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AGGREGATION FOR GAUSSIAN REGRESSION
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Florida State University, Université Paris VI and Florida State University

This paper studies statistical aggregation procedures in the regression
setting. A motivating factor is the existence of many different methods of es-
timation, leading to possibly competing estimators. We consider here three
different types of aggregation: model selection (MS) aggregation, convex (C)
aggregation and linear (L) aggregation. The objective of (MS) is to select
the optimal single estimator from the list; that of (C) is to select the opti-
mal convex combination of the given estimators; and that of (L) is to select
the optimal linear combination of the given estimators. We are interested in
evaluating the rates of convergence of the excess risks of the estimators ob-
tained by these procedures. Our approach is motivated by recently published
minimax results [Nemirovski, A. (2000). Topics in non-parametric statistics.
Lectures on Probability Theory and Statistics (Saint-Flour, 1998). Lecture
Notes in Math. 1738 85–277. Springer, Berlin; Tsybakov, A. B. (2003). Op-
timal rates of aggregation. Learning Theory and Kernel Machines. Lecture
Notes in Artificial Intelligence 2777 303–313. Springer, Heidelberg]. There
exist competing aggregation procedures achieving optimal convergence rates
for each of the (MS), (C) and (L) cases separately. Since these procedures
are not directly comparable with each other, we suggest an alternative so-
lution. We prove that all three optimal rates, as well as those for the newly
introduced (S) aggregation (subset selection), are nearly achieved via a sin-
gle “universal” aggregation procedure. The procedure consists of mixing the
initial estimators with weights obtained by penalized least squares. Two dif-
ferent penalties are considered: one of them is of the BIC type, the second
one is a data-dependent �1-type penalty.

1. Introduction. In this paper we study aggregation procedures and their per-
formance for regression models. Let Dn = {(X1, Y1), . . . , (Xn,Yn)} be a sample
of independent random pairs (Xi, Yi) with

Yi = f (Xi) + Wi, i = 1, . . . , n,(1.1)

where f :X → R is an unknown regression function to be estimated, X is a Borel
subset of R

d , the Xi’s are fixed elements in X and the errors Wi are zero mean
random variables.
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Aggregation of arbitrary estimators in regression models has recently received
increasing attention [9, 15, 23, 26, 34, 40, 42–45]. A motivating factor is the ex-
istence of many different methods of estimation, leading to possibly competing
estimators f̂1, . . . , f̂M . A natural idea is then to look for a new, improved estima-
tor f̃ constructed by combining f̂1, . . . , f̂M in a suitable way. Such an estimator f̃

is called an aggregate and its construction is called aggregation.
Three main aggregation problems are model selection (MS) aggregation, convex

(C) aggregation and linear (L) aggregation, as first stated by Nemirovski [34]. The
objective of (MS) is to select the optimal (in a sense to be defined) single estimator
from the list; that of (C) is to select the optimal convex combination of the given
estimators; and that of (L) is to select the optimal linear combination of the given
estimators.

Aggregation procedures are typically based on sample splitting. The initial sam-
ple Dn is divided into a training sample, used to construct estimators f̂1, . . . , f̂M ,
and an independent validation sample, used to learn, that is, to construct f̃ . In this
paper we do not consider sample splitting schemes but rather deal with an idealized
scheme. We fix the training sample, and thus instead of estimators f̂1, . . . , f̂M , we
have fixed functions f1, . . . , fM . A passage to the initial model in our results is
straightforward: conditioning on the training sample, we write the inequalities of
Theorems 3.1 and 4.1 or, for example, (1.2) below. Then, we take expectations on
both sides of these inequalities over the distribution of the whole sample Dn and
interchange the expectation and infimum signs to get bounds containing the risks
of the estimators on the right-hand side. The fixed functions f1, . . . , fM can be
considered as elements of an (overdetermined) dictionary, see [19], or as “weak
learners,” see [37], and our results can be interpreted in such contexts as well.

To give precise definitions, denote by ‖g‖n = {n−1∑n
i=1 g2(Xi)}1/2 the empiri-

cal norm of a function g in R
d and set fλ =∑M

j=1 λjfj for any λ = (λ1, . . . , λM) ∈
R

M . The performance of an aggregate f̃ can be judged against the mathematical
target

Ef ‖f̃ − f ‖2
n ≤ inf

λ∈HM
‖fλ − f ‖2

n + �n,M,(1.2)

where �n,M ≥ 0 is a remainder term independent of f characterizing the price
to pay for aggregation, and the set HM is either the entire R

M (for linear ag-
gregation), the simplex �M = {λ = (λ1, . . . , λM) ∈ R

M :λj ≥ 0,
∑M

j=1 λj ≤ 1}
(for convex aggregation), or the set of all vertices of �M , except the vertex
(0, . . . ,0) ∈ R

M (for model selection aggregation). Here and later Ef denotes the
expectation with respect to the joint distribution of (X1, Y1), . . . , (Xn,Yn) under
model (1.1). The random functions fλ attaining infλ∈HM ‖fλ − f ‖2

n in (1.2) for the
three values taken by HM are called (L), (C) and (MS) oracles, respectively. Note
that these minimizers are not estimators since they depend on the true f .

We also introduce a fourth type of aggregation, subset selection, or (S) ag-
gregation. For (S) aggregation we fix an integer D ≤ M and put HM = �M,D ,
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where �M,D denotes the set of all λ ∈ R
M having at most D nonzero coordinates.

Note that (L) aggregation is a special case of subset selection [(S) aggregation] for
D = M . The literature on subset selection techniques is very large and dates back
to [1, 33, 38]. We refer to the recent comprehensive survey [36] for references on
methods geared mainly to parametric models. For a review of techniques leading
to subset selection in nonparametric settings we refer to [7] and the references
therein.

We say that the aggregate f̃ mimics the (L), (C), (MS) or (S) oracle if it sat-
isfies (1.2) for the corresponding set HM , with the minimal possible price for
aggregation �n,M . Minimal possible values �n,M for the three problems can be
defined via a minimax setting and they are called optimal rates of aggregation [40]
and further denoted by ψn,M . Extending the results of [40] obtained in the random
design case to the fixed design case, we will show in Sections 3 and 5 that under
mild conditions

ψn,M �



M/n, for (L) aggregation,
{D log(1 + M/D)}/n, for (S) aggregation,
M/n, for (C) aggregation, if M ≤ √

n,√{
log

(
1 + M/

√
n
)}

/n, for (C) aggregation, if M >
√

n,
(logM)/n, for (MS) aggregation.

(1.3)

This implies that linear aggregation has the highest price, (MS) aggregation has the
lowest price and convex aggregation occupies an intermediate place. The oracle
risks on the right-hand side in (1.2) satisfy a reversed inequality,

inf
1≤j≤M

‖fj − f ‖2
n ≥ inf

λ∈�M
‖fλ − f ‖2

n ≥ inf
λ∈RM

‖fλ − f ‖2
n,

since the sets over which the infima are taken are nested. There is no winner among
the three aggregation techniques and the question of how to choose the best among
them remains open.

The ideal oracle inequality (1.2) is available only for some special cases.
See [13, 15, 27] for (MS) aggregation, [26, 25, 34, 40] for (C) aggregation with
M >

√
n and [40] for (L) aggregation and for (C) aggregation with M ≤ √

n. For
more general situations there exist less sharp results of the type

Ef ‖f̃ − f ‖2
n ≤ (1 + ε) inf

λ∈HM
‖fλ − f ‖2

n + �n,M,(1.4)

where ε > 0 is a constant independent of f and n, and �n,M is a remainder term,
not necessarily having the same behavior in n and M as the optimal one ψn,M .

