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BAYESIAN VARIABLE SELECTION FOR HIGH DIMENSIONAL
GENERALIZED LINEAR MODELS: CONVERGENCE

RATES OF THE FITTED DENSITIES

BY WENXIN JIANG

Northwestern University

Bayesian variable selection has gained much empirical success recently
in a variety of applications when the number K of explanatory variables
(x1, . . . , xK) is possibly much larger than the sample size n. For generalized
linear models, if most of the xj ’s have very small effects on the response y,
we show that it is possible to use Bayesian variable selection to reduce overfit-
ting caused by the curse of dimensionality K � n. In this approach a suitable
prior can be used to choose a few out of the many xj ’s to model y, so that
the posterior will propose probability densities p that are “often close” to the
true density p∗ in some sense. The closeness can be described by a Hellinger
distance between p and p∗ that scales at a power very close to n−1/2, which
is the “finite-dimensional rate” corresponding to a low-dimensional situation.
These findings extend some recent work of Jiang [Technical Report 05-02
(2005) Dept. Statistics, Northwestern Univ.] on consistency of Bayesian vari-
able selection for binary classification.

1. Introduction. Bayesian variable selection (BVS) is a fruitful method for
studying regression models that relate a response y to a vector of candidate ex-
planatory variables x = (x1, . . . , xK)T . For example, when generalized linear mod-
els (GLM) are considered, the density of y and the mean function of y conditional
on x both depend on a linear combination xT β through the regression coefficients
β = (β1, . . . , βK)T . The BVS approach uses priors that propose different model
γ ’s and the corresponding sets of regression coefficient βγ ’s, where γ indicates
the components of x that are included in regression. The posterior distribution
π[γ,βγ |Dn] for the model and the model parameters (γ,βγ ) can then be obtained
based on an observed data set Dn = (x(i), y(i))n1, which is often assumed to consist
of i.i.d. (independent and identically distributed) copies of (x, y). Computational
simplification is achievable in the cases of linear regression and probit regression,
where the unknown regression coefficients βγ can often be analytically integrated
out in the posterior-based computations (e.g., Kohn, Smith and Chan [17]; Lee
et al. [19]).
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The BVS approach has had many successful applications. For example, when
applied in a linear regression framework, BVS is used in basis selection for non-
parametric regression (e.g., Smith and Kohn [23], Kohn, Smith and Chan [17]) and
in construction of financial index tracking portfolios (e.g., George and McCulloch
[7]). Other work applying BVS in the GLM framework includes, for example,
Clyde and DeSimone-Sasinowska [3], Nott and Leonte [21] and Wang and George
[24]. Recently, BVS has been applied to the area of bioinformatics. In order to
construct Gaussian graphical models for gene expression pathways, Dobra et al.
[5] obtain biologically meaningful results by applying Bayesian variable selection
to model how each gene in the graph relates to tens of thousands of other genes.
In order to classify binary responses based on microarray data, Lee et al. [19] and
Sha et al. [22] (via probit regression) and Zhou, Liu and Wong [27] (via logis-
tic regression) use BVS to achieve excellent cross-validated classification errors.
These most recent applications are especially noteworthy since they are all in the
situation of K � n, where the number of candidate variables K can be several
thousand and the sample size n is often less than a hundred.

Despite these empirical successes, there has not been a systematic study of the
frequentist properties of BVS, such as posterior consistency and convergence rates.
It is the aim of this paper to study these convergence properties for BVS, allow-
ing K to be possibly much larger than n. The consistency that we will consider
is neither the traditional sense (i) of consistency in estimating the true regression
parameters, nor the sense (ii) of consistency in identifying the true model (the
x-components with nonzero regression coefficients). Sense (i) is not feasible since
in cases with K � n, the β-coefficients are often not identifiable. Sense (ii) is not
a totally satisfactory framework when, as in many realistic situations, none of the
K regression coefficients is exactly zero, even though many of them may be very
small. The consistency we consider is the closeness between the true (conditional)
density p∗ = p∗(y|x) and the densities p = p(y|x;γ,βγ ) proposed by the poste-
rior π(γ,βγ |Dn). We do not attempt to identify the “true parameter” or the “true
model” (the nonzero coefficients). Rather, we allow all coefficients to be not ex-
actly zero, and attempt to construct the posterior to propose models that include
only a few of those nonzero coefficients, but have the corresponding densities p

“often close” to the true p∗ in some sense.
Let νx(dx) be the probability measure for x and νy(dy) be the dominating mea-

sure for conditional densities p and p∗. Define the Hellinger distance between p

and p∗ as d(p,p∗) =
√∫ ∫

νy(dy)νx(dx)(
√

p − √
p∗)2. The convergence results

we consider describe the “often closeness” between p and p∗ that can be formu-
lated as, for example,

P ∗[
π[d(p,p∗) < εn|Dn] > 1 − δn

] ≥ 1 − λn,(1)

for all large enough n, for some small εn, δn, λn converging to zero as n → ∞,
where P ∗ is the probability measure for data Dn, when they are generated as i.i.d.
copies from p∗νy(dy)νx(dx).
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It is noted that BVS is essential for achieving convergence results as above,
when K � n. A usual approach without variable selection, using the full model
and putting a prior on all the regression coefficients, can be shown to lead to bad
results in the following counterexample.

EXAMPLE. Suppose K > n. Let the random variable z take values from
{j/K}nj=1 with equal probability and let x = (x1, . . . , xK)T , where xj = I [z =
j/K] for each j . Let (z(i), x(i), y(i))ni=1 and (z, x, y) be i.i.d., where y|x ∼
N(0,1). Suppose the fitted model is y|x ∼ N(

∑K
j=1 βjxj ,1), where, without se-

lecting among the (xj )
K
1 , one proposes a prior for (βj )

K
1 as i.i.d. N(0,1).

The Hellinger distance d(p,p∗) between p∗ = e−y2/2/
√

2π and

p = e
−(y−∑K

j=1 βj xj )2/2
/
√

2π is such that d(p,p∗)2 = (2/K)
∑K

j=1(1 − e
−β2

j /8
).

Then, in the posterior conditional on Dn = (x(i), y(i))ni=1, β1, . . . , βK are in-

dependent and βj ∼ N(
∑n

i=1 y(i)x
(i)
j /(1 + ∑n

i=1 x
(i)
j ),1/(1 + ∑n

i=1 x
(i)
j )). Note

that (x
(i)
j )ni=1 are zero for at least K − n of the K j ’s since x

(i)
j = I [z(i) =

j/K], and the n z(i)’s can only populate at most n out of K of the j/K lo-
cations. Therefore, at least K − n out of the K βj ’s follow the N(0,1) distri-
bution in the posterior—which is the same as the corresponding prior distribu-
tion. Without loss of generality, let βK−n

1 be independent N(0,1) in the poste-

rior. Note that d(p,p∗)2 ≥ [2(K − n)/K][1/(K − n)]∑K−n
1 (1 − e

−β2
j /8

). For a
simple example, let K = 2n. An application of Chebyshev’s inequality leads to
π[d(p,p∗) ≥ η1/2|Dn] ≥ 1 − (η2n)−1, for η = 1/2 − 1/

√
5, which happens with

P ∗-probability 1. Therefore, without variable selection, a convergence result such
as (1) cannot hold. Such a convergence result, however, can be shown to hold for
this example, with εn following a near finite-dimensional rate (a power close to
1/

√
n), if Bayesian variable selection is used properly, according to later results of

this paper (e.g., Remark 1).

There has been considerable interest recently in studying the theoretical prop-
erties of high-dimensional regression. Most results are for frequentist meth-
ods. For example, Bühlmann [2] considers boosting for high-dimensional re-
gression; Greenshtein and Ritov [12] and Greenshtein [11] consider constrained
or 	1-penalized optimization; Meinshausen and Bühlmann [20] apply a similar
method of 	1 penalization to high-dimensional graphical models. Recently, Fan
and Li [6] have provided a useful overview for methods based on the penalized
likelihood for treating high dimensionality, which includes examples of general-
ized linear models and survival models, among others. In contrast to these frequen-
tist approaches based on optimization, the Bayesian method considered here has
the attractive capability of presenting several likely models together with the corre-
sponding posterior probabilities. A theoretical study of Bayesian inference without
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variable selection has been carried out by, for example, Ghosal [8, 9]. This work
considers K’s growing with n but at a slower rate. On the other hand, in the K � n

case treated in Ghosal [8, 9], posterior asymptotic normality was established for
the whole parameter vector, so the goal there was much higher, and hence, the re-
sult there is not comparable with the result in the present paper which focuses on
posterior convergence rates.

In contrast to previous work, we consider Bayesian variable selection and allow
the cases K � n. It is noted that it is essential to have the variable selection step in
order to obtain good results when K � n. The counterexample above shows that,
without variable selection, it is impossible to have good convergence in general
cases with K > n, while with variable selection, excellent empirical performance
has been reported, for example, in Lee et al. [19] and Sha et al. [22] with K � n.

