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PROPERTIES OF HIGHER CRITICISM UNDER
STRONG DEPENDENCE
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The problem of signal detection using sparse, faint information is closely
related to a variety of contemporary statistical problems, including the control
of false-discovery rate, and classification using very high-dimensional data.
Each problem can be solved by conducting a large number of simultaneous
hypothesis tests, the properties of which are readily accessed under the as-
sumption of independence. In this paper we address the case of dependent
data, in the context of higher criticism methods for signal detection. Short-
range dependence has no first-order impact on performance, but the situation
changes dramatically under strong dependence. There, although higher crit-
icism can continue to perform well, it can be bettered using methods based
on differences of signal values or on the maximum of the data. The relatively
inferior performance of higher criticism in such cases can be explained in
terms of the fact that, under strong dependence, the higher criticism statistic
behaves as though the data were partitioned into very large blocks, with all
but a single representative of each block being eliminated from the dataset.

1. Introduction.

1.1. Decision-making using sparse, faint information. Modern data acquisi-
tion routinely produces massive, complex datasets in many scientific areas, for
example, genomics, astronomy and functional MRI. The need for fast and effec-
tive analysis in these settings poses challenging statistical problems, one of which
is how to reliably detect the presence of a sparse, faint signal. Here, data are avail-
able on a large number of observation units (or hypothesis tests, or transform coef-
ficients, etc.), which may or may not contain a signal; the signal, when present, is
faint and is dispersed across different observation units (e.g., vector components)
in an unknown fashion.

The situation arises naturally in a range of application areas, for example, early
detection of airborne bio-terror and syndromic surveillance (Donoho and Jin [7]
and Anon [1]), covert communications (Donoho and Jin [7]) and non-Gaussian
detection of the cosmic microwave background (CMB) (Cayon, Jin and Treaster
[5] and Jin et al. [20]). In these examples the desired signal may represent the
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outbreak of certain disease, or covertly attached signals in a white noise channel,
or non-Gaussian signatures in the CMB, and so on. In such cases the signal is
either highly sparse, or faint in its individual presences, or both. The sparsity and
faintness play an intricate duet which calls for nontraditional methods for signal
detection.

The signal detection problem is closely connected to that of multiple hypothesis
testing. Indeed, if in the former setting we associate each observation with a null
hypothesis, which asserts that the signal is not present and the observation is pure
noise, then the signal detection problem can be viewed as attempting to determine
whether at least one of the null hypotheses is false. From this point of view, related
work has been done in, for example, problems of assessing the accuracy of random
number generators; see, for example, Knuth [22]. Review-type accounts of multi-
ple hypothesis testing include those of Hochberg and Tamhane [13], Pigeot [25],
Dudoit, Shaffer and Boldrich [9], Bernhard, Klein and Hommel [3] and Lehmann
and Romano ([23], Chapter 9).

Of course, the problem of (1) discovering which null hypotheses are false is
more difficult than that of (2) estimating the proportion of false null hypotheses,
which in turn is more challenging than (3) determining whether at least one null hy-
pothesis is false. Work on these respective problems includes that of (1) Benjamini
and Hochberg [2], Genovese and Wasserman [11], Donoho and Jin [8], Efron et
al. [10] and Storey, Dai and Leek [26]; (2) Swanepoel [27], Efron et al. [10], Cai,
Jin and Low [4], Genovese and Wasserman [11], Storey, Dai and Leek [26], Jin
[18], Jin and Cai [19], Jin, Peng and Wang [21] and Meinshausen and Rice [24];
(3) Donoho and Jin [7], Delaigle and Hall [6], Hall, Pittelkov and Ghosh [12],
Ingster [14, 15], Jin [17] and Jager and Wellner [16].

1.2. Higher criticism methods for independent data. Inspired by ideas of
Tukey [28], Donoho and Jin [7] proposed higher criticism methods for signal de-
tection in the presence of a white noise. The technique is based on assessing the
statistical significance of the number of significant results in a long sequence of
hypothesis tests, which can be either formal or informal. The principle has found
a variety of applications, for example, to non-Gaussian detection (Cayon, Jin and
Treaster [5] and Jin et al. [20]), goodness of fit (Jager and Wellner [16]) and clas-
sification (Hall, Pittelkov and Ghosh [12] and Delaigle and Hall [6]).

A higher criticism statistic, computed from standard normal data Xi to which
might be added sparsely distributed, positive signals, can be defined by

hcn = sup
t∈Sn

∑
1≤i≤n{I (Xi > t) − �̄(t)}

{n�(t)�̄(t)}1/2
,(1.1)

where Sn denotes a subset of the real line, � is the standard normal distribution
function and �̄ = 1 − �. If positive signals are added to the Xi’s, then the numer-
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ator on the right-hand side of (1.1) takes relatively large values. Provided the size
and number of added signals are sufficiently great, hcn exceeds, with high proba-
bility, a critical point calculated under the assumption of “no signal.” The size of
this exceedance can be used as a basis for detecting the presence of the signals.

1.3. The case of dependent data. It can be shown (see Delaigle and Hall
[6]) that the main features of higher criticism do not alter under conditions of
short-range dependence, for example, if the data Xi come from a moving-average
process with exponentially decaying weights. However, the nature of the higher
criticism statistic can change dramatically under strong dependence. Provided an
appropriate critical point is employed to assess significance, higher criticism can
still be used effectively in such cases, although its performance does not necessar-
ily compare well with that of competing, difference-based signal detectors. Nev-
ertheless, in order to be effective the latter approaches can require significant in-
formation to be known about the signal, and so their theoretical attractiveness may
not necessarily be evidenced in practice.

To explore and elucidate these issues we shall treat dependent data generated
under a simple autocovariance model:

ρn(k) = max(0,1 − |k|α�−α
n ),(1.2)

where α > 0 and �n denotes a positive sequence diverging to infinity. If Xi is
a zero-mean, stationary Gaussian process with cov(Xi1,Xi2) = ρn(i1 − i2), then
data values lagged �n or more apart are independent. Therefore, by choosing �n to
diverge more slowly we reduce the range of dependence. Motivation for contexts
such as this, and for the dependent data case more generally, is given in Section 1.4.

We shall show that for large n, and to a first approximation, the numerator at
(1.1) behaves like �n

∑
j {I (Zj > t) − �̄(t)}, where there are just n/�n terms in

this series and the Zj ’s are independent and normal N(0,1). That is, the higher
criticism statistic behaves as though the data were partitioned into �n blocks, and
were identically equal to Zj within the j th block. (Here it is assumed that 1 ≤ �n ≤
n.) Reflecting this property, the number of signals present should be increased by
the factor �n if performance is to be similar to that in the case of independence; we
shall make this precise in Section 3.4. This blockwise view provides considerable
insight into properties of the higher criticism statistic, although it conceals the fact
that, under strong dependence, the differences Xi+1 − Xi can be used to construct
powerful tests.

