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NONLINEAR ESTIMATION FOR LINEAR INVERSE PROBLEMS
WITH ERROR IN THE OPERATOR1

BY MARC HOFFMANN AND MARKUS REISS

University of Marne-la-Vallée and University of Heidelberg

We study two nonlinear methods for statistical linear inverse problems
when the operator is not known. The two constructions combine Galerkin
regularization and wavelet thresholding. Their performances depend on the
underlying structure of the operator, quantified by an index of sparsity. We
prove their rate-optimality and adaptivity properties over Besov classes.

1. Introduction.

Linear inverse problems with error in the operator. We want to recover f ∈
L2(D), where D is a domain in R

d , from data

gε = Kf + εẆ ,(1.1)

where K is an unknown linear operator K :L2(D) → L2(Q), Q is a domain in
R

q , Ẇ is Gaussian white noise and ε > 0 is the noise level. We do not know K

exactly, but we have access to

Kδ = K + δḂ.(1.2)

The process Kδ is a blurred version of K , polluted by a Gaussian operator white
noise Ḃ with a noise level δ > 0. The operator K acting on f is unknown and
treated as a nuisance parameter. However, preliminary statistical inference about
K is possible, with an accuracy governed by δ. Another equivalent approach is
to consider that for experimental reasons we never have access to K in practice,
but rather to Kδ . The error level δ can be linked to the accuracy of supplementary
experiments; see Efromovich and Koltchinskii [11] and the examples below. In
most interesting cases K−1 is not continuous and the estimation problem (1.1) is
ill-posed (e.g., see Nussbaum and Pereverzev [16] and Engl, Hanke and Neubauer
[12]).

The statistical model is thus given by the observation (gε,Kδ). Asymptotics are
taken as δ, ε → 0 simultaneously. In probabilistic terms, observable quantities take
the form

〈gε, k〉 := 〈Kf,k〉L2(Q) + ε〈Ẇ , k〉 ∀k ∈ L2(Q)

Received December 2004; revised April 2007.
1Supported in part by the European research training network Dynstoch.
AMS 2000 subject classifications. 65J20, 62G07.
Key words and phrases. Statistical inverse problem, Galerkin projection method, wavelet thresh-

olding, minimax rate, degree of ill-posedness, matrix compression.

310

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/009053607000000721
http://www.imstat.org
http://www.ams.org/msc/


ESTIMATION FOR INVERSE PROBLEMS 311

and

〈Kδh, k〉 := 〈Kh,k〉L2(Q) + δ〈Ḃh, k〉 ∀(h, k) ∈ L2(D) × L2(Q).

The mapping k ∈ L2(Q) �→ 〈Ẇ , k〉 defines a centered Gaussian linear form, with
covariance

E[〈Ẇ , k1〉〈Ẇ , k2〉] = 〈k1, k2〉L2(Q), k1, k2 ∈ L2(Q).

Likewise, (h, k) ∈ L2(D)×L2(Q) �→ 〈Ḃh, k〉 defines a centered Gaussian bilinear
form with covariance

E[〈Ḃh1, k1〉〈Ḃh2, k2〉] = 〈h1, h2〉L2(D)〈k1, k2〉L2(Q).

If (hi)i≥1 and (ki)i≥1 form orthonormal bases of L2(D) and L2(Q), respectively—
in particular, we will consider hereafter wavelet bases, the infinite vector (〈Ẇ ,

kj 〉)j≥1 and the infinite matrix (〈Ḃhi, kj 〉)i,j≥1 have i.i.d. standard Gaussian en-
tries. Another description of the operator white noise is given by stochastic inte-
gration using a Brownian sheet, which can be interpreted as a white noise model
for kernel observations; see Section 2 below.

Main results. The interplay between δ and ε is crucial: if δ 	 ε, one expects
to recover model (1.1) with a known K . On the other hand, we will exhibit a
different picture if ε 	 δ. Even when the error ε in the signal gε dominates δ, the
assumption δ 
= 0 has to be handled carefully. We restrict our attention to the case
Q = D and nonnegative operators K on L2(D).

We first consider a linear estimator based on the Galerkin projection method.
For functions in the L2-Sobolev space Hs and suitable approximation spaces,
the linear estimator converges with the minimax rate max{δ, ε}2s/(2s+2t+d), where
t > 0 is the degree of ill-posedness of K .

For spatially inhomogeneous functions, like smooth functions with jumps,
linear estimators cannot attain optimal rates of convergence; see, for example,
Donoho and Johnstone [10]. Therefore we propose two nonlinear methods by sep-
arating the two steps of Galerkin inversion (I ) and adaptive smoothing (S), which
provides two strategies:

Nonlinear Estimation I: (gε,Kδ)
(I)−→ f̂ lin

δ,ε

(S)−→ f̂ I
δ,ε,

Nonlinear Estimation II: (gε,Kδ)
(S)−→ (ĝε, K̂δ)

(I )−→ f̂ II
δ,ε,

where f̂ lin
δ,ε is a preliminary and undersmoothed linear estimator. We use a Galerkin

scheme on a high-dimensional space as inversion procedure (I ) and wavelet
thresholding as adaptive smoothing technique (S), with a level-dependent thresh-
olding rule in Nonlinear Estimation I and a noise reduction in the operator by entry-
wise thresholding of the wavelet matrix representation in Nonlinear Estimation II.
To our knowledge, thresholding for the operator is new in a statistical framework.
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From both mathematical and numerical perspectives, the inversion step is crit-
ical: we cannot choose an arbitrarily large approximation space for the inversion,
even in Nonlinear Estimation II. Nevertheless, both methods are provably rate-
optimal (up to a log factor in some cases for the second method) over a wide range
of (sparse) nonparametric classes, expressed in terms of Besov spaces Bs

p,p with
p ≤ 2.

Organization of the paper. Section 2 discusses related approaches. The the-
ory of linear and nonlinear estimation is presented in Sections 3 to 5. Section 6
discusses the numerical implementation. The proofs of the main theorems are de-
ferred to Section 7 and the Appendix provides technical results and some tools
from approximation theory.

2. Related approaches with error in the operator.

Perturbed singular values. Adhering to a singular-value decomposition ap-
proach, Cavalier and Hengartner [3] assume that the singular functions of K are
known, but not its singular values. Examples include convolution operators. By
an oracle-inequality approach, they show how to reconstruct f efficiently when
δ ≤ ε.

Physical devices. We are given an integral equation Kf = g on a closed
boundary surface �, where the boundary integral operator

Kh(x) =
∫
�

k(x, y)h(y)σ�(dy)

is of order t > 0, that is, K :H−t/2(�) → Ht/2(�) is given by a smooth ker-
nel k(x, y) as a function of x and y off the diagonal, but which is typically
singular on the diagonal. Such kernels arise, for instance, by applying a bound-
ary integral formulation to second-order elliptic problems. Examples include the
single-layer potential operator in Section 6.2 below or Abel-type operators with
k(x, y) = b(x, y)/|x − y|β on � = [0,1] for some β > 0 (see, e.g., Dahmen, Har-
brecht and Schneider [6]). Assuming that k is tractable only up to some experi-
mental error, we postulate the knowledge of dkδ(x, y) = dk(x, y) + δdB̃(x, y),

where B̃ is a Brownian sheet. Assuming moreover that our data g is perturbed by
measurement noise as in (1.1), we recover our abstract framework.

Statistical inference. The widespread econometric model of instrumental vari-
ables (e.g., Hall and Horowitz [13]) is given by i.i.d. observations (Xi, Yi,Wi) for
i = 1, . . . , n, where (Xi, Yi) follow a regression model

Yi = g(Xi) + Ui
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with the exception that E[Ui |Xi] 
= 0, but under the additional information given
by the instrumental variables Wi that satisfy E[Ui |Wi] = 0. Denoting by fXW the
joint density of X and W , we define

k(x, z) :=
∫

fXW(x,w)fXW(z,w)dw,

Kh(x) :=
∫

k(x, z)h(z) dz.

To draw inference on g, we use the identity Kg(x) = E[E[Y |W ]fXW(x,W)]. The
data easily allow estimation of the right-hand side and of the kernel function k.
We face exactly an ill-posed inverse problem with errors in the operator, except for
certain correlations between the two noise sources and for the fact that the noise is
caused by a density estimation problem. Note that K has a symmetric nonnegative
kernel and is therefore self-adjoint and nonnegative on L2. Hall and Horowitz [13]
obtain in their Theorem 4.2 the linear rate of Section 3 when replacing their terms
as follows: ε = δ = n−1/2, t = α, s = β + 1/2, d = 1.

In other statistical problems random matrices or operators are of key impor-
tance or even the main subject of interest, for instance the linear response function
in functional data analysis (e.g., Cai and Hall [2]) or the empirical covariance op-
erator for stochastic processes (e.g., Reiss [17]).

