
The Annals of Statistics
2007, Vol. 35, No. 5, 2261–2286
DOI: 10.1214/009053607000000226
© Institute of Mathematical Statistics, 2007

ON OPTIMALITY OF BAYESIAN TESTIMATION IN THE
NORMAL MEANS PROBLEM

BY FELIX ABRAMOVICH, VADIM GRINSHTEIN AND MARIANNA PENSKY1

Tel Aviv University, The Open University of Israel and
University of Central Florida

We consider a problem of recovering a high-dimensional vector µ ob-
served in white noise, where the unknown vector µ is assumed to be sparse.
The objective of the paper is to develop a Bayesian formalism which gives
rise to a family of l0-type penalties. The penalties are associated with various
choices of the prior distributions πn(·) on the number of nonzero entries of
µ and, hence, are easy to interpret. The resulting Bayesian estimators lead to
a general thresholding rule which accommodates many of the known thresh-
olding and model selection procedures as particular cases corresponding to
specific choices of πn(·). Furthermore, they achieve optimality in a rather
general setting under very mild conditions on the prior. We also specify the
class of priors πn(·) for which the resulting estimator is adaptively optimal
(in the minimax sense) for a wide range of sparse sequences and consider
several examples of such priors.

1. Introduction. Consider a problem of estimation of a high-dimensional
multivariate Gaussian mean with independent terms and common variance,

yi = µi + σzi, zi
i.i.d.∼ N(0,1), i = 1, . . . , n.(1.1)

The variance σ 2 is assumed to be known and the goal is to estimate the unknown
mean vector µ from a set �n ⊂ R

n. This is a well-studied problem that arises in
various statistical settings, for example, model selection or orthonormal regression.

Some extra assumptions are usually placed on �n. We assume that the vector
µ is sparse, that is, most of its entries are zeroes or “negligible” and only a small
fraction is “significantly large.” The indices of the large entries are, however, not
known in advance. Formally, the sparsity assumption can be quantified in terms
of so-called nearly-black objects (Donoho et al. [12]) or strong and weak lp-balls
(Johnstone [20], Donoho and Johnstone [10, 11]) discussed below. In sparse cases
the natural estimation strategy is thresholding.

It is well known that various thresholding rules can be considered as penalized
likelihood estimators minimizing

‖y − µ‖2
2 + P(µ)(1.2)
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for the corresponding penalties P(µ). The traditional l2 penalty P(µ) = λ2
n‖µ‖2

2
does not lead to a thresholding but to a linear shrinkage estimator µ̂∗

i =
1

1+λ2
n
yi . The l1 penalty produces a “shrink-or-kill” soft thresholding, where

µ̂∗
i = sign(yi)(|yi | − λn/2)+, which coincides with the LASSO estimator of Tib-

shirani [25]. The general lp , p > 0, penalty yields bridge regression (Frank and
Friedman [16]) and results in thresholding when p ≤ 1. Wider classes of penalties
leading to various thresholding rules are discussed in Antoniadis and Fan [6], Fan
and Li [13] and Hunter and Li [19].

All the penalties mentioned above are related to magnitudes of µi . In this paper
we consider the l0, or complexity type penalties, where the penalty is placed on
the number of nonzero µi . The l0 quasi-norm of a vector µ is defined as the num-
ber of its nonzero entries, that is, ‖µ‖0 = #{i :µi �= 0}. In the simplest case, the
complexity penalty P(µ) = λ2

n‖µ‖0 and minimization of (1.2) obviously result in
minimizing

n∑
i=k+1

y2
(i) + λ2

nk(1.3)

over k, where |y|(1) ≥ · · · ≥ |y|(n). Such a procedure implies a “keep-or-kill” hard
thresholding with a (fixed) threshold λn,

µ̂∗
i = yiI {|yi | ≥ λn}, i = 1, . . . , n.

The widely-known universal threshold of Donoho and Johnstone [9] is λU =
σ
√

2 lnn and, as n → ∞, the resulting estimator comes within a constant factor of
asymptotic minimaxity for lr losses simultaneously throughout a range of various
sparsity classes (Donoho and Johnstone [10, 11]).

A complexity penalization of type (1.3) is closely connected to model selec-
tion. For example, the Akaike’s [5] AIC model selection rule takes λn = √

2σ , the
Schwarz [24] BIC criterion corresponds to λn = σ

√
lnn, while the RIC criterion

of Foster and George [14] adjusted for (1.1) implies λn = σ
√

2 lnn.
A natural extension of (1.3) is to consider a variable penalization sequence λi,n,

that is,

‖y − µ‖2 +
‖µ‖0∑
i=0

λ2
i,n.(1.4)

Let k̂ be a minimizer of
n∑

i=k+1

y2
(i) +

k∑
i=0

λ2
i,n(1.5)

over k. The resulting minimizer µ̂∗ of (1.4) is obviously a hard thresholding rule
with a variable threshold λ

k̂,n
: µ̂∗

i = yiI {|yi | ≥ λ
k̂,n

}. If k̂ = 0, all yi are thresh-
olded and µ̂∗ ≡ 0.
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Several variable penalty estimators of the type (1.4) have been proposed in the
literature. The FDR-thresholding rule of Abramovich and Benjamini [2] corre-
sponds to λi,n = σz(1 − (i/n)(q/2)) ∼ σ

√
2 ln((n/i)(2/q)), where z(·) are stan-

dard Gaussian quantiles and q is the tuning parameter of the FDR procedure.
Abramovich et al. [4] showed that, for q ≤ 1/2, the FDR estimator achieves sharp
(with a right constant) asymptotic minimaxity, simultaneously over an entire range
of nearly black sets and lp-balls with respect to lr losses. Foster and Stine [15] sug-
gested λi,n = σ

√
2 ln(n/i) from information theory considerations. The covari-

ance inflation criterion for model selection of Tibshirani and Knight [26] adjusted
for (1.1) corresponds to λi,n = 2σ

√
ln(n/i).

For a general l0-type penalty Pn(‖µ‖0), the corresponding penalized estimator
µ̂∗ is a hard thresholding rule with the data-dependent threshold λ̂ = |y|

(k̂)
, where

k̂ is the minimizer of
n∑

i=k+1

y2
(i) + Pn(k).(1.6)

Obviously, (1.5) can be viewed as a particular case of (1.6).
A series of recent papers has considered the 2k ln(n/k)-type penalties of the

form

Pn(k) = 2σ 2ζk
(
ln(n/k) + ck,n

)
,(1.7)

where ζ > 1 and ck,n is a negligible term relative to ln(n/k) for k � n (sparse
cases) (e.g., Birgé and Massart [8], Johnstone [21] and Abramovich et al. [4]).

A wide class of l0-type penalties satisfying certain technical conditions was con-
sidered in Birgé and Massart [8]. However, most of their results on optimality have
been obtained for a particular 2k ln(n/k)-type penalty, while it remains somewhat
unclear how to construct “meaningful” penalties from their class in general.

The objective of this paper is to develop a framework for l0-penalization which
is general and meaningful at the same time. The Bayesian approach provides a
natural interpretation of the penalized likelihood estimators by relating the penalty
models to the corresponding prior distribution on µ. For the model (1.1), the
penalty term in (1.2) is then proportional to the logarithm of the prior. From a
Bayesian view, minimization of (1.2) corresponds to the maximum a posteriori
(MAP) rule and the resulting penalized estimator (called MAP thereafter) is the
posterior mode. The lp-type penalties for p > 0 correspond to placing priors on
the magnitudes of µi , while the l0-type penalties necessarily involve a prior on the
number of nonzero µi .

In this paper we develop a Bayesian formalism which gives rise to a family of
l0-type penalties in (1.6). This family is associated with various choices of the prior
distributions on the number of nonzero entries of the unknown vector and, hence,
is easy to interpret. Moreover, under mild conditions, the penalties considered in
this paper fall within the class considered in Birgé and Massart [8], which allows
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us to establish optimality of the corresponding Bayesian estimators in a rather
general setting. We then demonstrate that in the case when the vector µ is sparse,
the MAP estimators achieve optimal convergence rates. We also specify the class
of prior distributions for which the resulting estimators are adaptive for a wide
range of sparse sequences and provide examples of such priors.