Bounds of the type (1.4) in regression problems have been obtained by many
authors mainly for the model selection case; see, for example, [4, 5, 7–12, 15, 23,
28, 30, 32, 42] and the references cited in these works. Most of the papers on model
selection treat particular restricted families of estimators, such as orthogonal series
estimators, spline estimators, and so forth. There are relatively few results on (MS)
aggregation when the estimators are allowed to be arbitrary; see [9, 13, 15, 23, 27,
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40, 42–45]. Various convex aggregation procedures for nonparametric regression
have emerged in the last decade. The literature on oracle inequalities of the type
(1.2) and (1.4) for the (C) aggregation case is not nearly as large as the one on
model selection. We refer to [3, 9, 13, 26, 25, 29, 34, 40, 43–45]. Finally, linear
aggregation procedures are discussed in [13, 34, 40].

Given the existence of competing aggregation procedures achieving either opti-
mal (MS), (C) or (L) bounds, there is an ongoing discussion as to which procedure
is the best one. Since this cannot be decided by merely comparing the optimal
bounds, we suggest an alternative solution. We show that all three optimal (MS),
(C) and (L) bounds can be nearly achieved via a single aggregation procedure. We
also show that this procedure leads to near optimal bounds for the newly introduced
(S) aggregation, for any subset size D. Our answer will thus meet the desiderata of
both model (subset) selection and model averaging. The procedures that we sug-
gest for aggregation are based on penalized least squares, with the BIC-type or
Lasso (�1-type) penalties.

The paper is organized as follows. Section 2 introduces notation and assump-
tions used throughout the paper. In Section 3 we show that a BIC-type aggregate
satisfies inequalities of the form (1.4) with the optimal remainder term ψn,M . We
establish the oracle inequalities for all four sets HM under consideration, hence
showing that the BIC-type aggregate achieves simultaneously the (S) [and hence
the (L)], the (C) and the (MS) bounds. In Section 4 we study aggregation with
the �1 penalty and we obtain (1.4) simultaneously for the (S), (C) and (MS) cases,
with a remainder term �n,M that differs from the optimal ψn,M only by a log-
arithmic factor. We give the corresponding lower bounds for (S), (C) and (MS)
aggregation in Section 5, complementing the results obtained for the random de-
sign case in [40]. All proofs are deferred to the appendices.

2. Notation and assumptions. The following two assumptions on the regres-
sion model (1.1) are supposed to be satisfied throughout the paper.

ASSUMPTION (A1). The random variables Wi are independent and Gaussian
N(0, σ 2).

ASSUMPTION (A2). The functions f :X → R and fj :X → R, j = 1, . . . ,

M , with M ≥ 2, belong to the class F0 of uniformly bounded functions defined by

F0
def=

{
g :X → R

∣∣∣ sup
x∈X

|g(x)| ≤ L

}
,

where L < ∞ is a constant that is not necessarily known to the statistician.

The functions fj can be viewed as estimators of f constructed from a training
sample. Here we consider the ideal situation in which they are fixed; we concen-
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trate on learning only. For each λ = (λ1, . . . , λM) ∈ R
M , define

fλ(x) =
M∑

j=1

λjfj (x)

and let M(λ) denote the number of nonzero coordinates of λ, that is,

M(λ) =
M∑

j=1

I{λj 	=0} = CardJ (λ),

where I{·} denotes the indicator function and J (λ) = {j ∈ {1, . . . ,M} :λj 	= 0}.
Furthermore, we introduce the residual sum of squares

Ŝ(λ) = 1

n

n∑
i=1

{Yi − fλ(Xi)}2

and the function

L(λ) = 2 log
(

eM

M(λ) ∨ 1

)
,

for all λ ∈ R
M . The method that we propose is based on aggregating the fj ’s via

penalized least squares. Given a penalty term pen(λ), the penalized least squares
estimator λ̂ = (̂λ1, . . . , λ̂M) is defined by

λ̂ = arg min
λ∈RM

{Ŝ(λ) + pen(λ)},(2.1)

which renders in turn the aggregated estimator

f̃ (x) = f̂λ(x).(2.2)

Although λ̂ is not necessarily unique, all our oracle inequalities hold for any mini-
mizer (2.1). Since the vector λ̂ can take any values in R

M , the aggregate f̃ is not a
model selector in the traditional sense, nor is it necessarily a convex combination
of the functions fj . Nevertheless, we will show that it mimics the (S), (C) and
(MS) oracles when one of the following two penalties is used:

pen(λ) = 2σ 2

n

{
1 + 2 + a

1 + a

√
L(λ) + 1 + a

a
L(λ)

}
M(λ)(2.3)

or

pen(λ) = 2
√

2σ

√
logM + logn

n

M∑
j=1

|λj |‖fj‖n.(2.4)

In (2.3), a > 0 is a parameter to be set by the user. The penalty (2.3) can be viewed
as a variant of BIC-type penalties [21, 38] since pen(λ) ∼ M(λ), but the scal-
ing factor here is different and depends on M(λ). We also note that in the se-
quence space model (where the functions f1, . . . , fM are orthonormal with respect
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to the scalar product induced by the norm ‖ · ‖n), the penalty pen(λ) ∼ M(λ) leads
to λ̂j ’s that are hard thresholded values of the Yj ’s (see, e.g., [24], page 138). Our
penalty (2.3) is not exactly of that form, but it differs from it only in a logarithmic
factor.

The penalty (2.4), again in the sequence space model, leads to λ̂j ’s that are
soft thresholded values of Yj ’s. In general models, (2.4) is a weighted �1-penalty,
with data-dependent weights. Penalized least squares estimators with �1-penalty
pen(λ) ∼∑M

j=1 |λj | are closely related to basis pursuit [17], to Lasso-type estima-
tors [2, 26, 34, 39] and LARS [20].

Our results show that the BIC-type penalty (2.3) allows optimal aggregation
under (A1) and (A2). The �1-penalty (2.4) allows near optimal aggregation under
somewhat stronger conditions.

3. Optimal aggregation with a BIC-type penalty. In this section we show
that the penalized least squares aggregate (2.2) corresponding to the penalty
term (2.3) achieves simultaneously the (L), (C) and (MS) bounds of the form (1.4)
with the optimal rates �n,M = ψn,M . Consequently, the smallest bound is achieved
by our aggregate. The next theorem presents an oracle inequality that implies all
three bounds, as well as a bound for (S) aggregation.

THEOREM 3.1. Assume (A1) and (A2). Let f̃ be the penalized least squares
aggregate defined in (2.2) with penalty (2.3). Then, for all a > 0 and all integers
n ≥ 1 and M ≥ 2,

Ef ‖f̃ − f ‖2
n ≤ (1 + a) inf

λ∈RM

[
‖fλ − f ‖2

n + σ 2

n

{
5 + 2 + 3a

a
L(λ)

}
M(λ)

]
(3.1)

+ σ 2

n

6(1 + a)2

a(e − 1)
.

The proof is given in Appendix A.

COROLLARY 3.2. Under the conditions of Theorem 3.1, there exists a con-
stant C > 0 such that for all a > 0 and all integers n ≥ 1 and M ≥ 2 and D ≤ M ,

the following upper bounds for RM,n
def= Ef ‖f̃ − f ‖2

n hold:

RM,n ≤ (1 + a) inf
1≤j≤M

‖fj − f ‖2
n + C(1 + a + a−1)σ 2 logM

n
,(3.2)

RM,n ≤ (1 + a) inf
λ∈�M,D

‖fλ − f ‖2
n + C(1 + a + a−1)σ 2 D

n
log

(
M

D
+ 1

)
,(3.3)

RM,n ≤ (1 + a) inf
λ∈RM

‖fλ − f ‖2
n + C(1 + a + a−1)σ 2 M

n
,(3.4)

RM,n ≤ (1 + a) inf
λ∈�M

‖fλ − f ‖2
n + C(1 + a + a−1)(L2 + σ 2)ψC

n (M),(3.5)
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where

ψC
n (M) =

{
M/n, if M ≤ √

n,√{
log

(
eM/

√
n
)}

/n, if M >
√

n.

