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TESTING FOR CHANGE POINTS IN TIME SERIES MODELS AND
LIMITING THEOREMS FOR NED SEQUENCES1

BY SHIQING LING

Hong Kong University of Science and Technology

This paper first establishes a strong law of large numbers and a strong
invariance principle for forward and backward sums of near-epoch dependent
sequences. Using these limiting theorems, we develop a general asymptotic
theory on the Wald test for change points in a general class of time series
models under the no change-point hypothesis. As an application, we verify
our assumptions for the long-memory fractional ARIMA model.

1. Introduction. Testing on structural change problems has been an impor-
tant issue in statistics. The earliest references go back to Chow [9] and Quandt [33].
Chow’s test is to assume that the time of structural change is known a priori,
and the critical values for the χ2 distribution can be simply used. Quandt’s test
is to take the largest Chow test statistic over all possible times of the structural
change. Quandt’s test appears to be more reasonable in practice because it does
not need to assume the time of structural change a priori. However, its critical val-
ues are hard to obtain even approximately due to singular behavior near the end
points. One method is to restrict the change-point interval (0,1) to [τ1, τ2] with
0 < τ1 < τ2 < 1; see [2, 4, 15, 16, 22]. Another important method is to normal-
ize the Quandt-type test. This type of test statistic has a Darling–Erdös-type limit
and its critical values are easily obtained. This method was developed by Yao and
Davis [38] for i.i.d. normal data, and was extended by Horváth [17] for general
i.i.d. data and Horváth [18] for linear regression models. However, when using
this method for time series models, we encounter some great challenges.

To understand these, we look at the AR(1) model, yt = φyt−1 + εt , where
|φ| < 1 and {εt } are independent and identically distributed (i.i.d.) errors. First,
we need to obtain the rate of uniform convergence of the partial sample informa-
tion matrices based on {y1, . . . , yk} and {yk+1, . . . , yn}, respectively; that is, for
some δ > 0, we need to establish

(a) max
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as n → ∞, where k̃ = n− k, gn = log log log(max{ee, n}) and Xt = y2
t−1 −Ey2

t−1
(see Lemma 6.2). Under the strong mixing condition with Ey4

t < ∞, Davis, Huang
and Yao [12] first established that

1

k1−δ

k∑
t=1

Xt = o(1) a.s.,(1.1)

using the strong invariance principle in Kuelbs and Philipp [23], and then
used (1.1) to obtain (a). We note that the ergodic theorem only ensures that∑k

t=1 Xt/k = o(1) a.s., which cannot be used for (a), and hence, (1.1) in [12]
is novel. Since {yt } is strictly stationary, (b) is equivalent, for any ε > 0, to

P
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Xt

∣∣∣∣∣ > ε

)
= o(1).

This is not equivalent to (a) if {yt } is not time-reversible. Except for Gaussian linear
processes, very few time series have been shown to be time-reversible; see [8].
Thus, (1.1) cannot be used for (b), generally. To solve this problem, we need the
following strong law of large numbers (SLLN):

1

k1−δ

−1∑
t=−k

Xt = o(1) a.s.(1.2)

However, this has not been established in the literature.
Second, we need to approximate the score functions based on the subsam-

ples {y1, . . . , yk} and {yk+1, . . . , yn} by i.i.d. normal random sequences {G1t : t =
1,2, . . .} and {G2t : t = 1,2, . . .}, respectively, such that

(c) max
gn≤k≤n

kδ
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for some δ > 0. Davis, Huang and Yao [12] first used the result in Kuelbs and
Philipp [23] to establish the strong invariance principle (SIP),

1√
k

k∑
t=1

yt−1εt = 1√
k

k∑
t=1

G1t + o(k−δ) a.s,(1.3)

with strong mixing {yt }, for some δ > 0, and then used (1.3) to prove (c). Similarly
to (b), to prove (d), we need the backward SIP, that is, there is an i.i.d. normal
random sequence {G2t : t = 1,2, . . .} such that
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G2t + o(k−δ) a.s.(1.4)
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Again, there is not any result for (1.4) in the literature. The preceding difficulties
are not only in Quandt-type tests but also in the estimating change-points as in [3,
26, 31]. This issue seems to be not well discussed in the literature.

