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TRANSFORM MARTINGALE ESTIMATING FUNCTIONS

BY T. MERKOURIS

Statistics Canada

An estimation method is proposed for a wide variety of discrete time
stochastic processes that have an intractable likelihood function but are other-
wise conveniently specified by an integral transform such as the characteristic
function, the Laplace transform or the probability generating function. This
method involves the construction of classes of transform-based martingale es-
timating functions that fit into the general framework of quasi-likelihood. In
the parametric setting of a discrete time stochastic process, we obtain trans-
form quasi-score functions by projecting the unavailable score function onto
the special linear spaces formed by these classes. The specification of the
process by any of the main integral transforms makes possible an arbitrarily
close approximation of the score function in an infinite-dimensional Hilbert
space by optimally combining transform martingale quasi-score functions.
It also allows an extension of the domain of application of quasi-likelihood
methodology to processes with infinite conditional second moment.

1. Introduction. Maximum likelihood estimation of parameters of discrete
time stochastic processes is often not feasible because an explicit expression for the
associated likelihood function is either unavailable or too complicated. In a wide
variety of situations, however, a description of the process by an integral trans-
form, such as the conditional characteristic function or the conditional Laplace
transform, is more readily available than explicit likelihood or score functions.
A broad array of such processes encountered in the literature includes the fol-
lowing. First, there are linear processes with infinite variance used in modeling
certain time series phenomena. In particular, models in economics and in signal
processing involving linear time series with error having a stable distribution have
been considered in the literature; see, for example, McCulloch [25] and Nikias
and Shao [30]. In general, no closed form expression suitable for likelihood meth-
ods exists for the densities of such processes, but a simple form of characteristic
function or Laplace transform is available. Second, there are two rich classes of
discrete and non-Gaussian continuous variate time series models. One of these
classes includes models with exponential or gamma marginal distributions, which
are of importance in queuing and network processes. The other class includes sta-
tionary processes with discrete marginal distributions, such as Poisson, geometric
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or negative binomial, which are useful for modeling counting processes consist-
ing of dependent random variables. A detailed survey of first-order autoregres-
sive processes with such distributions is given in Grunwald, Hyndman, Tedesco
and Tweedie [17]. For the higher-order autoregressive case, see Billard and Mo-
hamed [3], Alzaid and Al-Osh [2] and references therein. These non-Gaussian
models have an intractable likelihood function because of its complexity or inher-
ent discontinuities. Nonetheless, they are described handily by their Laplace trans-
forms or probability generating functions. Third, there are aggregate models, such
as aggregate Markov chains and the related compartmental models used in many
areas, such as economics, population theory and the social sciences, when only
aggregate data are available; see, for example, McLeish [26] and Leitnaker [24].
Such models involve convolutions whose densities are rarely tractable but have a
simple representation by their probability generating functions.

In all these examples maximum likelihood estimation for the parameters of the
relevant models has been regarded as unworkable, and other methods of estima-
tion, typically using only the first two moments of the underlying distribution, are
generally suboptimal.

In this article we propose an estimation method for discrete time stochastic
processes that are conveniently specified by conditional integral transforms. The
development of this method follows earlier work (Merkouris [27, 28]) that intro-
duced quasi-likelihood estimation for discrete time semimartingales based on con-
ditional integral transforms. Though quite distinct, this approach is related to previ-
ous estimation methods in the literature that involved fitting an empirical transform
to its theoretical counterpart in the setting of i.i.d. random variables. In this sense,
it is akin to the generalized moment procedure proposed by Feuerverger and Mc-
Dunnough [14] and Brant [4] as an approximate maximum likelihood procedure.

In the parametric setting of a discrete time stochastic process with intractable
likelihood function we build classes of martingale estimating functions by means
of an integral transform that specifies the process. Such classes of transform-based
martingale estimating functions fit into the general quasi-likelihood framework
given by Godambe and Heyde [15]. In our quasi-likelihood approach, we obtain
quasi-score functions as projections of the unavailable score function onto the spe-
cial linear spaces formed by these classes. Thus, these transform quasi-score func-
tions provide best linear approximations to the score function in Hilbert space. In
contrast to the semiparametric setting of the ordinary quasi-likelihood, the specifi-
cation of the process by its transform structure enables the utilization of distribu-
tional information beyond the second-order moment structure. Enlarged classes of
suitable composite transform martingales can then be constructed, which may lead
to an arbitrarily close approximation of the score function. The transform structure
allows also an extension of the quasi-likelihood methodology to processes with in-
finite conditional second moment. Furthermore, combining transform martingale
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estimating functions may be effective in dealing with problems of identifiability of
vector parameters.

The proposed transform martingale estimating functions are generally nonlinear
in the observations, and for the main integral transforms they may be represented as
perturbed polynomial quasi-score functions. In particular, a basic transform mar-
tingale estimating function can be expressed as a perturbed ordinary quasi-score
(weighted conditional least squares) estimating function.

Other estimation methods based on empirical transforms for discrete time sto-
chastic processes have appeared in the literature. Feuerverger [11] discussed an
asymptotically efficient estimation procedure based on the “poly-characteristic”
function in the setting of univariate stationary time series models. Brockwell and
Liu [5] used the empirical characteristic function in estimation for a linear process
with stable innovations. Estimators based on the Laplace transform were used for
the estimation of parameters of progression time distributions in multi-stage mod-
els by Schuh and Tweedie [32], Feigin, Tweedie and Belyea [10] and Hoeting,
Tweedie and Olver [20]. Abraham and Balakrishna [1] used the empirical Laplace
transform to estimate a parameter of a first-order inverse Gaussian autoregressive
process. Yao and Morgan [37] used a least squares approach based on empirical
transforms for a class of indexed stochastic models. Each of the aforementioned
methods is essentially an ad hoc approach to the particular estimation problem.
In contrast, this article presents a general estimation procedure that is statistically
and computationally efficient, of broad applicability and based on a comprehensive
estimation theory.

The article is organized as follows. In Section 2 the transform method is in-
troduced as a special quasi-likelihood estimation procedure with a potential of
high efficiency that rests on the capacity of constructing combinations of trans-
form martingale estimating functions. A link is established between the method
of Feuerverger and McDunnough, and Brant, and the quasi-likelihood approach
through the concept of best linear approximation of the score function that under-
lies both estimation procedures. In Section 3 the formulation of orthogonal projec-
tion of the score function onto suitable infinite-dimensional spaces lays the ground
for the construction of potentially fully efficient transform martingale estimating
functions. A practicable procedure for forming composite transform martingale es-
timating functions of nondecreasing efficiency is then developed. Computational
issues related to the proposed estimating procedure are discussed in Section 4.
Comparisons of martingale estimating functions based on important transforms
are presented in Section 5. Also in Section 5, the relationship of the transform
estimation method with ordinary quasi-likelihood and conditional least squares is
established, and suggestions as to the choice of an efficient transform estimating
function are made. Two brief examples illustrating important features of the trans-
form method are given in Section 6.
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2. Transform martingale estimating functions.

2.1. The basic structure. Let {Yj , 1 ≤ j ≤ n} be a sample from a discrete
time stochastic process which takes values in r-dimensional Euclidean space and
whose distribution depends on a parameter θ belonging to an open subset � of
p-dimensional Euclidean space. Suppose that the possible probability measures
for {Yj } are {Pθ , θ ∈ �} and that each (�,F ,Pθ ) is a complete probability space.
Let Fj denote the past-history sub-σ -field of F generated by Y1, . . . ,Yj , j ≥ 1.
Suppose that the conditional density function fθ (Yj |Y1, . . . ,Yj−1) and the gra-
dient of logfθ (Yj |Y1, . . . ,Yj−1), denoted by sj , exist. Allowing differentiation
under an integral sign, E(sj |Fj−1) = 0 almost surely (a.s.) and, thus, the score
function Sn = ∑n

j=1 sj defines a zero-mean martingale, {Sn, Fn}, which is as-
sumed to be square integrable.

The score function may be unavailable or too difficult to compute, so that esti-
mating θ by maximum likelihood is not feasible. Nevertheless, a class of workable
martingale estimating functions may instead be constructed based on an integral
transform.