The paper is organized as follows. In Section 2 we introduce the Bayesian MAP
“testimation” procedure leading to penalized estimators (1.6). In Section 3 we de-
rive upper bounds for their quadratic risk and compare it with that of an ideal
oracle estimator (oracle inequality). Asymptotic optimality of the proposed MAP
“testimators” in various sparse settings is established in Section 4. Several spe-
cific priors πn(k) are considered in Section 5 as examples. In Section 6 we present
a short simulation study to demonstrate the performance of MAP estimators and
compare them with several existing counterparts. Some concluding remarks are
given in Section 7. All the proofs are placed in the Appendix.

2. MAP testimating procedure.

2.1. Thresholding as testimation. Abramovich and Benjamini [2] demon-
strated that thresholding can be viewed as a multiple hypothesis testing proce-
dure, where, given the data y = (y1, . . . , yn)

′ in (1.1), one first simultaneously tests
µi, i = 1, . . . , n, for significance. Those µi’s which are concluded to be significant
are estimated by the corresponding yi , while nonsignificant µi’s are discarded.
Such a testimation procedure obviously mimics a hard thresholding rule.

In particular, the likelihood ratio test rejects the null hypothesis H0i :µi = 0
if and only if |y|i > λn, where controlling the familywise error at level α by the
Bonferroni approach leads to λn = σz(1 − α/(2n)) ∼ σ

√
2 lnn = λU for any rea-

sonable α. In other words, universal thresholding may be viewed as a Bonferroni
multiple testing procedure with familywise error level of approximately 1/

√
lnn,

which slowly approaches zero as n increases. Such a severe error control ex-
plains why universal thresholding is so conservative. A less stringent alternative
to a familywise error control is the false discovery rate (FDR) criterion of Ben-
jamini and Hochberg [7]. The corresponding FDR thresholding was considered in
Abramovich and Benjamini [2, 3] in the context of wavelet series estimation and
comprehensively developed further in Abramovich et al. [4] for a general normal
means problem setting.

In this paper we shall follow a more general testimation approach to threshold-
ing based on the multiple hypothesis testing procedure introduced by Abramovich
and Angelini [1], which efficiently utilizes the Bayesian framework. We shall re-
view this approach in the following section.

2.2. MAP multiple testing procedure. For the model (1.1), consider the multi-
ple hypothesis testing problem, where we wish to simultaneously test H0i :µi = 0
against H1i :µi �= 0, i = 1, . . . , n.
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A configuration of true and false null hypotheses is uniquely defined by the
indicator vector x, where xi = I {µi �= 0}, i = 1, . . . , n. Let k = x1 + · · · + xn =
‖µ‖0 be the number of significant µi (false nulls). Assume some prior distribution
k ∼ πn(k) > 0, k = 0, . . . , n. For a given k there are

(n
k

)
various configurations of

true and false null hypotheses. Assume all of them to be equally likely a priori,
that is, conditionally on k,

P

(
x

∣∣∣∣
n∑

i=1

xi = k

)
=

(
n

k

)−1
.

Naturally, µi |xi = 0 ∼ δ0, where δ0 is a probability atom at zero. To complete the
prior, assume µi |xi = 1 ∼ N(0, τ 2).

For the proposed hierarchical prior, the posterior distribution of configurations
is given by

πn(x, k|y) ∝
(

n

k

)−1
πn(k)I

{
n∑

i=1

xi = k

}
n∏

i=1

(B−1
i )xi ,(2.8)

where the Bayes factor Bi of H0i is

Bi =
√

1 + γ exp
{
− y2

i

2σ 2(1 + 1/γ )

}
(2.9)

and the variances ratio γ = τ 2/σ 2 (Abramovich and Angelini [1]).
Given the posterior distribution πn(x, k|y), we apply a maximum a posteriori

(MAP) rule to choose the most likely configuration of true and false nulls. Gen-
erally, to find the posterior mode of πn(x, k|y), one should look through all 2n

possible configurations. However, for the proposed model, the number of candi-
dates for a mode is, in fact, reduced to n + 1 only. Indeed, let x̂(k) be a maximizer
of (2.8) for a fixed k that indicates the most plausible configuration with k false
null hypotheses. From (2.8) it follows immediately that x̂i(k) = 1 for the k tests
with the smallest Bayes factors Bi and is zero otherwise. Due to the monotonic-
ity of Bi in |y|i [see (2.9)], this is equivalent to x̂i (k) = 1 corresponding to the k

largest |y|i and zero for the others. The Bayesian MAP multiple testing procedure
then leads to finding k̂ that maximizes

lnπn(x̂(k), k|y) =
k∑

i=1

y2
(i) + 2σ 2(1 + 1/γ ) ln

{(
n

k

)−1
πn(k)(1 + γ )

−k
2

}
+ const.

or, equivalently, minimizes

n∑
i=k+1

y2
(i) + 2σ 2(1 + 1/γ ) ln

{(
n

k

)
π−1

n (k)(1 + γ )k/2
}
.
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The k̂ null hypotheses corresponding to |y|(1), . . . , |y|
(k̂)

are rejected. The resulting

Bayesian testimation yields hard thresholding with a threshold λ̂MAP = |y|
(k̂)

:

µ̂∗
i =

{
yi, |yi | ≥ λ̂MAP,
0, otherwise,

and is, in fact, the posterior mode of the joint distribution (µ, x, k|y).
From a frequentist view, the above MAP estimator µ̂∗ is a penalized likelihood

estimator (1.6) with the complexity penalty

Pn(k) = 2σ 2(1 + 1/γ ) ln
{(

n

k

)
π−1

n (k)(1 + γ )k/2
}
.(2.10)

Rewriting
(n
k

) = ∏k
i=1(n − i + 1)/i and πn(k) = πn(0)

∏k
i=1 πn(i)/πn(i − 1),

(2.10) yields

Pn(k) = 2σ 2(1 + 1/γ )

(
lnπ−1

n (0) +
k∑

i=1

ln
{
n − i + 1

i

πn(i − 1)

πn(i)

√
1 + γ

})

(2.11)

=
k∑

i=0

λi,n,

where λ0,n = 2σ 2(1 + 1/γ ) lnπ−1
n (0), λi,n = 2σ 2(1 + 1/γ ) ln(n−i+1

i
πn(i−1)

πn(i)
×√

1 + γ ), i = 1, . . . , n.
In such a form the penalty (2.11) is similar to (1.5) with the notation λi,n instead

of λ2
i,n since some of them might be negative in a general case.

A specific form of the resulting Bayesian hard thresholding rule depends on
the choice of a prior πn(k). In particular, the binomial prior B(n, ξn) yields a
fixed threshold 2σ 2(1 + 1/γ ) ln(

1−ξn

ξn

√
1 + γ ) ∼ 2σ 2 ln(

1−ξn

ξn

√
γ ) for sufficiently

large γ . The AIC criterion corresponds to ξn ∼ √
γ /(e + √

γ ), while ξn = 1/n

leads to the universal thresholding of Donoho and Johnstone [9]. Abramovich and
Angelini [1] showed that the “reflected” truncated Poisson distribution πn(k) ∝
(n − λn)

n−k/(n − k)!, with λn = o(n) satisfying λn/
√

n lnn → ∞, approximates
the FDR thresholding procedures of Benjamini and Hochberg [7] and Sarkar [23]
with the FDR parameter qn ∼ (

√
πγ ln(

√
γ n/λn))

−1.