1.4. Speckle imaging. One of the challenging aspects of earth-based astro-
nomical imaging is removing the effects of atmospheric turbulence. The at-
mosphere is in constant motion, and it alters a point-like sharp signal to a blurred
signal whose position changes, sometimes rapidly, over time. Speckle imaging in-
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volves creating many images, one after the other (e.g., thousands in an hour are
possible using current technology), and combining these rapid “snapshots” to gain
greater information (e.g., higher resolution) than could be managed using con-
ventional imaging. A disadvantage of this approach is that it gives images with
relatively low brightness, and so many short-exposure images are “stacked” to
achieve greater sensitivity. There is a variety of ways of aligning stacked images,
for example, by using the brightest point (a “speckle”) as the locus.

Of course, the brightest speckle moves relative to the point source in the heav-
ens, for example, because of atmospheric effects and telescope vibration. More-
over, it can subdivide into more than one speckle, due to atmospherical effects.
Therefore image stacking retains significant levels of noise, although it produces
images which enjoy relatively high signal-to-noise ratios at high frequencies.
While image stacking involves spatial, two-dimensional data, intellectually the is-
sues are most transparently tackled in a one-dimensional setting, without making
intrinsic changes. In this paper we analyze a one- dimensional model for the type
of data obtained from image stacking, and report on the implications of the model.

The stacking procedure results, first, in very faint point sources, often only a
pixel or two wide and, in many cases, representing the same heavenly point source
but located in different (perhaps multiple) positions in each image; and, second,
in a background noise process that is defined essentially in the continuum, and
whose correlation can extend over many pixels, especially if pixel width is small.
In particular, the correlation between the noise at pixels i and j can be represented
as 1 − g(|i − j |/n), where n−1 denotes pixel width and g is a smooth function.
The autocovariance model at (1.2) is an idealized form of this.

As technology improves, the distance between adjacent pixels becomes smaller
(equivalently, the value of n becomes larger), and the number of images in a stack
increases (implying that the interpolated continuum model in the previous para-
graph applies more closely). Work of Jin [17] uses higher criticism methods in this
setting, but against the background (and the independence assumptions) of Donoho
and Jin [7]. The present paper takes a more careful look at what can occur in the
case of dependence, and in particular reveals the suboptimality of higher criticism
there.

To extend these concepts to other settings, suppose we have data from a process
Z which is a discretization (e.g., on a pixel grid) of a continuum process for which
the autocorrelation function is 1 − g, where g is smooth. As the discretization
becomes finer, the strength of dependence of the discrete process increases, and
the results developed in this paper become relevant. In the astronomical example,
greater fineness is the result of improved imaging methods, but in other settings
the cause may be different.

In practice, a reasonable amount of information is known about the signal, and
as in all imaging problems, further advice on choice of the critical point can be
gained by visual experimentation. (Sometimes the differences between imaging
problems and curve estimation are overlooked in this respect.)



HIGHER CRITICISM UNDER DEPENDENCE 385

2. Overview.

2.1. Time-series model, and its immediate consequences. Let Xn1,Xn2, . . .

denote a stationary Gaussian process, with zero mean and autocovariance given
by a slight specialization of (1.2):

ρn(k) = max(0,1 − |k|αn−α0),(2.1)

where α,α0 > 0. That is, cov(Xni1,Xni2) = ρn(i1 − i2) for each pair (i1, i2). The
length of the range of dependence of this process increases with both α0 and α−1.

Let κ = α0/α. Then �n, in (1.2), is effectively equal to nκ . If we are considering
crossings of levels proportional to

√
logn, then, to a first approximation, there

is a high probability that any crossing is succeeded by “almost” nκ further such
crossings, although not by nκ crossings. To make this claim more concise we note
that if t = √

2q logn, where q > 0, then

for each ε > 0, P (Xni > t for 2 ≤ i ≤ nκ−ε|Xn1 > t) → 1.(2.2)

On the other hand,

P(Xni > t for 2 ≤ i ≤ nκ |Xn1 > t) → 0.(2.3)

Result (2.2), under the side condition α ≥ 2, follows from Theorem 3.2 in Sec-
tion 3. Property (2.3) is simpler to derive; note that if X and Y are jointly normally
distributed with zero means, unit variances and covariance ρ, then P(X > t |Y >

t) → 0 as t → ∞.

2.2. Blockwise decomposition of higher criticism statistic. Suppose we ob-
serve only the first n terms, that is, Xn1, . . . ,Xnn, in the time series. Then (2.2)
and (2.3) indicate that, if we are addressing level-crossings on a

√
logn scale, the

sum of indicator functions that defines the higher criticism statistic can be written
approximately as a sum of max(1, n1−κ) indicators of time-series variables lagged
min(n,nκ) apart:

n∑
i=1

I (Xni > t) ≈ min(n,nκ)

max(1,n1−κ )∑
j=0

I (Xn,jnκ+1 > t).(2.4)

Here we interpret jnκ as j	nκ
, where 	x
 denotes the least integer not strictly
less than x. We may consider Xn,jnκ+1, appearing in the argument of the indicator
variable on the right-hand side of (2.4), as representing the j th “block” of time-
series values, that is, as representing the data Xn,jnκ+1,Xn,jnκ+2, . . . ,Xn,(j+1)nκ .

The indicator variables on the right-hand side of (2.4) are independent and iden-
tically distributed as normal N(0,1), and so (2.4) implies that the higher criti-
cism statistic is approximately equal to its version for the smaller, “effective sam-
ple size” of max(1, n1−κ), subsequently multiplied by the factor min(n,nκ). This
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property gives insight, discussed in Section 2.3, into higher criticism for strongly
dependent data.

Even if block size is reduced from nκ to nκ−ε , for some ε > 0, then it is unrea-
sonable to expect blockwise decompositions to hold uniformly in t . To appreciate
why, consider slowly increasing the value of t until a point t ′, say, is reached where,
for a particular index j , at least one of the variables in the j th block first fails to ex-
ceed the level t . Although the variables in the j th block are highly correlated, they
have a proper joint distribution. Therefore, as we increase t beyond t ′, the other
variables in the block will fail one by one to exceed t . They will not fail simulta-
neously, although, since the correlation is high, they will, with high probability, all
fail within a relatively small interval of values of t .