We assume at first, for simplicity of exposition, that we deal with real valued
random variables Y1, . . . , Yn whose distribution depends on a scalar parameter
θ ∈ �. Then for the j th time point we write

Fj (y|Fj−1) = P(Yj ≤ y|Fj−1), F̂j (y) = I[Yj≤y], 1 ≤ j ≤ n,

where I denotes the indicator function. For an indexed set of real or complex
valued functions {gt (Y ), t ∈ T ⊆ R}, the kernel class, we consider the integral
transform

cj (t) =
∫

gt (y) dFj (y|Fj−1) = E(gt (Yj )|Fj−1),(1)

where the kernel gt (·) is such that the integral exists and is finite for all θ ∈ � and
all t ∈ T . The dependence of Fj (y|Fj−1) and cj (t) on θ is suppressed notation-
ally for convenience of writing. The important transforms include the characteris-
tic function, the moment generating function and the probability generating func-
tion, with associated kernel classes {sin(tY ), cos(tY ), t ∈ R}, {exp(tY ), t ∈ R}
and {tY , t ∈ R}, respectively, though others (e.g., the Laplace transform or the
sequence of moments) may be used as befits the context.

Now let

ĉj (t) =
∫

gt (y) dF̂j (y) = gt (Yj )(2)

and write

hj (t) = ĉj (t) − cj (t) = gt (Yj ) − E(gt (Yj )|Fj−1), 1 ≤ j ≤ n.(3)
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Since E(hj (t)|Fj−1) = 0 a.s., for fixed t ∈ T the {hj (t),Fj } are martingale dif-
ferences of a zero-mean martingale, say, {Hn(t) = ∑n

j=1 hj (t),Fn}, to which we
associate a class Mt of martingale estimating functions defined by

Mt =
{
Gn(t) :Gn(t) =

n∑
j=1

wjhj (t), wj = wj(Y1, . . . , Yj−1, θ)

}
.(4)

Estimators of θ can then be found by solving the estimating equations Gn(t) = 0.
If we assume that the zero-mean martingale estimating functions Gn(t) defined

by (4) are square integrable and differentiable a.s. with respect to θ for each t ∈ T ,
then the special class of transform-based martingale estimating functions (4) fits
into the general quasi-likelihood framework given by Godambe and Heyde [15].
In this framework, which incorporates essential ideas from the methods of least
squares and maximum likelihood, a basic martingale {Hn = ∑n

j=1 hj ,Fn}, with
hj = hj (Y1, . . . , Yj , θ) and E(hj |Fj−1) = 0 a.s., can be chosen in a variety of
ways that give rise to different classes of martingale estimating functions as alter-
natives to the score function. In particular, since any discrete time process {Yn,Fn}
has the semimartingale representation

∑n
j=1 Yj = ∑n

j=1 E(Yj |Fj−1) + ∑n
j=1 hj ,

with hj = Yj − E(Yj |Fj−1), a class of martingale estimating functions may be
based on the martingale

∑n
j=1 hj .

In the present context, where it is assumed that a conditional transform cj (t) =
E(gt (Yj )|Fj−1) can be readily obtained (as in the examples in Section 6), the mar-
tingale difference hj (t) defined in (3) leads to the semimartingale representation
of the transformed process gt (Yj ), that is,

n∑
j=1

gt (Yj ) =
n∑

j=1

E(gt (Yj )|Fj−1) + Hn(t), t ∈ T .(5)

A strong law of large numbers for martingales will entail Hn(t)/n → 0 a.s., for
every t ∈ T . This asymptotic equivalence of

∑n
j=1 gt (Yj ) and

∑n
j=1 E(gt (Yj )|

Fj−1) together with the one-to-one correspondence between the density f (Yj |Y1,

. . . , Yj−1) and E(gt (Yj )|Fj−1), for important kernels, supports using {Hn(t),Fn}
as the basic martingale to generate the class Mt of estimating functions (4).

2.2. Optimality considerations. The general theory of quasi-likelihood fur-
nishes an optimal estimating function within Mt . Accordingly, the estimating
function G∗

n(t) ∈ Mt given by

G∗
n(t) =

n∑
j=1

w∗
j hj (t),

with

w∗
j = E( ∂

∂θ
hj (t)|Fj−1)

E(h2
j (t)|Fj−1)

,
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satisfies the small sample optimality criterion (OF -optimality) of maximizing, for
all θ ,

[E( ∂
∂θ

Gn(t))]2

E(G2
n(t))

,(6)

and the asymptotic optimality criterion (OA-optimality) of maximizing, a.s., for
all θ and all n ≥ 1,

[∑n
j=1 wjE( ∂

∂θ
hj (t)|Fj−1)]2∑n

j=1 E((wjhj (t))2|Fj−1)
.(7)

The estimating function G∗
n(t) is a quasi-score estimating function, and an estima-

tor of θ obtained from G∗
n(t) = 0 is a quasi-likelihood estimator. A comprehensive

explanation of quasi-likelihood concepts is available in Godambe and Heyde [15]
and Heyde [19]. The quantity in (7), denoted by IGn(t), is the martingale informa-
tion in Gn(t). Its maximum value, at Gn(t) = G∗

n(t), is given by

IG∗
n(t) =

n∑
j=1

E((w∗
j hj (t))

2|Fj−1).

IG∗
n(t) occurs as a scale variable in the asymptotic distribution of the quasi-

likelihood estimator of θ . For the score function Sn, ISn is the conditional Fisher
information

∑n
j=1 E(s2

j |Fj−1). Note that for G∗
n(t), the quantity (6) is equal

to E(IG∗
n(t)). Explicit forms of G∗

n(t) and IG∗
n(t) in terms of the kernel func-

tion may be obtained in view of E( ∂
∂θ

hj (t)|Fj−1) = − ∂
∂θ

E(gt (Yj )|Fj−1) and
E(h2

j (t)|Fj−1) = Var(gt (Yj )|Fj−1).
The choice of hj (t) as the martingale difference generates the family of classes

M = {Mt , t ∈ T } with a corresponding family G∗
n = {G∗

n(t), t ∈ T } of quasi-score
functions and a family {θ∗

t , t ∈ T } of quasi-score estimators. We define a measure
of conditional efficiency, effc(G∗

n(t), Sn), for the quasi-score G∗
n(t) ∈ Mt relative

to the score function Sn as the ratio IG∗
n(t)/ISn . Also, we define the conditional

efficiency, effc(G∗
n(t1),G

∗
n(t2)), of G∗

n(t1) ∈ Mt1 relative to G∗
n(t2) ∈ Mt2 as the

ratio IG∗
n(t1)/IG∗

n(t2). The efficiency of a quasi-score function G∗
n may be defined

alternatively in terms of the information quantity associated with OF -optimality;
see McLeish [26] and Merkouris [28]. However, because the quasi-score function
G∗

n and its information IG∗
n

are expressed in terms of conditional functionals only,
it is easier to compute IG∗

n
than its unconditional counterpart E(IG∗

n
), which may

not even exist (e.g., in models involving stable distributions). A justification for a
nonasymptotic use of IG∗

n
in measuring efficiency is provided in the next section.

We can now choose the most efficient quasi-score function in G∗
n by maximizing

IG∗
n(t) with respect to t ∈ T . Thus, we will have

IG∗
n(t) ≤ IG∗

n(t∗) a.s., for some t∗ ∈ T ,
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and hence,

effc(G
∗
n(t), Sn) ≤ effc(G

∗
n(t

∗), Sn).

In general, the resulting estimator θ∗
t∗ will be adaptive, in the sense that the value

of t∗ will be determined by the sample. In the usual case where IG∗
n(t) depends on

the parameter θ , we may replace θ in IG∗
n(t) by an initial estimate and then proceed

with the maximization; see Section 4.
The information contained in the sample {Yj ,1 ≤ j ≤ n}, and carried by∑n
j=1 gt (Yj ) for a specified kernel, is spread throughout the range of values

of t . The above procedure of choosing the most efficient member of G∗
n aims to

minimize the loss of information resulting from choosing any particular value
for t . We may well then use more points from the set T and extract the max-
imum information possible by judiciously choosing their values. This leads to
the consideration of combining (in the sense of Heyde [18]) an arbitrary num-
ber of distinct transform martingale estimating functions. A distinctive advantage
of the transform method is the ready capacity to form combinations of the form∑n

j=1
∑k

l=1 wjlhj (tl) = ∑n
j=1 wj hj (t) [in obvious notation for the vectors wj and

hj (t)] by using an arbitrary number of points t1, . . . , tk ∈ T , and thereby produc-
ing more efficient transform quasi-score functions. A procedure for constructing
transform-based composite martingale estimating functions that are statistically
and computationally efficient is described in the next section.