The proof is given in Appendix A.
Note that, along with the bounds of Corollary 3.2, Theorem 3.1 implies a trivial

(constant) bound on RM,n. In fact, the infimum over λ ∈ R
M in (3.1) is smaller

than the value of the expression in square brackets for λ = 0, which together with

Assumption (A2) yields RM,n ≤ (1 + a)L2 + σ 2

n
6(1+a)2

a(e−1)
. Therefore, the remainder

terms in (3.2)–(3.5) can be replaced by their truncated versions (truncation by a
constant).

A variant of Theorem 3.1 for regression with random design X1, . . . ,Xn can be
found in [14].

REMARK 1. The variance σ 2 is usually unknown and we need to substitute an
estimate in the penalty (2.3). We consider the situation described in the introduc-
tion where the functions fj are estimators based on an independent (training) data
set D ′

� that consists of observations (X′
j , Y

′
j ) following (1.1). Let σ̂ 2 be an esti-

mate of σ 2 based on D ′
� only. We write E

(1)
f (E(2)

f ) for expectation with respect to

D ′
� (Dn), and let Ef = E

(1)
f E

(2)
f be the product expectation. Let f̂ be the aggregate

corresponding to the penalty (2.3) with σ 2 replaced by σ̂ 2. Note that

Ef ‖f̂ − f ‖2
n = E

(1)
f E

(2)
f ‖f̂ − f ‖2

nI{2σ̂ 2≥σ 2} + E
(1)
f E

(2)
f ‖f̂ − f ‖2

nI{2σ̂ 2<σ 2}.

Inspection of the proof of Theorem 3.1 shows that E
(2)
f ‖f̂ − f ‖2

nI{2σ̂ 2≥σ 2} can

be bounded simply by the right-hand side of (3.1) with σ 2 substituted by 2σ̂ 2, as
Theorem 3.1 holds for any penalty term larger than (2.3). Consequently we find

Ef ‖f̂ − f ‖2
nI{2σ̂ 2≥σ 2}

≤ 2E
(1)
f σ̂ 2

n

6(1 + a)2

a(e − 1)

+ (1 + a) inf
λ∈RM

[
‖fλ − f ‖2

n + 2E
(1)
f σ̂ 2

n

{
5 + 2 + 3a

a
L(λ)

}
M(λ)

]
.

Next, we observe that E
(2)
f ‖f̂ − f ‖2

n ≤ 6σ 2 + 2L2. For this, we use the reason-
ing leading to (A.5) in the proof of Theorem 4.1, in which we replace IAc by 1
throughout. Notice that this argument holds for any positive penalty term pen(λ)
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such that pen(λ0) = 0 with λ0 = (0, . . . ,0), and hence it holds for the penalty term
used here. Thus

Ef ‖f̂ − f ‖2
nI{2σ̂ 2<σ 2} ≤ (6σ 2 + 2L2)P

(1)
f {2σ̂ 2 < σ 2}.

Combining the three displays above we see that f̂ achieves a bound similar to (3.1)
if the estimator σ̂ 2 satisfies P

(1)
f {2σ̂ 2 < σ 2} ≤ c1/n and E

(1)
f σ̂ 2 ≤ c2σ

2 for some fi-
nite constants c1, c2. Since the sample variance of Y ′

i from the training sample D ′
�,

with � ≥ cn for some positive constant c, meets both requirements, it can always
play the role of σ̂ 2.

4. Near optimal aggregation with a data-dependent �1 penalty. In this sec-
tion we show that the penalized least squares aggregate (2.2) using a penalty of
the form (2.4) achieves simultaneously the (MS), (C), (L) and (S) bounds of the
form (1.4) with near optimal rates �n,M . We will use the following additional
assumption.

ASSUMPTION (A3). Define the matrices

�n =
(

1

n

n∑
i=1

fj (Xi)fj ′(Xi)

)
1≤j,j ′≤M

,

diag(�n) = diag(‖f1‖2
n, . . . ,‖fM‖2

n).

There exists κ = κn,M > 0 such that the matrix �n − κ diag(�n) is positive semi-
definite for any given n ≥ 1, M ≥ 2.

The next theorem presents an oracle inequality similar to the one of Theo-
rem 3.1.

THEOREM 4.1. Assume (A1), (A2) and (A3). Let f̃ be the penalized least
squares aggregate defined by (2.2) with penalty (2.4). Then, for all ε > 0, and all
integers n ≥ 1, M ≥ 2, we have

Ef ‖f̃ − f ‖2
n

≤ inf
λ∈RM

{
(1 + ε)‖fλ − f ‖2

n + 8
(

4 + ε + 4

ε

)
σ 2

κ

logM + logn

n
M(λ)

}
(4.1)

+ 4L2 + 12σ 2

n
√

π(logM + logn)
+ 6σ 2

√
n + 2

n
exp

(
− n

16

)
.

The proof is given in Appendix A.
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COROLLARY 4.2. Let the assumptions of Theorem 4.1 be satisfied. Then there
exists a constant C = C(L2, σ 2, κ) > 0 such that for all ε > 0 and for all integers
n ≥ 1, M ≥ 2 and D ≤ M ,

Ef ‖f̃ − f ‖2
n ≤ (1 + ε) inf

1≤j≤M
‖fj − f ‖2

n + C(1 + ε + ε−1)
log(M ∨ n)

n
,

Ef ‖f̃ − f ‖2
n ≤ (1 + ε) inf

λ∈�M,D
‖fλ − f ‖2

n + C(1 + ε + ε−1)
D log(M ∨ n)

n
,

Ef ‖f̃ − f ‖2
n ≤ (1 + ε) inf

λ∈RM
‖fλ − f ‖2

n + C(1 + ε + ε−1)
M log(M ∨ n)

n
,

Ef ‖f̃ − f ‖2
n ≤ (1 + ε) inf

λ∈�M
‖fλ − f ‖2

n + C(1 + ε + ε−1)ψ
C
n (M),

where

ψ
C
n (M) =

{
(M logn)/n, if M ≤ √

n,√
(logM)/n, if M >

√
n.

PROOF. The argument is similar to that of the proof of Corollary 3.2. �

REMARK 2. Using the same reasoning as in Remark 1, we can replace σ 2 in
the penalty term by twice the sample variance of Y ′

i from the training sample D ′
�.

REMARK 3. Inspection of the proofs shows that the constants C = C(L2, σ 2,

κ) in Corollary 4.2 have the form C = A1 +A2/κ , where A1 and A2 are constants
independent of κ . In general, κ may depend on n and M . However, if κ > c for
some constant c > 0, independent of n and M , as discussed in Remarks 3 and 4
below, the rates of aggregation given in Corollary 4.2 are near optimal, up to loga-
rithmic factors. They are exactly optimal [cf. (1.3) and the lower bounds of the next
section] for some configurations of n,M : for (MS)-aggregation if na′ ≤ M ≤ na ,
and for (C)-aggregation if n1/2 ≤ M ≤ na , where 0 < a′ < a < ∞.