REMARK 1. There is an intriguing parallel between the penalty Pn(k) in
(2.10) and 2k ln(n/k)-type penalties (1.7) introduced above. For k � n, ln

(n
k

) ∼
k ln(n/k) and the penalty (2.10) is of 2k ln(n/k)-type, where ζ = (1 + 1/γ ) and
ck,n = (1/k) lnπ−1

n (k) + (1/2) ln(1 + γ ) is defined by the choice of the prior
πn(k). The 2k ln(n/k)-type penalty can be viewed, therefore, as a particular case of
the more general penalty (2.10) for πn(k) satisfying ck,n = O(ln(n/k)), or, equiv-
alently lnπn(k) = O(k ln(k/n)) for k � n. Throughout the paper we discuss the
relations between Pn(k) and 2k ln(n/k)-type penalties in more detail.
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In what follows, we study optimality of the proposed thresholding MAP esti-
mators.

3. Oracle inequality. In this section we derive an upper bound for the
quadratic risk ρ(µ̂∗,µ) = E‖µ̂∗ − µ‖2 of the MAP thresholding estimator and
compare it with the ideal risk of an oracle estimator.

ASSUMPTION (A). Assume that

πn(k) ≤
(

n

k

)
e−c(γ )k, k = 0, . . . , n,(3.12)

where c(γ ) = 8(γ + 3/4)2.

THEOREM 1 (Upper bound). Under Assumption (A),

ρ(µ̂∗,µ) ≤ c0(γ ) inf
0≤k≤n

{
n∑

i=k+1

µ2
(i)

+ 2σ 2(1 + 1/γ ) ln
((

n

k

)
πn(k)−1(1 + γ )k/2

)}
(3.13)

+ c1(γ )σ 2

for some c0(γ ) and c1(γ ) depending only on γ .

The obvious inequality
(n
k

) ≥ (n/k)k implies that, for any πn(k), (3.12) holds for
all k ≤ ne−c(γ ). Applying the arguments very similar to those in the proof of The-
orem 1, one gets then a somewhat weaker general upper bound for the quadratic
risk of µ̂∗ without the requirement of Assumption (A):

COROLLARY 1. For any prior πn(·),

ρ(µ̂∗,µ) ≤ c0(γ ) inf
0≤k≤ne−c(γ )

{
n∑

i=k+1

µ2
(i)

+ 2σ 2(1 + 1/γ ) ln
((

n

k

)
πn(k)−1(1 + γ )k/2

)}

+ c1(γ )σ 2,

where c(γ ) = 8(γ + 3/4)2, and c0(γ ) and c1(γ ) depend only on γ .

Note that the upper bounds in Theorem 1 and Corollary 1 are nonasymptotic
and hold for any µ ∈ R

n.
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In order to assess the quality of the upper bound in (3.13), we compare the
quadratic risk of the MAP estimator with that of the ideal estimator µ̂oracle which
one could obtain if one had available an oracle which reveals the true vector µ.
This ideal risk is known to be

ρ(µ̂oracle,µ) =
n∑

i=1

min(µ2
i , σ

2)(3.14)

(Donoho and Johnstone [9]). The ideal estimator µ̂oracle is obviously unavailable
but can be used as a benchmark for the risk of other estimators. Note that the risk
of µ̂oracle is zero when µ ≡ 0 and, evidently, no estimator can achieve this risk
bound in this case. An additional (usually negligible) term σ 2, which is, in fact, an
error of unbiased estimation of one extra parameter, is usually added to the ideal
risk in (3.14) for a proper comparison (see, e.g., Donoho and Johnstone [9]).

Define

L0,n = 2 lnπ−1
n (0),

(3.15)

Lk,n = (1/k) ln
((

n

k

)
π−1

n (k)

)
, k = 1, . . . , n,

and let L∗
n = max0≤k≤n Lk,n. The following theorem states that the MAP thresh-

olding estimator performs within a factor of c2(γ )(2L∗
n + ln(1 + γ )) with respect

to the oracle.

THEOREM 2 (Oracle inequality). Consider the MAP thresholding estimator
µ̂∗ and the corresponding penalty Pn(k) defined in (2.10). Under Assumption (A),

ρ(µ̂∗,µ) ≤ c2(γ )
(
2L∗

n + ln(1 + γ )
)(

ρ(µ̂oracle,µ) + σ 2)
for some c2(γ ) depending only on γ .

To understand how tight the factor c2(γ )(2L∗
n + ln(1 + γ )) is, recall that when

n is large, there is a sharp upper bound for the quadratic risk,

inf
µ̃

sup
µ

ρ(µ̃,µ)

ρ(µ̂oracle,µ) + σ 2 = 2 logn
(
1 + o(1)

)
as n → ∞(3.16)

(Donoho and Johnstone [9]).
Therefore, no available estimator has a risk smaller than within the factor 2 logn

from an oracle. Obvious calculus shows that if πn(k) ≥ n−ck, k = 1, . . . , n, and
πn(0) ≥ n−c for some constant c > 0, then L∗

n = O(logn) and the MAP estimator
achieves the minimal possible risk among all available estimators (3.16) up to a
constant factor depending on γ :
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COROLLARY 2. Let πn(k) satisfy Assumption (A) and, in addition,
πn(k) ≥ n−ck, k = 1, . . . , n, and πn(0) ≥ n−c for some constant c > 0. The re-
sulting MAP estimator µ̂∗ satisfies

sup
µ

ρ(µ̂∗,µ)

ρ(µ̂oracle,µ) + σ 2 = c3(γ )2 logn
(
1 + o(1)

)
as n → ∞(3.17)

for some c3(γ ) ≥ 1.

In particular, Corollary 2 holds for lnπn(k) = O(k ln(k/n)) corresponding to
the 2k ln(n/k)-type penalties (see Remark 1 in Section 2.2). However, the condi-
tion πn(k) ≥ n−ck required in the corollary is much weaker and covers a far wider
class of possible priors.

4. Minimaxity and adaptivity in sparse settings. The results of Section 3
hold for any µ ∈ R

n. In this section we show that they can be improved if an extra
sparsity constraint on µ is added. We start by introducing several possible ways
to quantify sparsity and then derive conditions on the prior πn(·) which imply
asymptotic minimaxity of the resulting MAP estimator µ̂∗ over various sparse
settings.

4.1. Sparsity. The most intuitive measure of sparsity is the number of nonzero
components of µ, or its l0 quasi-norm: ‖µ‖0 = #{i :µi �= 0, i = 1, . . . , n}. Define
a l0-ball l0[η] of standardized radius η as a set of µ with at most a proportion η of
nonzero entries, that is,

l0[η] = {µ ∈ R
n :‖µ‖0 ≤ ηn}.

In a wider sense sparsity can be defined by the proportion of large entries. For-
mally, define a weak lp-ball mp[η] with standardized radius η as

mp[η] = {
µ ∈ R

n : |µ|(i) ≤ η(n/i)1/p, i = 1, . . . , n
}
.

Sparsity can be also measured in terms of the lp-norm of a vector. A strong
lp-ball lp[η] with standardized radius η is defined as

lp[η] =
{
µ ∈ R

n :
1

n

n∑
i=1

|µi |p ≤ ηp

}
.

There are important relationships between these balls. The lp-norm approaches l0
as p decreases. The weak lp-ball contains the corresponding strong lp-ball, but
only just:

lp[η] ⊂ mp[η] �⊂ lp′ [η], p′ > p.

The smaller p is, the sparser is µ. Sparse settings correspond to p < 2 (e.g.,
Johnstone [21]).
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4.2. Minimaxity in sparse settings. We now exploit Theorem 1 to prove as-
ymptotic minimaxity of the proposed MAP estimator over various sparse balls
defined above. For this purpose, we define minimax quadratic risk over a given set
�n in (1.1) as

R(�n) = inf
µ̃

sup
µ∈�n

E‖µ̃ − µ‖2

and examine various sparse sets �n, namely, l0, strong and weak lp-balls, where
sparsity assumes that the standardized radius η tends to zero as n increases.