Numerical discretization. Even if the operator is known, the numerical ana-
lyst is confronted with the same question of error in the operator under a different
angle: up to which accuracy should the operator be discretized? Even more impor-
tantly, by not using all available information on the operator the objects typically
have a sparse data structure and thus require far less memory and time of compu-
tation; see Dahmen, Harbrecht and Schneider [6].

3. A linear estimation method. In the following, we write a � b when a ≤
cb for some constant c > 0 and a ∼ b when a � b and b � a simultaneously. The
uniformity in c will be obvious from the context.

3.1. The linear Galerkin estimator. We briefly study a linear projection esti-
mator. Given s > 0 and M > 0, we first consider the Sobolev ball

Ws(M) := {f ∈ Hs; ‖f ‖Hs ≤ M}
as parameter space for the unknown f . Pick some j ≥ 0 and let Vj = span{ψλ,

|λ| ≤ j} denote an approximation space associated with a (�s� + 1)-regular mul-
tiresolution analysis (Vj ); see Appendix A.6. We look for an estimator f̂δ,ε ∈ Vj ,
solution to

〈Kδf̂δ,ε, v〉 = 〈gε, v〉 for all v ∈ Vj .(3.1)
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This only makes sense if Kδ restricted to Vj is invertible. We introduce the
Galerkin projection (or stiffness matrix) of an operator T onto Vj by setting
Tj := PjT |Vj

, where Pj is the orthogonal projection onto Vj , and set formally

f̂δ,ε :=
{

K−1
δ,j Pjgε, if ‖K−1

δ,j ‖Vj→Vj
≤ τ2j t ,

0, otherwise,
(3.2)

where ‖Tj‖Vj→Vj
= supv∈Vj ,‖v‖

L2=1 ‖Tjv‖ denotes the norm of the operator

Tj : (Vj ,‖ • ‖L2) → (Vj ,‖ • ‖L2). The estimator f̂δ,ε is specified by the level j

and the cut-off parameter τ > 0 (and the choice of the multiresolution analysis).

3.2. Result. The ill-posedness comes from the fact that K−1 is not
L2-continuous: we quantify the smoothing action by a degree of ill-posedness
t > 0, which indicates that K behaves roughly like t-fold integration. This is pre-
cisely defined by the following ellipticity condition in terms of the L2-Sobolev
norm ‖ • ‖Hs of regularity s ∈ R; see Appendix A.6.

ASSUMPTION 3.1. K is self-adjoint on L2(D), K :L2 → Ht is continuous
and 〈Kf,f 〉 ∼ ‖f ‖2

H−t/2 .

As proved in Appendix A.6, Assumption 3.1 implies that the following “map-
ping constant” of K with respect to the given multiresolution analysis (Vj ) is finite:

Q(K) := sup
j≥0

2−j t‖K−1
j ‖Vj→Vj

< ∞.(3.3)

Introduce the integrated mean square error

R(f̂ , f ) := E
[‖f̂ − f ‖2

L2(D)

]
for an estimator f̂ of f and the rate exponent

r(s, t, d) := 2s

2s + 2t + d
.

PROPOSITION 3.2. Let Q > 0. If the linear estimator f̂δ,ε is specified by 2j
∼

max{δ, ε}−2/(2s+2t+d) and τ > Q, then

sup
f ∈Ws(M)

R(f̂δ,ε, f ) � max{δ, ε}2r(s,t,d)

holds uniformly over K satisfying Assumption 3.1 with Q(K) ≤ Q.

The normalized rate max{δ, ε}r(s,t,d) gives the explicit interplay between ε

and δ and is indeed optimal over operators K satisfying Assumption 3.1 with
Q(K) ≤ Q; see Section 5.2 below. Proposition 3.2 is essentially contained in Efro-
movich and Koltchinskii [11], but is proved in Section 7.1 as a central reference
for the nonlinear results.
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4. Two nonlinear estimation methods.

4.1. Nonlinear Estimation I. For x > 0 and two resolution levels 0 ≤ j0 < j1,
define the level-dependent hard-thresholding operator Sx acting on L2(D) by

Sx(h) := ∑
|λ|≤j1

〈h,ψλ〉1{|〈h,ψλ〉|≥κ2|λ|t x
√

(|λ|−j0)+}ψλ,(4.1)

for some constant κ > 0 and where (ψλ) is a regular wavelet basis generating the
multiresolution analysis (Vj ). Our first nonlinear estimator is defined by

f̂ I
δ,ε := Smax{δ,ε}(f̂δ,ε),(4.2)

where f̂δ,ε is the linear estimator (3.2) specified by the level j1 and τ > 0.
The factor 2|λ|t in the threshold takes into account the increase in the noise level

after applying the operator K−1
δ,j1

. The additional term
√

(|λ| − j0)+ is chosen to
attain the exact minimax rate in the spirit of Delyon and Juditsky [8]. Hence, the
nonlinear estimator f̂ I

δ,ε is specified by j0, j1, τ and κ .

4.2. Nonlinear Estimation II. Our second method is conceptually different:
we use matrix compression to remove the operator noise by thresholding Kδ in a
first step and then apply the Galerkin inversion on the smoothed data gε . Let

K̂δ := S
op
δ (Kδ,J ),(4.3)

where Kδ,J = PJ Kδ|VJ
is the Galerkin projection of the observed operator and

S
op
δ is a hard-thresholding rule applied to the entries in the wavelet representation

of the operator:

TJ �→ S
op
δ (TJ ) := ∑

|λ|,|λ′|≤J

Tλ,λ′1{|Tλ,λ′ |≥T (δ)}〈•,ψλ〉ψλ′,(4.4)

where T (x) = κx
√| logx| and Tλ,λ′ := 〈T ψλ,ψλ′ 〉.

The estimator ĝε of the data is obtained by the classical hard-thresholding rule
for noisy signals:

ĝε := ∑
|λ|≤J

〈gε,ψλ〉1{|〈gε,ψλ〉|≥T (ε)}ψλ.(4.5)

After this preliminary step, we invert the linear system on the multiresolution space
VJ to obtain our second nonlinear estimator:

f̂ II
δ,ε :=

{
K̂−1

δ ĝε, ‖K̂−1
δ ‖Ht→L2 ≤ τ ,

0, otherwise.
(4.6)

The nonlinear estimator f̂ II
δ,ε is thus specified by J , κ and τ . Observe that this

time we do not use level-dependent thresholds since we threshold the empirical
coefficients directly.
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5. Results for the nonlinear estimators.

5.1. The setting. The nonlinearity of our two estimators permits to consider
wider ranges of function classes for our target: we measure the smoothness s of f

in Lp-norm, with 1 ≤ p ≤ 2, in terms of Besov spaces Bs
p,p . The minimax rates of

convergence are computed over Besov balls

V s
p(M) := {f ∈ Bs

p,p; ‖f ‖Bs
p,p

≤ M}
with radius M > 0. We show that an elbow in the minimax rates is given by the
critical line

1

p
= 1

2
+ s

2t + d
,(5.1)

considering t and d as fixed by the model setting. Equation (5.1) is linked to the
geometry of inhomogeneous sparse signals that can be recovered in L2-error after
the action of K ; see Donoho [9]. We retrieve the framework of Section 3 using
Hs = Bs

2,2.

We prove in Section 5.2 that the first nonlinear estimator f̂ I
δ,ε achieves the op-

timal rate over Besov balls V s
p(M). In Section 5.3 we further show that, under

some mild restriction, the nonlinear estimator f̂ II
δ,ε is adaptive in s and nearly rate-

optimal, losing a logarithmic factor in some cases.

5.2. Minimax rates of convergence. In the following, we fix s+ ∈ N and pick
a wavelet basis (ψλ)λ associated with an s+-regular multiresolution analysis (Vj ).
The minimax rates of convergence are governed by the parameters s ∈ (0, s+),
p > 0 and separate into two regions:

dense region: Pdense :=
{
(s,p) :

1

p
<

1

2
+ s

2t + d

}
,

sparse region: Psparse :=
{
(s,p) :

1

p
≥ 1

2
+ s

2t + d

}
.

It is implicitly understood that Bs
p,p ⊆ L2 holds, that is, by Sobolev embeddings

s −d/p +d/2 ≥ 0. The terms dense and sparse refer to the form of the priors used
to construct the lower bounds. Note that, an unavoidable logarithmic term appears
in the sparse case.

THEOREM 5.1. Let Q > 0. Specify the first nonlinear estimator f̂ I
δ,ε by 2j0 ∼

max{δ, ε}−2/(2s+2t+d), 2j1 ∼ max{δ, ε}−1/t , τ > Q and κ > 0 sufficiently large.

