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SMOOTH BACKFITTING IN GENERALIZED ADDITIVE MODELS
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and University of Mannheim

Generalized additive models have been popular among statisticians and
data analysts in multivariate nonparametric regression with non-Gaussian re-
sponses including binary and count data. In this paper, a new likelihood
approach for fitting generalized additive models is proposed. It aims to
maximize a smoothed likelihood. The additive functions are estimated by
solving a system of nonlinear integral equations. An iterative algorithm based
on smooth backfitting is developed from the Newton–Kantorovich theorem.
Asymptotic properties of the estimator and convergence of the algorithm are
discussed. It is shown that our proposal based on local linear fit achieves the
same bias and variance as the oracle estimator that uses knowledge of the
other components. Numerical comparison with the recently proposed two-
stage estimator [Ann. Statist. 32 (2004) 2412–2443] is also made.

1. Introduction. In this paper, we consider generalized additive models
where the conditional mean m(x) ≡ E(Y |X = x) of a response Y given a
d-dimensional covariate vector X = x is modeled via a known link g by a sum
of unknown component functions ηi :

g(m(x)) = η0 + η1(x1) + · · · + ηd(xd).(1)

By employing a suitable link g, it allows wider applicability than ordinary additive
models where m(x) = m0 +m1(x1)+· · ·+md(xd). For example, in the case where
the conditional distribution of the response is Bernoulli, the conditional mean
m(x), which in this case, is the conditional probability, may be successfully mod-
eled by a generalized additive model with the logistic link g(u) = log{u/(1 − u)}.
The model (1) inherits the structural simplicity and the easy interpretability of lin-
ear models. Furthermore, generalized additive models (and also additive models)
are known to free one from the curse of dimensionality. Under the (generalized)
additive models, one can construct an estimator of m(x) that achieves the same
optimal rate of convergence for general d as for d = 1, see Stone [23, 24].
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There have been a number of proposals for fitting the ordinary additive models.
Friedman and Stuetzle [6] introduced a backfitting algorithm, and Buja, Hastie and
Tibshirani [2] studied its properties. Opsomer and Ruppert [22] and Opsomer [21]
showed that the backfitting estimator is well-defined asymptotically when the sto-
chastic dependence between covariates is “not far” from independence. Mammen,
Linton and Nielsen [15] proposed the so called smooth backfitting by employing
the projection arguments of Mammen et al. [16]. In contrast to the ordinary back-
fitting, the dependence between covariates affects the convergence and stability of
the algorithm only weakly. This was illustrated by very convincing simulations in
Nielsen and Sperlich [20], where also surprisingly good performance of smooth
backfitting was reported for very high dimensions. Furthermore, the local linear
smooth backfitting estimator achieves the same bias and variance as the oracle es-
timator based on knowing the other components, and thus improves on the ordinary
backfitting.

The local scoring backfitting (Hastie and Tibshirani [7]) is one of the most pop-
ular methods for generalized additive models (1). However, its theoretical prop-
erties are not well understood since it is only defined implicitly as the limit of a
complicated iterative algorithm. Recently, there have been proposed other methods
of fitting generalized additive models. Among others, Kauermann and Opsomer
[9] proposed a local likelihood estimator which is a solution of a very large set
of nonlinear score equations. They suggested an iterative backfitting algorithm to
approximate the solution of the system. However, their theoretical developments
are based on the assumption that the backfitting algorithm converges. Horowitz
and Mammen [8] proposed a two-stage estimation procedure using the squared
error loss with a link function; see also Linton [13]. In the context of local qua-
silikelihood estimation (see, e.g., Fan, Heckman and Wand [5]), this amounts to
modelling the conditional variance to be a constant. Estimation by penalized B-
splines in generalized additive models and in some related models was discussed
in Eilers and Marx [4].

In this paper, we propose new estimation procedures for generalized additive
models (1) that are based on a quasilikelihood with a general link. Using quasi-
likelihoods for fitting generalized linear models is well justified. Its advantages
are similar to what maximum likelihood estimation has over other methods such
as least squares approaches. The advantages carry over to the problem of fitting
generalized additive models. For example, in the cases where the conditional dis-
tribution belongs to an exponential family, it guarantees convexity of the objective
function if one uses the canonical link, and leads to an estimator which has the
smallest asymptotic variance.

The proposed estimators solve a set of smoothed quasilikelihood equations. Un-
like the least squares smooth backfitting of Mammen, Linton and Nielsen [15] in
the ordinary additive models, it is a system of nonlinear integral equations. The
approach is a natural generalization of parametric quasilikelihood estimation. The
theoretical contribution of this paper is to show how the parametric asymptotic
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theory can be carried over to a nonparametric nonlinear model with several non-
parametric components. The nonlinear backfitting integral equations for updating
the estimators cannot be solved explicitly. This complicates a great deal develop-
ment of a backfitting algorithm and its theory. We tackle this problem by employ-
ing a double iteration scheme which consists of inner and outer iterations. The
outer loop is originated from a linear approximation of the smoothed quasilike-
lihood equations. Each step in the outer iteration is shown to be equivalent to a
projection onto a Hilbert space equipped with a smoothed squared error norm, so
that for each outer step we can devise a smooth backfitting procedure (inner it-
eration) whose limit defines an outer update. We note that the Hilbert space and
its norm for each step of the outer iteration are also updated. We show that the
convergence of the inner iteration is uniform for all outer loops. We discuss the
smoothed quasilikelihood estimation for Nadaraya–Watson smoothing and for lo-
cal linear fit. We present their theoretical properties. We find that our estimators
achieve the optimal univariate rate for all dimensions. In particular, the local linear
smoothed quasilikelihood estimator has the oracle bias as well as the oracle vari-
ance. Our numerical experiments also suggest that the new proposal has quite good
mean squared error properties. As our estimators are defined through a projection
onto an appropriate Hilbert space as the smooth backfitting technique in additive
models, it is expected from the results of Nielsen and Sperlich [20] that they are
successful for very high dimensions and for correlated covariates. The latter point
will be illustrated by simulations in Section 5.

Some other related works on additive or generalized additive models include the
marginal integration approaches of Linton and Nielsen [12], and Linton and Här-
dle [11]. The methods, however, suffer from the curse of dimensionality and fails
to achieve the optimal univariate rate for general dimension unless the smoothness
of the underlying component functions increases with dimension. See Lee [10] for
a discussion on this. Mammen and Nielsen [17] considered a general class of non-
linear regression and discussed some estimation principles including the smooth
backfitting. Mammen and Park [18] proposed several bandwidth selection methods
for smooth backfitting, and Mammen and Park [19] provided a simplified version
of the local linear smooth backfitting estimator in additive models.

The rest of the paper is structured as follows. In Section 2 we introduce the
smoothed quasilikelihood estimation based on Nadaraya–Watson smoothing, and
in Section 3 we extend it to the local linear framework. In Section 4 we present
the asymptotic and algorithmic properties of the estimators. In Section 5 we pro-
vide the results of some numerical experiments including a comparison with the
two-stage procedure of Horowitz and Mammen [8]. Finally, we give proofs and
technical details in Section 6.

2. Estimation with Nadaraya–Watson-type smoothers. Let Y and X =
(X1, . . . ,Xd) be a random variable and a random vector of dimension d , respec-
tively and let (X1, Y 1), . . . , (Xn, Y n) be a random sample drawn from (X, Y ). As-
sume that X has the density function p(·) and Xj have marginal density functions
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pj (·), j = 1, . . . , d . We consider the following generalized additive model:

E(Y |X = x) = g−1(η0 + η1(x1) + · · · + ηd(xd)
)
,

where g is some known link function, x = (x1, . . . , xd) are given value of the co-
variates, η0 is an unknown constant and ηj (·), j = 1, . . . , d , are univariate un-
known smooth functions. Suppose that the conditional variance is modeled as
var(Y |X = x) = V (m(x)) for some positive function V . The quasilikelihood func-
tion, which can replace the conditional log-likelihood when the latter is not avail-
able, equals Q(m(x), y), where ∂Q(m,y)/∂m = (y − m)/V (m). Note that the
log-likelihood of an exponential family is a special case of a quasilikelihood func-
tion Q(m(x), y). The results presented in this paper for a quasilikelihood are thus
valid for exponential family cases, also.

2.1. The smoothed quasilikelihood. Before introducing the smoothed quasi-
likelihood, we briefly go over the smooth backfitting in additive models proposed
by Mammen, Linton and Nielsen [15]. For a Nadaraya–Watson type smoother, it
starts with embedding the response vector Y = (Y 1, . . . , Y n) into the space of tu-
ples of n functions, F = {(f 1, . . . , f n) :f i are functions from R

d to R}. Let K0 be
a base kernel function and K0

h(u) = h−1K0(h−1u). Define a boundary corrected
kernel function by

Kh(u, v) = K0
h(u − v)∫ 1

0 K0
h(w − v) dw

I (u, v ∈ [0,1]).(2)

The space F is endowed with the (semi)norm

‖f‖2∗ =
∫

n−1
n∑

i=1

(f i(x))2
d∏

j=1

Khj
(xj ,X

i
j ) dx.

The tuple m̃ = (m̃, . . . , m̃), where m̃ is the full dimensional local constant estima-
tor, is then the projection of Y onto Ffull = {f ∈ F : f i does not depend on i}.

The smooth backfitting estimator, denoted by m̂, in the form of m̂ = (m̂, . . . , m̂)

is defined as the further projection of the full dimensional estimator onto

Fadd = {f ∈ Ffull :f i(x)
i≡ g1(x1) + · · · + gd(xd)

for some functions gj : R → R}.
For tuples of functions f = (f, . . . , f ) in Ffull, one has ‖f‖2∗ = ∫

f (x)2p̂(x) dx
where p̂(x) = n−1∑n

i=1 Kh(x,Xi) and Kh(x,Xi) = ∏d
j=1 Khj

(xj ,X
i
j ). This

means that m̂(x) = m̂1(x1) + · · · + m̂d(xd) is the projection, in the space L2(p̂),
of m̃ onto the subspace of additive functions {m ∈ L2(p̂) :m(x) = m1(x1) + · · · +
md(xd)}. The smooth backfitting estimator m̂ can be obtained by projecting Y
directly onto Fadd.
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The smooth backfitting can be regarded as a minimization of an empirical ver-
sion of E(Y − f (X))2 = ∫

E[(Y − f (x))2|X = x]p(x) dx. To see this, we note
that

‖Y − f (·)1‖2∗ =
∫ [

n−1∑n
i=1(Y

i − f (x))2Kh(x,Xi)

p̂(x)

]
p̂(x) dx,

where 1 = (1, . . . ,1). This motivates us to consider the expected quasilikelihood,
E[Q(g−1(η(X)), Y )], as an objective function in generalized additive models,
where η(x) = η0 + η1(x1) + · · · + ηd(xd). Our new estimator aims to maximize
the expected quasilikelihood. This maximization can be interpreted as maximizing
the quasilikelihood for all possible future observations on average.