2.3. Summary of properties of higher criticism statistic. We shall argue that
behavior of the higher criticism statistic can be decomposed into two cases, “de-
generate” and “nondegenerate.” The degenerate case arises when κ ≥ 1. Here, in
view of (2.2), the effective sample size, for crossings of a level on a

√
logn scale,

is just 1. Therefore, if κ ≥ 1, then the strongly dependent nature of the data effec-
tively restricts us, when using the conventional higher criticism statistic, to work-
ing with a single data value.

If κ < 1, then the problem is nondegenerate, and (2.2) and (2.3) imply that
the effective sample size is N = n1−κ . In this case, if v > 1, then the probability
that an exceedance of the level

√
2v logN occurs, among the N independent data,

converges to zero, and so we should confine attention to levels for which v < 1.
For simplicity, we skip discussion of the case of v = 1. Taking

√
2q logn to be

the level of the signal, and equating
√

2v logN to
√

2q logn, we see that “v < 1”
translates to the condition “q < 1 − κ .” Therefore, we argue:

CLAIM. In keeping with the approach developed for independent data,
when κ < 1 the higher criticism statistic should be used to address cross-
ings of levels no higher than

√
2q logn, where q < 1 − κ .

(2.5)

Theorem 3.4 will justify the claim.
In the discussion above we treated the “null” setting, where no signal is present.

In conventional higher criticism (Donoho and Jin [7]), the nonnull case is con-
structed by distributing n1−β signals, each equal to

√
2r logn for some r ∈ (0,1),

independently and uniformly among the n noise variables Xi . [To make the signal-
detection problem nontrivial we take β ∈ (1

2 ,1).] To keep faith with the block-
wise treatment suggested in Section 2.2, we should ideally distribute N1−β blocks
of signals, each block comprising nκ signals and each signal equal to

√
2r logN

where 0 < r < 1, among the N blocks. Of course, this does not happen; the blocks
are fictions of our mathematical argument, and are not respected by the physical
process that produces the signal. Nevertheless, as we shall show in Section 3.4,
a close parallel with the case of independent data emerges if we add N1−βnκ sig-
nals, distributed among the n time-series values Xni .
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It follows that, if κ < 1 and we distribute N1−βnκ signals randomly and uni-
formly among the n time-series values, then the higher criticism statistic for the
time-series dataset Xn1, . . . ,Xnn is well approximated by a constant multiple of its
counterpart when the time-series is sampled only N times, once at every nκ points,
and the N1−β signals are distributed among the N sampled points. The resulting
subseries is comprised only of independent data.

In the case of a strongly dependent time-series Xni , even if the magnitude of the
signal is as small as n−C1 for C1 > 0 not too large, the presence of the signal can
be determined accurately merely by deciding that the signal is present if, for some
i ∈ [1, n − 1], |Xn,i+1 − Xni | > n−C2 , where 0 < C2 < C1. For this simple signal
detector, the probability that the signal is not detected when it is not present, and
the probability that it is detected when it is present, both converge to 1. However,
effectiveness of the method requires information about the range of dependence.
Details will be given in Theorem 3.8.

2.4. Signal detection using the maximum. A commonly used statistic for sig-
nal detection is the maximum of the observed data, Maxn = max(Xn1, . . . ,Xnn).
In the case of independent, N(0,1) noise, the signal is deemed to be present if
Maxn >

√
2 logn, and not present otherwise; see, for example, Donoho and Jin

[7]. This “max classifier” has less sensitivity than higher criticism in the white
noise setting, but is more robust to dependence. Details will be given in Section
3.4.

3. Main results.

3.1. Variance of numerator of higher criticism statistic. Recall that κ =
α0/α, where α,α0 > 0 are parameters governing the autocovariance model at
(2.1). Given two functions a1 and a2 satisfying 0 < a1(t) ≤ a2(t) < ∞, write
〈a1(t), a2(t)〉 to denote a quantity which, uniformly in n ≥ 1 and t ≥ 1, is bounded
between C1a1(t) and C2a2(t), for constants C1,C2 > 0. Let t1 = |t | + 1, for arbi-
trary real t .

Our first theorem describes the variance of the argument of the higher criticism
statistic, uniformly on the positive half-line.

THEOREM 3.1. If the autocovariance of the time-series Xni is given by (2.1),
then there exist constants B1,B2 ≥ 1 such that, uniformly in n ≥ 1 and all t ,

var

{
n∑

i=1

I (Xni > t)

}
= 〈t−B1

1 , t
B2
1 〉nmin(κ+1,2)e−t2/2.(3.1)

REMARK 3.1 (Impact of blockwise properties on variance). Recall, from
(2.4), that the numerator of the higher criticism statistic can be approximated by a
construction where the terms in the numerator are grouped into blocks of length nκ ,
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and the indicator functions that represent respective blocks are independent. Refer-
ring to (2.4), and writing simply X for a random variable with the standard normal
distribution, the variance of this approximation can be seen to equal

max(1, n1−κ)var{min(n,nκ)I (X > t)}
(3.2)

= nmin(κ+1,2)�(t){1 − �(t)} = 〈t−1
1 , t−1

1 〉nmin(κ+1,2)e−t2/2.

The right-hand sides of the specific formula (3.1), and its approximation (3.2), are
close to one another.

3.2. Blockwise properties of higher criticism statistic. Here we state results
that underpin (2.2), (2.4) and (2.5). Recall that κ = α0/α.

THEOREM 3.2. Assume that the stationary, zero-mean Gaussian process Xni

has autocovariance given by (2.1), and that 0 < λ < κ . Then, for each η > 0,

P {I (Xni > t) = I (Xn1 > t) for 1 ≤ i ≤ nλ} = 1 − O
(
nλ−(α0/2)+ηe−t2/2)

,(3.3)

uniformly in all t .

Since λ < κ can be chosen arbitrarily close to κ , then Theorem 3.2, and re-
lated properties such as those at (2.3) and in Theorem 3.3, demonstrate that the
process of indicator values, I (Xni > t), can be divided approximately into blocks
of length nκ . Here the approximation is logarithmic: the logarithm of block length
is approximately equal to log(nκ). The difference in size of the higher criticism
statistic, in the presence and in the absence of signals, respectively, is small on
the same scale; the change in size is by a factor of nε , where ε can be very small
although always strictly positive, and depends on the distance that the signal lies
above the detection boundary. See Theorem 3.7. Therefore, measurement of block
size on a logarithmic scale is appropriate in the present setting.