• For (s,p) ∈ Pdense and p ≥ 1 we have

sup
f ∈V s

p(M)

R(f I
δ,ε, f ) � max{δ, ε}2r(s,t,d),

uniformly over K satisfying Assumption 3.1 with Q(K) ≤ Q.
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• For (s,p) ∈ Psparse and p ≥ 1 we have

sup
f ∈V s

p(M)

R(f I
δ,ε, f ) � max

{
δ
√

| log δ|, ε
√

| log ε|}2r̃(s,p,t,d)
,

uniformly over K satisfying Assumption 3.1 with Q(K) ≤ Q, where now

r̃(s,p, t, d) := s + d/2 − d/p

s + t + d/2 − d/p
.

A sufficient value for κ can be made explicit by a careful study of Lemma 7.2
together with the proof of Delyon and Juditsky [8]; see the proofs below.

The rate obtained is indeed optimal in a minimax sense. The lower bound in the
case δ = 0 is classical (Nussbaum and Pereverzev [16]) and will not decrease for
increasing noise levels δ or ε, whence it suffices to provide the case ε = 0.

The following lower bound can be derived from Efromovich and Koltchinskii
[11] for s > 0, p ∈ [1,∞]:

inf
f̂δ

sup
(f,K)∈Fs,p,t

R(f̂δ, f ) � δ2r(s,t,d),(5.2)

where the nonparametric class Fs,p,t = Fs,p,t (M,Q) takes the form

Fs,p,t = V s
p(M) × {K satisfying Assumption 3.1 with Q(K) ≤ Q}.

For (s,p) ∈ Pdense the lower bound matches the upper bound attained by f̂ I
δ,ε . In

Appendix A.5 we prove the following sparse lower bound:

THEOREM 5.2. For (s,p) ∈ Psparse we have

inf
f̂δ

sup
(K,f )∈Fs,p,t

R(f̂δ, f ) �
(
δ
√

| log δ|)r̃(s,t,d)
,(5.3)

and also the sparse rate of the first estimator f I
δ,ε is optimal.

5.3. The adaptive properties of Nonlinear Estimation II. We first state a gen-
eral result which gives separate estimates for the two error levels of f̂ II

δ,ε associated
with δ and ε, respectively, leading to faster rates of convergence than in Theo-
rem 5.1 in the case of sparse operator discretizations.

ASSUMPTION 5.3. K :Bs
p,p → Bs+t

p,p is continuous.

Furthermore, we state an ad hoc hypothesis on the sparsity of K . It is expressed
in terms of the wavelet discretization of K and is specified by parameters (s̄, p̄).

ASSUMPTION 5.4. For parameters s̄ ≥ 0 and p̄ > 0 we have uniformly over
all multi-indices λ

‖Kψλ‖Bs̄+t
p̄,p̄

� 2|λ|(s̄+d/2−d/p̄).
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Observe that this hypothesis follows from Assumption 5.3 with (s̄, p̄) = (s,p),
p̄ ≥ 1, due to ‖ψλ‖Bs

p,p
∼ 2|λ|(s+d/2−d/p). The case p̄ < 1, however, expresses

high sparsity: if K is diagonal in a regular wavelet basis with eigenvalues of order
2−|λ|t , then Assumption 5.4 holds for all s̄, p̄ ≥ 0. For a less trivial example of a
sparse operator see Section 6.2. Technically, Assumption 5.4 will allow to control
the error when thresholding the operator; see Proposition 7.4.

Finally, we need to specify a restriction on the linear approximation error ex-
pressed in terms of the regularity in Hα :

α ≥ s

(
t + d

s + t + d/2

)
min

{
log ε

log δ
,1

}
in the case δ > ε1+d/t .(5.4)

Then for s ∈ (0, s+), p ≥ 1 and p̄ > 0 we obtain the following general result in the
dense case.

THEOREM 5.5. Grant Assumptions 3.1, 5.3 and 5.4. Let (s,p), (s̄, p̄) ∈
Pdense satisfy

2s̄ + d − 2d/p̄

2s̄ + 2t + d
≤ 2s − d

2t + d
with strict inequality for p > 1(5.5)

and assume restriction (5.4) for α ≥ 0. Choose κ > 0 and τ > 0 sufficiently large
and specify 2J

∼ min{ε−1/t , (δ
√| log δ|)−1/(t+d)}. Then

sup
f ∈V s

p(M)∩Wα(M)

R(f̂ II
δ,ε, f ) �

(
ε
√| log ε| )2r(s,t,d) + (

δ
√| log δ| )2r(s̄,t,d)

.

The constant in the specification of 2J cannot be too large; see the proof of
Proposition 7.5. While the bounds for τ and κ are explicitly computable from
upper bounds on constants involved in the assumptions on the operator, they are in
practice much too conservative, as is well known in the signal detection case (e.g.,
Donoho and Johnstone [10]) or the classical inverse problem case (Abramovich
and Silverman [1]).

COROLLARY 5.6. Grant Assumptions 3.1 and 5.3. Suppose (s,p) ∈ Pdense
and α ≥ 0 satisfies (5.4). Then

sup
f ∈V s

p(M)
⋂

Wα(M)

R(f̂ II
δ,ε, f ) � max

{
ε
√

| log ε|, δ
√

| log δ|}2r(s,t,d)

follows from the smoothness restriction s ≥ (d2 + 8(2t + d)(d − d/p))1/2/4, in
particular in the cases p = 1 or s > d(1 + 2t

d
)1/2/2.

If in addition d/p ≤ d/2 + s(s − d/2)/(s + t + d/2) holds, then we get rid of
the linear restriction:

sup
f ∈V s

p(M)

R(f̂ II
δ,ε, f ) � max

{
ε
√

| log ε|, δ
√

| log δ|}2r(s,t,d)
.
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PROOF. Set s̄ = s and p̄ = p and use that Assumption 5.3 implies Assump-
tion 5.4. Then the smoothness restriction implies (5.5) and Theorem 5.5 applies.
The particular cases follow because s and p are in Pdense.

By Sobolev embeddings, Bs
p,p ⊆ Wα holds for s − d/p ≥ α − d/2 and the last

assertion follows by substituting in (5.4). �

We conclude that Nonlinear Estimation II attains the minimax rate up to a log-
arithmic factor in the dense case, provided the smoothness s is not too small. For
(s,p) ∈ Psparse the rate with exponent r̃(s,p, t, d) is obtained via the Sobolev em-
bedding Bs

p,p ⊆ Bσ
π,π with s −d/p = σ −d/π such that (σ,π) ∈ Pdense, and even

exact rate-optimality follows in the sparse case.

6. Numerical implementation.

6.1. Specification of the method. While the mapping properties of the un-
known operator K along the scale of Sobolev or Besov spaces allow a proper
mathematical theory and a general understanding, it is per se an asymptotic point
of view: it is governed by the decay rate of the eigenvalues. For finite samples only
the eigenvalues in the Galerkin projection KJ matter, which will be close to the
first 2Jd eigenvalues of K . Consequently, even if the degree of ill-posedness of K

is known in advance (as is the case, e.g., in Reiss [17]), optimizing the numerical
performance should rather rely on the induced norm ‖ • ‖KJ

:= ‖K−1
J • ‖L2 on VJ

and not on ‖ • ‖Ht .
Another practical point is that the cut-off rule using τ in the definitions (3.2)

and (4.6) is not reasonable given just one sample, but needed to handle possibly
highly distorted observations. An obvious way out is to consider only indices J of
the approximation space VJ which are so small that Kδ,J remains invertible and
not too ill-conditioned. Then the cut-off rule can be abandoned and the parameter
τ is obsolete.

The estimator f̂ II
δ,ε is therefore specified by choosing an approximation space

VJ and a thresholding constant κ . Since a thresholding rule is applied to both
signal and operator, possibly different values of κ can be used. In our experience,
thresholds that are smaller than the theoretical bounds, but slightly larger than good
choices in classical signal detection work well; see Abramovich and Silverman [1]
for a similar observation.