Transform martingale estimating functions for a p-vector parameter θ are
p-dimensional and, for a k-vector hj (t), have the general composite form Gn(t) =∑n

j=1 wj hj (t), in which the wj ’s are p × k weighting matrices depending on
Y1, . . . , Yj−1 and θ . Suppressing t at the moment, the optimal Gn is G∗

n =∑n
j=1 w∗

j hj , where w∗
j = (E(ḣj |Fj−1))

′(E(hj h′
j |Fj−1))

−1, ḣj = {E( ∂
∂θi

hjl)}
and prime denotes transpose. G∗

n maximizes, in the partial order of nonnega-
tive definite matrices, the information matrix IGn

= Ḡ′
n〈G〉−1

n Ḡn, where 〈G〉n =∑n
j=1 E[(wj hj )(wj hj )

′|Fj−1] and Ḡn = ∑n
j=1 wjE(ḣj |Fj−1). Both 〈G〉n and

Ḡn are assumed to be, a.s., nonsingular for each n ≥ 1. For G∗
n, it holds that

IG∗
n
= 〈G∗〉n = ∑n

j=1 E[(w∗
j hj )(w∗

j hj )
′|Fj−1]. In analogy with a definition of ef-

ficiency, dating back to McLeish [26], which uses as measure of the size of the
OF information matrix its determinant, we may define the conditional efficiency,
effc(G∗

n,Sn), of G∗
n as the ratio |IG∗

n
|/|ISn

|; elaboration on measures of efficiency
based on the martingale information matrix can be found in Merkouris [28].

The procedure extends readily to multivariate observations. For r-dimensional
random variables Yj = (Yj1, . . . , Yjr), 1 ≤ j ≤ n, the kernels are multivariate,
with an r-dimensional index set, and are constructed as products of univariate
kernels, that is,

gt(Yj ) =
r∏

i=1

gti (Yji), t = (t1, . . . , tr ) ∈ T r .(8)
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2.3. A link with a Fourier method for i.i.d. variables. An interesting link of
the proposed method of estimation with an existing transform-based method for
i.i.d. variables is established as follows. Using the more suggestive notation sj =
s(yj ;Fj−1), the score function Sn = ∑n

j=1 sj can be expressed as

n∑
j=1

s(yj ;Fj−1) =
n∑

j=1

∫
ωj(t) exp(ityj ) dt,(9)

where

ωj(t) = 1

2π

∫
s(yj ;Fj−1) exp(−ityj ) dyj , 1 ≤ j ≤ n,

is the inverse Fourier transform of s(yj ;Fj−1). When the form of ωj (t) is no
more tractable than that of s(Yj ;Fj−1), the integral in (9) may be approximated
arbitrarily closely by a step function, say,

∑k
l=1 wj(tl) exp(itlYj ), the coefficients

wjl = wj(tl) being functions of Y1, . . . , Yj−1 and θ as well as t . Then the score
function can be written as

n∑
j=1

∫
s(y;Fj−1) dF̂j (y)

(10)

=
n∑

j=1

∫ k∑
l=1

wjl exp(itly) d[F̂j (y) − Fj (y|Fj−1)],

noticing that the term involving Fj (y|Fj−1) is identically 0. In view of the trans-
forms (1) and (2), the right-hand side of (10) can be written in the form

n∑
j=1

k∑
l=1

wjl[exp(itlYj ) − E(exp(itlYj )|Fj−1)].(11)

In the case of i.i.d. random variables, this approach leads to the generalized
method of moments of Feuerverger and McDunnough [12, 13] based on the ker-
nel gt (Yj ) = exp(itYj ) and appropriate weights wjl . A linear approximation of
the score function for general classes of kernels was considered in the i.i.d. case
by Feuerverger and McDunnough [14], and more extensively by Brant [4]. In the
stochastic process context this leads to the generalization of (11),

n∑
j=1

k∑
l=1

wjl[gtl (Yj ) − E(gtl (Yj )|Fj−1)]
(12)

=
n∑

j=1

k∑
l=1

wjlhj (tl) =
k∑

l=1

n∑
j=1

wjlhj (tl),

which can be viewed as a combination of k estimating functions of the form put
forward earlier in this section. Thus, Fourier transform methods of estimation and
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more general transform-based linear approximations of the score function can be
incorporated into the general quasi-likelihood theory.

3. Combinations of transform martingale estimating functions. In this
section we develop a method of optimally combining transform-based martingales
into quasi-score functions of nondecreasing conditional efficiency (as defined in
Section 2.2). The construction of such optimal composite estimating functions,
which for the main transforms can attain arbitrarily high efficiency, is founded on
an alternative formulation of the optimality of a martingale estimating function
based on the concept of orthogonal projection.

3.1. Optimality and orthogonal projection. Consider first the space L2 =
L2(�,F ,Pθ ) of (equivalence classes of) random variables on (�,F ,Pθ ) which
are square integrable (i.e., with finite second moment). Endowed with inner prod-
uct (X,Y ) = E(XY) and norm ‖X‖ = (X,X)1/2, the space L2 is a Hilbert space.
Let A be a closed subspace of L2. For X ∈ L2, let E∗(X|A) denote the unique
element in A such that

‖X − E∗(X|A)‖2 = inf
Z∈A

‖X − Z‖2 = inf
Z∈A

E[(X − Z)2],
that is, E∗(X|A) is the orthogonal projection of X on A.

Next consider the class M of general martingale estimating functions of the
form Gn = ∑n

j=1 wj hj , generated by a basic martingale {Hn = ∑n
j=1 hj , Fn},

with k-dimensional martingale differences hj = (hj1, . . . , hjk)
′ and with k-vector

coefficients wj = (wj1, . . . ,wjk) that are Fj−1-measurable functions depending
on a scalar parameter θ . The class M is a linear subspace of functions spanned by
the hj ’s. Henceforth, we will refer to the class M as a linear space, or simply a
space.

A projection representation of the optimal martingale estimating function in the
space M that appeared first in Merkouris [27] is formalized here in the following
lemma. For a Hilbert space approach to general estimating functions based on the
notion of E-sufficiency, see Small and McLeish [34].

LEMMA 1. The martingale quasi-score function G∗
n = ∑n

j=1 w∗
j hj , with

w∗
j = (E(ḣj |Fj−1))

′(E(hj h′
j |Fj−1))

−1, is the orthogonal projection of the score
function Sn onto the space M.

PROOF. Let Mj denote the subspace of functions of the form gj = wj hj ,
1 ≤ j ≤ n. Since the functions hj are orthogonal, that is, E(hih′

j ) = 0 for i �= j ,
the space M is the direct sum of the subspaces Mj , that is,

M = M1 ⊕ · · · ⊕ Mn.(13)

Now consider the Hilbert spaces L2(�,Fj ,P
j
θ ), 1 ≤ j ≤ n, where P

j
θ is the

probability measure restricted to Fj . Furthermore, consider the subspaces Bj ⊂
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L2(�,Fj ,P
j
θ ) of all measurable square integrable functions of Y1, . . . ,Yj with

conditional mean zero and differentiable with respect to θ . Note here that the j th
term of the score function, sj , belongs to Bj and the assumptions for Mj imply
that Mj ⊂ Bj .

Observe that since E(ḣj |Fj−1) = E(sj h′
j |Fj−1) a.s., under a mild regularity

condition w∗
j is the coefficient of hj in the orthogonal projection g∗

j = w∗
j hj of

sj ∈ Bj onto the subspace Mj ⊂ Bj . Specifically, denoting by ‖ · ‖Fj−1 the norm

induced by P
j
θ conditional on Fj−1, the element g∗

j ∈ Mj is such that

‖sj − g∗
j ‖2

Fj−1
= inf

gj∈Mj

‖sj − gj‖2
Fj−1

a.s.,(14)

for all θ ∈ �. The Fj−1-measurable w∗
j arises then as the solution of the system of

k equations that express the orthogonality condition E[(sj − wj hj )h′
j |Fj−1] = 0.