We estimate E[Q(g−1(η(X)), Y )|X = x] by

Q̂c(x, η) = p̂(x)−1n−1
n∑

i=1

Q(g−1(η(x)), Y i)Kh(x,Xi).

We use nonnegative boundary corrected kernels [see (2)], so that∫
Kh(u, v) du = 1 and

∫
Kh(x,Xi) dx−j = Khj

(xj ,X
i
j )

for j = 1, . . . , d . Here and throughout the paper, x−j denotes the vector x
with the j th component xj being deleted. With a general link g, we define a
smoothed quasilikelihood SQ(η), as an estimator of the expected quasilikelihood
EQ(g−1(η(X)), Y ) = ∫

E[Q(g−1(η(X)), Y )|X = x]p(x) dx, by

SQ(η) =
∫

Q̂c(x, η)p̂(x) dx
(3)

=
∫

n−1
n∑

i=1

Q(g−1(η(x)), Y i)Kh(x,Xi) dx.

The L2(p̂) error in Mammen, Linton and Nielsen [15] is a special case of the
smoothed quasilikelihood given at (3) with Q(m,y) = −(y − m)2/2 and the iden-
tity link, g(m) ≡ m.

2.2. Backfitting equations. Suppose that the quasilikelihood Q(g−1(η), y) is
strictly concave as a function of η for each y. Since it satisfies the (conditional)
Bartlett identities, E(Q(g−1(η(x)), Y )|X = x) is not monotone in η(x) for every x
and thus has a unique maximizer. This implies that SQ defined at (3) has a unique
maximizer with probability tending to one. Let η̂ be a maximizer of SQ(η) given
at (3) over all additive functions. Then, the estimator η̂ = η̂0 + η̂1(x1) + · · · +
η̂d(xd) satisfies

dSQ(η;g) = 0
(4)

for all additive functions g(x) = g0 + g1(x1) + · · · + gd(xd),
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where dSQ(η;g) is the Fréchet differential of the functional SQ at η with incre-
ment g, see Section 7.4 in Luenberger [14]. The equation (4) is equivalent to the
following set of equations:∫

n−1
n∑

i=1

[
Y i − g−1(η(x))

V (g−1(η(x)))g′(g−1(η(x)))

]
Kh(x,Xi) dx = 0,

∫
n−1

n∑
i=1

[
Y i − g−1(η(x))

V (g−1(η(x)))g′(g−1(η(x)))

]
Kh(x,Xi) dx−j = 0, j = 1, . . . , d.

Let η(x) denote a tuple of functions (η0, η1(x1), . . . , ηd(xd)). This should not be
confused with η(x) = η0 + η1(x1) + · · · + ηd(xd). Define

F̂0η =
∫ [

m̃(x) − g−1(η(x))

V (g−1(η(x)))g′(g−1(η(x)))

]
p̂(x) dx,

(F̂jη)(xj ) =
∫ [

m̃(x) − g−1(η(x))

V (g−1(η(x)))g′(g−1(η(x)))

]
p̂(x) dx−j , j = 1, . . . , d,

(F̂η)(x) = (F̂0η, (F̂1η)(x1), . . . , (F̂dη)(xd))T ,

where m̃(x) = p̂(x)−1n−1∑n
i=1 Y iKh(x,Xi) is the full dimensional local constant

estimator. Then, η̂(x) can be obtained by solving F̂η = 0. The estimator η̂ aims
at the true η∗ = g(m(·)) which maximizes

∫
E[Q(g−1(η(x)), Y )|X = x]p(x) dx,

over all additive functions η.
We need to put some norming constraints on component functions for a unique

identification of η̂j that give η̂(x) = η̂0 + η̂1(x1) + · · · + η̂d(xd). This should be
done also for the component functions comprising η∗. Let qj (u, y) be the j th
derivative of Q(g−1(u), y) with respect to u. Define for a function μ on R

d ,

wμ(x) = −q2(μ(x),m(x))p(x),

ŵμ(x) = −n−1
n∑

i=1

q2(μ(x), Y i)Kh(x,Xi).

We note that wη∗
(x) = g′(m(x))−2V (m(x))−1p(x) since m(x) = g−1(η∗(x)). The

function wμ is positive for all μ if we assume q2(u, y) < 0 for u ∈ R and y in the
range of the response. The assumption q2(u, y) < 0, which is also made in Fan,
Heckman and Wand [5], guarantees strict concavity of the quasilikelihood.

Let η∗ ≡ (η∗
0, η

∗
1, . . . , η

∗
d) maximize∫

E[Q(g−1(η(x)), Y )|X = x]p(x) dx
(5)

subject to
∫

ηj (xj )w
η(x) dx = 0, 1 ≤ j ≤ d.
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If Q(m,y) = −(y − m)2/2, then the norming constraints,
∫

ηj (xj )w
η(x) dx =

0,1 ≤ j ≤ d , reduces to the usual centering condition that every component func-
tion has mean zero. We define the maximum smoothed quasilikelihood estimator
η̂(x) = (η̂0, η̂1(x1), . . . , η̂d(xd)) to be the solution of

F̂η = 0 subject to
∫

ηj (xj )ŵ
η(x) dx = 0, 1 ≤ j ≤ d.(6)

2.3. Iterative algorithms. The major hurdle in solving F̂η = 0 is that it is a
nonlinear system of equations, as opposed to the smooth backfitting in additive
models. The approach we take to resolve this difficulty is to employ a double it-
eration scheme which consists of inner and outer iterations. To describe the pro-
cedure, we introduce several relevant function spaces. For a nonnegative func-
tion w defined on R

d , let wj and wjl be the marginalizations of w given by
wj(xj ) = ∫

w(x) dx−j and wjl(xj , xl) = ∫
w(x) dx−(j,l).

Define

H(w) = {η ∈ L2(w) :η(x) = η1(x1) + · · · + ηd(xd) for some functions

η1 ∈ L2(w1), . . . , ηd ∈ L2(wd)},
H0(w) =

{
η ∈ H(w) :

∫
η(x)w(x) dx = 0

}
,

Hj (w) = {η ∈ H(w) :η(x) = ηj (xj ) for a function ηj ∈ L2(wj )},
H0

j (w) = {η ∈ H0(w) :η(x) = ηj (xj ) for a function ηj ∈ L2(wj )},
G(w) = {η = (η0, η1, . . . , ηd) :η0 ∈ R and ηj ∈ Hj (w) for j = 1, . . . , d},

G0(w) = {η = (η0, η1, . . . , ηd) :η0 ∈ R and ηj ∈ H0
j (w) for j = 1, . . . , d}.

The (semi)norm for functions η ∈ H(w) is defined by ‖η‖2
w = ∫

η2(x)w(x) dx.
For tuples of functions η ∈ G(w) [or G0(w)], we define a Hilbert (semi)norm by
‖η‖2

w = ∫ [η2
0 +∑d

j=1 η2
j (xj )]w(x) dx. Within this framework, one can write

F̂η = F̂η0 + F̂′(η0)(η − η0) + o(‖η − η0‖
ŵη0 ),(7)

where F̂′(η0)(·) is the Fréchet derivative of F̂ at η0 in L2(ŵ
η0

) which is a linear
transformation from G(ŵη0

) to G(ŵη0
). Its explicit form is given at (35) in Sec-

tion 6.
The outer loop is originated from the linear approximation at (7). We adopt a

Newton–Raphson iterative method for the outer loop. For simplicity, we write

ŵ(k−1) = ŵη̂(k−1)

,

ŵ
(k−1)
j (xj ) =

∫
ŵ(k−1)(x) dx−j ,

ŵ
(k−1)
j l (xj , xl) =

∫
ŵ(k−1)(x) dx−(j,l).
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Suppose that at the end of the (k − 1)th outer iteration, or at the start of the kth
outer iteration, we are given η̂(k−1) = (η̂

(k−1)
0 , η̂

(k−1)
1 , . . . , η̂

(k−1)
d ) ∈ G0(ŵ(k−1)).

The updating equation for computing the kth outer iteration estimate is given by

0 = F̂η̂(k−1) + F̂′(̂η(k−1))(η − η̂(k−1)),(8)

where F̂′(̂η(k−1))(·) is the Fréchet derivative of F̂ at η̂(k−1), in G0(ŵ(k−1)). Define
ξj = ηj − η̂

(k−1)
j , for 0 ≤ j ≤ d , the changes in the kth outer update. The updating

equation (8) can be written explicitly as the following system of equations:

ξ0 =
(∫

ŵ(k−1)(x) dx,

)−1

×
∫ [

m̃(x) − g−1(η̂(k−1)(x))

V (g−1(η̂(k−1)(x)))g′(g−1(η̂(k−1)(x)))

]
p̂(x) dx,(9)

ξj (xj ) = ξ̃
(k)
j (xj ) −

d∑
l=1,	=j

∫
ξl(xl)

ŵ
(k−1)
j l (xj , xl)

ŵ
(k−1)
j (xj )

dxl − ξ0, j = 1, . . . , d,

where

ξ̃
(k)
j (xj ) =

∫
ξ̃ (k)(x)ŵ(k−1)(x) dx−j∫

ŵ(k−1)(x) dx−j

, j = 1, . . . , d,

ξ̃ (k)(x) =
[

m̃(x) − g−1(η̂(k−1)(x))

V (g−1(η̂(k−1)(x)))g′(g−1(η̂(k−1)(x)))

]
p̂(x)

ŵ(k−1)(x)
.

The inner loop to get the kth outer iteration estimate is to find the solution
ξj , j = 0, . . . , d , of the system of equations (9). This is equivalent to finding the
minimizer, in the space H(ŵ(k−1)), of∥∥ξ̃ (k) − ξ

∥∥2
ŵ(k−1) =

∫ [̃
ξ (k)(x) − ξ0 − ξ1(x1) − · · · − ξd(xd)

]2
ŵ(k−1)(x) dx

with the normalizing constraints
∫

ξj (xj )ŵ
(k−1)(x) dx = 0, j = 1, . . . , d . The

problem is exactly the same as the smooth backfitting of Mammen, Linton and
Nielsen [15] except that the L2(p̂) norm there is replaced by the L2(ŵ

(k−1))

norm. Thus, one can see that the smooth backfitting procedure based on (9)
converges. Call the limit ξ̂ (k). Note that ξ̂ (k)(x) is uniquely decomposed into
ξ̂ (k)(x) = ξ̂

(k)
0 + ξ̂

(k)
1 (x1) + · · · + ξ̂

(k)
d (xd), where ξ̂

(k)
0 ∈ R and ξ̂

(k)
j ∈ H0

j (ŵ(k−1)).
The components of the kth updated outer estimate are defined by

η̂
(k)
0 = η̂

(k−1)
0 + ξ̂

(k)
0 +

d∑
j=1

c
(k)
j ,

(10)
η̂

(k)
j (xj ) = η̂

(k−1)
j (xj ) + ξ̂

(k)
j (xj ) − c

(k)
j , j = 1, . . . , d,



236 K. YU, B. U. PARK AND E. MAMMEN

where c
(k)
j = [∫ ŵ

(k)
j (xj ) dxj ]−1 ∫ [η̂(k−1)

j (xj ) + ξ̂
(k)
j (xj )]ŵ(k)

j dxj , j = 1, . . . , d .