REMARK 4. If ξmin, the smallest eigenvalue of the matrix �n, is positive,
Assumption (A3) is satisfied for κ = ξmin/L

2. In a standard parametric regression
context where M is fixed and �n/n converges to a nonsingular M ×M matrix, we
have that ξmin > c (and therefore κ > c/L2) for n large enough and for some c > 0
independent of M and n.

REMARK 5. Assumption (A3) is trivially satisfied with κ = 1 if �n is a diag-
onal matrix (note that zero diagonal entries are not excluded). An example illus-
trating this situation is related to the orthogonal series nonparametric regression:
M = Mn is allowed to converge to ∞ as n → ∞ and the basis functions fj are
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orthogonal with respect to the empirical norm. Another example is related to se-
quence space models, where the fj are estimators constructed from nonintersect-
ing blocks of coefficients. Aggregation of such mutually orthogonal estimators can
be used to achieve adaptation (cf., e.g., [34]). Note that Assumption (A3) does not
exclude the matrices �n whose ordered eigenvalues can be arbitrarily close to 0 as
M → ∞. The last property is characteristic for sequence space representation of
statistical inverse problems: there �n is diagonal, with M = Mn → ∞, as n → ∞,
and with the j th eigenvalue tending to 0 as j → ∞. For such matrices �n As-
sumption (A3) holds with κ = 1, so that the oracle inequality of Theorem 4.1 is
invariant with respect to the speed of decrease of the eigenvalues.

REMARK 6. The bounds of Corollary 4.2 can be written with the remainder
terms truncated at a constant level (cf. an analogous remark after Corollary 3.2).
Thus, for M > n the (L) bounds become trivial.

However, for M > n an oracle bound of the type (4.1) is still meaningful if
f is sparse, that is, can be well approximated by relatively few (less than n) func-
tions fj . This is illustrated by the next theorem where Assumption (A3) is replaced
by a local mutual coherence property of the matrix �n, relaxing the mutual coher-
ence condition suggested in [19]. Let

ρn(i, j) = 〈fi, fj 〉n
‖fi‖n‖fj‖n

denote the “correlation” between two elements fi and fj . We will assume that the
values ρM(i, j) with i 	= j are relatively small, for i ∈ J (λ), λ ∈ R

M . Set

ρ(λ) = max
i∈J (λ)

max
j>i

|ρn(i, j)|.

THEOREM 4.3. Assume (A1) and (A2). Let f̃ be the penalized least squares
aggregate defined by (2.2) with penalty

pen(λ) = 4
√

2σ

√
logM + logn

n

M∑
j=1

|λj |‖fj‖n.

Then, for all ε > 0 and all integers n ≥ 1, M ≥ 2, we have

Ef ‖f̃ − f ‖2
n ≤ inf

{
(1 + ε)‖fλ − f ‖2

n + 32
(

4 + ε + 4

ε

)
σ 2 logM + logn

n
M(λ)

}

+ 4L2 + 12σ 2

n
√

π(logM + logn)
+ 6σ 2

√
n + 2

n
exp

(
− n

16

)
,

where the infimum is taken over all λ ∈ R
M such that 32ρ(λ)M(λ) ≤ 1.
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The proof is given in Appendix A.
In particular, if f has a sparse representation f = fλ∗ for some λ∗ ∈ R

M with
32ρ(λ∗)M(λ∗) ≤ 1, there exists a constant C = C(L2, σ 2) < ∞ such that

Ef ‖f̃ − f ‖2
n ≤ C(logM + logn)

M(λ∗)
n

for all n ≥ 1 and M ≥ 2. Even for M > n, this bound is meaningful if M(λ∗) � n.
Note that in Theorem 4.3 the correlations ρn(i, j) with i, j /∈ J (λ) can take arbi-

trary values in [−1,1]. Such ρn(i, j) constitute the overwhelming majority of the
elements of the correlation matrix if J (λ) is a set of small cardinality, M(λ) � M .

REMARK 7. An attractive feature of the �1-penalized aggregation is its com-
putational feasibility. Clearly, the criterion in (2.1) with penalties as in Theorems
4.1 and 4.3 is convex in λ. One can therefore use techniques of convex optimization
to compute the aggregates. We refer, for instance, to [20, 35] for detailed analysis
of such optimization problems and fast algorithms.

REMARK 8. We refer to Theorem 2.1 in [35] for conditions under which the
penalized least squares aggregate is unique. Typically, for M > n the solution is
not unique, but a convex combination of solutions is itself a solution. Our results
hold for any element of such a convex set of solutions.

5. Lower bounds. In this section we provide lower bounds showing that the
remainder terms in the upper bounds obtained in the previous sections are optimal
or near optimal. For regression with random design and the L2(R

d,µ)-risks, such
lower bounds for aggregation with optimal rates ψn,M as given in (1.3) were es-
tablished in [40]. The next theorem extends them to aggregation for the regression
model with fixed design. Furthermore, we state these bounds in a more general
form, considering not only the expected squared risks, but also other loss func-
tions, and instead of the (L) aggregation lower bound, we provide the more general
(S) aggregation bound.

Let w : R → [0,∞) be a loss function, that is, a monotone nondecreasing func-
tion satisfying w(0) = 0 and w 	≡ 0.

THEOREM 5.1. Let the integers n,M,D be such that 2 ≤ M ≤ n, and let
X1, . . . ,Xn be distinct points. Assume that HM is either the simplex �M [for
the (C) aggregation case], the set of vertices of �M , except the vertex (0, . . . ,0) ∈
R

M [for the (MS) aggregation case], or the set �M,D [for the (S) aggregation
case]. Let the corresponding ψn,M be given by (1.3) and, for (S) aggregation, as-
sume that M log(M/D + 1) ≤ n and M ≥ D. Then there exist f1, . . . , fM ∈ F0
such that

inf
Tn

sup
f ∈F0

Ef w

[
ψ−1

n,M

(
‖Tn − f ‖2

n − inf
λ∈HM

‖fλ − f ‖2
n

)]
≥ c,(5.1)
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where infTn denotes the infimum over all estimators and the constant c > 0 does
not depend on n,M and D.

The proof is given in Appendix A.
Setting w(u) = u in Theorem 5.1, we get the lower bounds for expected squared

risks showing optimality or near optimality of the remainder terms in the oracle
inequalities of Corollaries 3.2 and 4.2. The choice of w(u) = I {u > a} with some
fixed a > 0 leads to the lower bounds for probabilities showing near optimality of
the remainder terms in the corresponding upper bounds “in probability” obtained
in [14].

APPENDIX A: PROOFS

A.1. Proof of Theorem 3.1. Let �m be the set of λ ∈ R
M with exactly m

nonzero coefficients, �m = {λ ∈ R
M :M(λ) = m}. Let Jm,k , k = 1, . . . ,

(M
m

)
, be all

the subsets of {1, . . . ,M} of cardinality m and define

�m,k(λ) = {λ = (λ1, . . . , λM) ∈ �m :λj 	= 0 ⇔ j ∈ Jm,k}.
The collection {�m,k : 1 ≤ k ≤ (M

m

)} forms a partition of the set �m. Observe that

inf
λ∈RM

{Ŝ(λ) + pen(λ)} = inf
0≤m≤M

inf
1≤k≤(M

m)
inf

λ∈�m,k

{Ŝ(λ) + pen(λ)}.