We study the convergence behavior of BVS for generalized linear models,
which include linear regression, logistic regression, probit regression, Poisson re-
gression, and so on. We also include a discussion of Gaussian graphical models
that uses linear regression for neighborhood selection. Therefore, the current pa-
per forms an extension to Jiang [15], who only considers consistency of BVS for
binary logistic and probit regression, without studying the convergence rates. Here
we study the convergence rate εn as well, and will show that despite the high-
dimension K � n, BVS can still lead to a near finite-dimensional rate (with εn

close to 1/
√

n in order), if we are in some “sparse” situations when most of the re-
gression coefficients are very small. (For binary regression, this rate εn also forms
a good convergence rate for the purpose of classification, as shown in Section 5
later.) For such sparse high-dimensional problems, Bayesian variable selection can
therefore help to reduce “overfitting” or the “curse of dimensionality.” Note that
such a conclusion can only be drawn by a careful study of the convergence rates
in high dimensions; just proving the consistency, as in Jiang [15], is not enough;
for example, it is well known (e.g., Hastie, Tibshirani and Friedman [13], Chapter
13) that the k-nearest neighbor rules are consistent for classification, but can suffer
considerably from the curse of dimensionality. Also, it is well known (e.g., De-
vroye, Györfi and Lugosi [4], Chapters 6 and 7) that (at least in finite dimensions)
there exist universally consistent classification rules, but any rule can have a very
slow convergence rate under some data distribution.

Below we will first specify the notation and the framework of the paper.

2. Notation and framework. The explanatory variable is a Kn-dimensional
random vector x = (x1, x2, . . . , xKn)

T . Following the typical practice of studying
high-dimensional problems, we will formally consider the asymptotics when Kn

increases as n → ∞.
For simplicity, we will assume that |xj | ≤ 1 for all j for most of the later dis-

cussion. The results can be easily extended to the case when all |xj |’s are bounded
above by a large constant.
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The response is y. The true relation between y and x is assumed to follow a
parametric generalized linear model (GLM) with true conditional density p∗(y|x)

and the corresponding mean function µ∗(x). Generalized linear models (GLM)
are a class of popular regression models relating a response y to a vector of co-
variates x. The GLM with one natural parameter is constructed with a density of
the form p∗(y|x) = exp{a(h∗)y + b(h∗) + c(y)} ≡ f (y,h∗), where h∗ = xT β∗
is the linear parameter, a(h) and b(h) are continuously differentiable, and a(h)

has nonzero derivative. The mean function µ∗ = E(y|x) = −b′(h∗)/a′(h∗) ≡
ψ(xT β∗) follows a transformed linear model, where the transform ψ is the in-
verse of a chosen link function. This formalism includes regression models for
responses that are binary, Poisson and Gaussian (with known error variance), and
can be easily extended to the cases with a dispersion parameter, which can then
include Gaussian models with unknown error variance.

We assume that corresponding to the true model p∗, there exists a true regres-
sion parameter vector β∗, which satisfies some “sparseness” conditions, describ-
ing situations when most components of β∗ are very small in magnitude. One such
condition states that limn→∞

∑Kn

j=1 |β∗
j | < ∞. Other conditions can be formulated

to describe how fast the sum of |β∗
j |’s converges.

The condition limiting the sum of |β∗
j |’s has been considered by Bühlmann [2]

for studying how boosting algorithms handle high-dimensional linear regression.
As Bühlmann points out, as a special case, this condition is satisfied when only a
finite and fixed number of xj ’s are relevant, that is, when the number of nonzero
β∗

j ’s is independent of n. More generally, the sparseness conditions can describe
situations when all xj ’s are relevant, but most of them have very small effects
(|β∗

j |’s).
Note that p∗ is the conditional density of y|x, which is also the joint density of

(x, y) if the dominating measure νx(dx)νy(dy) is the product of the probability
measure of x and the dominating measure of y. We will always use this kind of
dominating measure.

The data for n subjects are assumed to be independent and identically distrib-
uted (i.i.d.) based on p∗νx(dx)νy(dy). Therefore, showing the subject index i, the

data set is of the form Dn = (x
(i)
1 , . . . , x

(i)
Kn

, y(i))ni=1.
The prior selects a subset of the Kn x-variables in the data set to model y, using

density f (y, xT
γ βγ ), where γ = (γ1, . . . , γKn) has 0/1 valued components which

are 1 only when the corresponding x component is included in the model, that is,
γj = I [|βj | > 0]. Sometimes we will also use γ to denote the corresponding set of
index j ’s for which |βj | > 0. The notation vγ denotes the subvector of a vector v

with components {vj }, for all j ’s with γj = 1 (or for all j ∈ γ , if γ is understood
as the corresponding index set).

We use the probability measure πn(γ, dβγ ) to denote the prior distribution of
the subset model γ and the corresponding regression coefficients βγ . (The prior
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depends on the sample size n, but we will often drop the subscript n for simpler
notation.) This induces a posterior measure conditional on the data set Dn,

π(γ, dβγ |Dn)

=
n∏

i=1

p(yi, xi |γ,βγ )π(γ, dβγ )
/∑

γ ′

∫
β ′

γ ′

n∏
i=1

p(yi, xi |γ ′, β ′
γ ′)π(γ ′, dβ ′

γ ′),

where p(y, x|γ,βγ ) = f (y, xT
γ βγ ). The prior and posterior distributions for

(γ,βγ ) induce distributions for the corresponding parameterized densities.
For notational simplification, we will use |v| to denote the sum of the absolute

values of the components for any vector v. For two positive sequences an and bn,
an ≺ bn (or bn � an) means limn→∞ an/bn = 0.

3. A prior specification. General conditions on the prior will be given later in
Section 7. Here, for being specific, we first consider the following prior for (γ,βγ ).
Conditional on γ , βγ follows N(0,Vγ ), where Vγ is a |γ |× |γ | covariance matrix.

To complete this prior specification, we let the model indicators γ = (γ1, . . . ,

γKn) be generated by first proposing i.i.d. binary random variables γ̃ n
1 , with

π(γ̃j = 1) = λn = rn/Kn, where we assume, for convenience, that rn is some
integer smaller than Kn. We then keep only the γ̃ ’s satisfying a size restriction∑ |γ̃j | ≤ r̄n, and let the prior proposed model γ = γ̃ . Here rn is the prior expec-
tation of model size |γ̃ | before applying the size restriction; r̄n is the maximal
possible model size. We assume 1 ≤ rn ≤ r̄n < Kn.

Therefore, π(γ ) ∝ ∏Kn

j=1 λ
γj
n (1 − λn)

1−γj I [∑Kn

l=1 γl ≤ r̄n]. Although the size
restriction is not necessary (see more general conditions in Section 7), it helps
to keep the model from becoming too complicated and gives a convenient start-
ing point for proving the theoretical properties. Also, without this kind of restric-
tion, the design matrix

∑n
i=1 xiγ xT

iγ would become singular when the proposed
model size |γ | > n; such a design matrix is often used in the popular algorithms
for generating the posterior distributions in Gaussian regression (e.g., Smith and
Kohn [23]), probit regression (e.g., Lee et al. [19]) and logistic regression (e.g.,
Zhou et al. [27]).

Under this specification of prior, we will present conditions on Vγ , rn and r̄n for
proving results on posterior consistency and convergence rates. The condition on
Vγ will depend on how the largest eigenvalues (ch1) of Vγ and V −1

γ grow with the
size of |γ |.

Let H(γ ) = max{ch1(Vγ ), ch1(V
−1
γ )}. In many typical cases H(γ ) grows at

most polynomially in model size, that is, H(γ ) ≤ B|γ |v for some constant B > 0
and some power v > 0, for all large |γ |. For example, when Vγ = cIγ (proportional
to the identity matrix; see, e.g., Dobra et al. [5]), H(γ ) is a constant and does not
grow with |γ |. For another example, Vγ ≈ constant × (Exγ xT

γ )−1; see, for ex-
ample, Smith and Kohn [23] and Lee et al. [19], who use a sample approximation
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of this choice. Then the largest eigenvalues of Vγ and V −1
γ are both bounded lin-

early for large |γ |, when xγ has components standardized to have mean zero and
common variance, and have all pairwise correlations being ρ ∈ (0,1). In addition,
for Vγ following the covariance matrix of a finite-order AR or MA process, when
the lag polynomials have no zeros on the unit circle, the eigenvalues of Vγ and
V −1

γ are also bounded such that max{ch1(Vγ ), ch1(V
−1
γ )} grows like |γ |0. For a

detailed discussion of these eigenvalues, see, for example, Section 3 of Bickel and
Levina [1].

4. Convergence results for GLM. Here, for simplicity we will assume that
all explanatory variables are bounded and standardized such that |xj | ≤ 1 for all j .

Assume limn→∞
∑Kn

1 |β∗
j | < ∞ for a regression parameter β∗ corresponding to

the true density p∗, where Kn is a nondecreasing sequence in n.
We also assume that the prior specification in Section 3 is used. Define

�(rn) = infγ :|γ |=rn

∑
j :j /∈γ |β∗

j |, B(rn) = supγ :|γ |=rn
ch1(V

−1
γ ) and B̄(rn) =

supγ :|γ |=rn
ch1(Vγ ). Let B̃n = supγ :|γ |≤r̄n

ch1(Vγ ). Let D(R) = 1 + R ×
sup|h|≤R |a′(h)| · sup|h|≤R |ψ(h)| for any R > 0.

THEOREM 1. Assume that the prior specification in Section 3 is used, |xj | ≤ 1
for all j and limn→∞

∑Kn

1 |β∗
j | < ∞, where Kn is a nondecreasing sequence in n.