By orthogonality, we also obtain ‖sj‖2
Fj−1

= ‖g∗
j ‖2

Fj−1
+ ‖sj − g∗

j ‖2
Fj−1

and, by
passage to the sum, the decomposition of the conditional Fisher information
ISn = ∑

j ‖sj‖2
Fj−1

into the (observed) information of the quasi-score function

IG∗
n
= ∑

j ‖g∗
j ‖2

Fj−1
= ∑n

j=1 E[(w∗
j hj )(w∗

j hj )
′|Fj−1] and the minimized sum of

residuals
∑

j ‖sj − g∗
j ‖2

Fj−1
.

Now, since sj and gj are elements of L2(�,Fj ,P
j
θ ), we can take the expecta-

tion of ‖sj − gj‖2
Fj−1

to obtain

‖sj − g∗
j ‖2 = inf

gj∈Mj

‖sj − gj‖2

from (14), and so we can formally write g∗
j = E∗(sj |Mj ). Moreover, using the

linearity property of the projection operator, the decomposition (13) and the fact
that the martingale differences si and hj , i �= j , are mutually orthogonal, we have

E∗(Sn|M) =
n∑

j=1

E∗(sj |M) =
n∑

j=1

E∗(sj |Mj ) =
n∑

j=1

g∗
j = G∗

n.

Therefore, the quasi-score function G∗
n is the unique orthogonal projection of the

score function Sn onto M. �

A few remarks are in order.

REMARK 1. As expectation conditional on Fj−1, the inner product that
induces the norm ‖ · ‖Fj−1 used in (14) is an element of the space of all
Fj−1-measurable functions, say, MFj−1 . Such an inner product, with the associ-
ated space of “scalars” being MFj−1 , is well defined, its defining properties hold-
ing a.s. For a comparable inner product used in a similar context, see Murphy and
Li [29]. It is important to note here that if the g∗

j s are only conditionally square
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integrable (see Example 1 in Section 6), then the result of the lemma holds, but
restricted to term-wise projection of the score function onto the Mj ’s using the
norm ‖ · ‖Fj−1 . In this case the OF information quantity E(IG∗

n
) does not exist.

REMARK 2. For a p-vector parameter θ , each component sji of sj , i =
1, . . . , p, is approximated by its projection g∗

ji = w∗
jihj onto the same space

Mj . More compactly, we write g∗
j = w∗

j hj , where the p × k matrix w∗
j =

(w∗
j1, . . . ,w∗

jp) is given by w∗
j = (E(ḣj |Fj−1))

′(E(hj h′
j |Fj−1))

−1. Both g∗
j and

sj = (sj1, . . . , sjp)′ are elements of the set L
p
2 of random p-vectors with all com-

ponents in L2(�,Fj ,P
j
θ ), which is a Hilbert space when the inner product is de-

fined to be (X,Y) = trE(XY′) for all X,Y ∈ L
p
2 . In this Hilbert space, the vector

g∗
j can be characterized as the projection of sj onto M

p
j , the p-fold Cartesian prod-

uct of Mj with itself, and G∗
n as the projection of Sn onto Mp = M

p
1 ⊕ · · · ⊕ M

p
n .

REMARK 3. Enlarging the space of martingale estimating functions increases
the information of the corresponding martingale quasi-score function. For an
increasing sequence of spaces {Mk} of martingale estimating functions with
corresponding sequence of quasi-score functions {G∗

n,k}, we have G∗
n,k+1 =

E∗(Sn|Mk+1) and, by a well-known projection property,

E∗(G∗
n,k+1|Mk) = E∗(

E∗(Sn|Mk+1)|Mk

) = E∗(Sn|Mk) = G∗
n,k,

that is, G∗
n,k is the orthogonal projection of G∗

n,k+1 onto Mk , and {G∗
n,k,Mk} is a

“projection martingale.” It follows easily that ‖Sn − G∗
n,k+1‖2 ≤ ‖Sn − G∗

n,k‖2. In
view of (14), this also entails IG∗

n,k
≤ IG∗

n,k+1
a.s.

REMARK 4. Combining martingale estimating functions essentially increases
the dimensionality of hj , for each j , and hence, of the space Mj spanned by its
components. Thus, according to the previous remark, a closer approximation of the
score function can be achieved. In the furthermost extension of the combination
procedure, aiming for full efficiency, we consider the closure M̄j of the infinite-
dimensional space Mj spanned by a countable set {hj1, hj2, . . .} of martingale
differences. The limits associated with M̄j are in the norm ‖ · ‖Fj−1 . If the set

{hj1, hj2, . . .} is complete in Bj ⊂ L2(�,Fj ,P
j
θ ), that is, if M̄j = Bj , for all

1 ≤ j ≤ n, then

g∗
j = E∗(sj |M̄j ) = E∗(sj |Bj) = sj ,

and hence G∗
n = Sn. This possibility is explored next using transform martingale

estimating functions.
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3.2. Optimal combinations of transform martingales. We assume, for clarity,
that θ is scalar and recall that the most efficient quasi-score function G∗

n(t
∗) in the

family G∗
n = {G∗

n(t), t ∈ T } of quasi-score functions corresponding to the family
of distinct spaces M = {Mt , t ∈ T } is obtained by maximizing IG∗

n(t) with respect
to t ∈ T . The construction of composite martingale estimating functions with the
use of more points t ∈ T involves increasing the dimension of the basic transform
martingale and, hence, the dimension of the associated space of transform martin-
gale estimating functions. The proposed procedure generates in a stepwise manner
an increasing sequence of spaces of transform martingale estimating functions by
retaining the optimal points t ∈ T determined in the preceding steps. This facili-
tates the comparison of composite martingale quasi-scores from different spaces
and ensures increasing efficiency with increasing number of points t ∈ T .

Proceeding formally, we write t∗l , 1 ≤ l ≤ k − 1, k ≥ 2, for the optimal points
in T determined in the first k−1 steps. At the kth step of the approximation, with a
new point tk �= t∗l , we will have the k ×1 vector martingale {Hn(t

∗
1 , . . . , t∗k−1, tk) =

(
∑n

j=1 hj (t
∗
1 ), . . . ,

∑n
j=1 hj (t

∗
k−1),

∑n
j=1 hj (tk))

′,Fn} with associated space
Mt∗1 ,...,t∗k−1,tk

of composite martingale estimating functions of the form

Gn(t
∗
1 , . . . , t∗k−1, tk) =

n∑
j=1

wj hj =
n∑

j=1

(
k−1∑
l=1

wjlhj (t
∗
l ) + wjkhj (tk)

)
,

with t∗l fixed. Then the quasi-score function within Mt∗1 ,...,t∗k−1,tk
is given by

G∗
n(t

∗
1 , . . . , t∗k−1, tk) =

n∑
j=1

w∗
j hj ,

with w∗
j = (E(ḣj |Fj−1))

′(E(hj h′
j |Fj−1))

−1, and the information in G∗
n(t

∗
1 , . . . ,

t∗k−1, tk) is

IG∗
n(t∗1 ,...,t∗k−1,tk)

=
n∑

j=1

(E(ḣj |Fj−1))
′(E(hj h′

j |Fj−1))
−1(E(ḣj |Fj−1)).

Clearly, Mt∗1 ,...,t∗k−1
⊆ Mt∗1 ,...,t∗k−1,tk

for any tk ∈ T , and since G∗
n(t

∗
1 , . . . , t∗k−1, tk) is

the projection of Sn onto Mt∗1 ,...,t∗k−1,tk
, we have IG∗

n(t∗1 ,...,t∗k−1)
≤ IG∗

n(t∗1 ,...,t∗k−1,tk)
a.s.

for any tk ∈ T (by Remark 3, Section 3.1). From the family {G∗
n(t

∗
1 , . . . , t∗k−1, tk),

tk ∈ T } we can now choose the most efficient quasi-score function by maximizing
IG∗

n(t∗1 ,...,t∗k−1,tk)
with respect to tk ∈ T . Thus, for some t∗k ∈ T , we will have

G∗
n(t

∗
1 , . . . , t∗k ) = E∗(Sn|Mt∗1 ,...,t∗k ) =

n∑
j=1

k∑
l=1

w∗
j (tl)hj (t

∗
l ),(15)

satisfying

IG∗
n(t∗1 ,...,t∗k−1)

≤ IG∗
n(t∗1 ,...,t∗k−1,tk)

≤ IG∗
n(t∗1 ,...,t∗k−1,t

∗
k ) a.s.,(16)
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and hence

effc(G
∗
n(t

∗
1 , . . . , t∗k−1), Sn) ≤ effc(G

∗
n(t

∗
1 , . . . , t∗k ), Sn) a.s.