The general idea for establishing asymptotic minimaxity is common for all
cases: for each particular setting, we find the “least favorable” sequence µ0 =
µ0(p, η) and the “equilibrium point” k∗

n = k∗
n(p, η) that keeps balance between∑n

i=k∗
n+1 µ2

0i and the penalty term Pn(k
∗
n) on the RHS of (3.13). We show that a

requirement πn(k
∗
n) ≥ (k∗

n/n)cpk∗
n for some cp > 0 on the prior πn(·) at a single

point k∗
n is sufficient for optimality of the MAP estimator µ̂∗. Sections 4.2.1–4.2.3

show that the MAP thresholding estimator achieves asymptotic optimality up to a
constant factor in a variety of sparse settings listed above.

4.2.1. Optimality over l0-balls. Consider an l0-ball l0[η], where η → 0 as
n → ∞. Then, by Donoho et al. [12],

R(l0[η]) ∼ σ 2nη(2 lnη−1),

where the relation “∼” means that the ratio of the two sides tends to one as n

increases.

THEOREM 3. Define k∗
n = nη. Let η → 0 as n → ∞ (sparsity assumption)

but nη �→ 0. If there exists a constant c0 > 0 such that πn(k
∗
n) ≥ (k∗

n/n)c0k
∗
n , then

the MAP estimator µ̂∗ achieves optimality up to a constant factor, that is,

sup
µ∈l0[η]

E‖µ̂∗ − µ‖2 = O(nη(2 lnη−1)).

4.2.2. Optimality over weak lp-balls. Consider a weak lp-ball mp[η], 0 <

p < 2, and let η → 0 as n → ∞. In what follows we distinguish between sparse
cases, where n1/pη ≥ √

2 lnn, and super-sparse cases, where n1/pη <
√

2 lnn.
From the results of Donoho and Johnstone (e.g., Johnstone [20, 21], Donoho and
Johnstone [10, 11]) it is known that

R(mp[η]) ∼




2

2 − p
σ 2nηp(2 lnη−p)1−p/2, n1/pη ≥ √

2 lnn,

2

2 − p
σ 2n2/pη2, n1/pη <

√
2 lnn.

THEOREM 4. Let η → 0 as n → ∞.
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1. Let n1/pη ≥ √
2 lnn (sparse case). Define k∗

n = nηp(lnη−p)−p/2. If there exists
a constant cp > 0 such that πn(k

∗
n) ≥ (k∗

n/n)cpk∗
n , then

sup
µ∈mp[η]

E‖µ̂∗ − µ‖2 = O(nηp(2 lnη−p)1−p/2).

2. Let n1/pη <
√

2 lnn (super-sparse case) but n1/pη �→ 0. If there exists a con-
stant cp > 0 such that πn(0) ≥ exp(−cpη2n2/p), then

sup
µ∈mp[η]

E‖µ̂∗ − µ‖2 = O(n2/pη2).

4.2.3. Optimality over strong lp-balls. The minimax risk over a strong lp-ball,
0 < p < 2, is the same as over the corresponding weak lp-ball mp[η] but without
the constant factor 2/(2 − p) (Johnstone [20], Donoho and Johnstone [11]), that
is,

R(lp[η]) ∼
{

σ 2nηp(2 lnη−p)1−p/2, n1/pη ≥ √
2 lnn,

σ 2n2/pη2, n1/pη <
√

2 lnn.

THEOREM 5. Let η → 0 as n → ∞.

1. Let n1/pη ≥ √
2 lnn (sparse case). Define k∗

n = nηp(lnη−p)−p/2. If there exists
a constant cp > 0 such that πn(k

∗
n) ≥ (k∗

n/n)cpk∗
n , then

sup
µ∈lp[η]

E‖µ̂∗ − µ‖2 = O(nηp(2 lnη−p)1−p/2).

2. Let n1/pη <
√

2 lnn (super-sparse case) but n1/pη �→ 0. If there exists a con-
stant cp > 0 such that πn(0) ≥ exp(−cpη2n2/p), then

sup
µ∈lp[η]

E‖µ̂∗ − µ‖2 = O(n2/pη2).

4.3. Adaptivity. In Sections 4.2.1–4.2.3 for sparse cases we established opti-
mality of the MAP estimator over a given ball if the condition πn(k) ≥ (k/n)ck

holds at the single “equilibrium point” k∗
n depending on parameters p and η of a

ball. From the results of Theorems 3–5 it follows immediately that if this condition
holds for all k = 1, . . . , κn, with some κn < n, the corresponding MAP estimator
µ̂∗ is adaptive in the sense that it achieves optimal convergence rates simultane-
ously over an entire range of balls:

THEOREM 6 (Adaptivity). Let �n[η] be any of l0[η], lp[η] or mp[η], where
η → 0 as n → ∞. If there exists κn = o(n) such that (lnn)/κn → 0 as n → ∞
and πn(k) ≥ (k/n)ck for all k = 1, . . . , κn, and some constant c > 0, then, for
sufficiently large n,

sup
µ∈�n[η]

E‖µ̂∗ − µ‖2 = O(R(�n[η]))(4.18)
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for all 0 < p < 2 and ηp ∈ [n−1(2 lnn)p/2;n−1κn].
For l0-balls, it is sufficient to require κn �→ 0 as n → ∞ [instead of (lnn)/

κn → 0] in order that (4.18) hold for all η ≤ κnn
−1 such that nη �→ 0.

The sufficient requirement πn(k) ≥ (k/n)ck for adaptivity established in Theo-
rem 6 corresponds to 2k ln(n/k)-type penalties (see Remark 1). At the same time,
the proofs of Theorems 3–5 indicate that this condition is, in fact, also “almost
necessary.” Thus, essentially only 2k ln(n/k)-type complexity penalties lead to
adaptive estimation.

It is natural to find priors for which the optimality range for η in Theorem 6
is the widest. From Theorem 6 it is clear that such priors should be of the form
πn(k) ∝ (k/n)ck, k = 1, . . . , κn, where κn = o(n) should be as large as possible.
The function (k/n)k decreases for k ≤ n/e and, hence, for all c ≥ 1, we have

κn∑
k=1

(
k

n

)ck

≤
n/e∑
k=1

(
k

n

)ck

≤ n1−c

e
≤ 1.

The widest possible ranges for η in Theorem 6 are, therefore, achieved for priors
of the form πn(k) = (k/n)ck, k = 1, . . . , κn, where c ≥ 1 and δn = κn/n tends
to zero at an arbitrarily slow rate. The resulting ranges are η ≤ δn and ηp ∈
[n−1(2 lnn)p/2; δn] for l0 and lp-balls, respectively, and cover the entire spectrum
of sparse cases. From Lemma A.1 in the Appendix it follows that ln

(n
k

) ∼ k ln(n/k)

for all k = o(n), and the corresponding complexity penalty Pn(k) in (2.10) is then

Pn(k) = 2σ 2(1 + 1/γ ) ln
{(

n

k

)
(n/k)ck(1 + γ )k/2

}

∼ 4σ 2c̃(1 + 1/γ )k

(
ln(n/k) + 1

4c̃
ln(1 + γ )

)
,

where c̃ = (1/2)(c + 1) ≥ 1. Such a penalty is obviously of the 2k ln(n/k)-type,
although, by analogy, more appropriately, it should be called of the 4k ln(n/k)-
type.

To complete this section note that, from a Bayesian viewpoint, it is also impor-
tant to avoid a well-known Bayesian paradox where a prior (and, hence, a poste-
rior) leading to an optimal estimator over a certain set has zero measure on this set.
Hence, conditions on πn(k) should guarantee, in addition, that, with high proba-
bility, a vector µ generated according to this prior distribution falls within a given
ball. We discuss this issue in more detail in the examples in Section 5.

5. Examples. In this section we consider three examples of πn(k) and estab-
lish conditions on the parameters of these distributions imposed by the general
results of the previous sections.
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5.1. Binomial distribution. Consider the binomial prior B(n, ξn), where

πn(k) =
(

n

k

)
ξk
n (1 − ξn)

n−k, k = 0, . . . , n.