Let εn be a sequence such that εn ∈ (0,1] for each n and nε2
n � 1 and assume

that the following conditions also hold:

r̄n ln(1/ε2
n) ≺ nε2

n,(2)

r̄n ln(Kn) ≺ nε2
n,(3)

r̄n lnD
(
r̄n

√
nε2

nB̃n

) ≺ nε2
n,(4)

1 ≤ rn ≤ r̄n < Kn,(5)

1 ≺ rn ≺ Kn,(6)

�(rn) ≺ ε2
n,(7)

B(rn) ≺ nε2
n,(8)

rn ln B̄(rn) ≺ nε2
n.(9)

Denote d(p,p∗)2 = ∫ ∫ |p(y, x|γ,βγ )1/2 − p∗(y, x)1/2|2νy(dy)νx(dx). Then we
have the following successively stronger results:

(i) for some r0 > 0,

lim
n→∞P ∗{π[d(p,p∗) ≤ εn|Dn] ≥ 1 − e−r0nε2

n} = 1;
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(ii) for some c1 > 0, and for all sufficiently large n,

P ∗{π[d(p,p∗) > εn|Dn] ≥ e−0.5c1nε2
n} ≤ e−0.5c1nε2

n;
(iii) for some c1 > 0, and for all sufficiently large n,

E∗
Dnπ[d(p,p∗) > εn|Dn] ≤ e−c1nε2

n.

The above condition on D(·) = D(r̄n

√
nε2

nB̃n), when considering a specific ex-
ample of GLM, depends on how |a′(h)| and |ψ ′(h)| grow with the linear parame-
ter h. We will consider the following examples here.

(a) Poisson regression with log linear link: mean µ = eh, y ∈ {0,1,2, . . .}. Then

f (y,h) = e−µ

y! µy = exp{hy − eh − ln(y!)}.

Here a(h) = h, a′ = 1, ψ(h) = eh. So both |a′| and |ψ | grow at most exponentially
in |h|.

(b) Normal linear regression: mean µ = h; variance σ 2 = ϕ−1 ∈ �+ is assumed
to be known for now; y ∈ �. Then

f (y,h) = 1√
2πσ 2

e(−1/(2σ 2))(y−µ)2

= exp
{
ϕhy − ϕh2

2
− ϕy2

2
− 1

2
ln(2πϕ−1)

}
.

Here a(h) = ϕh, a′ = ϕ, ψ(h) = h. So both |a′| and |ψ | grow at most linearly
in |h|.

(c) Exponential regression with log linear link: mean µ = eh, y ∈ (0,∞). Then

f (y,h) = µ−1e−y/µ = exp{−e−hy − h}.
Here a(h) = −e−h, a′ = e−h, ψ = eh. So both |a′| and |ψ | grow at most exponen-
tially in |h|.

(d) Binary logistic regression: mean µ = eh/(1 + eh), y ∈ {0,1}. Then

f (y,h) = µy(1 − µ)1−y = exp{hy − ln(1 + eh)}.
Here a(h) = h, a′ = 1, ψ(h) = eh/(1 + eh). So both |a′| and |ψ | are bounded
above by 1.

(e) Binary probit regression: mean µ = �(h) ≡ ∫ h
−∞(e−z2/2/

√
2π)dz,

y ∈ {0,1}. Then

f (y,h) = µy(1 − µ)1−y = exp
{
y ln

(
�(h)/

(
1 − �(h)

)) + ln
(
1 − �(h)

)}
.

Here a(h) = ln(�(h)/(1 − �(h)), a′ = [�(h)−1 + {1 − �(h)}−1]�′(h), ψ(h) =
�(h) ∈ [0,1]. By using Mills’ ratio, it can be shown that |a′(h)| increases at most
linearly with |h|.
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Using these rates of growth, we can make the condition on D(·) more specific
for specific examples of GLM.

The conditions of Theorem 1 also depend on how the eigenvalues of Vγ and
V −1

γ behave. To be specific, assume that the largest eigenvalues of Vγ and V −1
γ ,

for |γ | ≤ r̄n, are both bounded above by some power r̄v
n (v > 0), for all large

enough r̄n.
The condition on rn ln B̄(rn) then becomes redundant since rn ln B̄(rn) ≤

r̄n ln B̃n ≤ cr̄n ln r̄n ≤ cr̄n lnKn ≺ nε2
n (for some constant c > 0 and for all large

enough n), since B̃n is bounded above by a power of r̄n.
The condition on r̄n ln(1/ε2

n) also becomes redundant [they are implied by the
condition on r̄n ln(Kn) and nε2

n � 1] if we assume that Kn � nδ for some δ > 0.
Consider now the condition on r̄n lnD(·) for various regression models, depend-

ing on the rate of growth D(r̄n

√
nε2

nB̃n). This condition on r̄n lnD(·) becomes re-
dundant [it is implied by the condition on r̄n ln(Kn)] for normal linear regression,
binary logistic regression, and probit regression since D(·) is bounded above by

some power of
√

r̄2+v
n nε2

n, which is bounded above by some power of Kn (note

that r̄n ≤ Kn, εn ≤ 1 and Kn � nδ for some δ > 0). The condition B(rn) ≺ nε2
n can

be satisfied by requiring r̄n ≺ (nε2
n)

1/v .
For Poisson and exponential regressions with the log-linear link, however, D(·)

grows exponentially in
√

r̄2+v
n nε2

n. The condition on r̄n lnD(·) then cannot be ig-

nored, and it can be satisfied if r̄n ≺ (nε2
n)

1/(4+v) [which actually implies the later
condition B(rn) ≺ nε2

n and makes it redundant].
These are summarized as follows.

THEOREM 2. Assume that the prior specification in Section 3 is used, such
that max{supγ :|γ |≤r̄n

ch1(Vγ ), supγ :|γ |≤r̄n
ch1(V

−1
γ )} ≤ Br̄v

n for some positive con-
stants B and v, for all large enough r̄n. Suppose |xj | ≤ 1 for all j , and

limn→∞
∑Kn

1 |β∗
j | < ∞, where Kn is a nondecreasing sequence in n and Kn � nδ

for some δ > 0.
Let εn be a sequence such that εn ∈ (0,1] for each n and nε2

n � 1 and assume
that the following conditions also hold:

r̄n ln(Kn) ≺ nε2
n,(10)

1 ≤ rn ≤ r̄n < Kn,(11)

1 ≺ rn ≺ Kn,(12)

�(rn) ≡ inf
γ :|γ |=rn

∑
j :j /∈γ

|β∗
j | ≺ ε2

n.(13)

Also assume that

r̄n ≺ (nε2
n)

1/v(14)
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for normal linear, binary logistic and binary probit regression; or assume

r̄n ≺ (nε2
n)

1/(4+v)(15)

for Poisson or exponential regression with log-linear link function. Then the results
of Theorem 1 hold.

This result can be used to study the convergence rate εn under various situations,
depending on how Kn grows with n, as well as how �(rn) = inf|γ |=rn

∑
j /∈γ |β∗

j |
grows with rn. Here are some corollaries, which follow by assuming an exponen-
tial decay rate of �(·) and checking the conditions of Theorem 2. This includes as
a special case only a fixed and finite number of |β∗

j |’s being nonzero, while also
allowing a more realistic setup with many small |β∗

j |’s, none of which is exactly
zero.

COROLLARY 1. Consider the examples of Poisson regression, exponential
regression, normal linear regression, logistic regression or probit regression de-
scribed before. Assume that the prior specification in Section 3 is used, such
that max{supγ :|γ |≤r̄n

ch1(Vγ ), supγ :|γ |≤r̄n
ch1(V

−1
γ )} ≤ Br̄v

n for some positive con-
stants B and v, for all large enough r̄n. Suppose |xj | ≤ 1 for all j . Suppose

Kn � nδ for some δ > 0 and Kn ≤ eCnξ
for some C > 0 and some ξ ∈ (0,1),

for all large enough n. Suppose limn→∞
∑Kn

j=1 |β∗
j | < ∞. Also suppose for some

C′ > 0, �(rn) ≤ e−C′rn for all large enough n, and

(C′)−1 lnn ≤ rn ≤ r̄n ≺ (lnn)k(16)

for some k > 1. Then we can take the convergence rate in Theorem 2 as

εn ∼ n−(1−ξ)/2(lnn)k/2.(17)

REMARK 1 (Good convergence rate). Note that nα ≺ eCnξ
for any small ξ > 0

and large α > 0. So if Kn ∼ nα for whatever large power α, one can achieve a
convergence rate εn ∼ n−(1−ξ)/2(lnn)k/2 ≺ n−(1−2ξ)/2, where ξ can be made arbi-
trarily close to zero. This gives a rate arbitrarily close to the “finite-dimensional”
rate 1/

√
n, despite the large dimension Kn. We note also that these results sug-

gest slowly growing r and r̄n between powers of lnn, for achieving a near finite-
dimensional convergence rate. Since these are only sufficient conditions, it may be
possible that other ranges of r and r̄n can also lead to a near finite-dimensional rate
of convergence. The following result, for example, shows a good convergence rate
even when r and r̄n grow slowly in some small power of n.