The tuple of these updated functions η̂(k) = (η̂
(k)
0 , η̂

(k)
1 , . . . , η̂

(k)
d ) equals the solu-

tion of the equation (8) in the space G0(ŵ(k)).
Returning to the inner loop, we note that the updating equation for the j th step

of the r th iteration cycle is given by

ξ̂
(k),[r]
j (xj ) = ξ̃

(k)
j (xj ) −∑

l<j

∫
ξ̂

(k),[r]
l (xl)

ŵ
(k−1)
j l (xj , xl)

ŵ
(k−1)
j (xj )

dxl

(11)

−∑
l>j

∫
ξ̂

(k),[r−1]
l (xl)

ŵ
(k−1)
j l (xj , xl)

ŵ
(k−1)
j (xj )

dxl − ξ̂
(k)
0 ,

with ξ̂
(k)
0 defined by the first equation at (9). For an initial estimate in the in-

ner iteration, one may take the centered version of ξ̃
(k)
j : ξ̂

(k),[0]
j (xj ) = ξ̃

(k)
j (xj ) −∫

ξ̃
(k)
j (xj )ŵ

(k−1)
j (xj ) dxj . For an initial estimate η̂(0) in the outer iteration, one

may use some parametric model fits or use the marginal integration estimates.

3. Estimation with local linear smoothing. In this section, we propose max-
imum smoothed quasilikelihood estimation based on local linear fit. We briefly go
over the projection interpretation of the local linear smooth backfitting in the or-
dinary additive models, which is the basic building block for the inner loop of our
iterative algorithm. Here and in Section 4.2, we use the notation η0, instead of η in
Section 2, to denote an additive function, and ηj , 1 ≤ j ≤ d , to express its partial
derivative with respect to xj . The function ηj does not mean the j th component of
an additive function. For the latter, we write η0j instead.

3.1. Projection property of local linear smoothers. To understand the full
dimensional local linear fitting as a projection of the response vector Y =
(Y 1, . . . , Y n)T onto a relevant space, let the definitions of F and Ffull in Sec-
tion 2 be modified to F = {(f1, . . . , fn) : fi ∈ F0},Ffull = {(f, . . . , f) : f ∈ F }.
Note that F = F0 × · · · × F0 and Ffull is one-to-one correspondent to F0.
The response vector can be embedded into F via Y → (Y1, . . . ,Yn) where
Yi = (Y i,0, . . . ,0)T ∈ F0.

Let Xi (x) = (1, (Xi
1−x1)/h1, . . . , (X

i
d −xd)/hd)T and Ki(x) = n−1Kh(x,Xi).

For a given x, let β̃0(x) be the full dimensional local linear estimator of
m(x), and β̃j (x), for 1 ≤ j ≤ d , be the full dimensional local linear estima-
tor of hj∂m(x)/∂xj , respectively. Then, β̃(x) ≡ (β̃0(x), β̃1(x), . . . , β̃d(x))T is
given as the minimizer of the following quadratic form with respect to β(x) =
(β0(x), β1(x), . . . , βd(x))T :

n∑
i=1

[Yi − β(x)]T Xi(x)Ki(x)Xi (x)T [Yi − β(x)].
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With the modified norm ‖ · ‖∗ defined by

‖(f1, . . . , fn)‖∗ =
[∫ n∑

i=1

fi(x)T Xi (x)Ki(x)Xi (x)T fi (x) dx

]1/2

,

the full dimensional estimator β̃(x) can be regarded as a projection of (Y1, . . . ,Yn)

onto Ffull. It is also noted that for (f, . . . , f) ∈ Ffull, the norm ‖(f, . . . , f)‖∗ is sim-
plified to ‖f‖V̂ ≡ [∫ f(x)T V̂(x)f(x) dx]1/2 where V̂(x) = X(x)T K(x)X(x), and that
‖ · ‖V̂ is an L2-type norm for F0. For (β, . . . ,β) ∈ Ffull with β ∈ F0, the following
Pythagorean identity holds:

‖(Y1, . . . ,Yn) − (β, . . . ,β)‖2∗
(12)

= ‖(Y1, . . . ,Yn) − (β̃, . . . , β̃)‖2∗ + ‖β̃ − β‖2
V̂.

The identity (12) suggests a clue to construct an estimator for a structured
model. If one assumes a model class which is a subspace of F0, then one can
get an M-type estimator by minimizing the second term on the right-hand side
of (12) over the assumed model class. For a matrix-valued function V for which
V(x) is positive definite for all x, let F0(V) denote the space F0 equipped with the
norm ‖f‖V = [∫ f(x)T V(x)f(x) dx]1/2. The definition of the space H in Section 2
is modified to

H(V) = {f ∈ F0(V) :f0(x) = f01(x1) + · · · + f0d(xd) for some functions

f0j : R → R, and fj (x) = gj (xj ) for some function

gj : R → R, j = 1, . . . , d}.
Then, the local linear smooth backfitting estimator in the ordinary additive models,
proposed by Mammen, Linton and Nielsen [15], can be given as the projection of
the full dimensional local linear estimator β̃ onto H(V̂).

For j = 1, . . . , d , define

Hj (V) = {f ∈ H(V) :f0(x) = f0j (xj ), fk ≡ 0 for k 	= j}.
The space H(V) equals H1(V) + · · · + Hd(V). Let �j,V denote the projection
operator onto Hj (V). To express the projections explicitly, let Mj,V(xj ) be a 2×2
matrix and Aj be a 2 × (d + 1) matrix such that

Mj,V(xj ) =
[
V00,j (xj ) V0j,j (xj )

V0j,j (xj ) Vjj,j (xj )

]
and Aj =

[
1T

0
1T
j

]
,(13)

where Vpq,j (xj ) are (p, q)th elements of the matrix Vj (xj ) ≡ ∫
V(x) dx−j , and

1k is a (d + 1)-dimensional unit vector with 1 appearing at the (k + 1)th position.
Then, it can be shown that for f ∈ H(V),

(�j,Vf)(xj ) = (g0j (xj ),0, . . . ,0, gj (xj ),0, . . . ,0)T



238 K. YU, B. U. PARK AND E. MAMMEN

where

(g0j (xj ), gj (xj ))
T = Mj,V(xj )

−1
∫

Aj V(x)f(x) dx−j .

Since 10 ∈ Hj (V) for all j = 1, . . . , d , the decomposition of f ∈ H(V) into
f(x) = f1(x) + · · · + fd(x) with fj ∈ Hj (V) is not unique. For a unique identifica-
tion, let

H0
j (V) = {f ∈ H(V) :f0(x) = f0j (xj ), fk ≡ 0 for k 	= j, 〈f,10〉V = 0},

where 〈f,g〉V = ∫
fT (x)V(x)g(x) dx. The norming constraint 〈f,10〉V = 0 implies

that f is orthogonal to constant functions, which is equivalent to the centering con-
straint in the local constant case. The local linear smooth backfitting estimator β̂ in
the ordinary additive models can be written as β̂(x) = β̂0 + β̂1(x1)+ · · ·+ β̂d(xd)

where β̂0 = �Y10 and β̂j (j = 1, . . . , d) satisfy the following system of linear inte-
gral equations:

β̂j = β̃j −
d∑

l=1,	=j

�j,V̂(β̂ l) − β̂0, j = 1, . . . , d,

(14)
〈β̂j ,10〉V̂ = 0, j = 1, . . . , d.

Here, β̃j (xj ) = (β̃0j (xj ),0, . . . ,0, β̃j (xj ),0, . . . ,0)T and (β̃0j (xj ), β̃j (xj ))
T de-

notes the vector of the marginal local linear estimators of E(Y 1|X1
j = xj )

and its derivative, obtained by regressing Y i on Xi
j only. The local linear

smooth backfitting estimator of mj(xj ), in m(x) = m0 + m1(x1) + · · · + md(xd)

with Emj(X
1
j ) = 0 for 1 ≤ j ≤ d , equals β̂0j (xj ), and that of its derivative

∂mj (xj )/∂xj equals β̂j (xj )/hj .

3.2. The smoothed quasilikelihood and backfitting algorithms. In this subsec-
tion, we let η∗

0(x) = η∗
00 + η∗

01(x1) + · · · + η∗
0d(xd) denote the true additive func-

tion, where each component η∗
0j is defined by (5). Also, let η∗

j (xj ) = hjη
∗′
0j (xj ) for

1 ≤ j ≤ d . The function η∗
j should not be confused with η∗

0j , the j th component
function of η∗

0. They are the targets of the maximum smoothed quasilikelihood
estimators η̂0, η̂1, . . . , η̂d that we describe below.

For η = (η0, η1, . . . , ηd)T ∈ F0, define

η(u,x) = η0(x) +
(

u1 − x1

h1

)
η1(x) + · · · +

(
ud − xd

hd

)
ηd(x).

We include ηj (x) for 1 ≤ j ≤ d in η(x) to put the problems of estimating η0 and its
derivatives into the same framework of projection operation. With a general link g,
we define a smoothed quasilikelihood for local linear fit by

SQ(η) =
∫

n−1
n∑

i=1

Q(g−1(η(Xi ,x)), Y i)Kh(x,Xi) dx.
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We call η additive if η ∈ H , that is, η0(x) = η00 + η01(x1) + · · · + η0d(xd) and
ηj (x) = ηj (xj ), j = 1, . . . , d . We define η̂ to be the maximizer of the smoothed
quasilikelihood SQ(η) over all additive functions η. Each additive function η can
be written as

η = η0 + η1 + · · · + ηd

where η0 = η0010 and ηj (x) = (η0j (xj ),0, . . . ,0, ηj (xj ),0, . . . ,0)T . We consider
the following space:

G0(V) = {(η0,η1, . . . ,ηd) :η0 = η0010 for η00 ∈ R,ηj ∈ H0
j (V), j = 1, . . . , d}.

The space G0 is endowed with a Hilbert (semi) norm defined by

‖(η0,η1, . . . ,ηd)‖2
V

= |η0|2
∫

V00(x) dx +
d∑

j=1

∫
ηj (xj )

T

(∫
V(x) dx−j

)
ηj (xj ) dxj .

With a slight abuse of notation we continue to use ‖ · ‖V for the norm of G0 as we
use it for the norm of H .

Let ηL denote the element of G0 that corresponds to an additive function η ∈ H .
With this convention, define

F̂00ηL =
∫

n−1
n∑

i=1

q1(η(Xi ,x), Y i)Kh(x,Xi) dx,

F̂0jηL =
∫

n−1
n∑

i=1

q1(η(Xi ,x), Y i)Kh(x,Xi) dx−j , j = 1, . . . , d,

F̂jηL =
∫

n−1
n∑

i=1

q1(η(Xi ,x), Y i)

(Xi
j − xj

hj

)
Kh(x,Xi) dx−j ,

j = 1, . . . , d,

(F̂ηL)(x) = (F̂00ηL, (F̂01ηL)(x1), . . . , (F̂0dηL)(xd),

(F̂1ηL)(x1), . . . , (F̂dηL)(xd))T .