The binomial prior suggests independent xi with P(xi = 1) = ξn, i = 1, . . . , n.
Assumption (A) evidently holds for any ξn ≤ e−c(γ ). We now find ξn which

satisfies the conditions of Corollary 2 and, therefore, for which the resulting MAP
estimator achieves the minimal possible risk (up to a constant factor) among all
available estimators in the sense of (3.17).

For k = 0, πn(0) = (1 − ξn)
n and in order to satisfy πn(0) ≥ n−c for some

c > 0, ξn should necessarily tend to zero as n increases. Assumption (A) definitely
holds in this case (see above). Furthermore, (1 − ξn)

n = exp{−nξn(1 + o(1))} and
πn(0) ≥ n−c when ξn ≤ c1(lnn)/n for any c1 < c.

On the other hand, let ξn ≥ n−c2 for some c2 ≥ 1. Then, for all k ≥ 1, we have

πn(k) ≥ ξk
n (1 − ξn)

n−k ≥ ξk
n (1 − ξn)

n ≥ n−c2kn−c ≥ n−c̃k,

where c̃ = c + c2.
Summarizing, the validity of Corollary 2 for the binomial prior B(n, ξn) is es-

tablished for

n−c2 ≤ ξn ≤ c1 lnn/n,(5.19)

where c1 > 0 and c2 ≥ 1.
The condition (5.19) holds, for example, for universal thresholding, where ξn ∼

1/n, but not for the AIC criterion, where ξn ∼ √
γ /(e + √

γ ) (see the discussion
in Section 2.2). Abramovich and Angelini [1] showed that for ξn <

√
πγ lnn/n

the binomial prior leads to the Bonferroni multiple testing procedure with the fam-
ilywise error rate (FWE) controlled level αn ∼ nξn(

√
πγ ln(

√
γ /ξn))

−1 < 1.
As we have already mentioned in Section 2.2, the binomial prior yields a fixed

threshold λ2
n = 2σ 2(1 + 1/γ ) ln(

1−ξn

ξn

√
1 + γ ) and, hence, (5.19) implies

λ2
n = 2σ 2(1 + 1/γ )(ln ξ−1

n )
(
1 + o(1)

) ∼ 2σ 2c(γ )(lnn).

In fact, the following proposition shows that ξn from (5.19) also satisfies the
conditions of Theorem 6 and, therefore, yields an adaptive optimal MAP estimator
within the entire range of various types of sparse balls.

PROPOSITION 1. Let ξn satisfy (5.19). Then (4.18) holds for the result-
ing MAP estimator for all weak and strong lp-balls with 0 < p < 2 and ηp ∈
[n−1(2 lnn)p/2; ξc3

n ], and for l0-balls with η ∈ [c4n
−1; ξc3

n ], where 0 < c3 <

1/c2 ≤ 1 and c4 > 0 can be arbitrarily small.

The widest possible ranges for η covered by Proposition 1, namely, ηp ∈
[n−1(2 lnn)p/2; (c1 lnn/n)c3] for 0 < p < 2 and η ∈ [c4n

−1; (c1 lnn/n)c3] for
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p = 0, respectively, are obtained for ξn = c1 lnn/n. These optimality ranges are
still smaller than those for priors of the type πn(k) = (k/n)ck, c ≥ 1, discussed in
Section 4.3.

On the other hand, to avoid the Bayesian paradox mentioned at the end of Sec-
tion 4.3, exploiting Lemma 7.1 in Abramovich et al. [4], we have for l0-balls,

P(k > nη) ≤ e−(1/4)nξn min{|η/ξn−1|,|η/ξn−1|2},

and the above probability tends to zero as n increases for η ≥ c5(lnn/n), where
c5 ≥ 2c1.

For strong lp-balls, define the standardized z = µ/τ and apply Markov’s in-
equality to get

P(‖µ‖p
p > nηp) ≤ e−n(η/τ)pEe‖z‖p

p .

For the hierarchical prior model introduced in Section 2.2, Ee‖z‖p
p =

E(Ee‖z‖p
p |x) = Eπna

k
p , where ap = Ee|ζ |p and ζ is a standard normal N(0,1).

It is easy to verify that e < ap < ∞ for 0 < p < 2. Thus,

P(‖µ‖p
p > nηp) ≤ e−n(η/τ)pEπna

k
p.(5.20)

For the binomial prior,

Eπna
k
p = (ξnap + 1 − ξn)

n = enξn(ap−1)(1+o(1)).

If ηp ≥ τpξn(ap −1)+c6(ln lnn/n), where c6 > 0 is arbitrarily small, then P(µ ∈
lp[η]) → 1 and, therefore, P(µ ∈ mp[η]) → 1 as well. We believe that after extra
effort it is possible to somewhat relax the conditions for weak lp-balls, but the
resulting additional benefits are usually minor.

Combining these Bayesian admissibility results with Proposition 1, we obtain
the admissible optimality ranges for the binomial prior B(n, ξn) with n−c2 ≤ ξn ≤
c1(lnn)/n, c1 > 0 and c2 ≥ 1:

η ∈ [c5n
−1 lnn; ξc3

n ], p = 0,

ηp ∈ [max{n−1(2 lnn)p/2, τpξn(ap − 1) + c6n
−1 ln lnn}; ξc3

n ], 0 < p < 2,

where 0 < c3 < 1/c2 ≤ 1, c5 ≥ 2c1 and c6 > 0 can be arbitrarily small.

5.2. Truncated Poisson distribution. Consider now a truncated Poisson distri-
bution, where

πn(k) = λk
n/k!∑n

j=0 λ
j
n/j ! , k = 0, . . . , n,
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and 1 ≤ λn ≤ n. Application of Stirling’s formula and simple calculus yield the
following bounds on πn(k):(

λn

k

)k ek−λn−1/(12k)

√
2πk

<
λk

n

k! e−λn < πn(k)

(5.21)

<
λk

n/k!
λ

λn
n /λn!

<

(
λn

k

)k+1/2

ek−λn+1/(12λn).

From (5.21) and Lemma A.1 from the Appendix one has

lnπn(k) −
(

ln
(

n

k

)
− kc(γ )

)
(5.22)

< k ln
(

λne
c(γ )+1

n

)
− 1

2
lnk − λn + 1

12λn

+ 1

2
lnλn.

The function x − (1/12x) − (1/2) lnx > 0 for all x ≥ 1 and the RHS of (5.22) is
negative for all k ≥ 1 when λn < ne−(c(γ )+1). Hence, Assumption (A) is satisfied
for λn < ne−(c(γ )+1).

We now check conditions for Corollary 2. For k = 0, one has πn(0) > e−λn and
the requirement πn(0) ≥ n−c1 of Corollary 2 is satisfied for λn ≤ c1 lnn. Note that
this requirement immediately yields Assumption (A).

On the other hand, let, in addition, λn ≥ n−c2 for some c2 ≥ 0. For k = 1, (5.21)
implies πn(1) > λne

−λn > n−(c1+c2), while, for k ≥ 2, note that k − 1/(12k) −
(1/2) ln(2πk) > 0, and, therefore, one has from (5.21)

lnπn(k) > k ln
(

λn

k

)
− λn > k ln

(
n−c2

k

)
− c1 lnn

> k ln
(

n−c2−c1/k

n

)
> k lnn−(c1+c2+1).

Thus, for the truncated Poisson prior Corollary 2 holds if

n−c2 ≤ λn ≤ c1 lnn,(5.23)

where c1 > 0 and c2 ≥ 0.
In particular, Abramovich and Angelini [1] showed that for λn <

√
πγ lnn

the corresponding MAP testing procedure controls the FWE at the level αn ∼
λn(

√
πγ ln(

√
γ n/λn))

−1 < 1 and is closely related to the FWE controlling multi-
ple testing procedures of Holm [18] and Hochberg [17].