COROLLARY 2. Consider the setup of Corollary 1. For any b ∈ (0, q), if in-
stead of (16) we have

(C′)−1 lnn ≤ rn ≤ r̄n ≺ nb,(18)
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then we can take the convergence rate as

εn ∼ n−(1−ξ−b)/2.(19)

Here the power q = min{1 − ξ, δ, ξ/(3 + v)} for Poisson and exponential re-
gressions with log-linear link function; q = min{1 − ξ, δ}I [v ≤ 1] + min{1 −
ξ, δ, ξ/(v − 1)}I [v > 1] for logistic, probit and normal linear regression.

REMARK 2 (Posterior consistency). The results on posterior consistency can
be obtained as a special case by setting εn = ε for any small but fixed ε > 0.
There is no need to assume a rate for �(rn) for consistency results to hold, since
�(rn) ≺ ε2 as long as rn � 1 and limn→∞

∑Kn

1 |β∗
j | < ∞. The previous Theorem 2

then implies that the following condition on rn and r̄n is sufficient for posterior
consistency:

1 ≺ rn ≤ r̄n ≺ min
{
Kn,n

1/(v+4), n/(lnKn)
}
.(20)

A slightly more relaxed condition for consistency for the special cases of logistic
and probit regression can be found in Jiang [15].

REMARK 3 (Normal linear regression with unknown dispersion). So far, for
normal linear regression, we have assumed that y|x ∼ N(E(y|x),ϕ−1) with dis-
persion parameter (inverse variance) ϕ(> 0) known. In practice, ϕ is unknown
and a gamma prior is often put on ϕ (e.g., George and McCulloch [7], Kohn,
Smith and Chan [17] and Dobra et al. [5]). For example, suppose conditional
on model γ , ϕ|γ ∼ Ga(κ,ρ) with prior density π(ϕ|γ ) = ρκϕκ−1e−ρϕ/�(κ),
βγ |γ,ϕ ∼ N(0, ϕ−1Vγ ) and γ follows the prior distribution of Section 3. With
this prior specification, it can be shown that the statements regarding normal linear
regression in Theorem 2 and Corollaries 1 and 2 are still valid, where we consider
bounded covariates standardized such that |xj | ≤ 1 for all j .

5. Implications of posterior convergence. It is well-known that a conver-
gence statement such as

lim
n→∞P ∗{

πn[d(p,p∗) ≤ εn|Dn] ≥ 1 − e−r0nε2
n
} = 1,(21)

for some r0 > 0, implies existence of point estimates of p∗ that have the same
convergence rate εn in the frequentist sense. Such a point estimate can be obtained
by finding the center of an εn-ball with high posterior probability, or by posterior
expectation (e.g., Ghosal, Ghosh and van der Vaart [10]).

A point estimate can also be formed by a generalization of posterior expectation
called a “selected posterior estimate” (Jiang [15]). For example,

p̂A =
∫

pπA(dp|Dn),(22)
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where πA(dp|Dn) = π(dp|Dn,p ∈ A), and p ∈ A is a selection rule, possibly
data dependent. A rule of this kind, for example, can be averaging over several
of the best models, which are indexed by γ ’s having the largest marginal poste-
riors π(γ |Dn). For example, Smith and Kohn [23] considered the use of the best
model, and Sha et al. [22] averaged over the ten best models. A rule can also
be defined by using the models that include the individually strongest variables.
For example, include a model γ in the posterior average if γ includes a variable
j that appears more than 5 percent of time in the posterior distribution [i.e., if
π(γj = 1|Dn) >0.05]. See, for example, Lee et al. [19].

Suppose a rule A has selection probability π{p ∈ A|Dn} > r for some constant
r > 0. Then the convergence rate of p̂A can be studied by using the relations

d(p̂A,p∗)2 ≤ ε2
n + 2π[d(p,p∗) > εn|Dn]/r(23)

and

P ∗[d(p̂A,p∗)2 ≤ ε2
n + 2δn/r] ≥ P ∗[

π
(
d(p,p∗) > εn|Dn) ≤ δn

]
,(24)

which follows a familiar treatment based on convexity of p �→ d(p,p∗)2 (e.g.,
Ghosal, Ghosh and van der Vaart [10]). The term δn/r can usually be taken as
e−r0nε2

n [see result (i) of Theorem 1], which is negligible compared to ε2
n under

conditions r̄n ln(1/ε2
n) ≺ nε2

n and 1 ≤ r̄n of Theorem 1.
For regression purposes, a related mean estimate can be constructed as µ̂A(x) =∫

yp̂A(y|x)νy(dy). When binary response y is considered, a classifier can be de-
fined as ĈA(x) = I [µ̂A(x) > 0.5].

In the general case, there is no relationship bounding the L2 distance Ex(µ̂A −
µ∗)2 between the estimated mean and the true mean using d(p̂A,p∗), because the
latter is bounded but the former is not. However, a weighted L2 difference can be
bounded as

∫
(µ̂A − µ∗)2

ν̂A + ν∗ νx(dx) ≤ 2d(p̂A,p∗)2,(25)

where ν∗(x) = ∫
y2p∗(y|x)νy(dy) and ν̂A(x) = ∫

y2p̂A(y|x)νy(dy). This is ob-
tained by noting that (µ̂A − µ∗)2 = {∫ y(

√
p̂A + √

p∗) · (
√

p̂A − √
p∗)νy(dy)}2

and applying the Cauchy–Schwarz inequality.
Since the denominator is at most 2 for binary y, the above relation actually

leads to a bound for the unweighted L2 distance between the means, which further
leads to a bound for the classification error due to Corollary 6.2 of Devroye, Györfi
and Lugosi [4]. This is summarized below and was used in proving regression and
classification consistency in Jiang [15]:

E∗
DnP

∗
(x,y)

(
ĈA(x) �= y|Dn) − L∗

(26)
≤ E∗

Dn2
√

Ex(µ̂A − µ∗)2
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≤ E∗
Dn2

√
4d(p̂A,p∗)2 ≤ 2

√
4E∗

Dnd(p̂A,p∗)2(27)

≤ 4
√

ε2
n + 2E∗

Dnπ[d(p,p∗) > εn|Dn]/r.(28)

[The last step is due to (23).] Here L∗ = P ∗
(x,y){C∗(x) �= y} is the “Bayes error,”

where C∗(x) = I [µ∗(x) > 1/2] is the ideal “Bayes rule” based on the (unknown)
true mean function µ∗. According to Theorem 1(iii), the term E∗

Dnπ[d(p,p∗) >

εn|Dn] can be made exponentially small (of the form e−c1nε2
n for some c1 > 0),

which is negligible when compared to ε2
n as commented earlier. This implies that

the error of the classification rule ĈA(x) is at most 5εn above that of the optimal
Bayes rule, for all large enough n. So εn also forms a rate of convergence to the
optimal Bayes error for the purpose of classification. Here the convergence rate εn

can be made to be near “finite-dimensional” (nearly 1/
√

n) by Bayesian variable
selection, despite a high dimension Kn ∼ nα � n, in situations commented on
earlier (e.g., Corollary 1 and Remark 1).

These convergence rate results show that even in high dimensions with
dim(x) � n, a good convergence rate can be achieved when the effect of x is
“sparse.” For such sparse problems Bayesian variable selection can therefore help
to alleviate “overfitting” or the “curse of dimensionality.”

6. Gaussian variable selection and graphical models. In this section we
will assume that x

Jn

1 ≡ (x1, . . . , xKn, y) are multivariate Gaussian and have been
standardized to have E(xk) = 0, var(xk) = 1. Here y is regarded as xJn , where
Jn = Kn + 1. The effects of xk �=j on xj are summarized by the regression coeffi-
cients β∗

j |k used in the induced relation E(xj |xk �=j ) = ∑
k �=j β∗

j |kxk .

In Gaussian graphical models, relations among x
Jn

1 are described by a graph,
such that a node corresponding to xj is only connected to a “neighborhood”
(xk)k∈nbj

, where nbj is a subset of {1, . . . , Jn}\{j}, which indicates selected vari-
ables used in regression modeling of xj |xk �=j . Therefore, the Bayesian variable se-
lection technique can be used for studying the neighborhood of a variable xj (see,
e.g., Dobra et al. [5]). We will consider the situation when none of the effects of
xk �=j on xj is exactly zero. In this case, the usual consistency of selecting the “true
graph” (e.g., Meinshausen and Bühlmann [20]) will not be studied here, since the
true graph is the saturated graph adopting all Kn variables xk �=j to explain each xj .
In the high-dimensional case Kn � n, such a “true model” is obviously not very
useful. Nevertheless, in such a situation, Bayesian variable selection can still be
shown to produce “good” models that are much simpler and yet are still “consis-
tent,” if the effects of these Kn variables decay sufficiently fast (when ordered in
some way). Here “consistency” is in a different sense—these simplified models,
picking up only a small number out of all the Kn nonzero regression coefficients,
will be consistent in terms of producing probability densities “often close” to the
true probability density. In this approach, one first uses Bayesian variable selection
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to obtain such “good” density estimates, for all p∗(xj |xk �=j ), j = 1, . . . , Jn; then
one can construct graphs to summarize the conditional independence structures
corresponding to these “good” density estimates. (One can systematically decide
to either include or exclude one-sided connections in these graphs (see, e.g., Mein-
shausen and Bühlmann [20]) when some xk is used in modeling xj |xk �=j but xj is
not used in modeling xk|xj �=k .)