A corollary of Theorem 3.2 is that, if α ≥ 2, which ensures that κ − (α0/2) ≤ 0;
and if tn is any sequence of positive constants such that tn/nη → 0 for each η > 0;
then:

for each ε > 0,
(3.4)

sup
t :|t |≤tn

∣∣1 − P(Xni > t for 2 ≤ i ≤ nκ−ε|Xn1 > t)
∣∣ → 0.

This is a strong form of (2.2).
Result (3.4) also implies that if κ > 1, then, with high probability, either all the

data in the sample Xn1, . . . ,Xnn are above the level t , or all are below that level.
Indeed, with tn as before,

sup
t :|t |≤tn

∣∣1 − P(Xni > t for 2 ≤ i ≤ n|Xn1 > t)
∣∣ → 0.(3.5)
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However, as (2.3) indicates, (3.5) fails when κ = 1.
Our next result quantifies the approximation at (2.4). We already know, from

(3.5), that if κ > 1, then (2.4) holds in the sense that, for J = 0 or 1,

P

{
n∑

i=1

I (Xni > t) = nI (Xn1 > t)|I (Xn1 > t) = J

}
→ 1,(3.6)

uniformly in |t | ≤ tn. For κ ≤ 1 the approximation is a little more tricky, in that,
as indicated at the end of the previous paragraph, block length cannot be quite
as long as nκ if the sum of indicator functions, on the left-hand side of (2.4), is
to decompose into blocks with high probability. Moreover, when there is more
than one block it is awkward to sharpen the result by conditioning, as at (3.6).
Theorem 3.3, below, gives a concise account of subdivision into blocks of length
	nλ
, where λ < κ can be chosen arbitrarily close to κ .

Before stating Theorem 3.2 we give a little notation. Recall that κ = α0/α.
If κ > 1, take b = 1 and B1 = {1, . . . , n}. If κ ≤ 1 and λ ∈ (0, κ), partition the
integers 1, . . . , n into b consecutive, adjacent blocks B1, . . . ,Bb, where the first
b − 1 blocks contain just 	nλ
 integers and the last block is of length between 1
and 	nλ
. (Thus, b ∼ n1−λ.) Let sj denote the least element of Bj .

THEOREM 3.3. If the assumptions in Theorem 3.2 hold, then, for each η > 0,

P {I (Xni > t) = I (Xnsj > t) for i ∈ Bj and 1 ≤ j ≤ b}
(3.7)

= 1 − O
(
n1−(α0/2)+ηe−t2/2)

uniformly in all t .

REMARK 3.2 (Blockwise clumping of indicator variables). If we add to the
assumptions of Theorem 3.3 the condition α0 > 0, then (3.7) implies that

sup
−∞<t<∞

|1 − P {I (Xni > t) = I (Xnsj > t) for i ∈ Bj and 1 ≤ j ≤ b}| → 0

uniformly in all t . This result, and (3.4), underpin the blockwise decomposition of
the higher criticism statistic, discussed in Section 2.2.

Finally in this section we justify (2.5). We argue that if t = √
2q logn, where

q > 1 − κ , then, in the majority of samples, none of the noise data exceed the
level t . See (3.8) below. Therefore, if the signal is at level t or larger, and if it is
added to the noise, then it will be very easy to detect. Hence, to make the signal-
detection problem reasonably difficult, we should ensure that q < 1−κ , as claimed
at (2.5).

THEOREM 3.4. Assume that the stationary, zero-mean Gaussian process Xni

has autocovariance given by (2.1), and that κ < 1. Then, if t = √
2q logn where

q > 1 − κ ,

P(Xni > t for some 1 ≤ i ≤ n) → 0.(3.8)
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3.3. Size of higher criticism statistic. Here we address properties of hcn, de-
fined at (1.1), in cases where κ < 1. Our analysis of blockwise characteristics of
the higher criticism statistic has already shown that the case κ > 1 is relatively
uninteresting, since there, almost all the data Xn1, . . . ,Xnn cross a given level t at
the same time.

We first address the nature of the set Sn in the definition of hcn. If the data
Xni were independent and identically distributed, or equivalently, if κ = 0, then
we could take Sn = [−tn, tn] where tn = √

2s logn and 0 < s < 1. Taking s ≥ 1
is inappropriate, since the version of Theorem 3.4 that applies in the setting of
independent data then implies that the level tn is hardly ever exceeded by the data
in a sample of n standard normal random variables; the level is too large.

To remove this difficulty we should instead consider a value of tn such that
n�̄(tn) is bounded away from zero. A borderline sequence of this type is tn =
{2 logn − log(C logn)}1/2, where C is any positive constant. Here, n�̄(tn) con-
verges to (C/π)1/2. We know from the results discussed in Section 3.2 that, when
κ < 1, the data behave as though they were partitioned into n1−κ blocks, where
the indicators I (Xni > t) are identical within the block. Therefore, when κ < 1 we
should ask that n1−κ�̄(tn), rather than n�̄(tn), be bounded away from zero. This
appreciation motivates the assumption on tn imposed in the theorem below.

THEOREM 3.5. Assume that the stationary, zero-mean Gaussian process Xni

has autocovariance given by (2.1), that κ < 1, and that tn → ∞ in such a manner
that n1−κ�̄(tn) is bounded away from zero. Then, for all η > 0,

P

[
sup
|t |≤tn

∣∣∣∣
∑

i{I (Xni > t) − P(Xni > t)}
{n�(t)�̄(t)}1/2

∣∣∣∣ > n(κ+η)/2
]

→ 0.(3.9)

Theorem 3.5 points to the size of critical point appropriate for a test of signif-
icance involving the higher criticism statistic, as follows. A multivariate central
limit theorem for values of

∑
i I (Xni > t), for a fixed but arbitrarily large number

of different t’s, implies that if the critical point cn(α) is to satisfy

P

[
sup
|t |≤tn

∑
i{I (Xni > t) − P(Xni > t)}

{n�(t)�̄(t)}1/2
> cn(α)

]
= α,(3.10)

where 0 < α < 1 is fixed, then cn(α) = nκ/2dn(α), where dn(α) diverges to infin-
ity. (The central limit theorem can be proved using the method of moments.) On
the other hand, Theorem 3.5 shows that dn(α) is no larger than O(nη), for any
η > 0. These considerations lead to the following corollary to Theorem 3.5.