Then, η̂L that corresponds to η̂ may be obtained by solving F̂ηL = 0 for ηL ∈ G0.
As in Section 2, we approximate F̂ηL for ηL in a neighborhood of η0

L. To do this
we need to consider a proper metric for G0. Define

ŵi(x,η) = −q2(η(Xi ,x), Y i)Kh(x,Xi),

V̂(x,η) = X(x)T (n−1diag[ŵ1(x,η), . . . , ŵn(x,η)])X(x).

Then, writing V̂(0) = V̂(x,η0) we have

F̂ηL = F̂η0
L + F̂′(η0

L)(ηL − η0
L) + o

(‖ηL − η0
L‖V̂(0)

)
,(15)
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where F̂′(η0
L)(·) is the Fréchet derivative of F̂ at η0

L in G0(V̂(0)).
As in Section 2, the outer loop for solving F̂ηL = 0 can be based on the linear

approximation (15). The updating equation for computing the kth outer iteration
estimate η̂

(k)
L is given by

0 = F̂η̂
(k−1)
L + F̂′(̂η(k−1)

L

)(
ηL − η̂

(k−1)
L

)
,(16)

where F̂′(̂η(k−1)
L )(·) is the Fréchet derivative of F̂ at η̂

(k−1)
L in G0(V̂(k−1)) and

V̂(k−1) = V̂(x, η̂(k−1)). Let ξ00 = η00 − η̂
(k−1)
00 , ξ0j = η0j − η̂

(k−1)
0j and ξj = ηj −

η̂
(k−1)
j . To get an explicit form of the updating equation (16), define M̂(k−1)

j (xj ) ≡
Mj,V̂(k−1) (xj ) in the same way as Mj,V(xj ) at (13) with V replaced by V̂(k−1).
Also, define

M̂(k−1)
j,l (xj , xl) =

[
V̂

(k−1)
00,j l (xj , xl) V̂

(k−1)
0l,j l (xj , xl)

V̂
(k−1)
0j,j l (xj , xl) V̂

(k−1)
j l,j l (xj , xl)

]
,

where V̂
(k−1)
pq,j l (xj , xl) are (p, q)th elements of the matrix V̂(k−1)

j l (xj , xl) ≡∫
V̂(k−1)(x) dx−(j,l). Furthermore, for j = 1, . . . , n we let

ζ̃
(k)
0j (xj ) = −

∫ 1

n

n∑
i=1

[
q1(̂η

(k−1)(Xi ,x), Y i)

q2(̂η
(k−1)(Xi ,x), Y i)

]
ŵi(x, η̂(k−1))dx−j ,

ζ̃
(k)
j (xj ) = −

∫ 1

n

n∑
i=1

[
q1(̂η

(k−1)(Xi ,x), Y i)

q2(̂η
(k−1)(Xi ,x), Y i)

](Xi
j − xj

hj

)
ŵi(x, η̂(k−1))dx−j .

Then, it can be shown that the updating equation (16) is equivalent to

M̂(k−1)
j (xj )

[
ξ0j (xj )

ξj (xj )

]
=
[

ζ̃
(k)
0j (xj )

ζ̃
(k)
j (xj )

]
− ξ00

[
V̂

(k−1)
00,j (xj )

V̂
(k−1)
0j,j (xj )

]

−
d∑

l=1,	=j

∫
M̂(k−1)

j,l (xj , xl)

[
ξ0l(xl)

ξl(xl)

]
dxl,

(17)

ξ00 =
[
−
∫ 1

n

n∑
i=1

[
q1(̂η

(k−1)(Xi ,x), Y i)

q2(̂η
(k−1)(Xi ,x), Y i)

]
ŵi(x, η̂(k−1))dx

]

×
[∫

n−1
n∑

i=1

ŵi(x, η̂(k−1))dx

]−1

,

with the normalizing constraint∫
n−1

n∑
i=1

ŵi(x, η̂(k−1))[ξ0j (xj ) +
(Xi

j − xj

hj

)
ξj (xj )

]
dx = 0, j = 1, . . . , d.
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Solving (17) constitutes our inner loop to find the kth outer iteration estimate.
The system of equations (17) can be written in a different form using a projection
operator as in (14). To do this, define[̃

ξ
(k)
0j (xj ), ξ̃

(k)
j (xj )

]T = M̂(k−1)
j (xj )

−1[̃ζ (k)
0j (xj ), ζ̃

(k)
j (xj )

]T
and ξ̃

(k)

j (xj ) = (̃ξ
(k)
0j (xj ),0, . . . ,0, ξ̃

(k)
j (xj ),0, . . . ,0)T ∈ Hj . Write

ξ0 = ξ0010,

ξ j (xj ) = (ξ0j (xj ),0, . . . ,0, ξj (xj ),0, . . . ,0)T , j = 1, . . . , d.

Let �̂
(k−1)
j ≡ �j,V̂(k−1) be the projection operator onto Hj (V̂(k−1)). Then, solv-

ing (17) is equivalent to solving

ξ j = ξ̃
(k)

j −
d∑

l=1,	=j

�̂
(k−1)
j (ξ l) − ξ0, j = 1, . . . , d,(18)

subject to the normalizing constraint 〈ξ j ,10〉V̂(k−1) = 0, j = 1, . . . , d .
The smooth backfitting algorithm based on (18) converges since it has the same

projection interpretation as the local linear smooth backfitting in ordinary additive
regression. Let ξ̂

(k)
00 , ξ̂

(k)
0j , ξ̂

(k)
j denote the solution of the system of equations (18).

Define for j = 1, . . . , d

c
(k)
j =

[∫
n−1

n∑
i=1

ŵi(x, η̂(k))dx

]−1

×
∫

n−1
n∑

i=1

ŵi(x, η̂(k))[η(k−1)
0j (xj ) + ξ

(k)
0j (xj )

+
(Xi

j − xj

hj

)(
η

(k−1)
j (xj ) + ξ

(k)
j (xj )

)]
dx.

Then, the kth outer iteration updates are given by

η̂
(k)
00 = η̂

(k−1)
00 + ξ̂

(k)
00 +

d∑
j=1

c
(k)
j ,

η̂
(k)
0j (xj ) = η̂

(k−1)
0j (xj ) + ξ̂

(k)
0j (xj ) − c

(k)
j , j = 1, . . . , d,

η̂
(k)
j (xj ) = η̂

(k−1)
j (xj ) + ξ̂

(k)
j (xj ), j = 1, . . . , d.

4. Asymptotic and algorithmic properties. First, we collect the assumptions
for the theoretical results to be presented in this section.
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ASSUMPTIONS.

A1. p is bounded away from zero and infinity on its support, [0,1]d , and has
continuous partial derivatives.

A2. q2(u, y) < 0 for u ∈ R and y in the range of the response, the link g is strictly
monotone and is three times continuously differentiable, V is strictly positive
and twice continuously differentiable, and v(x) ≡ var(Y |X = x) is continu-
ous. E|Y |r0 < ∞ for some r0 > 5/2.

A3. The true component functions η∗
j ’s in Section 2 and η∗

0j in Section 3 are twice
continuously differentiable.

A4. The base kernel function K0 is a symmetric density function with compact
support, [−1,1] say, and is Lipschitz continuous.

A5. n1/5hj converge to constants δj > 0 for j = 1, . . . , d as n goes to infinity.

4.1. Nadaraya–Watson smooth backfitting. The first two theorems are for the
limiting distributions of η̂j (xj ), j = 1, . . . , d , defined by (6).

THEOREM 1 (Rates of convergence). Suppose that the conditions A1–A5
hold. Then

‖η̂ − η∗‖p = Op(n−2/5),

sup
xj∈[2hj ,1−2hj ]

|η̂j (xj ) − η∗
j (xj )| = Op

(
n−2/5

√
logn

)
, j = 1, . . . , d.

For the statement of the next theorem, let v(x) = Var(Y |X = x), and write for
simplicity w∗(x) = wη∗

(x). Define, for δj in the condition A5,

vj (xj ) = E[v(X)V (g−1(η∗(X)))−2g′(g−1(η∗(X)))−2|Xj = xj ]
E2[V (g−1(η∗(X)))−1g′(g−1(η∗(X)))−2|Xj = xj ]

(19)
× δ−1

j pj (xj )
−1
∫

[K0(t)]2 dt,

β(x) = −
d∑

j=1

δ2
j

[
p−1(x)

∂

∂xj

p(x)
∂

∂xj

g−1(η∗(x)) + 1

2

∂2

∂x2
j

g−1(η∗(x))

]
(20)

× g′(g−1(η∗(x)))

∫
t2K0(t) dt.

Let the constant b0 and the functions βj (xj ) minimize
∫ [β(x) − b0 −∑d

j=1 βj (xj )]2w∗(x) dx, subject to
∫

βj (xj )w
∗
j (xj ) dxj = 0 for j = 1, . . . , d .

THEOREM 2 (Asymptotic distributions). Under the conditions of Theorem 1,
for any x1, . . . , xd ∈ (0,1), n2/5[η̂1(x1) − η∗

1(x1), . . . , η̂d(xd) − η∗
d(xd)]T con-

verges in distribution to the d-variate normal distribution with mean vector
[β1(x1), . . . , βd(xd)]T and variance matrix diag[vj (xj )].
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Unlike the smooth backfitting estimator in the ordinary additive models, our
estimator of the intercept η∗

0 has a nonnegligible asymptotic bias. In fact,

n2/5(η̂0 − η∗
0)

p−→ β0,

where β0 has a complicated form and is different from b0 defined above.
Writing μj = ∫ 1

−1 ujK0(u) du and κ = ∫ 1
0 [μ1(−t)/μ0(−t)]dt where μj(c) =∫ 1

c ujK0(u) du, it can be shown

β0 = E(q2(η
∗(X1), g−1(η∗(X1))))−1

×
d∑

j=1

δ2
j

[
1
2μ2

∫
ϕjj (x)ω(x) dx

(21)
+ κ

∫
{ϕj (0+,x−j )ω(0+,x−j )

− ϕj (1−,x−j )ω(1−,x−j )}dx−j

]
,

where ϕj (a,x−j ) = (∂/∂xj )g
−1(η∗(x)), ϕjj (x) = (∂2/∂x2

j )g−1(η∗(x)) and

ω(x) = w∗(x) × g′(g−1(η∗(x))). Here, the argument (a,x−j ) implies x with xj

being replaced by a. From Theorem 2 and the convergence of η̂0, we have, for x
in the interior of the support of p,

n2/5(η̂(x) − η∗(x)
) d�⇒ N

(
β0 +

d∑
j=1

βj (xj ),

d∑
j=1

vj (xj )

)
.