PROPOSITION 2. Let λn satisfy (5.23). Then (4.18) holds for the result-
ing MAP estimator for all weak and strong lp-balls with 0 < p < 2 and ηp ∈
[n−1(2 lnn)p/2; (λn/n)c3], and for l0-balls with η ∈ [c4n

−1; (λn/n)c3], where
0 < c3 < 1/(1 + c2) and c4 > 0 can be arbitrarily small.
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Consider the corresponding Bayesian admissibility requirements for the trun-
cated Poisson prior. For l0-balls, in the proof of their Lemma 1, Abramovich and
Angelini [1] showed that, with λn = o(n) for any δn = o(n),

P(k ≥ λn + δn) ≤ Cnun,

where un = eδn/(1 + δn/λn)
λn+δn+1/2 and, therefore, lnun < δn(1 − ln(δn/λn)).

In particular, set δn = max(lnn, eζ λn), where ζ > 2. Then

P(k ≥ λn + δn) ≤ Cne−δn(ζ−1) ≤ Cn−(ζ−2) → 0

and, hence, P(µ ∈ l0[η]) → 1 for η ≥ (λn + δn)/n. For λn satisfying (5.23),
P(µ ∈ l0[η]) → 1 holds for η ≥ c5(lnn/n), where c5 > 2 max(1, e2c1).

For lp-balls, exploiting (5.20) for the truncated Poisson prior and applying Stir-
ling’s formula, one derives

Eπna
k
p =

∑n
k=0 ak

pλk
n/k!∑n

j=0 λ
j
n/j ! ≤

∑∞
k=0 ak

pλk
n/k!

λ
λn
n /λn!

≤ eλn(ap−1)
√

2πλn

and, therefore, for ηp ≥ τp(λn/n)(ap − 1) + c6(ln lnn/n), where c6 > 0 is arbi-
trarily small, both P(µ ∈ lp[η]) and P(µ ∈ mp[η]) tend to one.

The resulting admissible optimality ranges for η for the truncated Poisson prior
with n−c2 ≤ λn ≤ c1 lnn, c1 > 0 and c2 ≥ 0 are then given by

η ∈ [c5(lnn/n); (λn/n)c3], p = 0,

ηp ∈ [n−1 max{(2 lnn)p/2, τpλn(ap − 1) + c6 ln lnn}; (λn/n)c3], 0 < p < 2,

where 0 < c3 < 1/(1 + c2), c5 > 2 max(1, e2c1), and c6 > 0 can be arbitrarily
small.

Strong similarity between the results for truncated Poisson and binomial priors
with ξn = λn/n is not surprising and is due to the well-known asymptotic relations
between Poisson and binomial distributions.

5.3. Reflected truncated Poisson distribution. Finally, consider briefly a “re-
flected” truncated Poisson distribution

πn(k) = (n − λn)
n−k/(n − k)!∑n

j=0(n − λn)n−j /(n − j)! , k = 0, . . . , n,(5.24)

and let λn = o(n) but λn/
√

n lnn → ∞ as n increases. The motivation for such
a type of prior and specific choice of λn comes from the fact that the corre-
sponding MAP testing procedure mimics the FDR controlling procedures of Ben-
jamini and Hochberg [7] and Sarkar [23] (Abramovich and Angelini [1]). In par-
ticular, Abramovich and Angelini ([1], Lemma 2) showed that, almost surely,
k = λn(1 + o(1)) or, more precisely, |k − λn| ≤ √

c7n lnn, where c7 > 4.
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The adaptivity results of Theorem 6 are somewhat irrelevant for such a narrow
range of possible k since the “equilibrium point” k∗

n = λn(1 + o(1)) = o(n) in
Theorems 3–5 becomes essentially known. To apply Theorems 3–5, we need the
following lemma.

LEMMA 1. Consider the reflected truncated Poisson prior πn(k) with
λn = o(n), λn/

√
n lnn → ∞ as n → 0. For k = λn(1 + o(1)), there exists c > 0

such that πn(k) ≥ (k/n)ck .

Based on the results of Lemma 1, we can identify the radius η0 of the balls,
where the resulting MAP estimator µ̂∗ is optimal. For l0-balls, Theorem 3 yields
η0 = (λn/n)(1 + o(1)). Similarly, for 0 < p < 2, applying Theorem 4 and Theo-
rem 5, we obtain the result that the corresponding η0 satisfies η

p
0 (lnη

−p
0 )−p/2 =

(λn/n)(1 + o(1)).
We now show that there is no Bayesian paradox in this case and a vector µ

generated from πn(k) falls with high probability within the corresponding balls
of radius η0. For l0-balls, it follows since, almost surely, k = λn(1 + o(1)) ∼ nη0.
For lp-balls, 0 < p < 2, Abramovich and Angelini [1] proved that for the reflected
truncated Poisson prior (5.24) we have Ek = λn(1 + o(1)). Then, Markov’s in-
equality implies

P(‖µ‖p
p > nη

p
0 ) ≤ E‖µ‖p

p

nη
p
0

= τpνpEπnk

nη
p
0

= τpνp(lnη
−p
0 )−p/2 → 0,

where νp is the pth absolute moment of the standard normal distribution.

6. Some simulation results. A short simulation study was carried out to in-
vestigate the performance of several MAP estimators.

The data was generated according to the model (1.1) with the sample size
n = 1000. In ξ% percent of cases µi were randomly sampled from N(0, τ 2), and
otherwise µi = 0. The parameter ξ controls the sparsity of the true signal µ, while
τ reflects its energy. We considered ξ = 0.5%, 5% and 50% corresponding, re-
spectively, to super-sparse, sparse and dense cases, and τ = 3,5,7. For each com-
bination of values of ξ and τ , the number of replications was 100. The true values
of σ , τ and ξ were assumed unknown in simulations and were estimated from the
data by the EM-algorithm of Abramovich and Angelini [1]. Our simulation study
also confirmed the efficiency of their parameter estimation procedure.

We tried three MAP estimators corresponding to the priors considered in Sec-
tion 5, namely, binomial B(n, ξ) (Bin), truncated Poisson (Pois1) and reflected
truncated Poisson (Pois2) with λ = nξ . In addition, we compared performances of
the above listed MAP estimators with the universal thresholding of Donoho and
Johnstone [9] and the hard thresholding EbayesThresh estimator of Johnstone and
Silverman [22] with a Cauchy prior.
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TABLE 1
AMSE of various thresholding estimators

ξ% 0.5% 5% 50%

τ 3 5 7 3 5 7 3 5 7

Bin 0.0192 0.0194 0.0172 0.1496 0.1372 0.1245 0.8929 0.8196 0.7796
Pois1 0.0192 0.0194 0.0176 0.1497 0.1374 0.1246 0.9157 0.8245 0.7780
Pois2 0.0187 0.0195 0.0173 0.1564 0.1389 0.1256 0.9687 0.8271 0.7795
EbayesThresh 0.0194 0.0189 0.0181 0.1556 0.1379 0.1248 1.8942 1.3473 0.8450
universal 0.1012 0.0998 0.0990 0.1694 0.1600 0.1495 1.9447 2.5474 2.7720

Table 1 summarizes mean squared errors averaged over 100 replications
(AMSE) of various methods. Standard errors in all cases were of order several
percent of the corresponding AMSE.

The performance of all methods naturally improves as τ increases. As is typical
for any thresholding procedure, all of them are less efficient for dense cases. Non-
adaptive universal thresholding consistently yields the worst results. All MAP es-
timators behave similarly, indicating the robustness of the MAP testimation to the
choice of the prior πn(·). They are comparable with EbayesThresh for very sparse
and sparse cases, but strongly outperform the latter for dense signals. Partially this
is explained by the poor behavior of the MAD estimate of σ used in this case by
EbayesThresh. However, even after substituting the true σ in EbayesThresh, MAP
estimators still remained preferable.