We are interested in making inference on Jn (= Kn + 1) (conditional) densities
p∗(xj |xk �=j ), j = 1, . . . , Jn, in order to construct a graph. We hope that the P ∗
probability for not reliably estimating each density is small enough so that the
P ∗ probability is small for any density to be badly estimated. In other words, we
would like to have a bound of P ∗ probability of large errors. For now, pick any
xj as the response y and consider its regression on the xk’s (k �= j ). To mimic the
regression setup, we can reorder the indices of the xk �=j ’s as x

Kn

1 . We will use the
prior specified in Remark 3. A result as in Theorem 1(ii), obtained when assuming
uniformly bounded |xk|’s, could be used for this purpose of bounding the total
error out of the Jn regression analyses.

In the current situation of Gaussian graphical models, however, the xk’s are
Gaussian instead of being uniformly bounded. In this case, for result (ii) of Theo-
rem 1 to hold, we will change the condition on �(rn) = inf|γ |=rn

∑
k /∈γ |β∗

k | from
�(rn) ≺ ε2

n to Kn�(rn) ≺ ε2
n. This would be satisfied if �(rn) decays exponen-

tially fast in rn, rn � lnn, and Kn grows at most polynomially. After taking into
account some other conditions, we obtain the following theorem.

THEOREM 3. Consider the prior specification in Remark 3. (When selecting
the neighborhood for each xj , treat xj as y and xk �=j as x

Kn

1 .) Assume that

max
{

sup
γ :|γ |≤r̄n

ch1(Vγ ), sup
γ :|γ |≤r̄n

ch1(V
−1
γ )

}
≤ Br̄v

n

for some positive constants B and v, for all large enough r̄n.
Suppose that, for each xj , the effects of the other variables xk �=j satisfy

limn→∞
∑

k∈Kj
|β∗

j |k| < ∞, where Kj = {1, . . . ,Kn + 1}\{j}. In addition,
assume that there exists some C′ > 0, such that, for all large enough n,
infγ⊂Kj ,|γ |=rn

∑
k∈Kj\γ |β∗

j |k| ≤ e−C′rn .

Assume that nδ ≺ Kn ≺ nα for some α > δ > 0.
Assume also for some ξ ∈ (0,1)

lnn ≺ rn ≤ r̄n ≺ nb, where b < min{δ, ξ, ξ/v}.(29)

Then we have, for some constant c′
1,2,3 > 0, for all sufficiently large n,

(i)

P ∗[
π

(
hj ≤ n−(1−ξ)/2|Dn) ≥ 1 − e−c′

1n
ξ

, j = 1, . . . ,Kn + 1
] ≥ 1 − nαe−c′

2n
ξ

and
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(ii)

P ∗[
ĥj,Aj

≤ c′
3n

−(1−ξ)/2, j = 1, . . . ,Kn + 1
] ≥ 1 − nαe−c′

2n
ξ

.

Here we define, for j = 1, . . . ,Kn + 1,

hj =
{∫

�Kn+1

∣∣p(xj |xk �=j )
1/2 − p∗(xj |xk �=j )

1/2∣∣2p∗(xk �=j ) dx
Kn+1
1

}1/2

,(30)

ĥj,Aj
=

{∫
�Kn+1

∣∣p̂Aj
(xj |xk �=j )

1/2 − p∗(xj |xk �=j )
1/2∣∣2

(31)

× p∗(xk �=j ) dx
Kn+1
1

}1/2

,

where p∗ represents the true density and p̂Aj
is a selected posterior estimate [as

defined in (22)] corresponding to a selection rule Aj , such that the selection prob-
ability π(p ∈ Aj |Dn) > r for some r > 0.

Therefore, a near finite-dimensional rate of convergence can be achieved (for
some small ξ > 0), jointly for all neighborhoods of xj , j = 1, . . . ,Kn + 1, despite
the fact that Kn can follow a large power of n.

7. General prior. In this section we consider the case |xj | ≤ 1 for all j and
mainly focus on the GLM models as described in Section 2, where a(h) and b(h)

contain no additional parameters other than h. (Similar conditions and results can
be formulated for normal linear regression with unknown error variance.)

Here we consider the general conditions on the prior π(γ,βγ ) for producing
rate of convergence εn, which is a sequence in n, which we assume to satisfy
εn ∈ (0,1] for Conditions (N) and (O) below.

Condition (N) requires a not too little prior to be placed over a very small neigh-
borhood of the true density p∗. Condition (O) requires a very little prior to be
placed outside of a region that is not too complex in some sense.

CONDITION (N) (For prior π on an approximation neighborhood). Assume
that a sequence of (nonempty) models γn exists such that, as n increases,∑

j /∈γn

|β∗
j | ≺ ε2

n,(32)

and for any sufficiently small η > 0, there exists Nη such that, for all n > Nη, we
have

π(γ = γn) ≥ e−nε2
n/8(33)

and

π
(
βγ ∈ M(γn, η)|γ = γn

) ≥ e−nε2
n/8,(34)

where M(γn, η) = (β∗
j ± ηε2

n/|γn|)j∈γn .
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CONDITION (O) (For prior π outside of a not-too-complex region). Let
D(R) = 1 + R sup|h|≤R |a′(h)| · sup|h|≤R |ψ(h)| for any R > 0. There exist some
Cn > 0 and some r̄n satisfying 1 ≤ r̄n < Kn, such that

r̄n ln(1/ε2
n) ≺ nε2

n,(35)

r̄n lnKn ≺ nε2
n,(36)

r̄n lnD(r̄nCn) ≺ nε2
n.(37)

Furthermore, for all large enough n, the following two equations hold:

π(|γ | > r̄n) ≤ e−4nε2
n,(38)

and for all γ such that |γ | ≤ r̄n, for all j ∈ γ ,

π(|βj | > Cn|γ ) ≤ e−4nε2
n .(39)

These conditions allow a larger variety of priors. For example, one can use a
uniform prior of γ over all models with complexity |γ | ≤ r̄n, where r̄n can be
taken to follow some rate of growth depending on the convergence rate εn desired,
and depending on the “bias” rate �(r) = infγ : |γ |=r

∑
j /∈γ |β∗

j |.
Before we truncated π(γ ) such that π[|γ | > r̄n] = 0. This may not be desir-

able since we are forbidding the model to be too complex in the prior. We here
notice that this truncation is not necessary. We can allow the prior to propose very
complicated models with large |γ |, as long as the prior probability of |γ | > r̄n is
sufficiently small.

THEOREM 4 (Convergence rate under general prior). For GLM models with
bounded covariates |xj | ≤ 1 for all j , suppose the true regression coefficients sat-

isfy limn→∞
∑Kn

j=1 |β∗
j | < ∞.

Let εn ∈ (0,1] be a sequence such that nε2
n → ∞. Denote d(p,p∗)2 =∫ ∫ |p(y, x|γ,βγ )1/2 − p∗(y, x)1/2|2νy(dy)νx(dx). If the prior specification sat-

isfies both Conditions (N) and (O), then we have the following (successively
stronger) results:

(i)

lim
n→∞P ∗{

πn[d(p,p∗) ≤ 4εn|Dn] ≥ 1 − 2e−nε2
n/4} = 1.

(ii) For all sufficiently large n,

P ∗{
π[d(p,p∗) > 4εn|Dn] ≥ 2e−nε2

n/4} ≤ 2e−nε2
n/4.

(iii) For all sufficiently large n,

E∗
Dnπ[d(p,p∗) > 4εn|Dn] ≤ 4e−nε2

n/2.
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Results (i), (ii) and (iii) of this theorem will be proved by verifying some suffi-
cient conditions for posterior convergence (to be summarized at the beginning of
Section 8). These results, with bounded xj ’s, will then be used to prove all the pre-
vious results on convergence rates, when specific priors as given in Section 3 are
used. The only exception is the result in Section 6, where xj ’s are jointly normal;
they will be obtained by directly verifying the sufficient conditions in Section 8.

These conditions below are based on the Hellinger metric entropy and will
be used to obtain posterior convergence rates under the GLM framework. Note
that the method involved here is different from that in Jiang [15], who uses the
Hellinger bracketing entropy and its upper bound of a parametric covering number
(see, e.g., Theorem 3, Lee [18]). That method does not directly apply to modeling
unbounded responses such as Gaussian and Poisson responses. (When applied to,
e.g., Poisson regression, the upper bound of the bracketing entropy would require
a too small restricted parameter space, on which the prior would place a nonnegli-
gible probability.)

8. Proofs. We first use a proposition to summarize a set of sufficient condi-
tions for establishing rates of posterior convergence. These serve as just one pos-
sible set of working conditions that we find convenient to use here, through which
we have established our results; there exist several other alternatives, possibly with
more relaxed conditions, for example, in Ghosal, Ghosh and van der Vaart [10] or
Zhang [26].

Suppose Pn is a sequence of sets of probability densities. (For each n, denote
P c

n as the complement—the set of densities not in Pn.) Suppose εn is a sequence
of positive numbers.