Moreover,

effc(G
∗
n(t

∗
1 , . . . , t∗k ), Sn) ≤ effc(G

∗
n(t

∗
1 , . . . , t∗k ),G∗

n(t
∗
1 , . . . , t∗k+1)) a.s.(17)

It is worth noting that the inequality (16) provides a nondecreasing sequence of
lower bounds for the score information ISn , while the inequality (17) places an
upper bound to the unknown efficiency of G∗

n(t
∗
1 , . . . , t∗k ). The procedure of adding

components to G∗
n(t

∗
1 , . . . , t∗k ) may be terminated when IG∗

n(t∗1 ,...,t∗k−1,t
∗
k ) ceases to

increase substantially with k or when computations become prohibitive.
The composite quasi-score function in (15) provides a finite approximation

to the score function Sn in L2(�,F ,Pθ ). We may consider next an arbitrarily
close approximation of Sn by projection onto infinite-dimensional spaces of trans-
form martingale estimating functions. Thus, for each j , let {hj (t1), hj (t2), . . .} be
a countable set formed by evaluating the martingale difference hj (·) at distinct
points t1, t2, . . . in T . Let M̄j ;t1,t2,... be the closed linear subspace spanned by this

set. M̄j ;t1,t2,... consists of those zero-mean elements of L2(�,Fj ,P
j
θ ) which can

be approximated in the norm ‖ · ‖Fj−1 by finite linear combinations of elements
of {hj (t1), hj (t2), . . .} with Fj−1-measurable coefficients. Note here that a set

complete in L2(�,Fj ,P
j
θ ) is characterized by the property that L2(�,Fj ,P

j
θ )

contains no nonzero function orthogonal to all elements of the set (see Bur-
rill [6], page 216). It follows then that the set {hj (t1), hj (t2), . . .} is complete

a.s. in the subspace Bj ⊂ L2(�,Fj ,P
j
θ ), that is, M̄j ;t1,t2,... = Bj a.s., if the set

{gt1(Yj ), gt2(Yj ), . . .} is complete in L2(�,Fj ,P
j
θ ) in the norm ‖ · ‖. This leads

to the following theorem.

THEOREM 1. Suppose that for a kernel class of functions {gt (Y ), t ∈ T } the
countable set {gt1(Yj ), gt2(Yj ), . . .} is complete in L2(�,Fj ,P

j
θ ) for all j . Then

the score function Sn can be approximated in L2(�,F ,Pθ ) arbitrarily closely by
the transform quasi-score function G∗

n(t1, . . . , tk) with k sufficiently large.

PROOF. Since sj ∈ Bj , the completeness of the set {gt1(Yj ), gt2(Yj ), . . .} in

L2(�,Fj ,P
j
θ ) implies sj ∈ M̄j ;t1,t2,... a.s. Then sj is a limit point in M̄j ;t1,t2,...

and, thus, for each ε > 0 there exists a finite combination gj (t1, t2, . . . , tK) =∑K
l=1 wjlhj (tl), an element of the subspace Mj ;t1,t2,...,tK , for which

‖sj − gj (t1, t2, . . . , tK)‖2
Fj−1

< ε a.s. But by (14),

‖sj − g∗
j (t1, t2, . . . , tK)‖2

Fj−1
≤ ‖sj − gj (t1, t2, . . . , tK)‖2

Fj−1
< ε, a.s.,
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for the projection g∗
j (t1, t2, . . . , tK) = ∑K

l=1 w∗
j lhj (tl) of sj onto Mj ;t1,t2,...,tK .

Now, by Remark 3, Section 3.1,

‖sj − g∗
j (t1, t2, . . . , tK+1)‖2

Fj−1
≤ ‖sj − g∗

j (t1, t2, . . . , tK)‖2
Fj−1

a.s.,

and hence

‖sj − g∗
j (t1, t2, . . . , tk)‖2

Fj−1
< ε a.s., for all k ≥ K.

This implies

‖sj − g∗
j (t1, t2, . . . , tk)‖2

Fj−1
→ 0 a.s., as k → ∞,

and by the decomposition ‖sj‖2
Fj−1

= ‖g∗
j (t1, t2, . . . , tk)‖2

Fj−1
+‖sj −g∗

j (t1, t2, . . . ,

tk)‖2
Fj−1

it also implies

‖g∗
j (t1, t2, . . . , tk)‖2

Fj−1
→ ‖sj‖2

Fj−1
a.s.(18)

By the (unconditional) square integrability of the elements sj and g∗
j (t1, t2, . . . , tk)

of L2(�,Fj ,P
j
θ ), we have

‖sj − g∗
j (t1, t2, . . . , tk)‖2 → 0 as k → ∞,

or, equivalently,

sj = g∗
j (t1, t2, . . .) =

∞∑
l=1

w∗
j lhj (tl).

It follows that

Sn = G∗
n(t1, t2, . . .) =

n∑
j=1

∞∑
l=1

w∗
j lhj (tl),

where G∗
n(t1, t2, . . .) is the quasi-score function within the space M̄t1,t2,... ≡

M̄1;t1,t2,... ⊕ · · · ⊕ M̄n;t1,t2,..., that is, the unique orthogonal projection E∗(Sn|
M̄t1,t2,...). Therefore, the score function Sn can be approximated arbitrarily closely
by the partial sums G∗

n(t1, . . . , tk) = ∑n
j=1

∑k
l=1 w∗

j lhj (tl).
Moreover, by (18),

ISn = lim
k→∞ IG∗

n(t1,t2,...,tk) a.s.,

so that limk→∞ effc(G∗
n(t1, t2, . . . , tk), Sn) = 1 a.s. �

REMARK 5. Completeness ensures full efficiency of the transform quasi-score
function G∗

n(t1, t2, . . .), but is not necessary. It would suffice that Sn ∈ Mt1,...,tk for
some k and t1, . . . , tk in T , or Sn ∈ M̄t1,t2,.... The completeness of kernel sets for
the main transforms is shown in Feuerverger and McDunnough [14].
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REMARK 6. In the case that the probability measures P
j
θ are concen-

trated on a finite set of points, say, {a1, . . . , aN }, the spaces L2(�,Fj ,P
j
θ ) are

N -dimensional, and then any finite set {gt1, . . . , gtN } of linearly independent kernel
functions will be complete. Linear independence of the kernel functions requires
that the vectors (gtl (a1), . . . , gtl (aN))′, 1 ≤ l ≤ N , be independent for some values
of t1, . . . , tN . Any such choice of values is optimal and yields G∗

n(t1, . . . , tN ) ≡ Sn.

REMARK 7. In general, full efficiency may be achieved with a finite number
of points in T for some terms of Sn, that is, sj = ∑k

l=1 w∗
j lhj (tl), if sj ∈ Mj ;t1,...,tk

for some j . In particular, sj = w∗
j hj (t) may hold for some t ∈ T when the con-

ditional density f (Yj |Y1, . . . , Yj−1) belongs to the exponential family. This can
occur, for example, in applications to aggregate Markov chains. In such situa-
tions projecting sj onto the larger space of functions of the form gj (t1, t2) =
wj1hj (t1)+wj2hj (t2) results in sj = w∗

j1hj (t1)+0 ·hj (t2) and Ig∗
j (t1,t2) = Ig∗

j (t1).
It is not difficult to show that this is equivalent to

E(ḣj (t1)|Fj−1)E(hj (t1), hj (t2)|Fj−1) = E(ḣj (t2)|Fj−1)E(h2
j (t1)|Fj−1),

which can be written as

∂

∂θ
E(gt1(Yj )|Fj−1)Cov(gt1(Yj ), gt2(Yj )|Fj−1)

= ∂

∂θ
E(gt2(Yj )|Fj−1)Var(gt1(Yj )|Fj−1).