7. Concluding remarks. In this paper we have considered a Bayesian ap-
proach to a high-dimensional normal means problem. The proposed hierarchical
prior is based on assuming a prior distribution πn(·) on the number of nonzero en-
tries of the unknown means vector. The resulting Bayesian MAP “testimator” leads
to a hard thresholding rule and, from a frequentist viewpoint corresponds to penal-
ized likelihood estimation with a complexity penalty depending on πn(·). Specific
choices of πn(·) lead to several well-known complexity penalties. In particular,
we have discussed the relationship between MAP testimation and 2k ln(n/k)-type
penalization recently considered in a series of papers. We have investigated the op-
timality of MAP estimators and established their adaptive minimaxity in various
sparse settings.

In practice, the unknown parameters of the prior and the noise variance can
be efficiently estimated by the EM algorithm. The simulation study presented il-
lustrates the theoretical results and shows the robustness properties of the MAP
testimation procedure to the choice of πn(·).

We believe that the proposed Bayesian approach for recovering a high-
dimensional vector from white noise can be extended to various non-Gaussian set-
tings and model selection problems, although appropriate adjustments are needed
for each specific problem at hand.
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APPENDIX

A.1. Proof of Theorem 1. We show that, for a prior satisfying Assump-
tion (A), the corresponding penalty Pn(k) in (2.10) belongs to the general class
of penalties considered in Birgé and Massart [8]. In particular, we verify that it
satisfies conditions (3.3) and (3.4) of their Theorem 2 and then use it directly to
obtain the upper bound in (3.13).

In our notation the conditions (3.3) and (3.4) of Birgé and Massart [8] corre-
spond respectively to

n∑
k=1

(
n

k

)
e−kLk,n < ∞(A.1)

and

(1 + 1/γ )
(
2Lk,n + ln(1 + γ )

) ≥ c
(
1 +

√
2Lk,n

)2
, k = 1, . . . , n,(A.2)

for some c > 1, where the weights Lk,n were defined in (3.15). In fact, Birgé
and Massart [8] require their (3.4) for k = 0 as well. However, note that Pn(0) =
2σ 2(1 + 1/γ ) lnπn(0)−1 ≥ 0 and, hence, this condition always holds for k = 0.

The condition (A.1) follows immediately from the definition of Lk,n,

n∑
k=1

(
n

k

)
e−kLk,n = 1 − πn(0) < ∞.

We now turn to (A.2). Consider k ≥ 1. Let t = √
Lk,n. The condition (A.2) is

then equivalent to the quadratic inequality

2(1 + 1/γ − c)t2 − 2
√

2ct + (1 + 1/γ ) ln(1 + γ ) − c ≥ 0.(A.3)

We now find c > 1, for which (A.3) holds for all t such that the corresponding Lk,n

satisfy Assumption (A). For the determinant � of (A.3), one has

�

4
= 2c2 − 2(1 + 1/γ − c)

(
(1 + 1/γ ) ln(1 + γ ) − c

)
= 2(1 + 1/γ )

(
c
(
ln(1 + γ ) + 1

) − (1 + 1/γ ) ln(1 + γ )
)
.

Note that ln(1 + γ ) ≤ γ and, therefore, ln(1 + γ )(1 + 1/γ ) ≤ ln(1 + γ ) + 1.
Hence, � ≥ 0 for any c > 1. If, in addition, c < 1 + 1/γ , then (A.3) holds for all
t ≥ t∗, where t∗ is the largest root of the quadratic polynomial on the left-hand side
of (A.3),

t∗ = c + √
1 + 1/γ

√
c(ln(1 + γ ) + 1) − (1 + 1/γ ) ln(1 + γ )√

2(1 + 1/γ − c)
(A.4)

<
c + 1 + 1/γ√
2(1 + 1/γ − c)

.
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Setting c = 1 + 1/(2γ ), from (A.4) one has t∗ < 2
√

2(γ + 3/4). On the
other hand, Assumption (A) implies Lk,n ≥ c(γ ) = 8(γ + 3/4)2 and, therefore,
t = √

Lk,n ≥ 2
√

2(γ + 3/4) > t∗. Thus, c = 1 + 1/(2γ ) guarantees the condition
(A.3) and the equivalent original condition (A.2).

A.2. Proof of Theorem 2. Consider first k ≥ 1. For this case Assumption (A)
implies Lk,n ≥ c(γ ) ≥ c(0) > 1. From Theorem 1, we then have

ρ(µ̂∗,µ) ≤ c0(γ )(1 + 1/γ )

× inf
1≤k≤n

{
n∑

i=k+1

µ2
(i) + σ 2k

(
2Lk,n + ln(1 + γ )

)} + c1(γ )σ 2

≤ c0(γ )(1 + 1/γ )
(
2L∗

n + ln(1 + γ )
)

× inf
1≤k≤n

{
n∑

i=k+1

µ2
(i) + kσ 2

}
+ c1(γ )σ 2(A.5)

≤ c2(γ )
(
2L∗

n + ln(1 + γ )
){

inf
1≤k≤n

(
n∑

i=k+1

µ2
(i) + kσ 2

)
+ σ 2

}
.

On the other hand, Theorem 1 implies

ρ(µ̂∗,µ) ≤ c0(γ )

{
n∑

i=1

µ2
i + 2σ 2(1 + 1/γ ) lnπ−1

n (0)

}
+ c1(γ )σ 2

≤ c0(γ )

{
n∑

i=1

µ2
i + σ 2(1 + 1/γ )

(
L0,n + 0.5 ln(1 + γ )

)} + c1(γ )σ 2.

Define c̃0(γ ) = c0(γ )/ ln(1 + γ ) and c̃1(γ ) = 2c1(γ )/ ln(1 + γ ). Obviously,

c̃0(γ )
(
2L0,n + ln(1 + γ )

)
> c0(γ )

and

c̃1(γ )
(
2L0,n + ln(1 + γ )

)
> 2c1(γ ).

Hence,

ρ(µ̂∗,µ) ≤ c̃0(γ )
(
2L0,n + ln(1 + γ )

) n∑
i=1

µ2
i

+ c0(γ )(1 + 1/γ )
(
2L0,n + ln(1 + γ )

)
σ 2/2

(A.6)
+ c̃1(γ )

(
2L0,n + ln(1 + γ )

)
σ 2/2

≤ c2(γ )
(
2L∗

n + ln(1 + γ )
){ n∑

i=1

µ2
i + σ 2

}
.
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Combining (A.5) and (A.6), we have

ρ(µ̂∗,µ) ≤ c2
(
γ

)(
2L∗

n + ln(1 + γ )
){

inf
0≤k≤n

(
n∑

i=k+1

µ2
(i) + kσ 2

)
+ σ 2

}

= c2(γ )
(
2L∗

n + ln(1 + γ )
){ n∑

i=1

min(µ2
i , σ

2) + σ 2

}
,

which completes the proof.

A.3. Proof of Theorem 3. We start with Lemma A.1, which will be used
throughout the following proofs.

LEMMA A.1.

1. ln
(n
k

) ≥ k ln(n/k), k = 1, . . . , n.

2. Let n/k → ∞ as n → ∞. Then for any constant c > 1 for sufficiently large n,
ln

(n
k

) ≤ ck ln(n/k).

PROOF. The first statement of Lemma A.1 follows immediately from the triv-
ial inequality

(
n

k

)
=

k−1∏
j=0

n − j

k − j
≥

(
n

k

)k

.

To prove the second statement, note that, using Stirling’s formula, one has(
n

k

)
≤

(
n

e

)n(
e

n − k

)n−k(e

k

)k

(A.7)

=
(

n

k

)k( n

n − k

)n−k

<

(
n

k

)k( n

n − k

)n

.

Since (1 − k/n)−n/k → e as n/k → ∞, for any c > 1 for sufficiently large n,(
n

n − k

)n

= (
(1 − k/n)−n/k)k <

(
n

k

)(c−1)k

.