This paper first establishes a new SLLN and a new SIP for the backward sums
of near-epoch dependent (NED) sequences. The existing SLLN and SIP for the
forward sums of random sequences related to (a) and (c), such as those in [34]
and [14], require some mixing and high-order moment conditions, or do not have
a rate of convergence (see also [25]). The mixing conditions are not always easy
to verify. The high-order moment condition directly links to the restriction on the
parameter space in some nonlinear time series models such as ARCH-type models.
The weakest moment condition is in the ergodic theorem, but it does not have a
rate of convergence. This paper next establishes a SLLN and a SIP with a rate
of convergence for the forward sums of NED sequences under a weak moment
condition and without a strong mixing assumption.

Our SLLNs and SIPs are given in Section 2. Using them, we study the Wald test
for change-points in a class of time series models in Section 3. This is a general
theory and can be used for many time series models. As an application, we verify
our assumptions for long-memory FARIMA models in Section 4. The proofs are
given in Sections 5–7. Throughout this paper, we use the following notation: |A| =
[tr(AA′)]1/2 for a vector or matrix A and ‖Z‖p = (E|Z|p)1/p for a random vector
or matrix Z with its elements in Lp space (p ≥ 1). Finally, we refer to the related
references [20] and [19] for Quandt-type tests with the long-memory time series,
and to [24] for the sequential approach.

2. Limiting theorems for NED sequences. Let {εt } be a series of indepen-
dent random variables (or vectors) on the probability space (�,B,P ), Ft =
σ {εt , εt−1, . . .} and Xt be a Ft -measurable m×1 random vector for t = 0,±1, . . . .
We first introduce the following definition.

DEFINITION 2.1. Let Fi (j) be the σ -field generated by {εj , εj−1, . . . ,

εj−i+1} with i ≥ 1, and F0(j) = {∅,�}. {Xt } is said to be Lp(ν) NED in
terms of {εt } if sup−∞<t<∞ ‖Xt‖p < ∞ and sup−∞<t<∞ ‖Xt −E[Xt |Fk(t)]‖p =
O(k−ν), where p ≥ 1 and ν > 0.

This notion of NED sequence extends a concept introduced in Billingsley [7].
Some different versions appear in [30, 32, 36]. This NED {Xt } implies that it is
mixingale, that is, sup−∞<t<∞ ‖EXt −E(Xt |Ft−k)‖p = O(k−ν). Our SLLN and
SIP are as follows.

THEOREM 2.1. Let {Xt : t = 0,±1, . . .} be an L1+ι(ν) NED and mean zero
sequence in terms of {εt } with ι > 0 and ν > 0. Then there exists a constant δ > 0
such that

(a)
1

k

k∑
t=1

Xt = o

(
1

kδ

)
a.s. and (b)

1

k

−1∑
t=−k

Xt = o

(
1

kδ

)
a.s.
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REMARK 2.1. The moment condition in Theorem 2.1 is only slightly stronger
than that in the ergodic theorem for the forward sums. But our SLLN includes a
rate of convergence, while the ergodic theorem does not. We guess that this is
the weakest moment condition for the NED sequence if a rate of convergence is
wanted. This rate is indispensable when we prove Lemmas 6.2–6.4. The inde-
pendence of {εt } can be replaced by some mixing conditions. If we allow ι ≥ 1
and ν ≥ 0.5, then a sharper rate of convergence may be obtained; see, for exam-
ple, [14], page 41. If we assume ι = 1 and use the moment bound of Ing and
Wei [21], then a relationship between the rate of convergence and the series de-
pendence can be given.

THEOREM 2.2. Let Xt be a martingale difference in terms of Ft with covari-
ance matrix � and be L2+ι(ν) NED in terms of {εt } with ι > 0, where either 2ν > 1
or 2ν = 1 and there exist constants ν1 > 0 and ι1 > 0 with 2ν1 > 1 such that

sup
−∞<t<∞

‖E[Xt |Fk+1(t)] − E[Xt |Fk(t)]‖2+ι1 = O(k−ν1).(2.1)

Then, without changing its distribution, we can redefine {Xt } on two richer proba-
bility spaces together with two sequences of i.i.d. m × 1 normal vectors with mean
zero and covariance matrix �, {G1t : t = 1,2, . . .} and {G2t : t = 1,2, . . .}, such
that, for some constant δ > 0, we have, respectively,

(a)
k∑

t=1

Xt =
k∑

t=1

G1t + O(k1/2−δ) a.s. and

(b)

−1∑
t=−k

Xt =
k∑

t=1

G2t + O(k1/2−δ) a.s.