This condition is necessary for f (Yj |Y1, . . . , Yj−1) to belong to the exponential
family with gt1(Yj ) being the sufficient statistic for θ . If, as in some situations, the
sufficient statistic is gt1(Yj ) = Y

t1
j , t1 = 1, then

sj = w∗
j1hj (t1) = −

∂
∂θ

E(Yj |Fj−1)

Var(Yj |Fj−1)
[Yj − E(Yj |Fj−1)].

The multiparameter case can be treated in a similar manner. It is important to
note that, since the sequence of the constructed spaces is increasing, a matrix
version of the inequality (16) holds in the partial order of nonnegative matrices.
This enables us to choose at the kth step of the procedure the optimal quasi-score
G∗

n(t
∗
1 , . . . , t∗k−1, tk) by maximizing the determinant of the matrix IG∗

n(t∗1 ,...,t∗k−1,tk)

with respect to tk . In the case of multivariate (say, r-dimensional) observations, the
k × 1 vector martingale difference hj = (hj (t1), . . . , hj (tk))′ involves k r-tuples
in T r . Apart from the computational difficulties associated with the choice of ap-
propriate values of t1, . . . , tk for large r , the described methodology carries over
to this case in a straightforward manner.
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4. Kernel classes and computational issues. The statistical and computa-
tional efficiency of the transform method depends on the associated kernel, the
number k of points t1, . . . , tk , and the choice of the values of these points at which
the kernel and its conditional expectation are evaluated.

Conditional transforms conveniently describing stochastic process models are,
commonly, conditional versions of the characteristic function, the moment gen-
erating function, the Laplace transform and the probability generating function.
The sequence of conditional moments can be derived from these transforms. As
Brant [4] notes in the context of i.i.d. variables, the corresponding kernel classes
are closed under multiplication, that is,

gt (Y )gs(Y ) = gv(t,s)(Y ) for all t, s in T ,(19)

with a multiplication rule v :T × T → T defined by (19) for any particular class.
For instance, in the case of the moment generating function kernel gt (Y ) =
exp(tY ), we have gt (Y )gs(Y ) = gt+s(Y ), for all t , s in T . The important prac-
tical consequence of the closure property of the kernel classes is that the trans-
form cj (t) = E(gt (Yj )|Fj−1) yields the joint moment structure cj (v(t, s)) of
the kernel class, for 1 ≤ j ≤ n. Thus, the matrix E(hj h′

j |Fj−1), with hj =
(hj (t1), . . . , hj (tk))

′, can be readily obtained since its entries are of the form

E(hj (ti)hj (tl)|Fj−1) = Cov(gti (Yj ), gtl (Yj )|Fj−1)

= cj (v(ti , tl)) − cj (ti)cj (tl), i �= l,

for any of the aforementioned kernels, except for the kernel gt (Y ) = exp(itY ) of
the characteristic function for which closure is under complex conjugation and
cj (v(ti , tl)) − cj (ti) = cj (ti − tl) − cj (−ti). Therefore, optimal combinations of
transform martingale estimating functions can be readily constructed. The property
of closure of the kernel classes under multiplication is preserved in multivariate
kernels in an obvious way, in view of their defining property (8).

A special feature of the characteristic function with kernel class {gt (Y ) =
exp(itY ), t ∈ R} merits attention. Notwithstanding the notational convenience as-
sociated with using the complex valued kernel, for computational purposes it is
preferable to work with the class of real valued kernel vectors {(cos(tY ), sin(tY )),

t ∈ R}. Thus, we may start with writing the basic martingale difference hj (t) =
gt (Yj ) − E(gt (Yj )|Fj−1) in the complex domain form

hj (t) = cos(tYj ) − E(cos(tYj )|Fj−1) + i[sin(tYj ) − E(sin(tYj )|Fj−1)].
Then, for the real valued vector g(Yj ) = (cos(t1Yj ), . . . , cos(tkYj ), sin(t1Yj ), . . . ,

sin(tkYj ))
′, the martingale difference vector is hj = (Rehj (t1), . . . ,Rehj (tk),

Imhj (t1), . . . , Imhj (tk))
′. As in the i.i.d. case (e.g., Brant [4]), a convenient choice

of kernel vector is g(Yj ) = (cos(τYj ), . . . , cos(kτYj ), sin(τYj ), . . . , sin(kτYj ))
′,

for some τ , which provides an approximation to the score function by a trigono-
metric polynomial.
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For specified kernel and fixed k, the transform method requires the choice of the
values of {tl}. The most convenient approach is to choose the values a priori with a
uniform spacing suitable to the particular problem. This has been tried with other
transform methods in the case of i.i.d. variables and in connection mainly with the
characteristic function; see, for example, Epps and Pulley [9]. The efficiency of the
procedure may vary with different uniform spacings. In the present context, an op-
timal uniform spacing could be sought by maximizing the martingale information
with respect to the distance, say, τ , between the points.

It may be noted parenthetically that the sequence of moments, with kernel class
{gt (Y ) = Y t , t = 0,1,2, . . .}, has the distinct advantage over the other transforms
that there is a natural choice of points {tl} as the first k positive integers. The
first k should normally be chosen since the variability of the sample moments
increases with their order. For g(Yj ) = (Yj , Y

2
j , . . . , Y k

j ), the matrix E(hj h′
j |Fj−1)

involves moments up to order 2k. The transform quasi-score function based on
integer moments is a polynomial and, thus, its efficiency depends on how close the
terms of the score function are to a polynomial. We will be denoting the polynomial
quasi-score function based on the first k moments by G∗

n(1, . . . , k).
In general, for small k an optimal arbitrary spacing may result in sharp improve-

ment in the efficiency. The values of {tl} can be chosen so that they maximize the
martingale information. This can be taken as the “optimal choice” rule with re-
spect to efficiency. However, as k increases, so do the computational complexities
of optimizing a k-dimensional surface and inverting E(hj h′

j |Fj−1). It is more
convenient, following the procedure described in the previous section, to form the
increasing sequence of spaces Mt∗1 ,...,t∗k−1

⊆ Mt∗1 ,...,t∗k−1,tk
, k ≥ 2, holding the first

k − 1 points fixed at the values t∗1 , . . . , t∗k−1, and then to maximize IG∗
n(t∗1 ,...,t∗k−1,tk)

with respect to tk . Maximizing the information with respect to one point at a time
may result in some loss of efficiency, which in many examples becomes negligible
as k grows larger.

The appropriate values of {tl} will generally depend on the unknown parameter.
We propose a two-step approach in which we start with IG∗

n(t) evaluated at some
preliminary estimate of the parameter (e.g., conditional least squares estimate), and
at the kth stage of the approximation we evaluate IG∗

n(t∗1 ,...,t∗k−1,tk)
at the value of the

estimate obtained from G∗
n(t

∗
1 , . . . , t∗k−1) = 0. Then we use the value of the optimal

point t∗k to solve the estimating equation G∗
n(t

∗
1 , . . . , t∗k−1, t

∗
k ) = 0. The solution is

now the updated estimate in IG∗
n(t∗1 ,...,t∗k−1,tk)

, and a new value of the optimal point
t∗k can be determined. The iteration continues until convergence to some value of
the optimal point. This value of the optimal point is used in the estimating equation
G∗

n(t
∗
1 , . . . , t∗k−1, t

∗
k ) = 0 to obtain the transform quasi-likelihood estimate and the

value of the information quantity. This iterative scheme converges more rapidly
as the number of points {tl}, and hence, the efficiency of the estimating function,
increases. In light of this, as more points t are introduced the iteration may be
stopped after the first step to ease the computations.
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5. Comparing transform estimating functions. In this section we com-
pare the polynomial quasi-score function, based on moments, with quasi-score
functions based on other important transforms, namely, the characteristic func-
tion (CF), the moment generating function (MGF) and the probability generating
function (PGF). This comparison is of theoretical and of methodological interest.

5.1. Comparing G∗
n(t1, . . . , tk) with G∗

n(1, . . . , k). A relationship of the CF,
MGF and PGF quasi-score functions with the moment (M) quasi-score function is
established by the following proposition.

PROPOSITION 1. Assume that E(Y 2k
j |Fj−1) exists. Then for both the CF

transform, with the complex valued kernel exp(itY ), and the MGF transform, the
following relationship holds:

lim
max{|tl |}→0

G∗
n(t1, . . . , tk) = G∗

n(1, . . . , k).