Suppose N(εn,Pn) is the minimal number of Hellinger balls of radius εn that
are needed to cover Pn. [I.e., N(εn,Pn) is the minimum of all k such that there
exist Sj = {p : d(p,pj ) ≤ εn}, j = 1, . . . , k, such that

⋃k
j=1 Sj ⊃ Pn, where

d(p, q) =
√∫

(
√

p − √
q)2 denotes the Hellinger distance between densities p and

q .]
Let the components of Dn = (w(1), . . . ,w(n)) be i.i.d. with true density p∗,

where dim(w(1)) and p∗ can depend on n. Denote π(·) as the prior (which is
allowed to depend on n by using, e.g., an increasing number of parameters to
parameterize the density as n increases), π(·|Dn) as the posterior and π̂(ε) =
π[d(p,p∗) > ε|Dn] for each ε > 0. Define the KL difference as d0(p,p∗) =∫

p∗ ln(p∗/p). Define also a dt difference as dt (p,p∗) = t−1(
∫

p∗(p∗/p)t − 1)

for any t > 0, which is used in, for example, Wong and Shen [25]. (Note that dt

decreases to d0 as t decreases toward 0.)
Denote P ∗ and E∗ as the respective probability measure and the expectation for

the data Dn.
Define the following conditions:

(a) lnN(εn,Pn) ≤ nε2
n for all sufficiently large n;
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(b) π(P c
n ) ≤ e−2nε2

n for all sufficiently large n;
(c) for all small enough γ > 0 and r > 0, there exists Nγ,r such that for all

n ≥ Nγ,r , π[p :d0(p,p∗) ≤ γ ε2
n] ≥ e−rnε2

n ;

(d) π[p :dt (p,p∗) ≤ ε2
n/4] ≥ e−nε2

n/4 for all sufficiently large n, for some
t > 0.

PROPOSITION 1. Suppose nε2
n � 1. Then, under (a), (b) and (c), we have:

(i)

lim
n→∞P ∗[

π̂(4εn) < 2e−nε2
n min{1,b/2}] = 1;

under (a), (b) and (d) (for some t > 0), we have
(ii)

P ∗[
π̂ (4εn) ≥ 2e−nε2

n min{1/2,t/4}] ≤ 2e−nε2
n min{1/2,t/4},

(iii)

E∗π̂(4εn) ≤ 4e−nε2
n min{1,t/2}.

The proof of this proposition follows the spirit of Ghosal, Ghosh and van der
Vaart [10]. The details are omitted here and are included in a technical report (Jiang
[14]).

PROOF OF THEOREM 4. We prove result (iii) only, since it implies (ii) by
Markov’s inequality, which further implies (i). Result (iii) is proven by applying
Proposition 1 with t = 1. The proof is completed by checking conditions (d), (a)
and (b) below.

Checking condition (d) for t = 1. Denote the GLM density as f (y,h) =
exp{a(h)y + b(h) + c(y)}. Then p∗ = f (y,h∗), where h∗ = xT β∗ = ∑Kn

j=1 xjβ
∗
j .

Let pγ = f (y,hγ ), where hγ = xT
γ βγ = ∑

j∈γn
xjβj , where γn is the model in

Condition (N).
When h∗ and hγ are close enough, dt (pγ ,p∗) (for t = 1) can be put in a form

dt (pγ ,p∗) = Exg(hi)(h∗ − hγ ), by integrating out y and applying a first-order
Taylor expansion. Here g is a continuous derivative function in a neighborhood
of h∗ and hi is an intermediate point between h∗ and hγ . Note that |hi − h∗| ≤
|hγ − h∗| ≤ |∑j /∈γn

xjβ
∗
j | + |∑j∈γn

xj (βj − β∗
j )| ≤ �n + rnδn, when the xj ’s

are bounded by 1 and βj ∈ (β∗
j ± δn) for all j ∈ γn. Here rn = |γn| and �n =∑

j /∈γn
|β∗

j | is assumed to satisfy �n ≺ ε2
n.

For sufficiently small rnδn, |g(hi)| is bounded since |hi | ≤ |h∗| + |hi − h∗| ≤
B0 + �n + rnδn is bounded, where B0 = limn→∞

∑Kn

j=1 |β∗
j |. Then dt (pγ ,p∗) ≤

C(�n + rnδn) for some constant C, for all small enough rnδn.
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We will take δn = ηε2
n/|γn| for some small enough η > 0. This will make dt ≤

ε2
n/4 for all large enough n, since �n ≺ ε2

n.
This implies that the set of densities S = {p(·|γn,β) :β ∈ (β∗

j ± δn)j∈γn} is

contained in T = {p :dt (p,p∗) ≤ ε2
n/4}. The conditions on π(γn) and π(β ∈

(β∗
j ± δn)j∈γn |γn) then imply that π(T ) ≥ π(S) ≥ e−nε2

n/4 for all large n, con-
firming condition (d).

Checking condition (a). Each density p is labeled by a model index γ and the
corresponding regression coefficients βj . We will define Pn as the set of densities
that can be represented with |γ | (the number of nonzero regression parameters)
being at most r̄n, and with each parameter |βj | ≤ Cn.

The corresponding space of regression parameters can be covered by small 	∞
balls of the form B = (vj ± δ)

Kn

j=1, of radius δ > 0. For each model γ in Pn, there
are |γ | nonzero components of βj , valued in ±Cn. It takes at most [(2Cn)/(2δ) +
1]|γ | balls to cover the parameter space of model γ in Pn. [The centers of these
balls can be taken inside the parameter space of model γ , so that each center
v = (vj )

Kn

1 has components satisfying vj = 0 ∀j /∈ γ and |vj | ≤ Cn ∀j ∈ γ .]
There are at most Kr

n models of size |γ | = r , and r = 0,1,2, . . . , r̄n. These
show that N(δ), the number of size-δ balls needed to cover the space of regression
parameters for Pn, is at most

∑r̄n
r=0 Kr

n[(2Cn)/(2δ)+ 1]r , which is bounded above
by (r̄n + 1)(Kn(Cn/δ + 1))r̄n .

Given any density in Pn, it can be represented by a set of regression parameters
(uj )

Kn

1 falling in one of these N(δ) balls, say, ball B = (vj ± δ)
Kn

j=1, where uj and
vj are zero for the same set of components γ , where |γ | ≤ r̄n.

Consider the corresponding GLM densities pu,v = exp{ya(hu,v) + b(hu,v) +
c(y)}, where hu = ∑Kn

j=1 ujxj and hv = ∑Kn

j=1 vjxj . Then the Hellinger

distance d(pu,pv) ≤ {d0(pu,pv)}1/2, where the KL difference d0(pu,pv) =
Ex

∫
pv(lnpv − lnpu)νy(dy). After integration in y, one can apply a Taylor ex-

pansion and show that d0(pu,pv) ≤ Ex(a
′(hi)ψ(hv) + b′(hi))(hv − hu), where

ψ = −b′/a′ and hi is an intermediate point between hv and hu. Note that u and v

both have components bounded in value by Cn and they have zero components out
of a same set, say, γ , such that |γ | ≤ r̄n. Therefore, hv and hu (and therefore, also
hi ) are bounded above by r̄nCn. Note also that |hv − hu| = |∑j∈γ xj (vj − uj )| ≤
r̄nδ, since |xj | ≤ 1, |vj − uj | ≤ δ and |γ | ≤ r̄n. Therefore,

d0(pu,pv) ≤ 2 sup
|h|≤r̄nCn

|a′(h)| sup
|h|≤r̄nCn

|ψ(h)|r̄nδ(40)

and

d(pu,pv) ≤
{

2 sup
|h|≤r̄nCn

|a′(h)| sup
|h|≤r̄nCn

|ψ(h)|r̄nδ
}1/2

.(41)
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So d(pu,pv) ≤ εn if δ = ε2
n/{2 sup|h|≤r̄nCn

|a′(h)| sup|h|≤r̄nCn
|ψ(h)|r̄n}. There-

fore, density pu in Pn falls in a Hellinger ball of size εn, centered at pv . There
are at most N(δ) such balls, because each center pv is the density corresponding
to the parameter v, which is the center of B , one of the at most N(δ) balls used to
cover the restricted parameter space.

Therefore, the Hellinger covering number

N(εn,Pn) ≤ N(δ)

≤ (r̄n + 1)Kr̄n
n

(
1 + 2ε−2

n sup
|h|≤r̄nCn

|a′(h)| sup
|h|≤r̄nCn

|ψ(h)|r̄nCn

)r̄n

(42)

≤ (
2K2

nD(r̄nCn)/ε
2
n

)r̄n ,
if 0 < εn ≤ 1 and 1 ≤ r̄n < Kn. Therefore, the conditions in Condition (O) guaran-
tee that lnN(εn,Pn) ≺ nε2

n for all large enough n, proving condition (a).

Checking condition (b). For the Pn defined above, the prior on the comple-
ment π(P c

n ) ≤ π[|γ | > r̄n] + ∑
γ :|γ |≤r̄n

π[γ ]π(
⋃

j∈γ [|βj | > Cn]|γ ), which is at
most π[|γ | > r̄n] + maxγ :|γ |≤r̄n π(

⋃
j∈γ [|βj | > Cn]|γ ). This is, due to Condi-

tion (O), at most (1 + r̄n)e
−4nε2

n = eln(1+r̄n)−4nε2
n ≤ exp(−4nε2

n/2) for all large
enough n. Here we have used 1 ≤ r̄n < Kn, so that ln(1+ r̄n) ≤ r̄n lnKn ≺ nε2

n due
to Condition (O). This proves condition (b). �

PROOF OF THEOREM 1. We apply Theorem 4 with εn replaced by ε′
n, so that

the Hellinger neighborhood will take a radius 4ε′
n. This can be later rescaled to

obtain the results in Theorem 1 concerning a radius εn, by setting εn = 4ε′
n or

ε′
n = εn/4.