The main constraint for selecting the subspace VJ is that J is not so large that
Kδ,J is far away from KJ . By a glance at condition (7.6) in the proof of Theo-
rem 5.5, working with ‖ • ‖KJ

instead of ‖ • ‖Ht and with the observed operator
before thresholding, we want that

‖Kδ,J − KJ ‖(VJ ,‖•‖
L2 )→(VJ ,‖•‖KJ

) ≤ ρ‖K−1
J ‖−1

(VJ ,‖•‖KJ
)→(VJ ,‖•‖

L2 )
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with some ρ ∈ (0,1). This reduces to ‖(Id−δK−1
δ,J ḂJ )−1 − Id‖VJ →VJ

≤ ρ, which
by Lemma 7.1 is satisfied with very high probability provided

λmin(Kδ,J ) ≥ cδ
√

dim(VJ ),(6.1)

where λmin(•) denotes the minimal eigenvalue and c > 0 a constant depending on
ρ and the desired confidence. Based on these arguments we propose the following
sequential data-driven rule to choose the parameter J :

J := min{j ≥ 0|λmin(Kδ,j+1) < cδ dim(Vj+1)}.(6.2)

This rule might be slightly too conservative since after thresholding K̂δ will be
closer to KJ than Kδ,J . It is, however, faster to implement and the desired confi-
dence can be better tuned. In addition, a conservative choice of J will only affect
the estimation of very sparse and irregular functions.

6.2. A numerical example. We consider a single-layer logarithmic potential
operator that relates the density of the electric charge on a cylinder of radius r =
1/4 to the induced potential on the same cylinder, when the cylinder is assumed
to be infinitely long and homogeneous in that direction. Describing the angle by
e2πix with x ∈ [0,1], the operator is given by

Kf (x) =
∫ 1

0
k(x, y)f (y) dy with k(x, y) = − log

(1
2

∣∣sin
(
π(x − y)

)∣∣).
The single-layer potential operator is known to satisfy a degree of ill-posedness
t = 1 because of its logarithmic singularity on the diagonal. In Cohen, Hoffmann
and Reiss [5] this operator has been used to demonstrate different solution meth-
ods for inverse problems with known operator: the singular-value decomposition
(SVD), the linear Galerkin method and a nonlinear Galerkin method which corre-
sponds to Nonlinear Estimation II in the case δ = 0.

The aim here is to compare the performance of the presented methods given that
not K , but only a noisy version Kδ is available. Our focus is on the reconstruction
properties under noise in the operator and we choose δ = 10−3, ε = 10−5. As in
Cohen, Hoffmann and Reiss [5] we consider the tent function

f (x) = max
{
1 − 30

∣∣x − 1
2

∣∣,0
}
, x ∈ [0,1],

as object to be estimated. Its spike at x = 1/2 will be difficult to reconstruct.
For implementing the linear and the two nonlinear methods we use Daubechies

wavelets of order 8 (with an extremal phase choice). We calculate the wavelet
decomposition of K and f up to the scale Jmax = 10 by Mallat’s pyramidal al-
gorithm. For the nonlinear methods the large space VJ , on which the Galerkin
inversion is performed, is determined by the rule (6.2) with c = 5. Figure 1(a)
shows the modulus of the wavelet discretization (|Kλ,μ|) of the operator K on VJ

with J = 7. Multi-indices with the same resolution level j are presented next to
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FIG. 1. Wavelet representation of K (a) and Kδ (b).

each other; the resolution level j decreases from left to right and from bottom to
top. The units are multiples of δ. The finger-like structure, showing large coef-
ficients for low resolution levels, along the diagonal and certain subdiagonals, is
typical for wavelet representations of integral (Calderon–Zygmund) operators and
due to the support properties of the wavelets; see, for example, Dahmen, Harbrecht
and Schneider [6]. In Figure 1(b) the modulus of the wavelet discretization of the
noisy observation Kδ is shown. The structures off the main diagonal are hardly
discernible.

The performance of the methods for this simulation setup are very stable for
different noise realizations. In Figure 2(a) a typical linear estimation result for
the choice j = 5 is shown along with the true function (dashed). Remark that

FIG. 2. Linear estimator (a) and Nonlinear II estimator (b).
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because of 25/27 = 1/4 the result is obtained by using only the values of Kδ that
are depicted in the upper right quarter [0.75,1]2 of Figure 1(b). For the oracle
choice j = 5 the root mean square error (RMSE) is minimal and evaluates to 0.029.

For the two nonlinear estimation methods, the approximation space VJ (i.e.,
Vj1 for Nonlinear Estimation I) chosen by the data-driven rule is J = 7 for all
realizations. As to be expected, the simulation results deviate only marginally for
different choices of c ∈ [1,20], giving either J = 6 or (mostly) J = 7. An imple-
mentation of Nonlinear Estimation I is based on a level-dependent thresholding
factor which is derived from the average decay of the observed eigenvalues of
Kδ,J , ignoring the Delyon–Juditsky correction

√
(|λ| − j0)+. With the threshold

base level κ = 0.4 (oracle choice) Nonlinear Estimation I produces an RMSE of
0.033. It shows a smaller error than the linear estimator at the flat parts far off
the spike, but has difficulties with too large fluctuations close to the spike. The
main underlying problem is that after the inversion the noise in the coefficients
is heterogeneous even on the same resolution level which is not reflected by the
thresholding rule.

Setting the base level κ = 1.5 for thresholding the operator and the data, the
resulting estimator f II

δ,ε of Nonlinear Estimation II is shown in Figure 2(b). It has
by far the best performance among all three estimators with an RMSE of 0.022.
The only artefacts, from an a posteriori perspective, are found next to the spike and
stem from overlapping wavelets needed to reconstruct the spike itself.

In Cohen, Hoffmann and Reiss [5] simulations were performed for ε = 2 · 10−4

knowing the operator K (δ = 0). There the respective RMSE under oracle spec-
ifications is 0.024 (SVD), 0.023 (linear Galerkin), 0.019 (nonlinear Galerkin).
In comparison we see that roughly the same accuracy is achieved in the case
δ = 10−3, ε = 10−5, which shows that the error in the operator is less severe than
the error in the data. This observation is corroborated by further simulations for
different values of δ and ε.

In order to understand why in this example the error in the operator is less se-
vere and Nonlinear Estimation II performs particularly well, let us consider more
generally the properties for thresholding a sparse operator representation as in Fig-
ure 1(a). This is exactly the point where Assumption 5.4 comes into play with
p̄ ∈ (0,1). To keep it simple, let us focus on the extreme case of an operator K

which is diagonalized by the chosen wavelet basis with eigenvalues 2−|λ|t . Then
K satisfies Assumption 5.4 for all (s̄, p̄) and by Theorem 5.5, choosing p̄ such
that (s̄, p̄) ∈ Pdense and restriction (5.5) is satisfied with equality, we infer

sup
f ∈V s

p(M)∩Wα(M)

R(f̂ II
δ,ε, f ) �

(
ε
√

| log ε|)2r(s,t,d) + (
δ
√

| log δ|)min{(2s−d)/t,2}
.

This rate is barely parametric in δ for not too small s. Hence, Nonlinear Estima-
tion II can profit from the usually sparse wavelet representation of an operator, even
without any specific tuning. This important feature is shared neither by Nonlinear
Estimation I nor by the linear Galerkin method.
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7. Proofs.

7.1. Proof of Proposition 3.2. By definition, R(f̂δ,ε, f ) is bounded by a con-
stant times the sum of three terms I + II + III, where term III comes from f̂δ,ε = 0
if ‖K−1

δ,j ‖Vj→Vj
> τ2j t :

I := ‖f − fj‖2
L2,

II := E
[∥∥(K−1

δ,j Pjgε − fj )1{‖K−1
δ,j ‖Vj →Vj

≤τ2j t }
∥∥2
L2

]
,

III := ‖f ‖2
L2P(‖K−1

δ,j ‖Vj→Vj
> τ2j t ).

The term I . This bias term satisfies under Assumption 3.1

‖f − fj‖2
L2 � 2−2js

∼ max{δ, ε}4s/(2s+2t+d)

by estimate (A.1) in the Appendix and thus has the right order.