For the PGF transform,

lim
max{|tl−1|}→0

G∗
n(t1, . . . , tk) = G∗

n(1, . . . , k).

PROOF. For k = 1, on the assumption that differentiation with respect to t and
expectation operations can be interchanged in

G∗
n(t) = −

n∑
j=1

∂
∂θ

E(gt (Yj )|Fj−1)

Var(gt (Yj )|Fj−1)
[gt (Yj ) − E(gt (Yj )|Fj−1)],

taking the limit and applying l’Hospital’s rule (twice) yields the limit

G∗
n(1) = −

n∑
j=1

∂
∂θ

E(Yj |Fj−1)

Var(Yj |Fj−1)
[Yj − E(Yj |Fj−1)].

Alternatively, a first-order Taylor series expansion of gt (Yj ) gives a representa-
tion of G∗

n(t) in terms of G∗
n(1) as

G∗
n(t) = G∗

n(1) + t

n∑
j=1

Kj + o(t),(20)

where

Kj =
[

∂

∂θ
E(Yj |Fj−1)Var(Yj |Fj−1)[Y 2

j − E(Y 2
j |Fj−1)]

+
[

∂

∂θ
E(Y 2

j |Fj−1)Var(Yj |Fj−1)

− 2
∂

∂θ
E(Yj |Fj−1)Cov(Yj , Y

2
j |Fj−1)

]

× [Yj − E(Yj |Fj−1)]
]/

2[Var(Yj |Fj−1)]2.
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If t is small and the o(t) terms are neglected, then the quasi-score G∗
n(t) appears

as a perturbed version of G∗
n(1). We have also

IG∗
n(t) = IG∗

n(1) + t

n∑
j=1

Lj + o(t),(21)

where

Lj =
∂
∂θ

E(Yj |Fj−1)

Var2(Yj |Fj−1)

[
∂

∂θ
E(Y 2

j |Fj−1)Var(Yj |Fj−1)

− ∂

∂θ
E(Yj |Fj−1)Cov(Yj , Y

2
j |Fj−1)

]
.

For k ≥ 2, the results can be obtained similarly with the help of a symbolic com-
putation package. �

Note that for the CF transform with the real valued kernel (cos(tY ), sin(tY ))

the limiting quasi-score is G∗
n(1, . . . ,2k). If m < k points t tend to zero (or to

one for the PGF transform), the limiting quasi-score function involves a kernel
vector whose corresponding m components are the first m moments (or the first
2m moments for the CF transform).

According to the above relationships, the CF, MGF and PGF transform methods
are essentially equivalent to the M method for values of t1, . . . , tk very close to zero
(or very close to one for the PGF transform). In general, such choice of values is
not optimal and a larger k may be required for the M method to achieve the same
level of efficiency as optimal, or nearly optimal, CF, MGF and PGF methods. This
is because the moments may not carry as much information as the other transforms;
a relevant heuristic argument is given in Kiefer [22]. We consider next a situation
where the M method may be the most efficient.

PROPOSITION 2. For k = 1 and kernels gt (Y ) = exp(itY ) and gt (Y ) =
exp(tY ), the necessary condition that

max
t

IG∗
n(t) = lim

t→0
IG∗

n(t)

(= IG∗
n(1)

)
(22)

is
∂

∂θ
E(Y 2

j |Fj−1)Var(Yj |Fj−1) − ∂

∂θ
E(Yj |Fj−1)Cov(Yj , Y

2
j |Fj−1) = 0,(23)

for all j . An equivalent condition is

∂

∂θ
Var(Yj |Fj−1) − λj1

∂

∂θ
E(Yj |Fj−1)Var1/2(Yj |Fj−1) = 0,(24)

where λj1 = E[(Yj −E(Yj |Fj−1))
3|Fj−1]/Var3/2(Yj |Fj−1) is the index of skew-

ness for the conditional distribution of Yj . An analogous result holds for the kernel
function gt (Y ) = tY when t approaches 1.
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PROOF. We obtain, with the help of a symbolic computation package,

lim
t→0

d

dt
IG∗

n(t) =
n∑

j=1

∂
∂θ

E(Yj |Fj−1)

Var2(Yj |Fj−1)

[
∂

∂θ
E(Y 2

j |Fj−1)Var(Yj |Fj−1)

− ∂

∂θ
E(Yj |Fj−1)Cov(Yj , Y

2
j |Fj−1)

]
.

Note that this limit is the coefficient of t in the expansion of IG∗
n(t) in (21). Now set

limt→0
d
dt

IG∗
n(t) = 0. This is equivalent to (23). Then the result follows on checking

the sign of the second derivative. The equivalence of (23) and (24) is easy to prove.
�

Thus, the condition (23) is necessary for the quasi-score function G∗
n(1), based

on the first moment, to be more informative than the CF, MGF and PGF quasi-
score functions based on a single point t . When Var(Yj |Fj−1) is independent of θ

for all j , as in stationary autoregressive processes, it follows from (24) that a nec-
essary condition for (22) to hold is that λj1 = 0 for all j . This occurs when the con-
ditional distribution of Yj is symmetric around its mean. Although the form of this
distribution is supposed to be unknown, its symmetry can be easily checked—the
characteristic function of Yj —E(Yj |Fj−1) must be real and even (see Rao [31],
page 142).

5.2. Choosing transform quasi-score functions. Estimation using the estimat-
ing function G∗

n(1) is the martingale version of what has been described by Wed-
derburn [36] as quasi-likelihood estimation in the context of independent obser-
vations. Notably, G∗

n(1) is the exact score function for exponential family dis-
tributions with linear sufficient statistic (Remark 7, Section 3.2). Wedderburn’s
quasi-likelihood has been discussed in the context of discrete semimartingales in
Hutton and Nelson [21], Godambe and Heyde [15] and Sørensen [35]. It should
be noted that when σ 2

j = Var(Yj |Fj−1) is independent of θ , G∗
n(1) is the same as

the weighted conditional least squares estimating function obtained by minimizing
the sum of squares

∑n
j=1[Yj − E(Yj |Fj−1)]2/σ 2

j with respect to θ . When σ 2
j is

also constant over all j , G∗
n(1) reduces to the conditional least squares estimating

function of Klimko and Nelson [23].
Although G∗

n(1) will be globally optimal within the class of linear estimating
functions based on the semimartingale representation of a stochastic process in an
exponential family setting, it will typically be suboptimal within a larger class of
estimating functions for nonexponential families. Then superior estimating func-
tions may be readily constructed based on the semimartingale representation (5)
of the transformed process.

First, consider polynomial estimating functions. A quadratic quasi-score func-
tion, essentially equivalent to G∗

n(1,2), has been considered by Godambe and
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Thompson [16] as an extension of the ordinary quasi-score G∗
n(1) incorporating

possible knowledge of the skewness and kurtosis of the underlying distribution.
The formulation in Godambe and Thompson [16] involves a more general con-
ditioning than the martingale structure, and the two components of the quadratic
estimating function are the first two central moments corrected to zero mean and
orthogonalized. A version of G∗

n(1,2) for i.i.d. variables had been considered ear-
lier by Crowder [7].

Recall now from Remark 7 in Section 3.2 that (23) is the condition for the co-
efficient w∗

j2 in the quasi-score function G∗
n(1,2) to be zero. Therefore, G∗

n(1)

is as efficient as G∗
n(1,2) if the condition (23) holds for all j . Otherwise, when

Var(Yj |Fj−1) is independent of the parameter θ , it is not difficult to show that
G∗

n(1,2) reduces to G∗
n(1) if the skewness is zero, and that the quasi-score func-

tion G∗
n(1,2,3) also reduces to G∗

n(1) if both skewness and kurtosis are zero. In
situations different from those mentioned, G∗

n(1) is less efficient than G∗
n(1,2). In

fact, it is less efficient than a simple nonlinear transform quasi-score function [per-
turbed version of G∗

n(1)] that is based on a single optimal point t . Of course, only
nonpolynomial martingale quasi-score functions are applicable if the variables Yj

have no finite (conditional) moments, for example, if Yj has a stable distribution;
see Example 1 in the next section.

A composite transform quasi-score function utilizing more than a single point
t will generally be more efficient. We may also combine different transforms. For
example, we may choose g(Yj ) = (Yj , Y

2
j , . . . , Y

k1
j , exp(t1Yj ), . . . , exp(tk2Yj ))

′,
with optimal points tk1+1, . . . , tk2 , thereby combining the convenience of the M
method with the higher efficiency of the MGF method.

