ρn)
exp(−λρnz)gn,1(z) dz dνn(x)

≤ ε′′
n

2(1− ε′′
n)

‖gn,1‖∞E[‖Qn(Y
′
n)‖]/ρn

= o(ρ−1
n ).

By independence we have, for anyA > 0,

E
[
exp

(−λρnf (Y ′
n)

)
I
{‖Qn(Y

′
n)‖2 ≤ 2ρnf (Y ′

n)
}]

≥ exp(−2λA)P {A < f (Y ′
n)ρn < 2A}P {‖Qn(Y

′
n)‖2 ≤ A

}
,

which in turn via Markov’s inequality and (8.2) and (8.3) is greater than or equal
to

exp(−2λA)P {A < f (Y ′
n)ρn < 2A}/2,

if we chooseA = 8M2/3. The density functions off (Y ′
n) are eventually uniformly

positive in a neigborhood of zero so that

lim inf
n→∞ ρnE

[
exp

(−λρnf (Y ′
n)

)
I
{‖Qn(Y

′
n)‖2 ≤ 2ρnf (Y ′

n)
}]

> 0,(8.50)

and we can conclude that asn → ∞,

lim inf
n→∞ In/E

[
exp

(−λρnf (Y ′
n)

)
I
{‖Qn(Y

′
n)‖2 ≤ 2ρnf (Y ′

n)
}] ≥ 1.(8.51)

(viii) Given n ≥ 1, let Y ′′
n be a Gaussian mean zero random vector which is

independent ofY ′
n so that

L(Yn) = L(Y ′
n + Y ′′

n ), n ≥ 1.

[Such a sequence exists since cov(Yn) − cov(Y ′
n) is positive semidefinite, as can

easily be seen from the definition of these random vectors.]
Denoting the density function off (Yn) bygn, it follows that‖gn,1−gn‖∞ → 0,

which in turn by the independence off (Yn) andQn(Y
′
n) and a slight modification

of (8.48) implies

E
[
exp

(−λρnf (Y ′
n)

)
I
{‖Qn(Y

′
n)‖2 ≤ 2ρnf (Y ′

n)
}]

(8.52)
= E

[
exp

(−λρnf (Yn)
)
I
{‖Qn(Y

′
n)‖2 ≤ 2ρnf (Yn)

}] + o(ρ−1
n ).
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Setting

vn = E[f (Y ′′
n )Y ′′

n ]/E[f 2(Y ′′
n )]1/2 and Q′′

n(x) = x − vnf (x), x ∈ H,

if E[f 2(Y ′′
n )] > 0, we obviously have

‖Yn‖2 = ‖Qn(Y
′
n) + Q′

n(Y
′′
n ) + f (Y ′

n)wn + f (Y ′′
n )vn‖2,

where the variablesQn(Y
′
n),Q

′
n(Y

′′
n ), f (Y ′

n) andf (Y ′′
n ) are independent. It thus

follows that

E
[
exp

(−λρnf (Yn)
)
I
{‖Yn‖2 ≤ 2ρnf (Yn)

}]
(8.53)

=
∫ ∞
−∞

∫ ∞
−z1

e−λ(z1+z2)pn(z1, z2)gn,3(z2) dz2gn,1(z1) dz1,

where pn(z1, z2) = P {‖Qn(Y
′
n) + Q′

n(Y
′′
n ) + z1wn + z2vn‖2 ≤ 2ρn(z1 + z2)}

andgn,3 is the density off (Y ′′
n ).

By the inequality of Anderson we have, forz1, z2 ∈ R,

pn(z1, z2) ≤ P
{‖Qn(Y

′
n) + Q′

n(Y
′′
n )‖2 ≤ 2ρn(z1 + z2)

}
≤ P

{‖Qn(Y
′
n)‖2 ≤ 2ρn(z1 + z2)

}
,

which in combination with (8.53) implies

E
[
exp

(−λρnf (Yn)
)
I
{‖Yn‖2 ≤ 2ρnf (Yn)

}]
≤ E

[
exp

(−λρnf (Yn)
)
I
{‖Qn(Y

′
n)‖2 ≤ 2ρnf (Yn)

}]
.

Recalling (8.50) and (8.52), we obtain the desired result.�
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