For Condition (O): with the prior in Section 3, the condition on π[|γ | > r̄n] is

trivially satisfied, since it is zero due to truncation. We will take Cn =
√

B̃nnε2
n so

that the condition on r̄n lnD(r̄nCn) is satisfied. The condition on π[|γj | > Cn|γ ]
is checked by using Mills’ ratio. It is at most 2e−C2

n/(2B̃n)/

√
2πC2

n/B̃n, which is

therefore less than e−nε2
n/4 = e−4n(ε′

n)2
for all large enough n, as required by Con-

dition (O). Here B̃n is an upper bound on the prior variance of βj under model γ

with |γ | ≤ r̄n, and nε2
n � 1. All other conditions in Condition (O) are satisfied.

For Condition (N): Take the sequence of models γn such that, for each n,
γ = γn reaches its infimum in �(rn) = infγ :|γ |=rn

∑
j :j /∈γ |β∗

j |. Then
∑

j /∈γn
|β∗

j | =
�(rn) ≺ nε2

n.
For the condition on the prior π[β ∈ (β∗

j ±ηε2
n/rn)j∈γn |γn], use the normality of

the prior and obtain the lower bound |2πVγn |−1/2e−0.5βT V −1
γn

β(ηε2
n/rn)

rn for some
intermediate value β achieving the infimum of the density over (β∗

j ±ηε2
n/rn)j∈γn .
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Note that βT V −1
γn

β ≤ ‖β‖2B(rn) ≤ (
∑

j∈γn
|βj |)2B(rn) ≤ C1B(rn) for some

constant C1 > 0, since the eigenvalues of V −1
γn

are at most B(rn) (for all large

enough n), and the Euclidean norm ‖β‖ ≤ ∑
j∈γn

|βj | ≤ limn→∞
∑Kn

j=1 |β∗
j | +

rnηε2
n/rn is bounded. Note also that |2πVγn |−1/2 ≥ e−C2rn−C3rn ln B̄(rn) for some

constant C2 and some constant C3 > 0, due to the eigenvalues of Vγn being
bounded above by B̄(rn) (for all large enough n).

Therefore,

π[β ∈ (β∗
j ± ηε2

n/rn)j∈γn |γn]
(43)

≥ exp{−C2rn − C3rn ln B̄(rn) − 0.5C1B(rn) − rn ln(rn/(ηε2
n))}.

This will be greater in order than any e−cnε2
n (c > 0), satisfying a requirement of

Condition (N), since rn, rn ln B̄(rn) and B(rn) are all smaller than nε2
n in order,

and so are rn ln rn ≤ r̄n lnKn and rn ln(1/ε2
n) ≤ r̄n ln(1/ε2

n).
Now consider the condition on π(γn). Note that the γn chosen is such that

|γn| = rn, where rn (≤ r̄n) is the expected size of the model γ̃ = γ̃
Kn

1 proposed

by the prior before truncation. The prior specification of γ
Kn

1 (in Section 3) is i.i.d.
binary with π(γ̃j = 1) = rn/Kn. For the condition on π(γ = γn) to hold, it suffices

for us to show that (*) for any c > 0, π(γ̃ = γn) > e−cnε2
n for all large enough n.

This is because π(γ = γn) cannot be smaller, since it is obtained by truncation of
γ̃ , and truncation increases the probability of all allowed configurations (note that
|γn| ≤ r̄n).

Now |γn| = rn ≤ r̄n implies that there are rn out of Kn γ̃j ’s equal to 1,
with the rest being 0. The probability is therefore π(γ̃ = γn) = (rn/Kn)

rn(1 −
rn/Kn)

Kn−rn . Since rn/Kn ≺ 1, we have lnπ(γ̃ = γn) ∼ rn ln(rn/Kn) ≥ −rn lnKn

(rn ≥ 1), where rn lnKn ≺ nε2
n. This leads to claim (*). �

PROOF OF THEOREM 3. It suffices for us to prove (**) result (ii) of Proposi-
tion 1 in a regression setup for normal dispersion models with Kn Gaussian covari-
ates. We will take εn ∼ n−(1−ξ)/2 for some ξ ∈ (0,1). Then result (i) of Theorem 3
can be obtained by a union bound over Kn + 1 regressions, treating each of the
Kn + 1 xj ’s in turn as the response y, and xk �=j as x

Kn

1 . Result (ii) of Theorem 3
can be obtained by using bounds of the form (24).

We prove (**) by directly applying Proposition 1 and verifying conditions (a),
(b) and (d) (for t = 1). The details are omitted here and are included in a technical
report (Jiang [14]) in order to save space. �

9. Discussion. Bayesian variable selection (BVS) handles high-dimensional
regression by using a suitable prior to propose lower-dimensional models which
select a few explanatory variables out of the many (Kn) candidates. For generalized
linear models, we have shown that (see, e.g., Remark 1) a near finite-dimensional
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convergence rate εn can be obtained, even when the number of candidate variables
Kn grows as any high power nα of the sample size n. Such a good rate εn is
derived assuming an exponentially decaying tail �(rn) = infγ :|γ |=rn

∑
j /∈γ |β∗

j |.
This includes as a special case the situation when only a fixed and finite number
of true regression coefficients (β∗

j ’s) are nonzero. On the other hand, it also allows
more realistic situations with many small |β∗

j |’s, none of which is exactly zero.
The rates we obtain here are infinitesimally weaker than the finite-dimensional
rate n−1/2. We suspect that the exact rate n−1/2 cannot be achieved in the setup
that we consider, since the priors we use need to propose models of dimension rn
increasing to infinity as n increases (even though rn � n). This is for the purpose
of being able to approximate a true model to any precision. With such increasing
model dimensions, we suspect that the exact n−1/2-rate cannot be achieved in any
way.

Although we have only considered in detail the situation with an exponentially
decaying �(·), the more general framework of, for example, Theorem 2 allows
us to treat other situations of �(·) as well. For example, when �(·) follows an
inverse power law, the convergence rate εn can be somewhat slower. However,
even in such situations, BVS can still exhibit some “resistance against overfit-
ting” when Kn is large. Not only can posterior consistency be still achieved when
limn→∞

∑Kn

j=1 |β∗
j | < ∞, but also the convergence rates will not be directly linked

to the large dimension Kn—they will be related to the sizes of the |β∗
j |’s instead.

An Associate Editor raised the interesting question whether the sparseness
conditions for the true regression coefficients can be extended to a form of
	k-summability for k > 1 (such as 	2). We do not have a general answer, except in
an analytically-friendly special case as follows: The true model is y ∼ N(xT β∗,1)

(it can be extended to allow a dispersion parameter), such that ExxT forms an
identity matrix, or more generally, ExxT and its inverse both have bounded eigen-
values. The prior proposes fitted models of the form y ∼ N(xT

γ βγ ,1), according to
the prior specification in Section 3. For this example, by a treatment parallel to the
current paper, we can accommodate β∗ that is 	2-summable but not 	1-summable,
such as β∗ = (j−1)

Kn

1 , resulting in a possibly slower rate for posterior conver-

gence. On the other hand, when β∗ = (j−1/2)
Kn

1 , which is 	k-summable for k > 2
but not 	2-summable, the current approach does not work. Roughly speaking, we
would need to use very complicated fitted models of size |γ | ∼ Kn to approximate
the true density, in order to obtain a nonzero prior probability over a small neigh-
borhood of the true model. Then the complexity/entropy conditions [e.g., equation
(10)], which imply |γ | lnKn ≺ n, could not be satisfied for such fitted models of
size |γ | ∼ Kn in a high-dimensional setting Kn > n.

Although the topic of our paper is Bayesian, it is noted that the use of 	1-type
conditions here is related to some other work in the frequentist approach. Our pa-
per is closer to Bühlmann [2] in the sense that both assume a true model satisfying
some 	1 summability condition, while the fitted model (boosting for Bühlmann [2]
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and BVS for the current paper) does not use an 	1 constraint or penalization. The
fitted models in this paper are proposed according to a prior that uses i.i.d. binary
distributions (with a small selection probability) when selecting the candidate vari-
ables. This may be regarded as a nondeterministic way of penalizing the 	0 norm
of β (or the number of nonzero regression coefficients) of the fitted models. On
the other hand, in Greenshtein and Ritov [12], Greenshtein [11] and Meinshausen
and Bühlmann [20], the fitted models (instead of the true models) are subject to
an 	1 constraint or penalization. In the more general framework of persistence in
Greenshtein and Ritov [12] and Greenshtein [11], the true models actually do not
need to satisfy the 	1 summability condition.