The term III. For ρ ∈ (0,1) let us introduce the event

�ρ,δ,j = {δ‖K−1
j Ḃj‖Vj→Vj

≤ ρ}.(7.1)

On the event �ρ,δ,j the operator Kδ,j = Kj(Id+δK−1
j Ḃj ) is invertible with

‖K−1
δ,j ‖Vj→Vj

≤ (1 − ρ)−1‖K−1
j ‖Vj→Vj

because

‖(Id+δK−1
j Ḃj )

−1‖Vj→Vj
≤ ∑

m≥0

‖δK−1
j Ḃj‖m

Vj→Vj
≤ (1 − ρ)−1(7.2)

follows from the usual Neumann series argument. By (3.3), the choice ρ > 1 −
Q/τ ∈ (0,1) thus implies {‖K−1

δ,j ‖Vj→Vj
> τ2j t } ⊆ �ρ,δ,j . For η = 1 − (2t +

d)/(2s + 2t + d) > 0 and sufficiently small δ, we claim that

P(�c
ρ,δ,j ) ≤ exp(−Cρδ−η22jd) for some C > 0,(7.3)

which implies that term III is of exponential order and hence negligible. To prove
(7.3), we infer from (3.3)

�c
ρ,δ,j ⊆ {2−jd/2‖Ḃj‖Vj→Vj

> ρδ−1‖K−1
j ‖−1

Vj→Vj
2−jd/2}

⊆ {
2−jd/2‖Ḃj‖Vj→Vj

> ρδ−1Q−12−j (2t+d)/2}
and the claim (7.3) follows from δ−12−j (2t+d)/2 � δ−η and the following classical
bound for Gaussian random matrices:

LEMMA 7.1 ([7], Theorem II.4). There are constants β0, c,C > 0 such that

∀β ≥ β0 : P(2−jd/2‖Ḃj‖Vj→Vj
≥ β) ≤ exp(−cβ222jd),

∀β ≥ 0 : P(2−jd/2‖Ḃj‖Vj→Vj
≤ β) ≤ (Cβ)22jd

.
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The term II. Writing Pjgε = PjKf + εPj Ẇ and using the independence of
the event �c

ρ,δ,j from PjẆ (recall Ḃ and Ẇ are independent), we obtain

E
[‖K−1

δ,j Pjgε − fj‖2
L21{‖K−1

δ,j ‖Vj →Vj
≤τ2j t }1�c

ρ,j,δ

]
� 22j t (‖PjKf ‖2

L2 + ε2
E[‖PjẆ‖2

L2] + ‖fj‖2
L2)P(�c

ρ,δ,j ).

Because of ‖PjKf ‖2
L2 + ‖fj‖2

L2 � M2, E[‖PjẆ‖2
L2] � 2jd and estimate (7.3),

we infer that the above term is asymptotically negligible. Therefore, we are left
with proving that E[‖K−1

δ,j Pjgε − fj‖2
L21�ρ,j,δ

] has the right order. On �ρ,j,δ we
consider the decomposition

K−1
δ,j Pjgε − fj = (

(Id+δK−1
j Ḃj )

−1 − Id
)
fj

(7.4)
+ ε(Id+δK−1

j Ḃj )
−1K−1

j Pj Ẇ .

As for the second term on the right-hand side of (7.4), we have

E[ε2‖(Id+δK−1
j Ḃj )

−1K−1
j Pj Ẇ‖2

L21�ρ,δ,j
]

≤ ε2
E[‖(Id+δK−1

j Ḃj )
−1‖2

Vj→Vj
1�ρ,δ,j

]‖K−1
j ‖2

Vj→Vj
E[‖PjẆ‖2

L2]
� ε222j t2dj

∼ max{δ, ε}4s/(2s+2t+d),

where we used again the independence of �ρ,δ,j and PjẆ and the bound (7.2).
The first term on the right-hand side of (7.4) is treated by

E[‖δK−1
j Ḃj (Id+δK−1

j Ḃj )
−1fj‖2

L21�ρ,δ,j
]

≤ δ2‖K−1
j ‖2

Vj→Vj
‖fj‖2

L2E[‖Ḃj‖2
Vj→Vj

‖(Id+δK−1
j Ḃj )

−1‖2
Vj→Vj

1�ρ,δ,j
]

� δ2‖K−1
j ‖2

Vj→Vj
E[‖Ḃj‖2

Vj→Vj
]

� δ222j t2dj � max{δ, ε}4s/(2s+2t+d),

where we successively used the triangle inequality, limj→∞ ‖fj‖L2 = ‖f ‖L2 from
(A.1), bound (7.2), Lemma 7.1 and (3.3).

7.2. Proof of Theorem 5.1.

The main decomposition. The error R(f̂ I
δ,ε, f ) is bounded by a constant times

the sum I + II + III with

I := ‖f − fj1‖2
L2,

II := E
[∥∥Smax{δ,ε}(f̂δ,ε) − fj1

∥∥2
L21{‖K−1

δ,j1
‖Vj1

→Vj1
≤τ2j1t }

]
,

III := ‖f ‖2
L2P(‖K−1

δ,j1
‖Vj1→Vj1

> τ2j1t ).
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For the term I , we use the bias estimate (A.1) and the choice of 2j1 . The term III
is analogous to the term III in the proof of Proposition 7.1; we omit the details. To
treat the main term II, we establish sharp error bounds for the empirical wavelet
coefficients 〈f̂δ,ε,ψλ〉 for |λ| ≤ j1.

The empirical wavelet coefficients. We consider again the event �ρ,δ,j1 from
(7.1) with j1 in place of j . On that event, we have the decomposition

f̂δ,ε = K−1
δ,j1

Pj1gε = fj1 − δK−1
j1

Ḃj1fj1 + εK−1
j1

Pj1Ẇ + r
(1)
δ,j1

+ r
(2)
δ,j1

,

with

r
(1)
δ,j1

= ∑
n≥2

(−δK−1
j1

Ḃj1)
nfj1,

r
(2)
δ,j1

= −εδK−1
j1

Ḃj1(Id+δKj1Ḃj1)
−1K−1

j1
Pj1Ẇ .

In the Appendix we derive the following properties.

LEMMA 7.2. Let |λ| ≤ j1 and ρ ∈ (0,1 − Q/τ). Under Assumption 3.1 the
following decomposition holds:

δ〈K−1
j1

Ḃj1fj1,ψλ〉 = δ2|λ|t‖fj1‖L2cλξλ,

ε〈K−1
j1

Pj1Ẇ ,ψλ〉 = ε2|λ|t c̃λξ̃λ,〈
r
(1)
δ,j1

,ψλ

〉 = δ22|λ|t‖fj1‖L22j1(t+d)ζλ,j1,〈
r
(2)
δ,ε,j1

,ψλ

〉 = δε2|λ|t2j1(t+d/2)ζ̃λ,j1,

on �ρ,δ,j1 , where |cλ|, |c̃λ| � 1, ξλ and ξ̃λ are standard Gaussian variables and
ζλ,j1 , ζ̃λ,j1 are random variables satisfying

max
{
P({|ζλ,j1 | ≥ β} ∩ �ρ,δ,j1),P({|ζ̃λ,j1 | ≥ β} ∩ �ρ,δ,j1)

} ≤ exp(−cβ22j1d)

for all β ≥ β0 with some (explicitly computable) constants β0, c > 0.

From this explicit decomposition we shall derive the fundamental deviation
bound

P
({

2−|λ|t |〈f̂δ,ε,ψλ〉 − 〈fj1,ψλ〉| ≥ β max{δ, ε}} ∩ �ρ,δ,j1

)
(7.5)

≤ 4 exp(−Cβ min{β,2j1d})
for all |λ| ≤ j1 and some explicitly computable constant C > 0. Once this is
achieved, we are in the standard signal detection setting with exponentially tight
noise. The asserted bound for term II is then proved exactly following the lines in
[8]; see also the heteroskedastic treatment in [14]. The only fine point is that we
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estimate the Galerkin projection fj1 , not f , but by estimate (A.2) in the Appendix
‖fj1‖Bs

p,p
� ‖f ‖Bs

p,p
.

It remains to establish the deviation bound (7.5). By Lemma 7.2, that probability
is bounded by the sum of the four terms

PI := P

(
‖fj1‖L2cλ|ξλ| ≥ β

4

)
,

PII := P

(
|c̃λξ̃λ| ≥ β

4

)
,

PIII := P

({
δ2j1(t+d)‖fj1‖L2ζλ,j1 ≥ β

4

}
∩ �ρ,δ,j1

)
,

PIV := P

({
δ2j1(t+d/2)ζ̃λ,j1 ≥ β

4

}
∩ �ρ,δ,j1

)
.

We obtain the bounds PI ≤ exp(−cIβ
2), PII ≤ exp(−cIIβ

2) with some constants
cI , cII > 0 by Gaussian deviations. The large deviation bound on ζλ,j1 in Lemma
7.2 implies with a constant cIII > 0

PIII ≤ exp
(−cIIIβ2−j1(t+d−2d)δ−1)

.

Equally, PIV ≤ exp(−cIVβ2−j1(t+d/2−2d)δ−1) follows, which proves (7.5) with
some C > 0 depending on cI to cIV since δ−1 � 2j1t by construction.

7.3. Proof of Theorem 5.5. The proof of Theorem 5.5 is a combination of a
deviation bound for the hard-thresholding estimator in Ht -loss together with an
error estimate in operator norm. The following three estimates are the core of the
proof and seem to be new. They are proved in the Appendix.

PROPOSITION 7.3 (Deviation in Ht -norm). Assume κ > 4
√

t/d , 2J � ε−1/t

and that s ≥ 0, p > 0 are in Pdense. Then there exist constants c0, η0,R0 > 0 such
that for all functions g ∈ Bs+t

p,p the hard-thresholding estimate ĝε in (4.5) satisfies

with m := max{‖PJ g‖Bs+t
p,p

,‖PJ g‖p/2
Bs+t

p,p
}:

∀η ≥ η0 : P
(
T (ε)−r(s,t,d)‖ĝε − PJ g‖Ht ≥ ηm1−r(s,t,d)) � εc0η

2 + εκ2/8−d/t ,

∀R ≥ R0 : P(‖ĝε − PJ g‖Ht ≥ m + R) � εκ2/16−d/tR−4.