Theorems 1 and 2 show that the proposed estimator has the desirable dimen-
sion reduction property. It achieves the same convergence rates as one-dimensional
estimators. Furthermore, the asymptotic variance of η̂j (xj ) coincides with that
of the one-dimensional local constant estimator obtained by fitting the model
E(Y |X = x) = g−1(ηj (xj ) + ∑d

k=1,	=j η∗
k(xk)) with the other component func-

tions η∗
k (k 	= j) being known, see Fan, Heckman and Wand [5], for example. In

this sense, our estimator η̂j (xj ) of the j th component function ηj (xj ) enjoys the
oracle variance.

REMARK 1. Theorems 1 and 2 hold regardless of whether or not V correctly
models the conditional variance of the response variable.

REMARK 2. Simultaneous confidence intervals for η∗
j may be constructed us-

ing the joint limit distribution given in Theorem 2. This would involve estimation
of βj and vj which is typically harder than the original problem of estimating η∗.
Instead, one may use a bootstrap method.
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REMARK 3. In the case where Q(m,y) = −(y − m)2/2 and the link g is
the identity function, our results coincide with those of Mammen, Linton and
Nielsen [15]. In this sense, our maximum smoothed quasilikelihood estimator can
be regarded as an extension of the smooth backfitting to the context of generalized
additive models.

The next two theorems are for the convergence of the proposed outer and inner
iterative algorithms. Note that the uniform convergence of the inner iteration in
Theorem 4 is required for the entire iteration to converge. Let Br (̂η) denote the
ball centered at η̂ with a radius r .

THEOREM 3 (Convergence of outer iteration). Let η̂(k) be the kth outer step
estimator defined by (8). Under conditions A1–A5, there exist fixed r,C > 0 and
0 < γ < 1 which have the following property: if the initial estimator η̂(0) belongs
to Br (̂η) with probability tending to one, then∥∥η̂(k) − η̂

∥∥
p ≤ C2−(k−1)γ 2k−1

with probability tending to one.

THEOREM 4 (Convergence of inner iteration). Under conditions A1–A5, the
inner iteration converges at a geometric rate. Moreover, if the initial estimator
belongs to the ball introduced in Theorem 3 with probability tending to one, then
the geometric convergence of the inner iteration is uniform for all steps in the outer
iteration, with probability tending to one.

REMARK 4. In practice, a parametric model fit can be used as an initial es-
timator. In our numerical experiments, the maximum likelihood estimator of the
constant model, η̂

(0)
0 = g−1(�Y), η̂

(0)
1 (x1) = · · · = η̂

(0)
d (xd) = 0 worked well. How-

ever, a parametric fit may not be contained in the ball of Theorem 3 with prob-
ability tending to one. An alternative is to use the marginal integration estimator
proposed by Linton and Härdle [11]. The latter is consistent, but costs heavier
numerical calculations.

REMARK 5. If one models the conditional variance as V (·) = 1/g′(·), then
q2(u, y) = −[g′(g−1(u))]−1. Thus, the condition for q2(u, y) is fulfilled if g is
strictly increasing. If one uses, as an initial estimator, the maximum smoothed
quasilikelihood estimator that results from this modelling, then the global concav-
ity condition on q2 can be relaxed to a local concavity at the true function. This
is because the initial estimator lies in a shrinking ball centered at the true function
with probability tending to one.
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4.2. Local linear smooth backfitting. Here, we present the theory for the max-
imum smoothed quasilikelihood estimator η̂ based on local linear fit. We recall
that, in the local linear case, η̂(x) = (η̂0(x), η̂1(x1), . . . , η̂d(xd))T and η̂0(x) =
η̂00 + η̂01(x1) + · · · + η̂0d(xd). Also, note that η̂j (xj ), for 1 ≤ j ≤ d , estimate
η∗

j (xj ) = hjη
∗′
0j (xj ) = hj (∂η∗

0j (xj )/∂xj ).

THEOREM 5 (Rates of convergence). Suppose that conditions A1–A5 hold.
Then

‖η̂j − η∗
j‖p = Op(n−2/5), j = 0, . . . , d,

sup
xj∈[2hj ,1−2hj ]

|η̂0j (xj ) − η∗
0j (xj )| = Op

(
n−2/5

√
logn

)
, j = 1, . . . , d,

sup
xj∈[2hj ,1−2hj ]

|η̂j (xj ) − η∗
j (xj )| = Op

(
n−2/5

√
logn

)
, j = 1, . . . , d.

The asymptotic distribution of the local linear maximum smoothed quasilikeli-
hood estimator is given below. To state the theorem, define

βj (xj ) = 1
2δ2

j

(∫
t2K0(t) dt

)
η∗′′

0j (xj ),

β0 = −
(∫

w∗(x) dx
)−1

[
d∑

k=1

1
2δ2

k

∫
t2K0(t) dt

∫
η∗′′

0k (xk)w
∗
k (xk) dxk

+
d∑

k=1

δ2
kκ
(
η∗′

0k(0+)w∗
k (0+) − η∗′

0k(1−)w∗
k (1−)

)]
.

Let vj (xj ) be defined as in (19).

THEOREM 6 (Asymptotic distributions). Under the conditions of Theo-

rem 1, n2/5(η̂00 − η∗
00)

p→ β0, and for any x1, . . . , xd ∈ (0,1), n2/5[η̂01(x1) −
η∗

01(x1), . . . , η̂0d(xd) − η∗
0d(xd)]T converges in distribution to the d-variate Nor-

mal distribution with mean vector [β1(x1), . . . , βd(xd)]T and variance matrix
diag[vj (xj )].

Theorem 6 tells that our local linear maximum smoothed quasilikelihood esti-
mator has the oracle bias as well as the oracle variance. This property is shared
with the local linear smooth backfitting estimator in the ordinary additive mod-
els. It may be interesting to compare the bias and variance properties of our es-
timator with those of the two-stage estimator proposed by Horowitz and Mam-
men [8]. Each estimator achieves the bias of the respective oracle estimator based
on knowing all other components. As for the variances, we note that if the condi-
tional density fY |X(y|x) of Y given X = x belongs to an exponential family, that
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is, fY |X(y|x) = exp[yθ(x)−b(θ(x))
a(φ)

+ c(y,φ)] for known functions a, b and c, and

one uses the canonical link g = (b′)−1, then the asymptotic bias of the two-stage
estimator equals

vHM
j (xj ) = a(φ)

[
E
(
b′′(η∗(X))2|Xj = xj

)]−2
E
(
b′′(η∗(X))3|Xj = xj

)
× pj (xj )

−1δ−1
j

∫
K0(t)2 dt.

An application of Hölder inequality shows that vHM
j (xj ) ≥ vj (xj ).

THEOREM 7 (Convergence of outer and inner iterations). Under conditions
A1–A5, Theorems 3 and 4 remain valid for the outer and inner iterations to com-
pute the local linear maximum smoothed quasilikelihood estimator, with η̂ and η̂(k)

being now replaced by η̂L and η̂
(k)
L , respectively.

5. Numerical properties. We compared our maximum smoothed likelihood
estimators (YPM) with the two-stage procedures of Horowitz and Mammen [8],
denoted by HM. These numerical experiments were done by R on Windows. For
HM, we used R function bs() in the library gam to generate B-splines, and
nlm() for the optimization in the first stage.

The simulation was done under the following two models for the conditional
distribution:

1. Y |X = x ∼ Bernoulli(m(x)), where logit(m(x)) = sin(πx1) + 0.5[x2 +
sin(πx2)];

2. Y |X = x ∼ Poisson(m(x)), where log(m(x)) = sin(πx1) + 0.5[x2 + sin(πx2)].
We considered the following two models for the covariate vector (X1,X2):

1. (X1,X2) have N2(0,0;1,1,0) distribution truncated on [−1,1]2,
2. (X1,X2) have N2(0,0;1,1,0.9) distribution truncated on [−1,1]2,

where N2(μ1,μ2;σ 2
1 , σ 2

2 , ρ) denotes the bivariate normal distribution with means
μ1,μ2, variances σ 2

1 , σ 2
2 , and correlation coefficient ρ. Because of the trunca-

tion, the actual correlation coefficient in the second model equals 0.682. We
call these models, Model (i, j), where i denotes the model number for the con-
ditional distribution and j is the model number for the marginal distribution
of the covariate vector. For Models (1,1) and (1,2), the components η∗

1 and
η∗

2 that satisfy the normalizing constraint given at (5) are η∗
1(x1) = cos(πx1)

and η∗
2(x2) = 0.5[x2 + sin(πx2)] so that η∗

0 = 0. For Model (2,1), they are
η∗

1(x1) = cos(πx1) − 0.4533 and η∗
2(x2) = 0.5[x2 + sin(πx2)] − 0.3230 so that

η∗
0 = 0.7763, and for Model (2,2), they are η∗

1(x1) = cos(πx1) − 0.5874 and
η∗

2(x2) = 0.5[x2 + sin(πx2)] − 0.4536 so that η∗
0 = 1.0410.

We generated 1,000 pseudo samples of sizes n = 100,500 from each model.
All the integrals involved in the smooth backfitting procedure were calculated by
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a trapezoidal rule based on 41 equally spaced grid points on [−1,1] for each di-
rection. We used the theoretically optimal bandwidths for YPM. For the imple-
mentation of HM, one needs to choose the numbers of knots κi at the first stage
and the bandwidths at the second stage. We chose κ1 = κ2 = 2 for n = 100 and
κ1 = κ2 = 4 for n = 500. We used the same bandwidths as in YPM. In a prelimi-
nary experiment with HM, we found that HM was unstable at the second stage. In
our simulation, we applied a modified version of the second stage procedure, drop-
ping the second term in the second derivative of the weighted sum of the squared
errors, S′′

nj1(x
1, m̃) in their notation.

Table 1 summarizes the results of the experiments. It contains the average val-
ues, over the two components, of the integrated squared biases (ISB), the integrated
variances (IV) and the mean integrated squared errors (MISE), of the estimators.
Note that the target components of HM are different from those of YPM by con-
stants. This is because HM uses a different normalizing constraint that the mean of
each component function is zero. The results in Table 1 are with respect to their re-
spective targets. In calculation of the values in Table 1, we excluded bad estimates
whose squared L2 distance was greater than 50, that is, ‖η̂ − η∗‖2

2 > 50. In fact,
HM often produced bad estimates for n = 100 when the covariates are correlated.
Table 2 reports the number of bad estimates out of 1,000.