Here the penalty pen(λ) is defined in (2.3), and it takes a constant value on each
of the sets �m as M(λ) = m and L(λ) = Lm ≡ 2 ln(eM/(m ∨ 1)) for all λ ∈ �m.
We now apply [11], Theorem 2, choosing there the parameters θ = a/(1 + a) and
K = 2. This yields

Ef ‖f̃ − f ‖2
n ≤ (1 + a) inf

0≤m≤M
inf

1≤k≤(M
m)

{
inf

λ∈�m,k

‖fλ − f ‖2
n + pen(λ) − mσ 2

n

}

+ (1 + a)2

a

σ 2

n
�

{
(2 + a)2

(1 + a)2 + 2
}
,

where � =∑M
m=1

(M
m

)
exp(−mLm). Using the crude bound

(M
m

)≤ (eM/m)m (see,
e.g., [18], page 218), we get

� ≤
M∑

m=1

(
eM

m

)−m

≤
M∑

m=1

e−m ≤ 1

e − 1
.

For all λ ∈ �m, we have

npen(λ) − mσ 2 = σ 2m

(
1 + 2

2 + a

1 + a

√
Lm + 2

1 + a

a
Lm

)
≤ σ 2m

(
5 + 2 + 3a

a
Lm

)
.
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Consequently we find

Ef ‖f̃ − f ‖2
n ≤ (1 + a)

× inf
0≤m≤M

inf
1≤k≤(M

m)

{
inf

λ∈�m,k

‖f − fλ‖2
n + σ 2m

n

(
5 + 2 + 3a

a
Lm

)}

+ 6(1 + a)2

a(e − 1)

σ 2

n

= (1 + a) inf
λ∈RM

[
‖f − fλ‖2

n + σ 2M(λ)

n

{
5 + 2 + 3a

a
L(λ)

}]

+ 6(1 + a)2

a(e − 1)

σ 2

n
,

which proves the result.

A.2. Proof of Corollary 3.2.

PROOF OF (3.2). Since the infimum on the right-hand side of (3.1) is taken
over all λ ∈ R

M , the bound easily follows by restricting the minimization to the
set of the M vertices (1,0, . . . ,0), (0,1,0, . . . ,0), . . . , (0, . . . ,0,1) of �M . �

PROOF OF (3.3) AND (3.4). The (S) bound (3.3) easily follows from (3.1) by
restricting the minimization to �M,D . In fact, for λ ∈ �M,D we have M(λ) = D

and L(λ) = 2 log(eM/D) ≤ 6 log(M/D +1). The (L) bound (3.4) is a special case
of (3.3) for D = M . �

PROOF OF (3.5). For M ≤ √
n the result follows from (3.4). Assume now that

M >
√

n and let m ≥ 1 be the smallest integer greater than or equal to

xn,M = √
n/
(
2
√

log
(
eM/

√
n
))

.

Clearly, xn,M ≤ m ≤ xn,M + 1 ≤ M . First, consider the case m ≥ 1. Denote by C
the set of functions h of the form

h(x) = 1

m

M∑
j=1

kjfj (x), kj ∈ {0,1, . . . ,m},
M∑

j=1

kj ≤ m.

The following approximation result can be obtained by the “Maurey argument”
(see, e.g., [6], Lemma 1 or [34], pages 192 and 193):

min
g∈C

‖g − f ‖2
n ≤ min

λ∈�M
‖fλ − f ‖2

n + L2

m
.(A.1)
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For completeness, we give the proof of (A.1) in Appendix B. Since M(λ) ≤ m ≤
xn,M + 1 for the vectors λ corresponding to g ∈ C, and since x �→ x log( eM

x
) is

increasing for 1 ≤ x ≤ M , we get from (3.1)

Ef ‖f̃ − f ‖2
n ≤ inf

g∈C

{
C1‖g − f ‖2

n + C2
xn,M + 1

n
log

(
eM

xn,M + 1

)}
+ C3

n

with C1 = 1 + a,C2 = C′
2(1 + a + 1/a)σ 2 and C3 = C′

3(1 + a + 1/a)σ 2, where
C′

2 > 0 and C′
3 > 0 are absolute constants. Using this inequality, (A.1) and the fact

that m ≥ xn,M , we obtain

Ef ‖f̃ − f ‖2
n ≤ C1 inf

λ∈�M
‖fλ − f ‖2

n + C1
L2

xn,M

+ C2
xn,M + 1

n
log

(
eM

xn,M

)
+ C3

n
.

Since, clearly, n−1 ≤ ψC
n (M), to complete the proof of (3.5) it remains to note that

log
(

eM

xn,M

)
= log

(
2eM√

n

√
log

(
eM√

n

))
≤ 3 log

(
eM√

n

)
,

in view of the elementary inequality log(2y
√

log(y)) ≤ 3 log(y), for all y ≥ e. �

A.3. Proof of Theorem 4.1. We begin as in [31]. First we define

rn = 2
√

2σ

√
logM + logn

n

and rn,j = rn‖fj‖n. By definition, f̃ = f̂λ satisfies

Ŝ(̂λ) +
M∑

j=1

rn,j |̂λj | ≤ Ŝ(λ) +
M∑

j=1

rn,j |λj |

for all λ ∈ R
M , which we may rewrite as

‖f̃ − f ‖2
n +

M∑
j=1

rn,j |̂λj | ≤ ‖fλ − f ‖2
n +

M∑
j=1

rn,j |λj | + 2

n

n∑
i=1

Wi(f̃ − fλ)(Xi).

We define the random variables Vj = 1
n

∑n
i=1 fj (Xi)Wi , 1 ≤ j ≤ M , and the event

A =
M⋂

j=1

{2|Vj | ≤ rn,j }.

The normality Assumption (A1) on Wi implies that
√

nVj ∼ N(0, σ 2‖fj‖2
n), 1 ≤

j ≤ M . Applying the union bound followed by the standard tail bound for the
N(0,1) distribution, we find

P(Ac) ≤
M∑

j=1

P
{√

n|Vj | > √
nrn,j /2

}≤ 1

n
√

π(logM + logn)
.(A.2)
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Then, on the set A, we find

2

n

n∑
i=1

Wi(f̃ − fλ)(Xi) = 2
M∑

j=1

Vj (̂λj − λj ) ≤
M∑

j=1

rn,j |̂λj − λj |

and therefore, still on the set A,

‖f̃ − f ‖2
n ≤ ‖fλ − f ‖2

n +
M∑

j=1

rn,j |̂λj − λj | +
M∑

j=1

rn,j |λj | −
M∑

j=1

rn,j |̂λj |.

Recall that J (λ) denotes the set of indices of the nonzero elements of λ, and
M(λ) = Card J (λ). Rewriting the right-hand side of the previous display, we find,
on the set A,

‖f̃ − f ‖2
n ≤ ‖fλ − f ‖2

n +
(

M∑
j=1

rn,j |̂λj − λj | −
∑

j /∈J (λ)

rn,j |̂λj |
)

+
(
− ∑

j∈J (λ)

rn,j |̂λj | +
∑

j∈J (λ)

rn,j |λj |
)

(A.3)

≤ ‖fλ − f ‖2
n + 2

∑
j∈J (λ)

rn,j |̂λj − λj |

by the triangle inequality and the fact that λj = 0 for j /∈ J (λ). By Assump-
tion (A3), we have

∑
j∈J (λ)

r2
n,j |̂λj − λj |2 ≤ r2

n

M∑
j=1

‖fj‖2
n |̂λj − λj |2 = r2

n(̂λ − λ)′ diag(�n)(̂λ − λ)

≤ r2
nκ−1(̂λ − λ)′�n(̂λ − λ) = r2

nκ−1‖f̃ − fλ‖2
n.

Combining this with the Cauchy–Schwarz and triangle inequalities, we find further
that, on the set A,

‖f̃ − f ‖2
n ≤ ‖fλ − f ‖2

n + 2
∑

j∈J (λ)

rn,j |̂λj − λj |
(A.4)

≤ ‖fλ − f ‖2
n + 2rn

√
M(λ)/κ(‖f̃ − f ‖n + ‖fλ − f ‖n).