REMARK 2.2. The two richer probability spaces may be different, for which
we refer to [6] and [13]. Theorems 2.1–2.2 do not require {Xt } to be stationary and
can be extended for triangular arrays as in [1].

3. Testing change-points in time series models. Assume that the time series
{yt : t = 0,±1,±2, . . .} is Ft -measurable, strictly stationary and ergodic, and is
generated by the model

yt = f (λ,Yt−1, εt ),(3.1)

where f is a known function, λ is an m × 1 unknown parameter vector, {εt } is
i.i.d. and Yt = (yt , yt−1, . . .). The structure of {yt } is characterized by f and λ.
This class of models (3.1) includes many time series models in the literature, such
as ARMA, GARCH and random coefficient AR models. We assume that the para-
meter space � is a compact subset of Rm, and the true value of λ, denoted by λ0,
is an interior point in �, where R = (−∞,∞).
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We denote the model (3.1) with the true parameter λ0 by M(λ0). Let y1, . . . , yn

be the observations. We consider the null and alternative hypotheses,

H0 : {y1, . . . , yn} ∈ M(λ0) versus

H1n(k) : {y1, . . . , yk} ∈ M(λ0) and {yk+1, . . . , yn} ∈ M(λ10)

with λ0 	= λ10 for some k ∈ [1, n).

Here, k = [nτ ] is called the change-point with τ ∈ (0,1), where [x] is the integer
part of x. Under H1n(k), we use the following objective functions (OF) to estimate
λ0 and λ10, based on the sample {y1, . . . , yn} with initial value Y0, respectively,

Ln(k,λ) =
k∑

t=1

l(λ,Yt ) and L1n(k, λ1) =
n∑

t=k+1

l(λ1, Yt ),(3.2)

where l(λ,Yt ) is a measurable function in terms of Yt and is almost surely (a.s.)
three times differentiable with respect to λ. The function l(λ,Yt ) can be taken
as those in LSE, MLE, quasi-MLE and M-estimators, among others. Let lt (λ) =
l(λ,Yt ), Dt(λ) = ∂lt (λ)/∂λ and Pt(λ) = −∂2lt (λ)/∂λ∂λ′. Denote � = E[Pt(λ0)]
and � = E[Dt(λ0)D

′
t (λ0)]. Here and below, the expectation is with respect to the

probability measure under the null hypothesis. We first give two sets of assump-
tions as follows.

ASSUMPTION 3.1. For some constant ι > 0 and an open neighborhood �0
of λ0:

(i) E supλ∈� |lt (λ)|1+ι < ∞ and E[lt (λ)] has a unique maximum at λ = λ0;
(ii) Dt(λ0) is an Ft -measurable martingale difference with � > 0;

(iii) � > 0 and E supλ∈�0
|Pt(λ)|1+ι < ∞;

(iv) E supλ∈�0
|∂pijt (λ)/∂λ|0.5+ι < ∞, where pijt (λ) is the (i, j)th element

of Pt(λ).

ASSUMPTION 3.2. For some ι > 0, ν0 > 0 and ν ≥ 1/2 and an open neigh-
borhood �0 of λ0:

(i) ‖ supλ∈� |lt (λ) − E[lt (λ)|Fk(t)]|‖1+ι = O(k−ν0);
(ii) Dt(λ0) is L2+ι(ν) NED in terms of {εt } with 2ν > 1 or with 2ν = 1

and (2.1) being satisfied as Xt = Dt(λ0);
(iii) ‖ supλ∈�0

|Pt(λ) − E[Pt(λ)|Fk(t)]|‖1+ι = O(k−ν0).