Thus, from (A.7),
(n
k

)
< (n/k)ck for sufficiently large n. �

Now we return to the proof of Theorem 3. Evidently, for any µ ∈ l0[η],
µ(i) = 0, i > k∗ = nη. Since k∗ = o(n), from the general upper bound for the risk
established in Corollary 1, it follows that

E‖µ̂∗ − µ‖2

≤ c0(γ )2σ 2(1 + 1/γ )

(
ln

{(
n

nη

)
π−1

n (nη)

}
+ nη

2
ln(1 + γ )

)
+ c1(γ )σ 2.
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From Lemma A.1,

ln
{(

n

nη

)
π−1

n (nη)

}
≥ ln

(
n

nη

)
≥ nη lnη−1 � nη ln(1 + γ )

when η → 0 as n → ∞. On the other hand, under the conditions of Theorem 3,
Lemma A.1 implies

ln
{(

n

nη

)
π−1

n (nη)

}
≤ c̃nη lnη−1

for sufficiently large n. Summarizing, one has E‖µ̂∗ − µ‖2 ≤ c̃2(γ )σ 2nη lnη−1.

A.4. Proof of Theorem 4. Define a “least-favorable” sequence
µ0i = η(n/i)1/p , i = 1, . . . , n, that maximizes

∑n
i=k+1 µ2

i over µ ∈ mp[η] for
any k = 0, . . . , n − 1. For k ≥ 1,

n∑
i=k+1

µ2
0i ≤ η2n2/p

∫ ∞
k

x−2/p dx = p

2 − p
η2n2/pk1−2/p,(A.8)

while, for k = 0,
n∑

i=1

µ2
0i ≤ η2n2/pζ(2/p),

where ζ(·) < ∞ is the Riemann Zeta-function.
1. n1/pη ≥ √

2 lnn (sparse case).
In this case, 1 < k∗

n = o(n) and from Corollary 1, Lemma A.1 and (A.8), one has

E‖µ̂∗ − µ‖2 ≤ c0(γ )

{
n∑

i=k∗
n+1

µ2
0i + 2σ 2(1 + 1/γ )

×
(

ln
(

n

k∗
n

)
+ lnπ−1

n (k∗
n) + k∗

n

2
ln(1 + γ )

)}

+ c1(γ )σ 2

≤ c̃0(γ )

{
p

2 − p
η2n2/p(k∗

n)1−2/p

+ c̃1(γ )σ 2(
k∗
n ln(n/k∗

n) + lnπ−1
n (k∗

n)
)}

.

To complete the proof for this case, note that η2n2/p(k∗
n)1−2/p = nηp(lnη−p)1−p/2

and under the conditions on πn(k
∗
n) of Theorem 4,

k∗
n ln(n/k∗

n) + lnπ−1
n (k∗

n) ≤ (cp + 1)k∗
n ln(η−p(lnη−p)p/2)

= O(nηp(lnη−p)1−p/2).
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2. n1/pη <
√

2 lnn (super-sparse case).
In this case Corollary 1 and conditions on πn(0) imply

E‖µ̂∗ − µ‖2 ≤ c0(γ )

{
n∑

i=1

µ2
0i + 2σ 2(1 + 1/γ ) lnπ−1

n (0)

}
+ c1(γ )σ 2

≤ c0(γ ){η2n2/pζ(2/p) + 2σ 2(1 + 1/γ )cpη2n2/p} + c1(γ )σ 2

= O(η2n2/p).

A.5. Proof of Theorem 5. First, we find the “least favorable” sequence µ0
that maximizes

∑n
i=k+1 µ2

(i) over µ ∈ lp[η] for a given k = 0, . . . , n− 1. Applying
Lagrange multipliers, after some algebra one has

n∑
i=k+1

µ2
0(i) ≤

(
2 − p

2

)2/p p

2 − p
η2n2/pk1−2/p

for k ≥ 1 and
n∑

i=1

µ2
0(i) ≤ η2n2/p

for k = 0. The rest of the proof therefore repeats the proof of Theorem 4.

A.6. Proof of Proposition 1. First, note that πn(1) = nξn(1 − ξn)
n−1 and the

condition πn(1) ≥ n−c in Theorem 6 requires that ξn → 0 as n → ∞. In particular,
it implies

(1 − ξn)
n = (

(1 − ξn)
−1/ξn

)−nξn = exp
{−nξn

(
1 + o(1)

)}
and, using Lemma A.1, we then have

πn(k) ≥
(

n

k

)k

ξk
n (1 − ξn)

n =
(

nξn

k
exp

{
−nξn

k

(
1 + o(1)

)})k

.

To satisfy πn(k) ≥ (k/n)ck , it is sufficient to have

nξn

k

(
1 + o(1)

) − ln
(

nξn

k

)
≤ c ln

(
n

k

)
.(A.9)

Recall that n−c2 ≤ ξn ≤ c1(lnn)/n, where c1 > 0 and c2 ≥ 1. Define κn = nξ
c3
n ,

where 0 < c3 < 1/c2. Obviously, κn/n → 0, κn > n1−c2c3 = nδ, δ > 0, and, there-
fore, (lnn)/κn → 0 as n → ∞.

For 1 ≤ k ≤ nξn, using the monotonicity of the function −x lnx for x ≤ 1/e,
we have

k

n
ln

(
n

k

)
≥ lnn

n
≥ c−1

1 ξn
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and, therefore,

nξn

k

(
1 + o(1)

) − ln
(

nξn

k

)
≤ nξn

k

(
1 + o(1)

)
< c1

(
1 + o(1)

)
ln

(
n

k

)

which yields (A.9).
On the other hand, for all nξn < k ≤ κn, we have ξn ≥ (k/n)1/c3 = (k/n)1+c̃,

where c̃ > 0, which yields (nξn/k) ≥ (k/n)c̃. Thus,

nξn

k

(
1 + o(1)

) − ln
(

nξn

k

)
<

(
1 + o(1)

) + c̃ ln
(

n

k

)

and (A.9) holds.
Applying Theorem 6 for κn = nξ

c3
n completes the proof.

A.7. Proof of Proposition 2. Define κn = n(λn/n)c3 , where 0 < c3 <

1/(1 + c2). Obviously, κn > n1−(1+c2)c3 = nδ , where 0 < δ < 1 and, therefore,
(lnn)/κn → 0 and κn/n = (λn/n)c3 < (c1 lnn/n)c3 → 0 as n → ∞.

For k = 1, we have shown in Section 5.2 that πn(1) ≥ n−(c1+c2). For k ≥ 2,
exploit positivity of the function k−1/(12k)−(1/2) ln(2πk) to obtain from (5.21)

lnπn(k) > k ln
(

λn

k

)
− λn.

The rest of the proof essentially repeats the proof of Proposition 1 starting from
(A.9) with λn = nξn and without o(1).

A.8. Proof of Lemma 1. Applying Stirling’s formula for large λn and
k = λn(1 + o(1)), after simple calculation, one has

lnπn(k) > (n − k) ln
n − λn

n − k
+ λn − k − 1

12(n − k)
− 1

2
ln

(
2π(n − k)

)

= o(λn) ln
((

1 + o(λn)

n − λn − o(λn)

)(n−λn−o(λn))/o(λn))

− o(λn) − 1

2
ln

(
n − λn − o(λn)

)

= o(λn) − 1

2
ln(n − λn) − 1

2
ln

(
n − λn − o(λn)

n − λn

)

= o(λn) − 1

2
ln(n − λn).

On the other hand, ck ln(k/n) = cλn(1+o(1)) ln(λn/n)+o(λn). Thus, to prove
Lemma 1, it is sufficient to show that

1
2 ln(n − λn) ≤ c̃λn ln(n/λn)(A.10)

for some c̃ > 0.
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Denote g1(λn) = 1
2 ln(n − λn) and g2(λn) = λn ln(n/λn). Note that g1(λn) de-

creases while g2(λn) increases for λn < n/e, and g1(1) < g2(1). Then, for any
c̃ ≥ 1, one has c̃g2(λn) > c̃g2(1) ≥ g1(1) > g1(λn), which proves (A.10).
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