THEOREM 3.6. If Xni is a stationary, zero-mean Gaussian process with auto-
covariance given by (2.1), if 0 < κ < 1, if tn → ∞ such that n1−κ�̄(tn) is bounded
away from zero, and if cn(α) is defined by (3.10), then cn(α) = nκ/2dn(α) where,
as n increases, dn(α) diverges to infinity for each fixed α, but equals O(nη) for
each η > 0.
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REMARK 3.3 (Calibration). In practice, a critical point would be determined
either by experience with the time-series Xni , or by simulation from a model for
those data. In either case, cn(α) would, in effect, be found empirically. However,
as Theorem 3.7 will show, it is not important that cn(α) be determined particularly
accurately.

Let 0 < κ < 1 and N = n1−κ , as in Section 2, and consider the impact of adding
a signal, equal to

ν =
√

2r logN,(3.11)

to just N1−βnκ of the standard normally distributed data Xn1, . . . ,Xnn. This
changes the data from Xni to

Yni = Xni + Iniν,(3.12)

where Ini is a process of zeros and ones. This suggests that we add a signal to all
nκ time-series values in each of N1−β blocks. However, we do not need to add the
signals in this blockwise way. They can be added in any deterministic manner, or
in any random way that is stochastically independent of the time-series Xni . We
take 1

2 < β < 1, to make the signal-detection problem relatively difficult.
The detection boundary of Donoho and Jin [7] (see also Ingster [14, 15] and Jin

[17]) is the locus of points (β, r), with 1
2 < β < 1, such that

r =
{

β − 1
2 , if 1

2 < β ≤ 3
4 ,(

1 − √
1 − β

)2
, if 3

4 < β < 1.
(3.13)

The theorem below shows that, if cn(α) is the critical point defined by (3.10); and
if we assert that the signal is present if the higher criticism statistic exceeds cn(α),
or even if it exceeds a bound that is larger than that quantity to a small but fixed
polynomial extent; then the probability that we make the correct decision when the
signal is present, converges to 1 if (β, r) lies above the boundary. Below we take
N = n1−κ , where 0 < κ < 1, and write hcsig

n for the version of hcn when Xni , at
(1.1), is replaced by Yni .

THEOREM 3.7. Let Xni be a stationary Gaussian process with zero mean and
autocovariance as at (2.1), and let Yni be as at (3.12), with the Ini’s independent
of Xn1, . . . ,Xnn and just N1−βnκ of them equal to 1. Assume that n1−κ�̄(tn) is
bounded away from zero, and (β, r) lies strictly above the detection boundary.
Then, for δ > 0 sufficiently small,

P
(
hcsig

n > n(κ/2)+δ) → 1.(3.14)

Define ξ = (1 − β)(1 − κ). If we consider that n1−β ′ = N1−βnκ = nξ+κ sig-
nals, each of size

√
2r ′ logn = √

2r logN , have been added to the time-series
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FIG. 1. Detection boundary graphed in terms of (β ′, r ′) for different κ . Recall that β ′ = (1 − κ)β

and r ′ = (1 − κ) r . Each curve depicts the boundary shown at (3.14), with variables (β, r) rescaled
to (β ′, r ′). The curves, in order from top to bottom, are for the cases κ = 0.6,0.4,0.2,0, the last
denoting the context of independent data. The horizontal dashed lines show graphs of r ′ = 1 − κ for
the four respective values of κ .

Xn1, . . . ,Xnn, then (β ′, r ′) is related to (β, r) by the formulas β ′ = β(1 − κ) and
r ′ = r(1 − κ). Figure 1 graphs the detection boundary determined by (3.13), in
terms of (β ′, r ′) rather than (β, r).

REMARK 3.4 [Performance of higher criticism when (β, r) lies below the de-
tection boundary]. An argument similar to that given in the proof of Theorem 3.7
may be used to prove that, if (β, r) lies strictly below the detection boundary, and
if the positive constants dn diverge at rate nδ for each δ > 0, although neverthe-
less sufficiently fast, then P(hcsig

n > nκ/2dn) → 0. Therefore, the higher criticism
statistic cannot be relied on to give accurate detection when (β, r) lies below the
detection boundary.

If we are aware of the presence of strong dependence, and can exploit it through
an accurate mathematical model for both the error process and the signal, then
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the dependence can be utilized to produce a signal detector with a high degree of
sensitivity. To see why, consider adding a much smaller signal than before, this
time of size only ν′ = ±2(rn−α0 logn)1/2 where r > 1, to between one and n − 1
points of the time-series Xn1, . . . ,Xnn, thereby obtaining the data Y ′

ni , say. Let
1 ≤ C < r , and suppose that we determine the signal to be present if

max
1≤i≤n

|Y ′
n,i+1 − Y ′

ni | > 2(Cn−α0 logn)1/2.

If this inequality fails, we determine the signal to be absent. We shall call this the
“neighbor-difference detector” (NDD). In both conception and effect it is rather
like assessing the time-series Y ′

ni using a high-pass filter.
Our next result shows that NDD enjoys a high degree of sensitivity. Depend-

ing on how much information is available about the signal and the noise process,
NDD might require, relative to other methods, greater knowledge of the covariance
at (2.1). The main issue in practice, however, is determining when the level of cor-
relation has increased to such an extent that methods based on the assumption of
independence are no longer competitive. As noted in Section 1.4, this point can be
reached relatively subtly, for example, as imaging technology improves through
decreases in pixel size.

THEOREM 3.8. If 1 ≤ C < r , then the probability that NDD correctly deter-
mines that a signal is present, given that it is, and the probability that the detector
correctly determines that a signal is not present, given that it is not, both converge
to 1 as n → ∞.

Note that, although Theorem 3.8 treats only one signal, that signal is permitted
to be added at any number of points, between one and n−1, and can be polynomi-
ally small in size, rather than logarithmically large as would be required in the case
of higher criticism. Therefore, when using NDD the signal can be much smaller
in size, and much less frequently present, than in the case of higher criticism; and
nevertheless NDD manages to detect it.

3.4. Properties of Maxn. The max classifier was defined in Section 2.4. In the
case of independent N(0,1) data, the rule given there leads to asymptotically cor-
rect classification if r > (1 − √

1 − β)2, and to correct classification with limiting
probability 1

2 if r < (1 − √
1 − β)2. The resulting detection boundary, with equa-

tion r = (1 − √
1 − β)2, coincides with that for higher criticism if 3

4 ≤ β < 1, but
is above the higher criticism boundary if 1

2 < β < 3
4 . However, unlike higher criti-

cism, the maximum-based detector maintains its performance in the presence of a
polynomially large amount of dependence.