TABLE 1
Average values, over the two components, of the integrated squared biases (ISB), the integrated

variances (IV) and the mean integrated squared errors (MISE) of the maximum smoothed
quasilikelihood estimator (YPM) and the two-stage estimator of Horowitz and Mammen (HM),

based on 1,000 samples for the four models given in the text. LC stands for the estimators based on
Nadaraya–Watson smoothing, and LL for the estimators based on local linear fit

n = 100 n = 500

YPM HM YPM HM YPM HM YPM HM
Model LC LC LL LL LC LC LL LL

(1, 1) ISB 0.098 0.081 0.044 0.057 0.045 0.044 0.021 0.020
IV 0.145 0.448 0.340 0.895 0.040 0.041 0.074 0.077

MISE 0.243 0.529 0.384 0.952 0.084 0.085 0.095 0.096

(2, 1) ISB 0.068 0.122 0.023 0.052 0.017 0.026 0.009 0.011
IV 0.068 0.371 0.137 0.545 0.020 0.020 0.023 0.023

MISE 0.136 0.492 0.161 0.597 0.037 0.046 0.032 0.033

(1, 2) ISB 0.134 0.185 0.047 0.061 0.052 0.071 0.017 0.019
IV 0.191 1.397 0.486 2.826 0.054 0.279 0.142 0.366

MISE 0.325 1.581 0.533 2.887 0.106 0.349 0.158 0.385

(2, 2) ISB 0.098 0.170 0.033 0.143 0.033 0.041 0.007 0.014
IV 0.125 1.061 0.370 2.059 0.027 0.277 0.054 0.275

MISE 0.223 1.231 0.403 2.202 0.060 0.317 0.061 0.289
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TABLE 2
Number of bad estimates out of 1,000 replications for the four models given in the text (d = 2)

n = 100 n = 500

YPM HM YPM HM YPM HM YPM HM
Model LC LC LL LL LC LC LL LL

(1, 1) 0 32 0 8 0 0 0 0
(2, 1) 0 74 0 38 0 0 0 0
(1, 2) 0 164 0 152 0 8 0 8
(2, 2) 0 282 13 175 0 58 0 13

Comparing YPM and HM with the results in Table 1, we see that YPM has
smaller values of MISE than HM in all cases. For correlated covariates, our simu-
lation results suggest that IV of HM gets significantly worse whereas YPM contin-
ues to have good performance. This is mostly due to the fact that HM is unstable
on the boundary of the support of the covariate vector. The good performance of
YPM for correlated covariates is also in accordance with that of smooth backfitting
for models with the identity link, see Nielsen and Sperlich [20]. The results also
reveal that HM becomes very unstable when the sample size gets smaller. Another
interesting point is that while the local linear YPM and HM certainly have less
bias than their local constant versions, they have increased variance in comparison
with the latter.

To see whether YPM remains competitive for higher dimensional covariates, we
conducted an additional simulation with the Bernoulli model for 3 ≤ d ≤ 5 where
logit(m(x)) = sin(πx1) + 0.5[x2 + sin(πx2)] + 0.1

∑d
j=3 xj . The covariates X1

and X2 were the same as in Model (1,1) or (1,2). The additional covariates Xj

for j ≥ 3 were generated from U(−1,1) independently of other covariates. The
theoretically optimal bandwidths were used for h1 and h2, and all other bandwidths
were set to 0.2. We found that YPM continues to dominate HM for all d when X1
and X2 are correlated. We report the results for d = 5 only. Table 3 shows the
average values, over the first two components, of ISB, IV and MISE that are based
on 100 samples of size n = 500.

Implementation of YPM involves multiple numerical integration so that the
computational costs increase as d gets high. However, one may speed up the
computing time for YPM by applying a well devised Monte Carlo method for
the numerical integration. If one uses an efficient numerical integration method
whose grid points are as many as in one-dimensional integration, the comput-
ing time Td for d-dimensional covariates (d > 3) equals O(d2) × T3 since the
smooth backfitting requires only two-dimensional marginal values of the weight
functions. Note that, for 0.26 < α < 0.3, HM needs d × O(nα) ≡ λ-dimensional
nonlinear optimization which involves iterative inversions of λ × λ matrices. This
means YPM may be as fast as, or even faster than, HM with efficient numerical
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TABLE 3
Average values, over the first two components, of the integrated squared biases (ISB), the integrated

variances (IV) and the mean integrated squared errors (MISE), based on 100
samples of size n = 500 for d = 2,5 and for the Bernoulli model with

logit(m(x)) = sin(πx1) + 0.5[x2 + sin(πx2)] + 0.1
∑d

j=3 xj

(1, 1) (1, 2)

YPM HM YPM HM YPM HM YPM HM
d LC LC LL LL LC LC LL LL

2 ISB 0.045 0.044 0.021 0.020 0.052 0.071 0.017 0.019
IV 0.040 0.041 0.074 0.077 0.054 0.279 0.142 0.366

MISE 0.084 0.085 0.095 0.096 0.106 0.349 0.158 0.385

5 ISB 0.068 0.041 0.047 0.014 0.065 0.179 0.044 0.019
IV 0.035 0.080 0.093 0.112 0.043 0.366 0.171 0.650

MISE 0.103 0.121 0.141 0.126 0.108 0.545 0.215 0.669

integration. We do not pursue this computational issue further here since it is be-
yond the scope of the paper. In our current computing environments with 21 grid
points in each direction, the average times (in seconds) to compute YPM and HM
with a sample of size n = 500 for Models (1,1) and (1,2) are as reported in Ta-
ble 4.

6. Proofs and technical details. We give only proofs of Theorems 1–4. The
ideas of these proofs can be carried over to those of Theorems 5–7 for the local
linear maximum smoothed quasilikelihood estimator. We note that the boundary
modified kernel Kh(u, v) differs from the base kernel K0

h(u − v) only when u ∈
[2h,1 − 2h]c and v ∈ [h,1 −h]c for h ≤ 1/2. We will use this property repeatedly
in the following proofs.

TABLE 4
Average computing times (in seconds) for YPM and HM with 21 grid points in each direction, for

the Bernoulli model with logit(m(x)) = sin(πx1) + 0.5[x2 + sin(πx2)] + 0.1
∑d

j=3 xj and
for the sample size n = 500

(1, 1) (1, 2)

d YPM LC HM LC YPM LL HM LL YPM LC HM LC YPM LL HM LL

2 0.38 0.72 0.87 0.73 0.41 0.89 1.06 0.92
3 0.83 1.08 2.59 1.11 0.88 1.40 3.55 1.42
4 3.02 3.11 4.63 3.15 3.47 3.41 5.62 3.44
5 6.67 4.93 14.51 4.94 9.24 5.31 19.78 5.33
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We will argue that, if a point η̄ fulfills

‖F̂(η̄)‖ = Op(εn) [or op(εn), resp.],(22)

then η̄ also satisfies

‖η̂ − η̄‖ = Op(εn) [or op(εn), resp.].(23)

We consider two norms: ‖ · ‖w∗ and ‖ · ‖∞, where

‖η‖w∗ =
[∫ (

η2
0 +

d∑
j=1

ηj (xj )
2

)
w∗(x) dx

]1/2

,

‖η‖∞ = max{|η0|,‖η1‖∞,1, . . . ,‖ηd‖∞,d},
and ‖g‖∞,j = supu∈Ij

|g(u)| for Ij = [2hj ,1 − 2hj ], j = 1, . . . , d .
To show that (22) implies (23), we use a version of the Newton–Kantorovich

theorem. Let X and Y be Banach spaces, F be a mapping Br(ζ 0) ⊂ X → Y,
where Br(ζ 0) denotes a ball centered at ζ 0 with radius r , and F ′ be the Fréchet
derivative of F .

PROPOSITION 1 (Newton–Kantorovich). Suppose that there exist constants α,
β , c and r such that 2αβc < 1 and 2α < r for which F has a derivative F ′(ζ ) for
ζ ∈ Br(ζ 0), F ′ is invertible, ‖F ′(ζ 0)

−1F(ζ 0)‖ ≤ α,‖F ′(ζ 0)
−1‖ ≤ β,‖F ′(ζ ) −

F ′(ζ ′)‖ ≤ c‖ζ − ζ ′‖ for all ζ , ζ ′ ∈ Br(ζ 0). Then F(ζ ) = 0 has a unique solution
ζ ∗ in B2α(ζ 0). Furthermore, ζ ∗ can be approximated by Newton’s iterative method
ζ k+1 = ζ k − F ′(ζ k)

−1F(ζ k), which converges at a geometric rate: ‖ζ k − ζ ∗‖ ≤
α2−(k−1)q2k−1 where q = 2αβc < 1.

For the proof and technical details of the proposition, see Deimling [3], Sec-
tion 15, for example. Proposition 1 has two important implications. One is that
the distance between the unique solution and the initial point is less than 2α. This
shows that (22) implies (23). The other is that, if one has a good initial guess sat-
isfying the sufficient conditions of the proposition then one can obtain the unique
solution of the equation by using the iterative method which converges geometri-
cally fast.

We apply the proposition with F = F̂ for the proofs of Theorems 1–3. For The-
orem 1, we take ζ 0 = η∗. For Theorem 2, we put ζ 0 to be some relevant approxi-
mation of η̂. For Theorem 3, we work with ζ 0 = η̂(0). For the proofs of Theorems
1 and 2, we need the following series of lemmas.

LEMMA 1. Under conditions of Theorem 1, we have

‖F̂(η∗)‖w∗ = Op(n−2/5) and ‖F̂(η∗)‖∞ = Op

(
n−2/5

√
logn

)
.
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PROOF. Let ψ(u) = −q2(u, g−1(u)) = [V (g−1(u))g′(g−1(u))]−1. With a
Taylor expansion, we have for j = 1, . . . , d

E

∫
m̃(x)ψ(η∗(x))p̂(x) dx−j

=
∫

g−1(η∗(x))ψ(η∗(x))p(x) dx−j + R1,j,n(xj ),

E

∫
g−1(η∗(x))ψ(η∗(x))p̂(x) dx−j

=
∫

g−1(η∗(x))ψ(η∗(x))p(x) dx−j + R2,j,n(xj ),

where the remainders Ri,j,n for i = 1,2 and j = 1, . . . , d satisfy

sup{|Ri,j,n(xj )| :xj ∈ [hj ,1 − hj ]} ≤ (const.)n−2/5,
(24)

sup{|Ri,j,n(xj )| :xj ∈ [0, hj ) ∪ (1 − hj ,1]} ≤ (const.)n−1/5.

The above inequalities are consequences of the standard theory of kernel smooth-
ing and properties of the boundary corrected kernels.

Since
∏d

l 	=j Khl
(xl,X

1
l ) = ∏d

l 	=j K0
hl

(xl − X1
l ) when X1

l ∈ [hl,1 − hl] for all
l 	= j , and thus∣∣∣∣∣

∫
g−1(η∗(x))ψ(η∗(x))

(
d∏

l 	=j

Khl
(xl,X

1
l ) −

d∏
l 	=j

K0
hl

(xl − X1
l )

)
dx−j

∣∣∣∣∣
≤ (const.)

d∑
l 	=j

I (X1
l ∈ [hl,1 − hl]c),

we obtain

var
[∫

g−1(η∗(x))ψ(η∗(x))p̂(x) dx−j

]

= n−1 var

[∫
g−1(η∗(x))ψ(η∗(x))

d∏
l 	=j

K0
hl

(xl − X1
l ) dx−jKhj

(xj ,X
1
j )

]
(25)

+ o(n−1h−1
j )

≤ (const.)n−1h−1
j + o(n−1h−1

j ).