Composite quasi-score functions may be also effective in dealing with situations
in which the estimating functions for a vector parameter in alternative methods
(e.g., conditional least squares) are functionally dependent and, thus, no estimates
can be obtained; see Example 2 in the next section.

6. Examples. The following two brief examples illustrate important features
of the proposed method. A more detailed study of these applications will be re-
ported elsewhere.

EXAMPLE 1. AR(1) process with symmetric stable error. Consider the AR(1)
process

Yj = φYj−1 + εj ,

where {εj } is an i.i.d. sequence of symmetric stable random variables with charac-
teristic function c(t) = exp(−|t |α), 0 < α ≤ 2. Closed form density representation
exists only in the Cauchy (α = 1) and Gaussian (α = 2) cases. We wish to estimate
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φ on the basis of a sample Y1, . . . , Yn. Consider the martingale difference

hj (t) = exp(itYj ) − E(exp(itYj )|Yj−1) = exp(itYj ) − exp(itφYj−1 − |t |α).

Then the transform quasi-score function constructed using the real kernel
(cos(tYj ), sin(tYj )) is G∗

n(t) = ∑n
j=1 w∗

j hj , where hj = (Rehj (t), Imhj (t))
′ and

w∗
j = (E(ḣj |Yj−1))

′(E(hj h′
j |Yj−1))

−1. Noticing that (E(ḣj |Yj−1))
′ =

( ∂
∂φ

Rehj (t),
∂
∂φ

Imhj (t))
′, and using properties of the cosine and sine functions

to derive the entries of (E(hj h′
j |Yj−1))

−1, we can show that

G∗
n(t) = 2t exp(2α|t |α)

exp(|t |α)(exp(2α|t |α) − 1)

n∑
j=1

Yj−1 sin
(
t (φYj−1 − Yj )

)

and

IG∗
n(t) = 2t2 exp(2α|t |α)

exp(2|t |α)(exp(2α|t |α) − 1)

n∑
j=1

Y 2
j−1.(25)

It is important to note that because of the infinite variance of the Yj ’s, the OF

information quantity E(G∗
n

2(t)), which is equal to E(IG∗
n(t)) in the finite variance

case, is not defined in the present case, implying that the OF -optimality criterion
is not applicable. However, IG∗

n(t) < ∞ for all n ≥ 1 and given t ∈ T .
Turning now to the choice of the optimal value of the point t ∈ T , we observe

that this choice is independent of the parameter φ and the observations. We also
observe in (25) that the factor multiplying

∑n
j=1 Y 2

j−1 in IG∗
n(t) is an even function

of t . We consider this factor for t ≥ 0 to obtain its generalized series expansion
21−αt2−α + 21−α(2α−1 − 2)t2 + o(tα+2). It follows that

lim
t→0

IG∗
n(t) =




0, if 0 < α < 2,

1/2
n∑

j=1

Y 2
j−1, if α = 2.

In the case of a normal distribution (α = 2), IG∗
n(t) < 1/2

∑n
j=1 Y 2

j−1 =
limt→0 IG∗

n(t) (= ISn), that is, IG∗
n(t) attains its maximum at the origin [in accor-

dance with (22)]. For α < 2, IG∗
n(t) attains its maximum at a value of t > 0; the

smaller the value of α, the larger the optimal point t∗.
We can assess the efficiency of G∗

n(t
∗) for varying α by comparing the factor

multiplying
∑n

j=1 Y 2
j−1 in IG∗

n(t∗) with the essentially exact Fisher information (per

observation) for the location parameter, say, φ, computed by DuMouchel [8] in the
setting of i.i.d. variables for selected values of α. This is presented in Table 1. The
optimal values for t in each case are also shown.
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TABLE 1
The efficiency of G∗

n(t∗)

α Fisher information (i.i.d.) IG∗
n(t∗)/

∑n
j=1Y 2

j−1 t∗ effc (G∗
n(t∗),Sn)

2.0 0.500 0.500 0.00 1
1.9 0.473 0.469 0.3852 0.991
1.7 0.442 0.428 0.4767 0.968
1.5 0.428 0.391 0.5384 0.913
1.3 0.431 0.358 0.6087 0.831
1.1 0.463 0.332 0.7148 0.717
1.0 0.500 0.324 0.7968 0.648
0.8 0.678 0.330 1.1022 0.487

It can be seen that for the range of values of α reported in Table 1 the efficiency
of G∗

n(t
∗) decreases as α deviates from α = 2. The efficiency of the transform

quasi-score function can be increased by introducing more points t , albeit at the
expense of increased computational complexity.

EXAMPLE 2. A first-order gamma autoregressive model. Consider the first-
order gamma autoregressive model (Sim [33]) given by

Yj = α ∗ Yj−1 + εj ,(26)

where the operator ∗ is defined as α ∗ Y = ∑N(Y )
i=1 Ei , and (i) the εj are i.i.d.

Gamma(α, ν) random variables with α, ν > 0; (ii) the Ei are i.i.d. exponential (α)
random variables; (iii) for each fixed positive value of y, N(y) is a Poisson random
variable with parameter λ = pα, and 0 ≤ p < 1.

Expression (26) is an autoregressive representation for a stationary gamma
process whose joint density function has a certain type of Laplace transform. This
process has been used in the study of stochastic reservoir systems with Markovian
inflows; see Sim [33] and references therein. The conditional Laplace transform of
Yj can be easily derived (Sim [33]) and is given by

E
(
exp(−sYj )|Yj−1 = yj−1

) =
(

α

α + s

)ν

exp
(
−λsyj−1

α + s

)
.(27)

Inversion of (27) gives the conditional density of Yj as

f (yj |yj−1) = α

(
αyj

λyj−1

)(ν−1)/2

exp[−(αyj + λyj−1)]Iν−1[2(λαyjyj−1)
1/2],

where Ir(z) is the modified Bessel function of the first kind and of order r . The
likelihood function being complicated, Sim suggested (but did not apply) the con-
ditional least squares method for the estimation of the three parameters of the
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model. The conditional least squares equations are
n∑

j=1

Yj−1[αYj − λYj−1 − ν] = 0,

n∑
j=1

(λYj−1 + ν)[αYj − λYj−1 − ν] = 0,

n∑
j=1

[αYj − λYj−1 − ν] = 0.

This system of equations has no solution other than the trivial solution λ = α =
ν = 0. The same is true for the quasi-likelihood equations G∗

n(1) = 0, and for the
quasi-likelihood equations G∗

n(s) = 0 based on the Laplace transform (27) and
employing a single point s. All three systems of equations mentioned above have
a solution if one of the parameters is fixed. In particular, if we consider the para-
meter ν fixed, then maximum likelihood estimation is also possible, though very
complicated.

Estimation of all three parameters of the model is possible by using a composite
quasi-score function based on the Laplace transform (27). Conditional moments of
any order may be obtained from (27) in simple form; see Sim [33]. Then the con-
venient composite quasi-score function G∗

n(1,2) can be used. The corresponding
system of quasi-likelihood equations, shown in simulations to have a numerical
solution, is

n∑
j=1

[
5λ3Y 4

j−1 + (−6αYj + 10ν + 4
)
λ2Y 3

j−1

+ (
α2Y 2

j − 6
(
(1 + ν)αYj − ν − ν2))

λY 2
j−1

+ (
(−ν − ν2)αYj + ν2 + ν3)

Yj−1
] = 0,

n∑
j=1

[−3λ4Y 4
j−1 + (2αYj − 10ν − 2)λ3Y 3

j−1

+ (α2Y 2
j + 6ναYj − 6ν − 12ν2)λ2Y 2

j−1

− (6ν − 5αYj )ν(1 + ν)λYj−1 + (ν2 + ν3)αYj − ν3 − ν4] = 0,

n∑
j=1

[
6λ3Y 3

j−1 + (
(25/2)ν + 5 − 8αYj

)
λ2Y 2

j−1

+ (
2α2Y 2

j − 9(1 + ν)αYj + 8ν + 8ν2)
λYj−1

+ (1/2)νY 2
j α2 − 2ν(1 + ν)αYj + (3/2)ν2(1 + ν)

] = 0.
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