Inequality (A.4) is of the simple form v2 ≤ c2 + vb + cb with v = ‖f̃ − f ‖n, b =
2rn

√
M(λ)/κ and c = ‖fλ −f ‖n. After applying the inequality 2xy ≤ x2/α + αy2

(x, y ∈ R, α > 0) twice, to 2bc and 2bv, we easily find v2 ≤ v2/(2α) + αb2 +
(2α + 1)/(2α)c2, whence v2 ≤ a/(a − 1){b2(a/2)+ c2(a + 1)/a} for a = 2α > 1.
Recalling that (A.4) is valid on the set A, we now get that

Ef [‖f̃ − f ‖2
nIA] ≤ inf

λ∈RM

{
a + 1

a − 1
‖fλ − f ‖2

n + 2a2

κ(a − 1)
r2
nM(λ)

}
∀ a > 1.
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It remains to bound Ef ‖f̃ − f ‖2
nIAc . Writing ‖W‖2

n = n−1∑n
i=1 W 2

i and using
the inequality (x + y)2 ≤ 2x2 + 2y2, we find that

Ef ‖f̃ − f ‖2
nIAc ≤ 2Ef Ŝ(f̃ )IAc + 2Ef ‖W‖2

nIAc .

Next, since pen(̃λ) ≥ 0 and by the definition of f̃ , for λ0 = (0, . . . ,0)′ ∈ R
M ,

Ef Ŝ(f̃ )IAc ≤ Ef {Ŝ(f̃ ) + pen(λ̃)}IAc ≤ Ef {Ŝ(fλ0) + pen(λ0)}IAc

= Ef Ŝ(fλ0)IAc ≤ 2L2
P(Ac) + 2Ef ‖W‖2

nIAc,

whence

Ef ‖f̃ − f ‖2
nIAc ≤ 4L2

P(Ac) + 6Ef ‖W‖2
nIAc .(A.5)

In order to bound the last term on the right-hand side, we introduce the event
B = { 1

n

∑n
i=1 W 2

i ≤ 2σ 2}. Using Lemma B.2 from Appendix B with d = n, we get

P{Bc} = P
{
Z2

n − n >
√

2n
√

n/2
}≤ exp(−n/8).

Observe further that Ef ‖W‖2
nIAc ≤ 2σ 2

P{Ac}+Ef ‖W‖2
nIBc and by the Cauchy–

Schwarz inequality we find

Ef ‖W‖2
nIBc ≤ (Ef ‖W‖4

n)
1/2 exp(−n/16) =

(
3σ 4

n
+ n − 1

n
σ 4
)1/2

exp(−n/16).

Collecting all these bounds, and using the bound (A.2) on P{Ac}, we obtain

Ef ‖f̃ − f ‖2
nIAc ≤ 4L2

P(Ac) + 6Ef ‖W‖2
nIAc

≤ 4L2 + 12σ 2

n
√

π(logM + logn)
+ 6σ 2

√
n + 2

n
exp(−n/16).

The proof of the theorem is complete by taking ε = 2/(a − 1).

A.4. Proof of Theorem 4.3. First, notice that by definition of f̃ and of the
penalty pen(λ) = 2

∑M
j=1 rn,j |λj |,

‖f̃ − f ‖2
n ≤ ‖fλ − f ‖2

n +
M∑

j=1

rn,j |̂λj − λj | + 2
M∑

j=1

rn,j |λj | − 2
M∑

j=1

rn,j |̂λj |.

Adding
∑M

j=1 rn,j |̂λj −λj | to both sides of this inequality and arguing as in (A.4),
we get that, on the set A, for any λ ∈ R

M ,

‖f̃ − f ‖2
n +

M∑
j=1

rn,j |̂λj − λj | ≤ ‖fλ − f ‖2
n + 4

∑
j∈J (λ)

rn,j |̂λj − λj |

≤ ‖fλ − f ‖2
n + 4

√
M(λ)

√ ∑
j∈J (λ)

r2
n,j |̂λj − λj |2.
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Since
∑∑

i /∈J (λ),j /∈J (λ)〈fi, fj 〉n(̂λi − λi)(̂λj − λj ) ≥ 0 we have∑
j∈J (λ)

r2
n,j |̂λj − λj |2 = r2

n‖f̃ − fλ‖2
n

− r2
n

∑∑
i /∈J (λ),j /∈J (λ)

〈fi, fj 〉n(̂λi − λi)(̂λj − λj )

− 2r2
n

∑∑
i∈J (λ),j>i

〈fi, fj 〉n(̂λi − λi)(̂λj − λj )

≤ r2
n‖f̃ − fλ‖2

n + 2r2
nρ(λ)

(
M∑

j=1

‖fj‖n |̂λj − λj |
)2

.

Recalling that rn,j = rn‖fj‖n and combining the last two displays, for λ ∈ R
M

with 4
√

2ρ(λ)M(λ) ≤ 1, we obtain, on the set A,

‖f̃ − f ‖2
n ≤ ‖fλ − f ‖2

n + 4rn
√

M(λ)(‖f − fλ‖n + ‖f̃ − f ‖n),

which is inequality (A.4) with κ = 1/4. The remainder of the proof now parallels
that of Theorem 4.1. �

A.5. Proof of Theorem 5.1. We proceed similarly to [40]. The proof is based
on the following easy corollary of the Fano lemma (which can be obtained, e.g.,
by combining Theorems 2.2 and 2.5 in [41]).

LEMMA A.1. Let w be a loss function, A > 0 be such that w(A) > 0, and let
C be a set of functions on X of cardinality N = card(C) ≥ 2 such that

‖f − g‖2
n ≥ 4s2 > 0 ∀f,g ∈ C, f 	= g,

and the Kullback divergences K(Pf ,Pg) between the measures Pf and Pg satisfy

K(Pf ,Pg) ≤ (1/16) logN ∀f,g ∈ C.

Then for ψ = s2/A we have

inf
Tn

sup
f ∈C

Ef w[ψ−1‖Tn − f ‖2
n] ≥ c1w(A),

where infTn denotes the infimum over all estimators and c1 > 0 is a constant.

The (S) aggregation case. Pick M disjoint subsets S1, . . . , SM of {X1, . . . ,Xn},
each Sj of cardinality log(M/D + 1) [w.l.o.g. we assume that log(M/D + 1) is an
integer] and define the functions

fj (x) = γ I{x∈Sj }, j = 1, . . . ,M,

where γ ≤ L is a positive constant to be chosen. Consider the set of functions V =
{fλ :λ ∈ �̄M,D} where �̄M,D is the set of all λ ∈ R

M such that D of the coordinates
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of λ are equal to 1 and the remaining M −D coordinates are zero. Clearly, V ⊂ F0.
Thus, it suffices to prove the (S) lower bound of the theorem where the supremum
over f ∈ F0 is replaced by that over f ∈ V . Since �̄M,D ⊂ �M,D , for f ∈ V
we have minλ∈�M,D ‖fλ − f ‖2

n = 0. Therefore, to finish the proof for the (S) case,
it suffices to bound from below the quantity infTn supf ∈V Ef w(ψ−1

n,M‖Tn − f ‖2
n)

where ψn,M = D log(M/D + 1)/n. This will be done by applying Lemma A.1. In
fact, note that for every two functions fλ and fλ̄ in V we have