We also have

var

[
Y 1Khj

(xj ,X
1
j )

∫
ψ(η∗(x))

d∏
l 	=j

Khl
(xl,X

1
l ) dx−j

]
= O(h−1

j ).(26)
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From the inequalities (24)–(26), we obtain for j = 1, . . . , d∥∥∥∥∫ (m̃(x) − g−1(η∗(x))
)
ψ(η∗(x))p̂(x) dx−j

∥∥∥∥
w∗

= Op(n−2/5).

Similarly, we find
∫ [m̃(x)−g−1(η∗(x))]ψ(η∗(x))p̂(x) dx = Op(n−2/5). This con-

cludes the proof of the first part.
For the proof of the second part, let

Aj,n(xj ) =
∫

[m̃j (xj ) − g−1(η∗(x))]ψ(η∗(x))p̂(x) dx−j .

Since V and g′ are strictly positive and thus |EAj,n(xj )| < (const.)n−2/5 on Ij , it
suffices to show

sup
xj∈Ij

∣∣Aj,n(xj ) − E[Aj,n(xj )|X1, . . . ,Xn]∣∣= Op

(√
logn

nhj

)
,(27)

sup
xj∈Ij

∣∣E[Aj,n(xj )|X1, . . . ,Xn] − EAj,n(xj )
∣∣= Op

(√
logn

nhj

)
.(28)

Define

Di
n(xj ) =

∫
ψ(η∗(x))

d∏
l 	=j

Khl
(xl,X

i
l ) dx−j .

Then, for xj ∈ Ij

Bj,n(xj ) ≡ Aj,n(xj ) − E[Aj,n(xj )|X1, . . . ,Xn]

= n−1
n∑

i=1

[Y i − g−1(η∗(Xi ))]Di
n(xj )K

0
hj

(xj − Xi
j ).

Let εi = Y i − g−1(η∗(Xi )) and ε̃i = εiI (|εi | ≤ nα) for some α such that r−1
0 <

α < 2/5 where r0 > 5/2 is the positive number in the condition A2. Let

B̃j,n(xj ) = 1

n

n∑
i=1

[̃εiDi
n(xj )K

0
hj

(xj − Xi
j ) − Eε̃iDi

n(xj )K
0
hj

(xj − Xi
j )].

It is easy to see that |E(̃ε1K0
hj

(xj − X1
j )D

1
n(xj ))| < (const.)n−α(r0−1)h−1

j =
o(n−2/5) uniformly over xj ∈ Ij . Also, for an arbitrary positive sequence {an},
we have

P

[
sup

xj∈Ij

∣∣∣∣∣1n
n∑

i=1

(εi − ε̃i )K0
hj

(xj − Xi
j )D

i
n(xj )

∣∣∣∣∣> an

]

≤ P

[
max

1≤i≤n
|εi | > nα

]
≤ nP [|ε1| > nα] ≤ (const.)n−r0α+1 = o(1).
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This implies supxj∈Ij
|Bj,n(xj ) − B̃j,n(xj )| = op(n−2/5).

Thus, to prove (27) it suffices to establish that

sup
xj∈Ij

P

[
|B̃j,n(xj )| > C

√
logn

nhj

]
≤ 2n−C+c0(29)

for all C > 0 and a fixed constant c0. The inequality (29) can be proved by a simple
application of Markov inequality as in the proof of Theorem 6.1 in Mammen and
Park [18]. Proof of (28) is similar. This concludes the proof of the lemma. �

Next, we consider an approximation of η̂. Write ŵ∗ = ŵη∗
for simplicity. Con-

sider the following system of linear equations for ζ0, ζ1(·), . . . , ζd(·) which are
obtained by linearly approximating the original estimating equations around η∗:

ζ0 =
(∫

ŵ∗(x) dx
)−1 ∫

[m̃(x) − g−1(η∗(x))]ψ(η∗(x))p̂(x) dx,

(30)

ζj (xj ) = ζ̃j (xj ) −
d∑

l=1,	=j

∫
ζl(xl)

ŵ∗
j l(xj , xl)

ŵ∗
j (xj )

dxl − ζ0, j = 1, . . . , d,

where

ζ̃ (x) = [m̃(x) − g−1(η∗(x))]ψ(η∗(x))
p̂(x)

ŵ∗(x)
,

ζ̃j (xj ) =
(∫

ŵ∗(x) dx−j

)−1 ∫
ζ̃ (x)ŵ∗(x) dx−j , j = 1, . . . , d.

Let ζ̂0, ζ̂1(x1), . . . , ζ̂d(xd) be the solution of the system (30) subject to
∫

ζj (xj ) ×
ŵ∗(x) dx = 0, j = 1, . . . , d . Define ζ̂ (x) = ζ̂0 +∑d

j=1 ζ̂j (xj ). Then ζ̂ can be re-
garded as the minimizer in H(ŵ∗) of

‖ζ̃ − ζ‖2
ŵ∗ =

∫
[̃ζ (x) − ζ(x)]2ŵ∗(x) dx.

For an approximation of η̂, we take η̄ = η∗ + ζ̂ .
Derivation of the limiting distribution of η̄ is one of the key elements for the

establishment of Theorem 2. Later, we will argue that the difference between η̄
and η̂ is negligible by applying Proposition 1 with Lemmas 6 and 7. To derive the
joint limiting distribution of η̄j (xj ), we use the results of Mammen, Linton and
Nielsen [15]. Note that a nonnegative weight function w and its marginalizations
wj , if divided by

∫
w(x) dx, can be regarded as a density function. Thus, we may

have a version of Theorem 4 in Mammen, Linton and Nielsen [15] by making ŵ∗
ij ,

ŵ∗
j , ζ̃ and ζ̃j , respectively, take the roles of their p̂ij , p̂j , m̂ and m̂j . Define

αn,j (xj ) =
[

∂

∂xj

E
(
q1(η

∗(x), g−1(η∗(X1)))|X1
j = xj

)]∫ Khj
(xj , u)(u − xj ) du

wj (xj )
∫

Khj
(xj , v) dv

.
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Put γn,j ≡ 0, ζ̃ A
j (xj ) = ζ̃j (xj ) − E[̃ζj (xj )|X1, . . . ,Xn] and ζ̃ B

j (xj ) = E[̃ζj (xj )|
X1, . . . ,Xn]. We note that αn,j (xj ) = 0 for xj in the interior and equals O(n−1/5)

on the boundary. One can proceed as in the proofs of Theorems 3 and 4 of Mam-
men, Linton and Nielsen [15] to show the following three lemmas.

LEMMA 2. Under the conditions of Theorem 2, the “high level conditions”
of Mammen, Linton and Nielsen [15], that is, their conditions (A1)–(A6), (A8)
and (A9), are satisfied with w∗

j ,w
∗
ij , ŵ

∗
j , ŵ

∗
ij , ζ̃ , ζ̃j taking the roles of their

pj ,pij , p̂j , p̂ij , m̂, m̂j , respectively, and with �n = n−2/5, αn,j (xj ), γn,j , ζ̂ A
j (xj )

defined above and β defined at (20).

LEMMA 3. Under the conditions of Theorem 2, it follows that for closed sub-
sets S1, . . . , Sd of (0,1)

sup
xj∈Sj

|̂ζB
j (xj ) − μn,j (xj )| = op(n−2/5), j = 1, . . . , d,

where μn,j (xj ) = αn,j (xj ) + n−2/5βj (xj ).

LEMMA 4. Under the conditions of Theorem 2, it follows that for closed sub-
sets S1, . . . , Sd of (0,1)

sup
xj∈Sj

∣∣̂ζA
j (xj ) − (ζ̃ A

j (xj ) − ζ̂ A
0
)∣∣= op(n−2/5), j = 1, . . . , d,

where ζ̂ A
0 = (

∫
ŵ∗(x) dx)−1n−1∑n

i=1
∫ [Y i −g−1(η∗(Xi ))]ψ(η∗(x))Kh(x,Xi) dx.

From Lemmas 3 and 4, we obtain the asymptotic distribution of η̄ as is given in
the following lemma.

LEMMA 5. Under the conditions of Theorem 2, n2/5(η̄0 − η∗
0)

p→ β0, and
for any x1, . . . , xd ∈ (0,1), n2/5[η̄1(x1) − η∗

1(x1), . . . , η̄d(xd) − η∗
d(xd)]T con-

verges in distribution to the d-variate Normal distribution with mean vector
[β1(x1), . . . , βd(xd)]T and variance matrix diag[vj (xj )].

LEMMA 6. Under the conditions of Theorem 2, we have

‖F̂(η̄)‖w∗ = op(n−2/5) and ‖F̂(η̄)‖∞ = op(n−2/5).

PROOF. Since supxj∈[0,1] |ŵ∗
j (xj ) − w∗

j (xj )| = op(1) and w∗
j (xj ) is bounded

away from zero, it follows from (27) that

sup
xj∈Ij

|̃ζA
j (xj )| = Op

(
n−2/5

√
logn

)
.(31)
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Since ζ̂ A
0 = Op(n−1/2), Lemma 4 and (31) imply

sup
xj∈Ij

|̂ζA
j (xj )| = Op

(
n−2/5

√
logn

)
.(32)

Now, by a Taylor expansion and the definition of η̄0, it can be shown that∫
[m̃(x) − g−1(η̄(x))]ψ(η̄(x))p̂(x) dx = op(n−2/5).(33)

Also, a first-order approximation gives∫
[m̃j (xj ) − g−1(η̄(x))]ψ(η̄(x))p̂(x) dx−j

= ŵ∗
j (xj )ζ̃j (xj ) − ŵ∗

j (xj )ζ̂j (xj ) −
d∑

l=1,	=j

∫
ζ̂l(xl)ŵ

∗
j l(xj , xl) dxl

− ŵ∗
j (xj )ζ̂0 + rj,n(xj )

= rj,n(xj ),

where, with η̌ ∈ (η∗, η̄),

rj,n(xj ) =
∫

[ŵη∗
(x) − ŵη̌(x)]dx−j ζ̂j (xj )

+
d∑

l=1,	=j

∫
[ŵη∗

(x) − ŵη̌(x)]̂ζl(xl) dx−j

+
∫

[ŵη∗
(x) − ŵη̌(x)]̂ζ0.

With the smoothness conditions, it follows from Lemma 5 and (31) that

sup
xj∈Ij

|rj,n(xj )| = op(n−2/5).(34)

Since ‖ · ‖w∗ ≤ (const.)‖ · ‖∞, (33) and (34) complete the proof of the lemma. �

To prove Theorems 1 and 2, it only remains to check the sufficient conditions in
Proposition 1 for ζ 0 = η∗ and η̄. We note that the arguments employed in Mam-
men and Nielsen [17] for a related problem can not be used here for general dimen-
sion d . Below in Lemma 7, we present a verification of the sufficient conditions
that apply for general d .