To appreciate this point, given β ∈ (1
2 ,1) and a nonnegative sequence an de-

creasing to zero, let X(β, an) denote the set of all distributions of time-series
Xn1, . . . ,Xnn for which each Xni is distributed as N(0,1), and the covariances
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ρij = cov(Xni,Xnj ) satisfy |ρij | ≤ an for all i, j such that 1 ≤ i, j ≤ n and
|i − j | ≥ nβ/3. Define Yni by adding the sparse signal Iniν1 to Xni , as at (3.12).
Here, to delineate the way in which performance of the max classifier does not
vary with dependence, we take ν1 to equal the value that ν, in (3.12), would take
in the absence of correlation: ν1 = √

2r logn. Compare (3.11).

THEOREM 3.9. If β ∈ (1
2 ,1) and r > (1 − √

1 − β)2, then the probability
that the max classifier correctly detects that a signal is present when it is, and the
probability that the classifier does not detect a signal when it is not present, both
converge to 1 uniformly in time-series in X(β, an).

4. Numerical properties. We report here a simulation study assessing the
performance of hcn. The analysis involved selecting pairs (r, β) above the detec-
tion boundary, and generating samples from either population. To simulate a sta-
tionary Gaussian process Xn1, . . . ,Xnn with the covariance function specified in
(2.1), we used the method suggested by Wood and Chan [29].

Recall that κ = α0/α, r ′ = (1 − κ)r and β ′ = (1 − κ)β , and that we obtain the
process Yn1, . . . , Ynn by adding to Xn1, . . . ,Xnn a total of n1−β ′

signals, each of
strength

√
2r ′ logn. For the results reported here we selected two values of (β, r),

and for each, studied the performance of hcn for different values of α0. Specifically,
we chose (β, r) = (0.6,0.35) and (β, r) = (0.75,0.5); each is a vertical distance
0.25 above the detection boundary at (3.13). For each (β, r) we treated n = 216

and n = 220, α = 0.5 and α0 = 0.05,0.1,0.15,0.20, so that κ = 0.1,0.2,0.3,0.4.
We chose n large since the signals are highly sparse.

Our project was implemented in the following sequence of steps: (1) Generate
the stationary Gaussian process {Xn1, . . . ,Xnn} having the covariance function at
(2.1). (2) Defining K = n1−β ′

, generate K variates from the uniform distribution
on the unit interval, ordering them as u1 < u2 < · · · < uK ; and generate a sequence
Ini of zeros and ones, taking the value 1 at i = 〈nui〉 for i = 1,2, . . . ,K , and
the value 0 elsewhere. (Here, 〈x〉 denotes the integer nearest to x.) (3) Put Yni =
Xni + √

2r ′ lognIni for 1 ≤ i ≤ n. (4) Construct hcn from the data Xni and Yni ,
where in the definition of hcn, Sn = (−tn, tn) with tn = �̄−1(nκ−1). (5) Repeat
steps (1)–(4) 100 independent times. The matlab code can be found at www.stat.
purdue.edu/~jinj/Research/software/HallandJin.

For (β, r) = (0.6,0.35), if we decide to reject the null hypothesis of “no signal”
when n−κ/2hcn ≥ 2.2, then, for n = 216, the empirical probability among 100 runs
of committing a type I error equals 0.00 in the respective cases α0 = 0.05, 0.10,
0.15 and 0.20, and the corresponding empirical probabilities of committing a type
II error are 0.00, 0.00, 0.00 and 0.06. Increasing n to 220, the respective type I
error probabilities become 0.03, 0.00, 0.00 and 0.01, and type II error probabil-
ities decrease to 0.00 in each case. For (β, r) = (0.75,0.5), if we reject the null
hypothesis when n−κ/2hcn ≥ 1.7, then, for n = 216, the type I error probabilities
are 0.25, 0.02, 0.02 and 0.03, and the type II error probabilities are 0.04, 0.10, 0.21

www.stat.purdue.edu/~jinj/Research/software/HallandJin
www.stat.purdue.edu/~jinj/Research/software/HallandJin
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TABLE 1
Mean and standard deviation (SD) of n−κ/2 hcn

n 210 212 214 216 218 220

n−κ/2hcn Mean 1.0273 1.0504 0.9162 0.8851 0.8467 0.7823
SD 0.6234 0.4290 0.3810 0.4086 0.3702 0.3805

and 0.41; they decrease to 0.17, 0.03, 0.04 and 0.00, and to 0.00, 0.00, 0.00 and
0.02, respectively, when n = 220.

We also investigated how closely the values of hcn accord to our asymptotic
analysis, which states that under the null hypothesis, hcn = Op(n(κ/2)+ε) and
n(κ/2)−ε = Op(hcn) for each ε > 0. We therefore conducted a simulation study
where we fixed (α0, α) = (0.1,0.5), entailing κ = 0.2, and took log2 n in the range
10(2)20. For each n we generated a stationary Gaussian process with the covari-
ance structure specified in (2.1), and calculated hcn. We then repeated the simu-
lations 100 independent times. The results are tabulated in Table 1, which shows
that as n increases from 103 to 106, the mean and standard deviation of n−κ/2hcn

alter by only 24% and 39%, respectively, over the thousand-fold range of values
of n.

5. Technical arguments.

5.1. Proof of Theorem 3.1. The case where t lies in a bounded interval is
straightforward to treat, and the situation of large negative t can be addressed anal-
ogously to that for large positive t . Therefore we confine attention to t ≥ 1.

Let X and Y be jointly normally distributed with zero means, unit variances and
correlation coefficient ρ. Result (3.1) can be derived using the following lemma.

LEMMA 5.1. If t → ∞ and ρ → 1 in such a manner that t2(1 −ρ) → 0, then

1 − P(X > t |Y > t) ∼ t (1 − ρ)1/2

π1/2 .(5.1)

5.2. Proof of Theorem 3.2. For reasons that preface the proof of Theorem 3.1,
it suffices to treat the case t ≥ 1.

LEMMA 5.2. Let Zk1, . . . ,Zkmk
, for 1 ≤ k ≤ �, denote normal random vari-

ables with zero means, unit variances and cov(Zk1,Zki) = ρki ≥ 0 for 1 ≤ i ≤ mk .
Put m = m1 + · · · + m� and

ρmin = min{ρki : 1 ≤ i ≤ mk, 1 ≤ k ≤ �}.
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Then, uniformly in m ≥ 1 and t ≥ 1,

|1 − P {I (Zki > t) = I (Zk1 > t) for 1 ≤ i ≤ mk and 1 ≤ k ≤ �}|
(5.2)

≤ Am(1 − ρmin)
1/2e−t2/2,

where A is a positive absolute constant.