‖fλ − fλ̄‖2
n = γ 2 log(M/D + 1)

n
ρ(λ, λ̄) ≤ γ 2D log(M/D + 1)

n
,(A.6)

where ρ(λ, λ̄)
def= ∑M

j=1 I{λj 	=λ̄j } is the Hamming distance between λ = (λ1, . . . ,

λM) ∈ �̄M,D and λ̄ = (λ̄1, . . . , λ̄M) ∈ �̄M,D . Lemma 4 in [10] (see also [22]) as-
serts that if M ≥ 6D there exists a subset �′ ⊂ �M,D such that, for some constant
c̃ > 0 independent of M and D,

log card(�′) ≥ c̃D log
(

M

D
+ 1

)
(A.7)

and

ρ(λ, λ̄) ≥ c̃D ∀ λ, λ̄ ∈ �′, λ 	= λ̄.(A.8)

Consider a set of functions C = {fλ :λ ∈ �′} ⊂ V . From (A.6) and (A.8), for any
two functions fλ and fλ̄ in C we have

‖fλ − fλ̄‖2
n ≥ c̃γ 2D log(M/D + 1)

n

def= 4s2.(A.9)

Since the Wj ’s are N(0, σ 2) random variables, the Kullback divergence K(Pfλ,Pfλ̄ )

between Pfλ and Pfλ̄ satisfies

K(Pfλ,Pfλ̄ ) = n

2σ 2 ‖fλ − fλ̄‖2
n, j = 1, . . . ,M.(A.10)

In view of (A.6) and (A.10), one can choose γ small enough to have

K(Pfλ,Pfλ̄ ) ≤ 1

16c̃
D log

(
M

D
+ 1

)
≤ 1

16
log card(�′) = 1

16
log card(C)

for all λ, λ̄ ∈ �′. Now, to get the lower bound for the (S) case, it remains to use this
inequality together with (A.9) and to apply Lemma A.1. Thus, the (S) lower bound
is proved under the assumption that M ≥ 6D, which is needed to assure (A.7) and
(A.8).

In the remaining case where D ≤ M < 6D we use another construction. Note
that it is enough to prove the result for ψn,M = D/n. We consider separately the
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cases D ≥ 8 and 2 ≤ D < 8. If D ≥ 8 we consider the functions fj (x) = γ I{x=Xj },
j = 1, . . . ,M , and a finite set of their linear combinations,

U =
{
g =

D∑
j=1

ωjfj :ω ∈ �

}
,(A.11)

where � is the set of all vectors ω ∈ R
M with binary coordinates ωj ∈

{0,1}. Since the supports of the fj ’s are disjoint, the functions g ∈ U are
uniformly bounded by γ , thus U ⊂ F0. Also, U ⊂ {fλ :λ ∈ �M,D} since at
most the first D functions fj are included in the linear combination. Clearly,
minλ∈�M,D ‖fλ − f ‖2

n = 0 for any f ∈ U. Therefore it remains to bound from
below the quantity infTn supf ∈U Ef w(ψ−1

n,M‖Tn − f ‖2
n), where ψn,M = D/n. To

this end, we apply again Lemma A.1.
Note that for any g1 =∑D

j=1 ωjfj ∈ U and g2 =∑D
j=1 ω′

jfj ∈ U we have

‖g1 − g2‖2
n = γ 2

n

D∑
j=1

(ωj − ω′
j )

2 ≤ γ 2D/n.(A.12)

Since D ≥ 8 it follows from the Varshamov–Gilbert bound (see [22] or [41], Chap-
ter 2) that there exists a subset C′ of U such that card(U0) ≥ 2D/8 and

‖g1 − g2‖2
n ≥ C1γ

2D/n(A.13)

for any g1, g2 ∈ C′. Using (A.10) and (A.12) we get, for any g1, g2 ∈ C′,

K(Pg1,Pg2) ≤ C2γ
2D ≤ C3γ

2 log(card(C′)),

and choosing γ small enough, we can finish the proof by applying Lemma A.1
where we take C = C′ and act in the same way as above for M ≥ 6D.

Finally, if D ≤ M < 6D and 2 ≤ D < 8, we have ψn,M < 8/n, and the proof is
easily obtained by choosing f1 ≡ 0 and f2 ≡ γ n−1/2 and applying Lemma A.1 to
the set C = {f1, f2}.

The (MS) aggregation case. We use the proof for (S) aggregation with D = 1.
Note that �̄M,1 is the set of all the vertices of �M , except the vertex (0, . . . ,0).
Thus, the proof for the (S) case with M ≥ 6D and D = 1 gives us the required
lower bound for the (MS) case, with the optimal rate ψn,M = (logM)/n. It re-
mains to treat (MS) aggregation for M < 6. Then we have ψn,M ≤ (log 7)/n,
and we apply Lemma A.1 to the set C = {fλ′, fλ′′ } where λ′ = (1,0, . . . ,0) ∈ �M ,
λ′′ = (0, . . . ,0,1) ∈ �M and fλ is defined in the proof for the (S) case. Clearly,
‖fλ′ − fλ′′‖2

n = 2γ 2 log(M + 1)/n ≥ 2γ 2(log 3)/n, and the result easily follows
from (A.10) and Lemma A.1.
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The (C) aggregation case. Consider the orthonormal trigonometric basis in
L2[0,1] defined by φ1(x) ≡ 1, φ2k(x) = √

2 cos(2πkx), φ2k+1(x) = √
2 sin(2π ×

kx), k = 1,2, . . . , for x ∈ [0,1]. Set

fj (x) = γ

n∑
k=1

φj (k/n)I{x=Xk}, j = 1, . . . ,M,(A.14)

where γ ≤ L/
√

2 is a positive constant to be chosen. The system of functions
{φj }j=1,...,M is orthonormal w.r.t. the discrete measure that assigns mass 1/n to
each of the points k/n, k = 1, . . . , n:

1

n

n∑
k=1

φj (k/n)φl(k/n) = δjl, j, l = 1, . . . , n,

where δjl is the Kronecker delta (see, e.g., [41], Lemma 1.9). Hence

〈fj , fl〉n = γ 2δjl, j, l = 1, . . . ,M,(A.15)

where 〈·, ·〉n stands for the scalar product induced by ‖ · ‖n.
Assume first that M >

√
n (i.e., we are in the “sparse” case). Define an integer

m =
⌈
c2

[
n
/

log
(

M√
n

+ 1
)]1/2⌉

for a constant c2 > 0 chosen in such a way that M ≥ 6m. Consider the finite set
C ⊂ �M composed of such convex combinations of f1, . . . , fM that m of the co-
efficients λj are equal to 1/m and the remaining M − m coefficients are zero. In
view of (A.15), for every pair of functions g1, g2 ∈ C we have

‖g1 − g2‖2
n ≤ 2γ 2/m.(A.16)

To finish the proof for M >
√

n it suffices now to apply line-by-line the argument
after the formula (10) in [40] replacing there ‖ · ‖ by ‖ · ‖n. Similarly, the proof
for M ≤ √

n is analogous to that given in [40], with the only difference that the
functions fj should be chosen as in (A.14) and ‖ · ‖ should be replaced by ‖ · ‖n.

APPENDIX B: TECHNICAL LEMMAS

LEMMA B.1. Let f,f1, . . . , fM ∈ F0 and 1 ≤ m ≤ M . Let C be the finite set
of functions defined in the proof of (3.5). Then (A.1) holds:

min
g∈C

‖g − f ‖2
n ≤ min

λ∈�M
‖fλ − f ‖2

n + L2

m
.(B.1)

PROOF. Let f ∗ be a minimizer of ‖fλ − f ‖2
n over λ ∈ �M . Clearly, f ∗ is of

the form

f ∗ =
M∑

j=1

pjfj with pj ≥ 0 and
M∑

j=1

pj ≤ 1.
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Define a probability distribution on j = 0,1, . . . ,M by

πj =


pj , if j 	= 0,

1 −
M∑

j=1

pj , if j = 0.