The current paper focuses on fitting a density with Bayesian variable selection
(BVS). A referee raised some interesting questions about the use of BVS when the
main goal is selecting the variables. In some sense the current paper does prove
that the method of BVS will provide “good” sets of variables, based on which
good predictive performance, for example, in classification, can be achieved; see
discussion in Section 5. The paper focused on the more realistic situation when
there is no simple true model with many zero regression coefficients. All vari-
ables may have some effects, more or less. So the problem is not to select a “true”
model (which would be the full model) but a “good” model (possibly much sim-
pler than the full model) that achieves good performance for prediction, regression
or density estimation. In this sense the paper does address variable selection and
shows that BVS provides “good” sets of variables with high posterior probability.
What will happen when there does exist a small true model, for example, when
some regression coefficients are bounded away from zero, while the rest are exactly
zero? We conjecture that, with high probability, BVS will select all the “relevant”
variables with nonzero regression coefficients, but it may also include some “ir-
relevant” variables, with small regression coefficients proposed by the posterior.
A truncation scheme similar to thresholding may be used to screen out the “irrel-
evant” variables, if necessary. However, we leave this as an open question, since
such a scenario, being more idealized but still very interesting, is not within the
main scope of the current paper.

Another future work may be to consider the (generalized) linear structure of the
fitted models in a misspecified framework such as in Kleijn and van der Vaart [16],
so that the true model may be nonlinear. On the other hand, one should note that
nonlinearity may be treated even under the linear framework of the true model.
This can be done by including higher order terms, interactions, regression spline
terms with various knot-locations, and so on (see, e.g., Smith and Kohn [23]).

Acknowledgments. I wish to thank Professor Eitan Greenshtein for providing
a related technical report. I also wish to thank the reviewers and the Editors for their
insightful questions and comments.



1510 W. JIANG

REFERENCES

[1] BICKEL, P. J. and LEVINA, E. (2004). Some theory for Fisher’s linear discriminant function,
“naive Bayes,” and some alternatives when there are many more variables than observa-
tions. Bernoulli 10 989–1010. MR2108040

[2] BÜHLMANN, P. (2006). Boosting for high-dimensional linear models. Ann. Statist. 34
559–583. MR2281878

[3] CLYDE, M. and DESIMONE-SASINOWSKA, H. (1997). Accounting for model uncertainty in
Poisson regression models: Particulate matter and mortality in Birmingham, Alabama.
ISDS Discussion Paper 97-06. Available at ftp.isds.duke.edu/pub/WorkingPapers/97-06.
ps.

[4] DEVROYE, L., GYÖRFI, L. and LUGOSI, G. (1996). A Probabilistic Theory of Pattern Recog-
nition. Springer, New York. MR1383093

[5] DOBRA, A., HANS, C., JONES, B., NEVINS, J. R., YAO, G. and WEST, M. (2004). Sparse
graphical models for exploring gene expression data. J. Multivariate Anal. 90 196–212.
MR2064941

[6] FAN, J. and LI, R. (2006). Statistical challenges with high dimensionality: Feature selection
in knowledge discovery. International Congress of Mathematicians 3 595–622. European
Math. Soc., Zürich. MR2275698

[7] GEORGE, E. I. and MCCULLOCH, R. E. (1997). Approaches for Bayesian variable selection.
Statist. Sinica 7 339–373.

[8] GHOSAL, S. (1997). Normal approximation to the posterior distribution for generalized linear
models with many covariates. Math. Methods Statist. 6 332–348. MR1475901

[9] GHOSAL, S. (1999). Asymptotic normality of posterior distributions in high-dimensional linear
models. Bernoulli 5 315–331. MR1681701

[10] GHOSAL, S., GHOSH, J. K. and VAN DER VAART, A. W. (2000). Convergence rates of poste-
rior distributions. Ann. Statist. 28 500–531. MR1790007

[11] GREENSHTEIN, E. (2006). Best subset selection, persistence in high-dimensional statistical
learning and optimization under 	1 constraint. Ann. Statist. 34 2367–2386. MR2291503

[12] GREENSHTEIN, E. and RITOV, Y. (2004). Persistence in high-dimensional linear predictor
selection and the virtue of overparametrization. Bernoulli 10 971–988. MR2108039

[13] HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2001). The Elements of Statistical Learning:
Data Mining, Inference and Prediction. Springer, New York. MR1851606

[14] JIANG, W. (2005). Bayesian variable selection for high dimensional generalized linear models.
Technical Report 05-02, Dept. Statistics, Northwestern Univ. Available at newton.stats.
northwestern.edu/~jiang/tr/glmone2.tr.pdf.

[15] JIANG, W. (2006). On the consistency of Bayesian variable selection for high dimensional
binary regression and classification. Neural Comput. 18 2762–2776. MR2256703

[16] KLEIJN, B. J. K. and VAN DER VAART, A. W. (2006). Misspecification in infinite-dimensional
Bayesian statistics. Ann. Stat. 34 837–877. MR2283395

[17] KOHN, R., SMITH, M. and CHAN, D. (2001). Nonparametric regression using linear combi-
nations of basis functions. Statist. Comput. 11 313–322. MR1863502

[18] LEE, H. K. H. (2000). Consistency of posterior distributions for neural networks. Neural Net-
works 13 629–642.

[19] LEE, K. E., SHA, N., DOUGHERTY, E. R., VANNUCCI, M. and MALLICK, B. K. (2003).
Gene selection: A Bayesian variable selection approach. Bioinformatics 19 90–97.

[20] MEINSHAUSEN, N. and BÜHLMANN, P. (2006). High-dimensional graphs and variable selec-
tion with the lasso. Ann. Statist. 34 1436–1462. MR2278363

[21] NOTT, D. J. and LEONTE, D. (2004). Sampling schemes for Bayesian variable selection in
generalized linear models. J. Comput. Graph. Statist. 13 362–382. MR2063990

http://www.ams.org/mathscinet-getitem?mr=2108040
http://www.ams.org/mathscinet-getitem?mr=2281878
ftp.isds.duke.edu/pub/WorkingPapers/97-06.ps
http://www.ams.org/mathscinet-getitem?mr=1383093
http://www.ams.org/mathscinet-getitem?mr=2064941
http://www.ams.org/mathscinet-getitem?mr=2275698
http://www.ams.org/mathscinet-getitem?mr=1475901
http://www.ams.org/mathscinet-getitem?mr=1681701
http://www.ams.org/mathscinet-getitem?mr=1790007
http://www.ams.org/mathscinet-getitem?mr=2291503
http://www.ams.org/mathscinet-getitem?mr=2108039
http://www.ams.org/mathscinet-getitem?mr=1851606
newton.stats.northwestern.edu/~jiang/tr/glmone2.tr.pdf
http://www.ams.org/mathscinet-getitem?mr=2256703
http://www.ams.org/mathscinet-getitem?mr=2283395
http://www.ams.org/mathscinet-getitem?mr=1863502
http://www.ams.org/mathscinet-getitem?mr=2278363
http://www.ams.org/mathscinet-getitem?mr=2063990
ftp.isds.duke.edu/pub/WorkingPapers/97-06.ps
newton.stats.northwestern.edu/~jiang/tr/glmone2.tr.pdf


BAYESIAN VARIABLE SELECTION 1511

[22] SHA, N., VANNUCCI, M., TADESSE, M. G., BROWN, P. J., DRAGONI, I., DAVIES, N.,
ROBERTS, T. C., CONTESTABILE, A., SALMON, M., BUCKLEY, C. and FALCIANI, F.
(2004). Bayesian variable selection in multinomial probit models to identify molecular
signatures of disease stage. Biometrics 60 812–819. MR2089459

[23] SMITH, M. and KOHN, R. (1996). Nonparametric regression using Bayesian variable selection.
J. Econometrics 75 317–343.

[24] WANG, X. and GEORGE, E. I. (2004). A hierarchical Bayes approach to variable selection for
generalized linear models. Techinical report. Available at www.cs.berkeley.edu/~russell/
classes/cs294/f05/papers/wang+george-2004.pdf.

[25] WONG, W. H. and SHEN, X. (1995). Probability inequalities for likelihood ratios and conver-
gence rates of sieve MLEs. Ann. Statist. 23 339–362. MR1332570

[26] ZHANG, T. (2006). From ε-entropy to KL-entropy: Analysis of minimum information com-
plexity density estimation. Ann. Statist. 34 2180–2210. MR2291497

[27] ZHOU, X., LIU, K.-Y. and WONG, S. T. C. (2004). Cancer classification and prediction using
logistic regression with Bayesian gene selection. J. Biomedical Informatics 37 249–259.

DEPARTMENT OF STATISTICS

NORTHWESTERN UNIVERSITY

EVANSTON, ILLINOIS 60208
USA
E-MAIL: wjiang@northwestern.edu

http://www.ams.org/mathscinet-getitem?mr=2089459
www.cs.berkeley.edu/~russell/classes/cs294/f05/papers/wang+george-2004.pdf
http://www.ams.org/mathscinet-getitem?mr=1332570
http://www.ams.org/mathscinet-getitem?mr=2291497
mailto:wjiang@northwestern.edu
www.cs.berkeley.edu/~russell/classes/cs294/f05/papers/wang+george-2004.pdf

	Introduction
	Notation and framework
	A prior specification
	Convergence results for GLM
	Implications of posterior convergence
	Gaussian variable selection and graphical models
	General prior
	Proofs
	Checking condition (d) for t=1
	Checking condition (a)
	Checking condition (b)

	Discussion
	Acknowledgments
	References
	Author's Addresses