PROPOSITION 7.4 (Estimation in operator norm, L2-bound). Suppose κ2 ≥
32 max{d/t,1 + d(2t + d)/(4t (t + d))}. Grant Assumption 5.4 with s̄ > 0, p̄ > 0
satisfying restriction (5.5). Then

E
[‖K̂δ − KJ ‖2

(VJ ,‖•‖Bs
p,p

)→Ht

]
�

(
δ
√

| log δ|)2r(s̄,t,d)
.
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PROPOSITION 7.5 (Estimation in operator norm, deviation bound). Suppose
K∞ := supμ,λ 2|λ|t |〈Kψμ,ψλ〉| < ∞. Then for all η > 0

P
(‖K̂δ − KJ ‖(VJ ,‖•‖

L2 )→Ht ≥ c0| log δ|−1/2 + η
)
� δη min{κ2/2−2d/(t+d),1/2q1},

with q1 := 2J (δ
√| log δ|)1/(t+d) and a constant c0 depending only on K∞.

For ρ ∈ (0,1) we introduce the event

�II
ρ,δ,J := {‖K̂δ − KJ ‖(VJ ,‖•‖

L2 )→Ht ≤ ρ‖K−1
J ‖−1

(VJ ,‖•‖Ht )→L2

}
.(7.6)

The Neumann series representation implies that on �II
ρ,δ,J the random operator

K̂δ : (VJ ,‖ • ‖L2) → (VJ ,‖ • ‖Ht )

is invertible with norm ‖K̂−1
δ ‖ ≤ (1 − ρ)−1‖K−1

J ‖. For the subsequent choice
ρ ∈ (0,1−‖K−1

J ‖/τ) this bound is smaller than the cut-off value τ . On �II
ρ,δ,J we

bound ‖f̂ II
δ,ε − f ‖L2 by

‖K̂−1
δ (ĝε − PJ g)‖L2 + ‖(K̂−1

δ − K−1
J )PJ g‖L2 + ‖fJ − f ‖L2 .

The last term is the bias and has the right order by estimate (A.1) and the restriction
(5.4) on α. The first two stochastic errors are further bounded by

‖K̂−1
δ ‖(VJ ,‖•‖Ht )→L2

(‖ĝε − PJ g‖Ht + ‖K̂δ − KJ ‖(VJ ,‖•‖Bs
p,p

)→Ht ‖fJ ‖Bs
p,p

)
.

Because of ‖K̂−1
δ ‖(VJ ,‖•‖Ht )→L2 ≤ τ , the assertion on �II

ρ,δ,J follows from the
standard risk estimate in Ht -loss (cf. Proposition 7.3 or [14], Theorem 3.1)

E[‖ĝε − PJ g‖2
Ht ] � T (ε)2r(s,t,d),

from the operator norm estimate of Proposition 7.4 and ‖fJ ‖Bs
p,p

� ‖f ‖Bs
p,p

; see
(A.2).

On the complement (�II
ρ,δ,J )c the risk of f̂ II

δ,ε , conditional on Ḃ , is uniformly
bounded thanks to the cut-off rule in the construction. Assumption 5.4 and the sym-
metry of K imply 2|λ|t |〈Kψμ,ψλ〉| � 2−||μ|−|λ||(s+d/2−d/p). Consequently, Propo-
sition 7.5 is applicable and a sufficiently large choice of κ and a sufficiently small
choice of q1 by means of an appropriate choice of the constant in the specification
of 2J give P((�II

ρ,δ,J )c) � δ2, which ends the proof.

APPENDIX

A.1. Proof of Lemma 7.2.

First equality. By Assumption 3.1, Kj1 is symmetric and thus δ〈K−1
j1

Ḃj1fj1,

ψλ〉 = δ〈Ḃj1fj1,K
−1
j1

ψλ〉. This is a centered Gaussian random variable with

variance δ2‖fj1‖2
L2‖K−1

j1
ψλ‖2

L2 . Assumption 3.1 gives ‖K−1
j1

ψλ‖2
L2 � ‖ψλ‖2

Ht �
22|λ|t (see Appendix A.6) and the first equality follows from estimate (A.1).
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Second equality. We write ε〈K−1
j1

Pj1Ẇ ,ψλ〉 = ε〈Ẇ ,K−1
j1

ψλ〉, which is cen-

tered Gaussian with variance ε2‖K−1
j1

ψλ‖2
L2, and the foregoing arguments apply.

Third equality. On �ρ,δ,j1 the term |〈r(1)
δ,j1

,ψλ〉| equals

|〈(δK−1
j1

Ḃj1)
2(Id+ δK−1

j1
Ḃj1)

−1fj1,ψλ〉|
= δ2|〈Ḃj1K

−1
j1

Ḃj1(Id+ δK−1
j1

Ḃj1)
−1fj1,K

−1
j1

ψλ〉|
≤ δ2‖Ḃj1‖2

Vj1→Vj1
‖K−1

j1
‖Vj1→Vj1

‖(Id+ δK−1
j1

Ḃj1)
−1‖Vj1→Vj1

× ‖fj1‖L2‖K−1
j1

ψλ‖L2

� δ2‖Ḃj1‖2
Vj1→Vj1

2j1t2|λ|t ,

where we successively applied the Cauchy–Schwarz inequality, (3.3), (7.2)
on �ρ,δ,j1 and (A.1) together with the same arguments as before to bound
‖K−1

j1
ψλ‖L2 . Lemma 7.1 yields the result.

Fourth equality. Since Ẇ and Ḃ are independent, we have that, conditional on
Ḃ , the random variable 〈r(2)

δ,ε,j1
,ψλ〉1�ρ,δ,j1

is centered Gaussian with conditional
variance

δ2ε2∥∥(
K−1

j1
Ḃj1(Id+ δK−1

j1
Ḃj1)

−1K−1
j1

)∗
ψλ

∥∥2
L21�ρ,δ,j1

= δ2ε2∥∥(
Ḃj1(Id+ δK−1

j1
Ḃj1)

−1K−1
j1

)∗
K−1

j1
ψλ

∥∥2
L21�ρ,δ,j1

� δ2ε2∥∥(
Ḃj1(Id+δK−1

j1
Ḃj1)

−1K−1
j1

)∗∥∥2
Vj1→Vj1

22|λ|t1�ρ,δ,j1

� δ2ε222(|λ|+j1)t‖Ḃ∗
j1

‖2
Vj1→Vj1

by (3.3) and estimate (7.2), which is not affected when passing to the adjoint, up to
an appropriate modification of �ρ,δ,j1 incorporating B∗

j1
. We conclude by applying

Lemma 7.1 which is also not affected when passing to the adjoint.

A.2. Proof of Proposition 7.3. Denote by gλ and gλ
ε the wavelet coefficients

of g and gε . We have

‖ĝε − PJ g‖2
Ht ∼

∑
|λ|≤J

22|λ|t (gλ
ε 1{|gλ

ε |≥T (ε)} − gλ)2
.

The usual decomposition yields a bound of the right-hand side by the sum of four
terms I + II + III + IV with

I := ∑
22|λ|t (gλ

ε − gλ)21{|gλ|≥(1/2)T (ε)},
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II := ∑
22|λ|t (gλ

ε − gλ)21{|gλ
ε −gλ|>(1/2)T (ε)},

III := ∑
22|λ|t (gλ)21{|gλ

ε −gλ|>T (ε)},

IV := ∑
22|λ|t (gλ)21{|gλ|<2T (ε)},

and where the sums in λ range through the set {|λ| ≤ J }.

The term IV. This approximation term is bounded by∑
j≤J

22j t
∑

|λ|=j

(2T (ε))2−p min{(gλ)p, (2T (ε))p}

� T (ε)2−p
∑
j≤J

22j t min
{‖PJ g‖p

Bs+t
p,p

2−j (s+t+d/2−d/p)p,2jdT (ε)p
}

which is of order T (ε)22j̄ (2t+d) with

2j̄ (2s+2t+d)
∼ min

{‖PJ g‖2
Bs+t

p,p
T (ε)−2,2J (2s+2t+d)}.

Therefore, we obtain IV � ‖PJ g‖2−2r(s,t,d)

Bs+t
p,p

T (ε)2r(s,t,d).