When ι = 0, Assumption 3.1(i)–(iii) is typical for estimating λ0 in model (3.1).
We need the (1 + ι)th finite moment here because the ergodic theorem cannot
be used for λ̂1n(k). Assumption 3.1(iv) is for the rate of uniform convergence
in (6.2). Assumption 3.2 is a key to using Theorems 2.1–2.2 for Lemmas 6.1–6.2.
In practice, Y0 is usually replaced by some constants. Let l̃t (λ), D̃t (λ) and P̃t (λ)

be defined as lt (λ), Dt(λ) and Pt(λ), respectively, with initial values yt being zero
or a constant for t ≤ 0. Our initial condition is as follows.
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ASSUMPTION 3.3. For some constants δ > 0, ν0 > 0 and ν ≥ 1/2 and an open
neighborhood �0 of λ0:

(i) E supλ∈� |lt (λ) − l̃t (λ)| = O(t−ν0);
(ii) supgn≤k≤n{k−1/2+δ|∑k

t=1[Dt(λ0) − D̃t (λ0)]|} = op(1) and supgn≤n−k<n

{(n − k)−1/2+δ|∑n
t=k+1[Dt(λ0) − D̃t (λ0)]|} = op(1);

(iii) E supλ∈�0
|Pt(λ)−P̃t (λ)| = O(t−ν0) and ‖Dt(λ0)−D̃t (λ0)‖1+ι = O(ut),

where gn = log log log(max{ee, n}) and ut = t−ν logq t for some q > 0.

It can be shown that Assumption 3.3(ii) holds if 2ν > 1 in the second part of
Assumption 3.3(iii). The OFs in (3.2) are modified as

Ln(k,λ) =
k∑

t=1

l̃t (λ) and L1n(k, λ1) =
n∑

t=k+1

l̃t (λ1).(3.3)

Let λ̂n(k) and λ̂1n(k), respectively, be the maximizers of Ln(k,λ) and L1n(k, λ1)

on � for each known k. The Wald test statistic evaluated at [λ̂n(k), λ̂1n(k)] for
testing H0 against H1n(k) is defined as

Wn(k) = k(n − k)

n2 [λ̂n(k) − λ̂1n(k)]′[�̂n(k)�̂−1
n (k)�̂n(k)][λ̂n(k) − λ̂1n(k)],

where �̂n(k) = ∑k
t=1 P̃t (λ̂n(k)) + ∑n

t=k+1 P̃t (λ̂1n(k)) and

�̂n(k) =
k∑

t=1

D̃t (λ̂n(k))D̃′
t (λ̂n(k)) +

n∑
t=k+1

D̃t (λ̂1n(k))D̃′
t (λ̂1n(k)).

When we test the null H0 against
⋃

k∈[1,n) H1n(k), a natural test statistic is
maxk∈[1,n) Wn(k). However, this test statistic diverges to infinity; see [2]. We de-
fine the normalized Quandt-type Wald test statistic as

Ŵn(m) = max
m<k<n−m

Wn(k) − bn(m)

an(m)
,(3.4)

where an(m) = √
bn(m)/(2 log logn), bn(m) = [2 log logn + (m log log logn)/

2 − log�(m/2)]2/(2 log logn) and �(·) is the gamma function. Our result for test-
ing for a change-point in model (3.1) is as follows.

THEOREM 3.1. If Assumptions 3.1–3.3 are satisfied, then under the null H0,
for any x ∈ R, P [Ŵn(m) ≤ x] → exp(−2e−x/2) as n → ∞.

REMARK 3.1. Some weighted test statistics can be constructed along the lines
of [11] where optimality of related tests is also discussed. Assumptions 3.1(i)–(iii)
and 3.2–3.3 were verified by Ling [27] for the AR-GARCH model.
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4. Application to LM-FARIMA models. The time series {yt } is said to fol-
low a long-memory FARIMA(p,d, q) model if

φ(B)(1 − B)dyt = ψ(B)εt ,(4.1)

where φ(B) = 1 − ∑p
i=1 φiB

i , ψ(B) = 1 + ∑q
i=1 ψiB

i , B is the backward-
shift operator, d ∈ (0,0.5) and (1 − B)d = ∑∞

k=0 ckB
k with ck = (−d)(−d +

1) · · · (−d + k − 1)/k!, and {εt } a sequence of i.i.d. white noise variables. De-
note λ = (d,φ1, . . . , φp,ψ1, . . . ,ψq)