LEMMA 7. Under conditions A1–A5, the sufficient conditions in Proposi-
tion 1 hold with probability tending to one for F = F̂ and ζ 0 being either η∗ or η̄,
with respect to the norms ‖ · ‖w∗ and ‖ · ‖∞.
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PROOF. The Fréchet derivative of F̂ at η is given by

−F̂′(η)g(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

g0

∫
wη(x) dx∫

[g0 + g1(x1) + · · · + gd(xd)]ŵη(x) dx−1

...
...

...∫
[g0 + g1(x1) + · · · + gd(xd)]ŵη(x) dx−d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.(35)

Since p̂ converges to p, F̂′(η∗)g converges to F′(η∗)g where F′(η) is defined in
the same way as F̂′(η) with p̂ in the latter being replaced by p, and thus ŵη being
replaced by wη. Furthermore, as in the proof of Lemma 6, one can show F̂′(η̄)g
also converges to F′(η∗)g. Here, the convergence means convergence with respect
to the ‖ · ‖w∗ or ‖ · ‖∞ norm in probability.

Note that �∗
j (·) ≡ [w∗

j (xj )]−1 ∫ ·w∗(x) dx−j is the projection operator onto

H0
j (w∗). Let w(x) = (w∗

1(x1), . . . ,w
∗
d(xd))T , and define

A =
(

1 0T

0 B

)
, B =

⎛⎜⎝�∗
1 · · · �∗

1
...

. . .
...

�∗
d · · · �∗

d

⎞⎟⎠ ,

D =
(∫

w∗(x) dx 0T

w(·) diag(w(·))

)
.

Then, one can write

F′(η∗)g = DAg.

We note that D−1 is bounded since g′(m(·))2V (m(·)) is bounded, and p is
bounded away from zero.

We only need to show that the linear operator A has a bounded inverse and
the Lipschitz condition is satisfied for F′. Note that the linear operator A has a
bounded inverse if B has. We apply the inverse mapping theorem to show the
linear operator B has a bounded inverse. In the proof, the spaces are redefined by
dropping the constant.

Suppose that Bg = 0 for a given g ∈ G0(w∗). Then we have �∗
j (g1 +· · ·+gd) =

0 for j = 1, . . . , d . This implies that

g1 + · · · + gd ∈ H0⊥
1 ∩ · · · ∩ H0⊥

d = (H0
1 + · · · + H0

d )⊥.

Thus, g1 + · · · + gd = 0 so that g = 0. Hence, B is one-to-one. Next, note that B

is self-adjoint, that is, B∗ = B since, for any g,γ ∈ G0(w∗),

〈Bg,γ 〉 = 〈�∗
1(g1 + · · · + gd), γ1〉H0

1
+ · · · + 〈�∗

d(g1 + · · · + gd), γd〉H0
d

= 〈g1 + · · · + gd, γ1〉H0 + · · · + 〈g1 + · · · + gd, γd〉H0
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= 〈g1, γ1 + · · · + γd〉H0 + · · · + 〈gd, γ1 + · · · + γd〉H0

= 〈�∗
1g1, γ1 + · · · + γd〉H0 + · · · + 〈�∗

dgd, γ1 + · · · + γd〉H0

= 〈g1,�
∗
1(γ1 + · · · + γd)〉H0

1
+ · · · + 〈gd,�∗

d(γ1 + · · · + γd)〉H0
d

= 〈g,Bγ 〉,
where we use the subscripts to emphasize which inner product is used. Thus,
R(B)⊥ = N(B∗) = N(B) = {0}, where R and N denote the range- and null-spaces,
respectively. This implies B is onto.

We can conclude that B has a bounded inverse if we prove B is bounded. The
boundedness in ‖ · ‖w∗ of B can be easily checked as follows:

‖Bg‖2
w∗ =

∫
[{�∗

1(g1 + · · · + gd)}2 + · · · + {�∗
d(g1 + · · · + gd)}2]w∗(x) dx

≤
d∑

i=1

‖�∗
i ‖2

w∗‖g1 + · · · + gd‖2
w∗

≤ d2
∫

[g1(x1)
2 + · · · + gd(xd)2]w∗(x) dx = d2‖g‖2

w∗ .

Now, for the norm ‖ · ‖∗∞ defined by

‖g‖∗∞ ≡ max
{

sup
x1∈(0,1)

|g1(x1)|, . . . , sup
xd∈(0,1)

|gd(xd)|
}
,

we have ‖Bg‖∗∞ ≤ d‖g‖∗∞ since∣∣∣∣ ∫ gk(xk)w
∗(x) dx−j /w

∗
j (xj )

∣∣∣∣≤ sup
xk∈(0,1)

|gk(xk)|.

To check the Lipschitz condition, we write F′(η) = D(η)A(η) where D(η) and
A(η) are defined in the same way as D and A, respectively, with η substituting for
η∗ thus with wη substituting for w∗. Then,

‖F′(η) − F′(η′)‖w∗ ≤ ‖D(η)‖w∗‖A(η) − A(η′)‖w∗

+ ‖D(η) − D(η′)‖w∗‖A(η′)‖w∗ .

Since g′(m(·))2V (m(·)) and p are bounded away from zero and infinity, ‖D(η)‖w∗
and ‖A(η′)‖w∗ are bounded by some constant. From the smoothness of
g′(m(·))2V (m(·)), we also have ‖(D(η)−D(η′))g‖w∗ ≤ (const.)‖g‖w∗‖η−η′‖w∗
and ‖(A(η) − A(η′))g‖w∗ ≤ (const.)‖g‖w∗‖η − η′‖w∗ . This establishes ‖F′(η) −
F′(η′)‖w∗ ≤ (const.)‖η − η′‖w∗ . Checking the Lipschitz condition for the norm
‖ · ‖∞ is similar, hence omitted. �

The following lemma tells that the norms ‖ · ‖wμ and ‖ · ‖ŵμ are equivalent to
‖ · ‖p and ‖ · ‖p̂ , respectively.
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LEMMA 8. Suppose that conditions A1–A5 hold. For any continuous func-
tion μ, there exist positive constants c and C such that for each η ∈ H(p) and
η ∈ G(p),

c‖η‖p ≤ ‖η‖wμ ≤ C‖η‖p and c‖η‖p ≤ ‖η‖wμ ≤ C‖η‖p.

Also, there exist positive constants c′ and C′ such that for each η ∈ H(p̂) and
η ∈ G(p̂),

c′‖η‖p̂ ≤ ‖η‖ŵμ ≤ C′‖η‖p̂ and c′‖η‖p̂ ≤ ‖η‖ŵμ ≤ C′‖η‖p̂

with probability tending to one.

PROOF. From the condition A2 and the continuity of μ and m, the function
−q2(μ(·),m(·)) is bounded away from zero and infinity on any compact set. Thus,
there exist positive constants c and C such that cp(x) ≤ wμ(x) ≤ Cp(x) for all
x ∈ [0,1]d . This establishes the first part of the lemma. Since ‖η‖ŵμ and ‖η‖p̂

converge in probability to ‖η‖wμ and ‖η‖p , respectively, the second part of the
lemma follows. �

PROOF OF THEOREM 1. The theorem follows directly from Lemma 1,
Lemma 8 and Proposition 1 with application of Lemma 7. �

PROOF OF THEOREM 2. The theorem follows directly from Lemma 5,
Lemma 6 and Proposition 1 with application of Lemma 7. �

PROOF OF THEOREM 3. One may show, by a parallel argument with the proof
of Lemma 7 substituting ŵ(0) for w∗, that there exists a constant c0 such that
‖F̂′(̂η(0))−1‖ŵ(0) ≤ c0 with probability tending to one. Since ‖g‖p̂ converges in

probability to ‖g‖p for g ∈ L2(p), it follows from Lemma 8 that ‖F̂′(̂η(0))−1‖p ≤
c1 with probability tending to one for some constant c1. To check the Lipschitz
condition in Proposition 1 for F̂′, one may follow the approach in the proof of
Lemma 7 with the representation F̂′(η) = D̂(η)Â(η), where D̂(η) and Â(η) are
defined in the same way as D and A, respectively, with ŵη substituting for w∗. One
can prove that there exists a constant c2 such that ‖F̂′(η)− F̂′(η′)‖p ≤ c2‖η−η′‖p

with probability tending to one.
Now let F be defined as F̂ with �Y , m̃j , p̂j , p̂ being replaced by EY,mj ,pj ,p,

respectively. Then, F̂η converges to Fη with respect to the ‖ · ‖p norm in prob-
ability, uniformly for η in any compact set. From this convergence, the uniform
continuity of F and the fact F̂η̂ = 0, it follows that there exists a positive constant
r such that

sup
η∈Br (̂η)

‖F̂η‖p <
1

2c2
1c2
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with probability tending to one, where Br (̂η) is a ball in L2(p). This proves that,
if η̂(0) ∈ Br (̂η) with probability tending to one, then∥∥F̂′(̂η(0))−1F̂η̂(0)

∥∥
p ≤ 1

2c1c2

with probability tending to one. The theorem now follows from Proposition 1. �

PROOF OF THEOREM 4. Note that �̂
(k)
j (·) ≡ [ŵ(k)

j (xj )]−1 ∫ · ŵ(k)(x) dx−j

are Hilbert–Schmidt operators in L2(ŵ
(k)). This implies that for each k there exists

a stochastic 0 < ρ̂k < 1 such that∥∥ξ̂ (k),[r] − ξ̂ (k)
∥∥
ŵ(k−1) ≤ ρ̂r

k

∥∥ξ̂ (k)
∥∥
ŵ(k−1) ,

where ρ̂k < 1. See Theorem 4.B in Appendix 4 of Bickel et al. [1] for details. This
establishes the first part of the theorem.

If the initial estimator η̂(0) belongs to the ball Br (̂η) with probability tend-
ing to one, then Theorem 3 tells us that, with probability tending to one, ŵ(k)

converges to ŵ(∞) and ξ̂ (k) to zero (in ‖ · ‖p or ‖ · ‖p̂ norm) as k goes to
infinity, where ŵ(∞) is defined as ŵ(k) with η̂(k) being replaced by η̂. De-
fine ρ̂∞ as ρk with ŵ(∞) substituting for ŵ(k−1). Note that 0 < ρ̂∞ < 1 since
�̂

(∞)
j (·) ≡ [ŵ(∞)

j (xj )]−1 ∫ · ŵ(∞)(x) dx−j are also Hilbert–Schmidt operators in

L2(ŵ
(∞)). This implies that within an event of probability tending to one, there

exists 0 < ρ̂ < 1 and ε̂ > 0 such that ρ̂k ≤ ρ̂ and ‖ξ̂ (k)‖p̂ ≤ ε̂ for all k. Thus, from
Lemma 8 we conclude that with probability tending to one there exist 0 < ρ̂ < 1
and Ĉ, which are independent of k, such that∥∥ξ̂ (k),[r] − ξ̂ (k)

∥∥
p̂ ≤ Ĉρ̂r .

This completes the proof of Theorem 4. �
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