The term I. For this second approximation term we need to introduce the ran-
dom variables

ξj := ε−2

#{|λ| = j, |gλ| ≥ (1/2)T (ε)}
∑

|λ|=j

(gλ
ε − gλ)21{|gλ|≥(1/2)T (ε)}.

Using 1{|gλ|≥(1/2)T (ε)} ≤ |2gλ/T (ε)|p , we obtain for the least favorable case
1/p = 1/2 + s/(2t + d) that term I is bounded by∑

j≤J

22j t ε2ξj

∑
|λ|=j

1{|gλ|≥(1/2)T (ε)}

�
∑
j≤J

22j t ε2ξj min

{
T (ε)−p

∑
|λ|=j

|gλ|p,2jd

}

�
∑
j≤J

ε2ξj min
{
T (ε)−p2−j (s+t+d/2−d/p)p+2j t‖PJ g‖p

Bs+t
p,p

,2j (2t+d)}.
Now observe that, as for term IV , the following inequality holds:∑

j≤J

ε2 min
{
T (ε)−p2−j (s+t+d/2−d/p)p+2j t‖PJ g‖p

Bs+t
p,p

,2j (2t+d)}
∼ ε22j̃ (2t+d)

with 2j̃ (2s+2t+d)
∼ min

{‖PJ g‖p

Bs+t
p,p

T (ε)−2,2J (2s+2t+d)
}
.
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By definition, each ξj has a normalized (to expectation 1) χ2-distribution and so
has any convex combination

∑
j aj ξj . For the latter we infer P(

∑
j aj ξj ≥ η2) ≤

e−η2/2, η ≥ 1, by regarding the extremal case of only one degree of freedom.
Consequently, we obtain P(c1ε

−22−j̃ (2t+d)I ≥ η2) ≤ e−η2/2 with some constant
c1 > 0. Substituting for j̃ , we conclude with another constant c2 > 0 that

P
(
I ≥ 1

2η2‖PJ g‖p
Bs

p,p
(T (ε)‖PJ g‖−p/2

Bs+t
p,p

)2r(s,t,d)) ≤ exp(−c2η
2| log ε|) = εc2η

2
.

The terms II and III. For these deviation terms we obtain by independence and
a Gaussian tail estimate

P({II = 0} ∩ {III = 0}) ≥ P
(|gε

λ − gλ| ≤ 1
2T (ε) for all |λ| ≤ J

)
≥ (

1 − exp(−κ2| log ε|/8)
)#VJ .

Using #VJ ∼ 2Jd � ε−d/t , we derive P(II + III > 0) � εκ2/8−d/t .

The first assertion. We obtain for some η0 ≥ 1 and all η ≥ η0:

P
(‖ĝε − PJ g‖Ht ≥ ηm1−r(s,td)T (ε)r(s,t,d))

≤ P
(
I > 1

2η2‖PJ g‖p(1−r(s,t,d))

Bs+t
p,p

T (ε)2r(s,t,d)) + P(II + III > 0)

+ P
(
IV > 1

2η2‖PJ g‖2−2r(s,t,d)

Bs+t
p,p

T (ε)2r(s,t,d))
� εc2η

2 + εκ2/8−d/t + 0.

The second assertion. We show that the deviation terms are well bounded in
probability. While obviously III ≤ ‖PJ g‖2

Ht � ‖PJ g‖2
Bs+t

p,p
holds,

E[II] ≤ ∑
|λ|≤J

22|λ|t
E[(gλ

ε − gλ)4]1/2
P

(|gλ
ε − gλ| > T (ε)/2

)1/2

is bounded in order by 2J (2t+d)ε2 exp(κ2| log ε|/8)1/2 ∼ εκ2/16−d/t due to 2J �
ε−1/t . In the same way we find

Var[II] ≤ ∑
|λ|≤J

24|λ|t
E[(gλ

ε − gλ)8]1/2
P

(|gλ
ε − gλ| > T (ε)/2

)1/2 � εκ2/16−d/t .

By Chebyshev’s inequality, we infer P(II ≥ R2) � εκ2/16−d/tR−4 for R > 0.
Since the above estimates of the approximation terms yield superoptimal devia-
tion bounds, the estimate follows for sufficiently large R.



ESTIMATION FOR INVERSE PROBLEMS 331

A.3. Proof of Proposition 7.4. The wavelet characterization of Besov spaces
(cf. Appendix A.6) together with Hölder’s inequality for p−1 + q−1 = 1 yields

‖K̂δ − KJ ‖(VJ ,‖•‖Bs
p,p

)→Ht

∼ sup
‖(aμ)‖�p=1

∥∥∥∥∥(K̂δ − KJ )

( ∑
|μ|≤J

2−|μ|(s+d/2−d/p)aμψμ

)∥∥∥∥∥
Ht

≤ ∥∥(
2−|μ|(s+d/2−d/p)‖(K̂δ − KJ )ψμ‖Ht

)
|μ|≤J

∥∥
�q

≤ ∥∥(
2−|μ|(s+d/2−d/p)‖KJ ψμ‖1−r(s̄,t,d)

Bs̄+t
p̄,p̄

)
|μ|≤J

∥∥
�q

× sup
|μ|≤J

‖KJ ψμ‖r(s̄,t,d)−1
Bs̄+t

p̄,p̄

‖(K̂δ − KJ )ψμ‖Ht .

Due to Assumption 5.4 the last �q -norm can be estimated in order by∥∥(
2j (−(s−d/2)+(s̄+d/2−d/p̄)(1−r(s̄,t,d))))

j≤J

∥∥
�q ,

which is of order 1 whenever restriction (5.5) is fulfilled.
By construction, K̂δψμ is the hard-thresholding estimator for KJ ψμ given the

observation of Kδ,J ψμ, which is KJ ψμ corrupted by white noise of level δ. There-
fore Proposition 7.3 applied to Kψμ and δ gives for any η ≥ η0:

P
(‖KJ ψμ‖r(s̄,t,d)−1

Bs̄+t
p̄,p̄

‖(K̂δ − KJ )ψμ‖Ht ≥ ηT (δ)r(s̄,t,d)) � δc0η
2 + δκ2/8−d/t .

By estimating the probability of the supremum by the sum over the probabilities,
we obtain from above with a constant c1 > 0 for all η ≥ η0:

P
(‖K̂δ − KJ ‖(VJ ,‖•‖Bs

p,p
)→Ht ≥ ηT (δ)r(s̄,t,d))

≤ ∑
|μ|≤J

P
(‖Kψμ‖r(s̄,t,d)−1

Bs̄+t
p̄,p̄

‖(K̂δ − KJ )ψμ‖Ht ≥ c1ηT (δ)r(s̄,t,d))

� 2Jd(δc0η
2 + δκ2/8−d/t )

� δc0η
2−d/(t+d) + δκ2/8−d(2t+d)/(t (t+d)).

For a sufficiently large η1 > η0, depending only on c0, d and t , with γ := κ2/8 −
d(2t + d)/(t (t + d)) > 0, we thus obtain

P
(‖K̂δ − KJ ‖(VJ ,‖•‖Bs

p,p
)→Ht ≥ η1T (δ)r(s̄,t,d)) � δγ .

By the above bound on the operator norm and Hölder’s inequality for q := γ /2 ≥ 2
and ρ−1 + q−1 = 1 together with the second estimate in Proposition 7.3, we find
for some constant R0 > 0:

E
[‖K̂δ − KJ ‖2

(VJ ,‖•‖Bs
p,p

)→Ht 1{‖K̂δ−KJ ‖(VJ ,‖•‖
Bs

p,p
)→Ht ≥η1T (δ)r(s̄,t,d)}

]
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� E
[‖K̂δ − KJ ‖2ρ

(VJ ,‖•‖Bs
p,p

)→Ht

]1/ρ
δγ/q

≤
(∫ ∞

0
R2ρ−1

P
(‖K̂δ − KJ ‖(VJ ,‖•‖Bs

p,p
)→Ht ≥ R

)
dR

)1/ρ

δ2

�
(
R0 +

∫ ∞
R0

R2ρ−12Jdδκ2/16−d/tR−4dR

)1/ρ

δ2

� max
{
δ(κ2/16−2d/t)/ρ,1

}
δ2

which is of order δ2 by assumption on κ and the assertion follows.

A.4. Proof of Proposition 7.5. For |μ|, |λ| ≤ J we have for the entries in the
wavelet representation

|(K̂δ)μ,λ − Kμ,λ| = |Kμ,λ|1{|(Kδ)μ,λ|≤T (δ)} + δ|Ḃμ,λ|1{|(Kδ)μ,λ|>T (δ)}.