PROOF. Denote the left-hand side of (5.2) by LHS. Then,

1 − LHS ≤
�∑

k=1

mk∑
i=2

P {I (Zki > t) �= I (Zk1 > t)}

= 2
�∑

k=1

mk∑
i=2

P(Zki > t,Zk1 ≤ t)

= 2{1 − �(t)}
�∑

k=1

mk∑
i=2

{1 − P(Zki > t |Zk1 > t)}.

Result (5.2), and hence Lemma 5.2, follows from this bound and (5.1).
Next we derive Theorem 3.2. Given ε ∈ (0, λ), partition the set of integers in the

interval [1, nλ] into nλ−ε nonoverlapping subintervals, each of length nε , where
the subintervals of integers are ordered as I1, . . . ,Inλ−ε from left to right along
the real line. (We shall omit integer-part notation, and also omit the straightfor-
ward treatment of the case where the last interval is a fragment, shorter than the
other intervals.) Let ij denote the integer furthest to the left in Ij . Then, using
Lemma 5.2, we deduce that uniformly in t ≥ 1,

P {I (Xni > t) = I (Xnij > t) for i ∈ Ij and 1 ≤ j ≤ nλ−ε}
(5.3)

= 1 − O{nλ(nεα/nα0)1/2e−t2/2} = 1 − O
(
nλ+(εα/2)−(α0/2)e−t2/2)

.

Suppose 0 < λ1 < λ, and that we have partitioned the interval [1, nλ] into
nλ−λ1 nonoverlapping subintervals, each of length nλ1 , arranged in order as
J1, . . . ,Jnλ−λ1 from left to right; and that, with ij denoting the integer furthest
to the left in Jj ,

P {I (Xni > t) = I (Xnij > t) for i ∈ Jj and 1 ≤ j ≤ nλ−λ1}
(5.4)

= 1 − O(nγ e−t2/2),

uniformly in t ≥ 1, for a constant γ > 0. Result (5.3) is an instance of (5.4), with
λ1 = ε and γ = λ + (εα/2) − (α0/2). We shall argue by induction, from (5.3) via
(5.4).

Consider the sparsely sampled time-series Xni1, . . . ,Xni
nλ−λ1

. Partition the
equally spaced integers i1, . . . , inλ−λ1 , defined immediately above (5.4), into con-
secutive blocks K1, . . . ,Knλ−λ1−λ2 , each containing nλ2 integers, where 0 < λ2 <
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λ − λ1. Let k� denote the integer furthest to the left in K�. Then, by Lemma 5.2,
we have uniformly in t ≥ 1,

P {I (Xnij > t) = I (Xnk�
> t) for j ∈ K� and 1 ≤ � ≤ nλ−λ1−λ2}

= 1 − O{nλ−λ1(nλ2α/nα0)1/2e−t2/2}(5.5)

= 1 − O
(
nλ−λ1+(λ2α/2)−(α0/2)e−t2/2)

.

For each �, put L� = ⋃
j∈K�

Jj . This gives a partition of [0, nλ] into nλ−λ1−λ2

disjoint subintervals L�, with 1 ≤ � ≤ nλ−λ1−λ2 , each L� containing nλ1+λ2 con-
secutive integers, and for which, in view of (5.4) and (5.5), the version of (5.4)
holds with ij replaced by mj (here denoting the least integer in Lj ), Jj replaced
by Lj , nλ−λ1 replaced by nλ−λ1−λ2 and γ replaced by

γ ′ = max
{
γ,λ − λ1 + 1

2(λ2α − α0)
}
.(5.6)

That is, uniformly in t ≥ 1,

P {I (Xni > t) = I (Xnmj
> t) for i ∈ Lj and 1 ≤ j ≤ nλ−λ1−λ2}

(5.7)
= 1 − O(nγ ′

e−t2/2).

Having achieved, in (5.3), result (5.4) for λ1 = ε and γ = λ + 1
2(εα − α0), we

may, noting the definition of γ ′ at (5.6), ensure that (5.4) holds with γ ′ = γ , by
choosing λ2 such that

λ − λ1 + 1
2(λ2α − α0) = λ + 1

2(εα − α0);
that is, λ2 = ε + (2λ1/α). Selecting this λ2 implies that, in passing from (5.3) to
(5.7), the number of subintervals [Ij in (5.3) and Lj in (5.7)] has decreased from
nλ−ε to nξ1 , where

ξ1 = λ − λ1 − λ2 = λ − ε − λ1

(
1 + 2

α

)
= λ − λ′

1,

with λ′
1 = ε + λ1(1 + 2α−1) = ε(1 + τ) and τ = 1 + 2α−1. That is, (5.4) holds

with λ1 replaced by λ′
1 but still with γ = λ + 1

2(εα − α0). A further iteration of
this argument decreases ξ1 to

ξ2 = λ − ε − ε

(
1 + 2

α

)
−

[
ε + 2

α

{
ε + ε

(
1 + 2

α

)}]
= λ − ε(1 + τ + τ 2),

achieving ξk = λ − ε(1 + τ + · · · + τ k) after a further k − 2 iterations. Stopping
when ξk < 0, we conclude that, uniformly in t ≥ 1,

P {I (Xni > t) = I (Xn1 > t) for 1 ≤ i ≤ nλ}
(5.8)

= 1 − O
(
nλ+(εα/2)−(α0/2)e−t2/2)

.

Since ε > 0 is arbitrary, then (5.8) implies (3.3), establishing Theorem 3.2. �
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5.3. Proof of Theorem 3.3. It suffices to treat the case t ≥ 1. Theorem 3.2
implies that, uniformly in t ≥ 1,

max
1≤j≤b

P {I (Xni > t) = I (Xnsj > t) for i ∈ Bj } = 1 − O
(
nλ−(α0/2)+ηe−t2/2)

.

Therefore, the probability on the left-hand side of (3.7) equals

1 − O
(
bnλ−(α0/2)+ηe−t2/2)

,

uniformly in t . Theorem 3.3 follows from this property.

5.4. Proof of Theorem 3.4. Let Z have the N(0,1) distribution, and choose
λ < κ so close to κ that 1 − λ − q < 0. Write LHS for the left-hand side of (3.8).
Then, using Theorem 3.3 to derive the inequality below, we have

LHS ≤
b∑

j=1

P(Xnsj > t) + o(1) = bP (Z > t) + o(1)

= O(n1−λe−t2/2) + o(1) = O(n1−λ−q) + o(1) → 0,

which implies (3.8).