Consider m i.i.d. random integers j1, . . . , jm where each jk is distributed according
to {πj } on {0,1, . . . ,M}. Introduce the random function

f̄m = 1

m

m∑
k=1

gjk
, where gj =

{
fj , if j 	= 0,
0, if j = 0.

For every x ∈ X the random variables gj1(x), . . . , gjm(x) are i.i.d. with
E(gjk

(x)) = f ∗(x). Thus,

E
(
f̄m(x) − f ∗(x)

)2 = E

([
1

m

m∑
k=1

{gjk
(x) − E(gjk

(x))}
]2)

≤ 1

m
E(g2

j1
(x)) ≤ L2

m
.

Hence for every x ∈ X and every f ∈ F0 we get

E
(
f̄m(x) − f (x)

)2 = E
(
f̄m(x) − f ∗(x)

)2 + (
f ∗(x) − f (x)

)2
(B.2)

≤ L2

m
+ (

f ∗(x) − f (x)
)2

.

Integrating (B.2) over the empirical probability measure that puts mass 1/n at
each Xi and recalling the definition of f ∗, we obtain

E‖f̄m − f ‖2
n ≤ min

λ∈�M
‖fλ − f ‖2

n + L2

m
.(B.3)

Finally, note that the random function f̄m takes its values in C, which implies that

E‖f̄m − f ‖2
n ≥ min

g∈C
‖g − f ‖2

n.

This and (B.3) prove (B.1). �

LEMMA B.2. Let Zd denote a random variable having the χ2 distribution
with d degrees of freedom. Then for all x > 0,

P
{
Zd − d ≥ x

√
2d
}≤ exp

(
− x2

2(1 + x
√

2/d)

)
.(B.4)

PROOF. See [16], page 857. �



AGGREGATION FOR GAUSSIAN REGRESSION 1695

Acknowledgments. We would like to thank the Associate Editor, the referees
and Lucien Birgé for insightful comments.

REFERENCES

[1] AKAIKE, H. (1974). A new look at the statistical model identification. IEEE Trans. Automat.
Control 19 716–723. MR0423716

[2] ANTONIADIS, A. and FAN, J. (2001). Regularization of wavelet approximations (with discus-
sion). J. Amer. Statist. Assoc. 96 939–967. MR1946364

[3] AUDIBERT, J.-Y. (2004). Aggregated estimators and empirical complexity for least square re-
gression. Ann. Inst. H. Poincaré Probab. Statist. 40 685–736. MR2096215

[4] BARAUD, Y. (2000). Model selection for regression on a fixed design. Probab. Theory Related
Fields 117 467–493. MR1777129

[5] BARAUD, Y. (2002). Model selection for regression on a random design. ESAIM Probab. Sta-
tist. 6 127–146. MR1918295

[6] BARRON, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal
function. IEEE Trans. Inform. Theory 39 930–945. MR1237720

[7] BARRON, A., BIRGÉ, L. and MASSART, P. (1999). Risk bounds for model selection via pe-
nalization. Probab. Theory Related Fields 113 301–413. MR1679028

[8] BARTLETT, P. L., BOUCHERON, S. and LUGOSI, G. (2000). Model selection and error esti-
mation. In Proc. 13th Annual Conference on Computational Learning Theory 286–297.
Morgan Kaufmann, San Francisco.

[9] BIRGÉ, L. (2006). Model selection via testing: An alternative to (penalized) maximum likeli-
hood estimators. Ann. Inst. H. Poincaré Probab. Statist. 42 273–325. MR2219712

[10] BIRGÉ, L. and MASSART, P. (2001). Gaussian model selection. J. Eur. Math. Soc. 3 203–268.
MR1848946

[11] BIRGÉ, L. and MASSART, P. (2001). A generalized Cp criterion for Gaussian model se-
lection. Prépublication 647, Laboratoire de Probabilités et Modèles Aléatoires, Univ.
Paris 6 and Paris 7. Available at www.proba.jussieu.fr/mathdoc/preprints/index.html#
2001. MR1848946

[12] BUNEA, F. (2004). Consistent covariate selection and postmodel selection inference in semi-
parametric regression. Ann. Statist. 32 898–927. MR2065193

[13] BUNEA, F. and NOBEL, A. B. (2005). Sequential procedures for aggregating arbitrary estima-
tors of a conditional mean. Technical Report M984, Dept. Statistics, Florida State Univ.

[14] BUNEA, F., TSYBAKOV, A. and WEGKAMP, M. H. (2004). Aggregation for regression
learning. Available at www.arxiv.org/abs/math/0410214. Prépublication 948, Labora-
toire de Probabilités et Modèles Aléatoires, Univ. Paris 6 and Paris 7. Available at
hal.ccsd.cnrs.fr/ccsd-00003205.

[15] CATONI, O. (2004). Statistical Learning Theory and Stochastic Optimization. École d’Eté
de Probabilités de Saint-Flour 2001. Lecture Notes in Math. 1851. Springer, Berlin.
MR2163920

[16] CAVALIER, L., GOLUBEV, G. K., PICARD, D. and TSYBAKOV, A. B. (2002). Oracle inequal-
ities for inverse problems. Ann. Statist. 30 843–874. MR1922543

[17] CHEN, S., DONOHO, D. and SAUNDERS, M. (2001). Atomic decomposition by basis pursuit.
SIAM Rev. 43 129–159. MR1854649

[18] DEVROYE, L., GYÖRFI, L. and LUGOSI, G. (1996). A Probabilistic Theory of Pattern Recog-
nition. Springer, New York. MR1383093

[19] DONOHO, D. L., ELAD, M. and TEMLYAKOV, V. (2006). Stable recovery of sparse over-
complete representations in the presence of noise. IEEE Trans. Inform. Theory 52 6–18.
MR2237332

http://www.ams.org/mathscinet-getitem?mr=0423716
http://www.ams.org/mathscinet-getitem?mr=1946364
http://www.ams.org/mathscinet-getitem?mr=2096215
http://www.ams.org/mathscinet-getitem?mr=1777129
http://www.ams.org/mathscinet-getitem?mr=1918295
http://www.ams.org/mathscinet-getitem?mr=1237720
http://www.ams.org/mathscinet-getitem?mr=1679028
http://www.ams.org/mathscinet-getitem?mr=2219712
http://www.ams.org/mathscinet-getitem?mr=1848946
www.proba.jussieu.fr/mathdoc/preprints/index.html#2001
http://www.ams.org/mathscinet-getitem?mr=1848946
http://www.ams.org/mathscinet-getitem?mr=2065193
www.arxiv.org/abs/math/0410214
https://hal.ccsd.cnrs.fr/ccsd-00003205
http://www.ams.org/mathscinet-getitem?mr=2163920
http://www.ams.org/mathscinet-getitem?mr=1922543
http://www.ams.org/mathscinet-getitem?mr=1854649
http://www.ams.org/mathscinet-getitem?mr=1383093
http://www.ams.org/mathscinet-getitem?mr=2237332
www.proba.jussieu.fr/mathdoc/preprints/index.html#2001


1696 F. BUNEA, A. B. TSYBAKOV AND M. H. WEGKAMP

[20] EFRON, B., HASTIE, T., JOHNSTONE, I. and TIBSHIRANI, R. (2004). Least angle regression
(with discussion). Ann. Statist. 32 407–499. MR2060166

[21] FOSTER, D. and GEORGE, E. (1994). The risk inflation criterion for multiple regression. Ann.
Statist. 22 1947–1975. MR1329177

[22] GILBERT, E. N. (1952). A comparison of signalling alphabets. Bell System Tech. J. 31 504–522.
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