A simple rough estimate yields

|(K̂δ)μ,λ − Kμ,λ| ≤ 2T (δ) + |Kμ,λ|1{|(Kδ−K)μ,λ|≥T (δ)} + δ|Ḃμ,λ|.
We bound the operator norm by the corresponding Hilbert–Schmidt norm and use
K∞ < ∞ to obtain

‖K̂δ − KJ ‖2
(VJ ,‖•‖

L2 )→Ht

≤ ∑
|μ|,|λ|≤J

22|λ|t ((K̂δ)μ,λ − Kμ,λ

)2

� 22J (t+d)T (δ)2 + #{δ|(Kδ − K)μ,λ| ≥ T (δ)} + δ222J t
∑

|μ|,|λ|≤J

Ḃ2
μ,λ,

where the cardinality is taken for multi-indices (λ,μ) such that |λ|, |μ| ≤ J . The
first term is of order | log δ|−1. In view of (Kδ − K)μ,λ = δḂμ,λ, the second term
is a binomial random variable with expectation 22Jd

P(|Ḃμ,λ| ≥ κ| log δ|1/2) �
δ−2d/(t+d)+κ2/2. An exponential moment bound for the binomial distribution
yields

P
(
#
{|Ḃμ,λ| ≥ κ

√
| log δ|} ≥ η

)
� δη(κ2/2−2d/(t+d)).

For the last term, we use an exponential bound for the deviations of a normalized
χ2-distribution, as before, to infer from 2J (t+d) � T (δ) that

P

(
δ222J t

∑
|μ|,|λ|≤J

Ḃ2
μ,λ ≥ η

)
≤ exp

(−2−2J (t+d)−1δ−2η
) ≤ δη/2q1

holds, which gives the result.
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A.5. Proof of Theorem 5.2. To avoid singularity of the underlying probabil-
ity measures we only consider the subclass F0 of parameters (K,f ) such that
Kf = y0 for some fixed y0 ∈ L2, that is, F0 := {(K,f )|f = K−1y0,K ∈ K},
where K = Kt (C) abbreviates the class of operators under consideration. We shall
henceforth keep y0 fixed and refer to the parameter (K,f ) equivalently just by K .

The likelihood �(•) of P
K2

under the law P
K1

corresponding to the parameters
Ki , i = 1,2, is

�(K2,K1) = exp
(
δ−1〈K2 − K1, Ḃ〉HS − 1

2δ−2‖K1 − K2‖2
HS

)
in terms of the scalar product and norm of the Hilbert space HS(L2) of Hilbert–
Schmidt operators on L2 and with a Gaussian white noise operator Ḃ . In particular,
the Kullback–Leibler divergence between the two measures equals 1

2δ−2‖K1 −
K2‖2

HS and the two models remain contiguous for δ → 0 as long as the Hilbert–
Schmidt norm of the difference remains of order δ.

Let us fix the parameter f0 = ψ−1,0 = 1 and the operator K0 which, in a wavelet
basis (ψλ)λ, has diagonal form K0 = diag(2−(|λ|+1)t ). Then K0 is ill-posed of
degree t and trivially obeys all the mapping properties imposed. Henceforth, y0 :=
K0f0 = 1 remains fixed.

For any k = 0, . . . ,2Jd − 1, introduce the symmetric perturbation Hε = (Hε
λ,μ)

with vanishing coefficients except for Hε
(0,0),(J,k) = 1 and Hε

(J,k),(0,0) = 1. Put

Kε = K0 + γHε for some γ > 0. By setting γ := δJ we enforce ‖Kε −K0‖HS =
δJ . For fε := (Kε)−1y0, we obtain

fε − f0 = (
(Kε)−1 − (K0)−1)

y0

= γ (Kε)−1Hεf0

= γ (Kε)−1ψJ,0.

Now observe that Hε trivially satisfies the conditions

1
2 |〈Hεf,f 〉| ≤ 2J t‖f ‖2

H−t/2,
1
2‖Hε‖L2→Ht ≤ 2J t ,

1
2‖Hε‖Bs

p,p→Bs+t
p,p

≤ 2J (t+s+d/2−d/p).

This implies that for γ 2J (t+s+d/2−d/p) sufficiently small Kε inherits the mapping
properties from K0. Hence,

‖fε − f0‖L2 ∼ γ ‖ψJ,0‖Ht = γ 2J t ,

‖fε − f0‖Bs
p,p

∼ γ ‖ψJ,0‖Bs+t
p,p

= γ 2J (t+s+d/2−d/p)

follows. In order to apply the classical lower bound proof in the sparse case ([15],
Theorem 2.5.3) and thus to obtain the logarithmic correction, we nevertheless have
to show that fε −f0 is well localized. Using the fact that ((Hε)2)λ,μ = 1 holds for
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coordinates λ = μ = (0,0) and λ = μ = (J, k), but vanishes elsewhere, we infer
from the Neumann series representation

fε − f0 =
∞∑

m=1

(−γHε)mf0

=
∞∑

n=1

γ 2nf0 −
∞∑

n=0

γ 2n+1ψJ,k

= γ

1 − γ 2 (γf0 − ψJ,k).

Consequently, the asymptotics for γ → 0 are governed by the term −γψJ,k , which
is well localized. The choice 2J < γ −1/(t+s+d/2−d/p) ensures that ‖fε‖Bs

p,p
re-

mains bounded and we conclude by usual arguments; see Chapter 2 in [15] or the
lower bound in [17].

A.6. Some tools from approximation theory. The material gathered here
is classical; see, for example, [4]. We call a multiresolution analysis on L2(D)

an increasing sequence of subspaces (VJ )J≥0 generated by orthogonal wavelets
(ψλ)|λ|≤J , where the multi-index λ = (j, k) comprises the resolution level |λ| :=
j ≥ 0 and the d-dimensional location parameter k. We use the fact that for regular
domains #VJ ∼ 2Jd and denote the L2-orthogonal projection onto VJ by PJ .

Given an s+-regular multiresolution analysis, s+ ∈ N, an equivalent norming of
the Besov space Bs

p,p , s ∈ (−s+, s+), p > 0, is given in terms of weighted wavelet
coefficients:

‖f ‖Bs
p,p

∼

( ∞∑
j=−1

2j (s+d/2−d/p)p
∑
k

|〈f,ψjk〉|p
)1/p

.

For p < 1 the Besov spaces are only quasi-Banach spaces, but still coincide with
the corresponding nonlinear approximation spaces; see Section 30 in [4]. If s is
not an integer or if p = 2, the space Bs

p,p equals the Lp-Sobolev space, which for

p = 2 is denoted by Hs . The Sobolev embedding generalizes to Bs
p,p ⊆ Bs′

p′,p′ for

s ≥ s ′ and s − d
p

≥ s′ − d
p′ .

Direct and inverse estimates are the main tools in approximation theory. Using
the equivalent norming, they are readily obtained for any −s+ < s′ ≤ s < s+:

inf
hj∈Vj

‖f − hj‖Bs′
p,p

� 2−(s−s′)j‖f ‖Bs
p,p

,

∀hj ∈ Vj : ‖hj‖Bs
p,p

� 2(s−s′)j‖hj‖Bs′
p,p

.
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In [5] it is shown that under Assumption 3.1 ‖K−1
j ‖Ht→L2 � 1 and we infer from

an inverse estimate ‖K−1
j ‖L2→L2 � 2j t .

Let us finally bound ‖f − fj‖ and ‖fj‖ for diverse norms. By definition, fj is
the orthogonal projection of f onto Vj with respect to the scalar product 〈K·, ·〉
such that ‖K1/2(f − fj )‖L2 ≤ ‖K1/2(Id−Pj )f ‖L2 and by Assumption 3.1 ‖f −
fj‖H−t/2 � ‖(Id−Pj )f ‖H−t/2 . Using the equivalent (weighted) �p-norms, we find
‖f − fj‖B

−t/2
p,p

� ‖(Id−Pj )f ‖
B

−t/2
p,p

for any p. By a direct estimate, we obtain

‖(Id−Pj )f ‖
B

−t/2
p,p

� 2−j (s+t/2)‖f ‖Bs
p,p

and

‖f − fj‖B
−t/2
p,p

� 2−j (s+t/2)‖f ‖Bs
p,p

,

hence

‖Pjf − fj‖B
−t/2
p,p

� 2−j (s+t/2)‖f ‖Bs
p,p

.

An inverse estimate, applied to the latter inequality, yields together with the
Sobolev embeddings (p ≤ 2)

‖f − fj‖L2 ≤ ‖f − Pjf ‖L2 + ‖Pjf − fj‖L2

(A.1)
� 2−j (s+d/2−d/p)‖f ‖Bs

p,p
.

Merely an inverse estimate yields the stability estimate

‖fj‖Bs
p,p

≤ ‖fj − Pjf ‖Bs
p,p

+ ‖Pjf ‖Bs
p,p

� ‖f ‖Bs
p,p

.(A.2)
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