5.5. Proof of Theorem 3.5. Theorem 3.4 implies that, unless q ≤ 1 − κ , the
level t = √

2q logn is too high if we are conducting inference for the process
Xn1, . . . ,Xnn. Therefore we take q < 1 − κ in Lemma 5.3, below.

LEMMA 5.3. Assume that the stationary, zero-mean Gaussian process Xni

has autocovariance given by (2.1), and that κ < 1. Let tn denote a sequence of
positive constants diverging to infinity in such a manner that n1−κ�̄(tn) is bounded
away from zero. Then, for each integer ν ≥ 1,

E

[
n∑

i=1

{I (Xni > t) − P(Xni > t)}
]2ν

= O[{nκ+1�(t)�̄(t)}ν],(5.9)

uniformly in |t | ≤ tn.

To complete the proof of Theorem 3.5, define

δ(t) = {nκ+1�(t)�̄(t)}1/2,

�(t) =
n∑

i=1

{I (Xni > t) − P(Xni > t)},
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and observe that, if Tn is any subset of the values of t in the interval [−tn, tn], and
if η > 0, then by Markov’s inequality,

P {|�(t)| > nηδ(t) for some t ∈ Tn} ≤ n−2νηE

{
sup
t∈Tn

|�(t)/δ(t)|2ν

}

≤ n−2νη
∑
t∈Tn

E{|�(t)/δ(t)|2ν}
(5.10)

≤ n−2νη(#Tn) sup
t∈Tn

E{|�(t)/δ(t)|2ν}

= O{n−2νη(#Tn)},
where the last identity follows from Lemma 5.3. Therefore, as long as Tn has no
more than polynomially many elements, the following result holds: For all con-
stants C1, η > 0,

P {|�(t)| > nηδ(t) for some t ∈ Tn} = O(n−C1).(5.11)

By choosing the elements of Tn to be equally spaced on [−tn, tn], and selecting
the spacing to equal n−C2 , for C2 sufficiently large but fixed; and noting that κ +
1 − q > 0 and, uniformly in t ∈ [−tn, tn],

δ(t) ≥ {nκ+1−q(logn)−1}1/2;
we deduce from (5.11) that

P {|�(t)| > nηδ(t) for some t ∈ [−tn, tn]} → 0.(5.12)

This implies (3.9).

PROOF OF THEOREM 3.7. Recall that we distribute nξ = N1−β signals
among the n time-series points, where ξ = (1 − β)(1 − κ). Let

Un(t) =
n∑

i=1

{I (Xni > t) − P(Xni > t)},

Vn(t) =
n∑

i=1

{I (Yni > t) − P(Yni > t)},

Wn(t) =
n∑

i=1

Ini[I (Yni > t) − I (Xni > t) − {P(Yni > t) − P(Xni > t)}],

where Ini = 1 if a signal is added at “time” point i, equaling zero if no signal is
added there. Define �1(t) = �(t) − �(t − ν) and �2 = �1(1 − �1). An argu-
ment similar to that used to derive Lemma 5.3 may be employed to show that, and
uniformly in |t | ≤ tn,

E{Wn(t)
2ν} = O[n2νκ{nξ�2(t)}ν].(5.13)
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The right-hand side of (5.13) is an upper bound, over all choices of the distribution
of signal among the time-series data Xni as well as over all values of |t | ≤ tn.
The order of magnitude of the left-hand side is maximized when just N1−β of
the consecutive blocks of indices {1, . . . , nκ}, {nκ + 1, . . . ,2nκ}, . . . are chosen to
receive signals, and, for each of the chosen blocks, a signal is applied to each value
of Xni the index of which is in that block.

Result (5.13), Markov’s inequality and the argument leading to (5.10) imply
that if Tn is any finite subset of values in the interval [−tn, tn], then for each η > 0,

P [|Wn(t)| > nκ+η{nξ�2(t)}1/2 for some t ∈ Tn]

≤ n−2ν(κ+η)E

[
sup
t∈Tn

∣∣∣∣ Wn(t)

{nξ�2(t)}1/2

∣∣∣∣
2ν]

= O{n−2νη(#Tn)}.

This leads to the following analogue of (5.12): for each η > 0,

P
[|Wn(t)| > nκ+η{nξ�2(t)}1/2 for some t ∈ [−tn, tn]] → 0.(5.14)

Noting that Vn = Un + Wn, writing �3 = ��̄, and combining (5.11) and (5.14),
we deduce that for each η > 0,

P

[ |Vn(t)|
{N�3(t)}1/2 > nη

{
nξ+3κ−1 �2(t)

�3(t)
+ n2κ

}1/2

(5.15)

for some t ∈ [−tn, tn]
]

→ 0.

Note too that

un(t) ≡
∑

i IniE{I (Yni > t) − I (Xni > t)}
{N�3(t)}1/2

= N1−βnκ �(t) − �(t − ν)

{N�3(t)}1/2 =
{
n2ξ+3κ−1 �1(t)

2

�3(t)

}1/2

.

Result (3.14) will follow from this property and (5.15), provided we show that, for
some η > 0 and uniformly in t ∈ [−tn, tn],

nξ+3κ−1 �1(t)

�3(t)
+ n2κ = O

{
n2ξ+3κ−1−η �1(t)

2

�3(t)

}
,

or equivalently, for some η > 0 and uniformly in t ∈ [−tn, tn],
nη/2 = O{nξ�1(t)}, nη = O{n2ξ+κ−1�1(t)

2�3(t)
−1}.(5.16)

Observe that n1−κ�3(t) is bounded away from zero uniformly in |t | ≤ tn, and
so the first part of (5.16) holds provided the second part does. Now, the second
part is equivalent to nη = O[{n−κun(t)}2] uniformly in t . If the point (β, r) lies an
amount ε > 0 above the standard detection boundary, at (3.13), then there exists
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δ = δ(β, ε) > 0, and t = t (n) ∈ [−tn, tn], such that n−κun(t) ≥ const. nδ for all n.
Therefore, the second part of (5.16) holds if 0 < η < δ(β, ε). �

PROOF OF THEOREM 3.8. Note that, for each i, Xn,i+1 − Xni is normally
distributed with zero mean and variance 2/nα0 . Therefore, the probability that the
signal detector determines that the signal is present, given that it is not, is bounded
above by

2n[1 − �{(2C logn)1/2}] = O{n1−C(logn)−1/2} → 0;
and the probability that the signal is found by the detector to be present, given that
it is, is bounded below by

1 − �{(2C logn)1/2 − (2r logn)1/2} → 1. �
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