′. The parameter space � is a compact subset
of Rp+q+1. Assume that the true parameter λ0 of λ is an interior point in � and,
for each λ ∈ �, it satisfies:

ASSUMPTION 4.1. d ∈ (0,0.5), φ(z) 	= 0 and ψ(z) 	= 0 for all z such that
|z| ≤ 1, φp 	= 0, ψq 	= 0, and φ(z) and ψ(z) have no common root.

It is not hard to see that (4.1) is a special form of model (3.1). Following com-
mon practice, we use quasi-log-likelihood estimation for λ0 and the OFs are

Ln(k,λ) = −1
2

k∑
t=1

ε2
t (λ) and L1n(k, λ1) = −1

2

n∑
t=k+1

ε2
t (λ1),(4.2)

where εt (λ) = ψ−1(B)φ(B)(1 − B)dyt . In this case, we have

Dt(λ) = −∂εt (λ)

∂λ
εt (λ) and Pt(λ) = ∂εt (λ)

∂λ

∂εt (λ)

∂λ′ + ∂2εt (λ)

∂λ∂λ′ εt (λ).

Let λ̂n(k) and λ̂1n(k) be the maximizers of Ln(k,λ) and L1n(k, λ1) on � for each k

with the initial values yt = 0 for t ≤ 0. The result for model (4.1) is as follows.

THEOREM 4.1. If Assumption 4.1 holds and E|εt |2+ι < ∞ for some ι > 0,
then under the null H0, for any x, P [Ŵn(p + q + 1) ≤ x] → exp(−2e−x/2) as
n → ∞.

REMARK 4.1. For the linear processes with the long-memory parameter H =
1/2 + d0, Beran and Terrin [5] and Horváth and Shao [20] proposed some tests for
the change of H in the frequency domain, but they did not verify the conditions
for model (4.1) and assumed that E|εt |4+ι < ∞. See also [19]. As far as we know,
our test statistic is new in the time domain and is also different from the tests in [5]
and [20].

REMARK 4.2. To see the performance of the Wald test in finite samples, we
examine a small simulation for the FARIMA(0, d,0) model with εt ∼ N(0,1),
using Fortran 77. Sample sizes n = 250 and 400 are used. We first study the size,
for which we take d0 = 0.1,0.2,0.3 and 0.4, and then the power, for which we
take d0 = 0.1 and d10 = 0.2,0.3,0.4 with the change-point k = [0.5n] and [0.9n],
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TABLE 1
Size and power of Ŵn(1) for testing change-point in FARIMA(0, d,0) models (1000 replications)

n = 250 n = 400

10% 5% 1% 10% 5% 1%

d0 Sizes
0.1 0.055 0.039 0.012 0.081 0.049 0.015
0.2 0.059 0.037 0.012 0.083 0.046 0.014
0.3 0.064 0.038 0.010 0.078 0.047 0.012
0.4 0.050 0.031 0.010 0.077 0.041 0.014

d10 Power when d0 = 0.1 and k = [0.5n]
0.2 0.168 0.120 0.040 0.304 0.235 0.126
0.3 0.333 0.260 0.114 0.655 0.566 0.403
0.4 0.658 0.571 0.387 0.924 0.886 0.791

d10 Power when d0 = 0.1 and k = [0.9n]
0.2 0.135 0.089 0.022 0.180 0.114 0.056
0.3 0.181 0.124 0.056 0.303 0.225 0.106
0.4 0.424 0.334 0.197 0.582 0.498 0.312

respectively. The results at the 0.1, 0.05 and 0.01 significance levels are reported
in Table 1. When n = 250, the size is very close to the nominal 0.01 level and is
acceptable at the nominal 0.05 level, but is quite conservative at the nominal 0.1
level. When n is increased to 400, all size values are close to the nominal levels.
Power increases when n increases from 250 to 400. When k = [0.9n], the power
is lower than when k = [0.5n]. We also have the simulation results when n = 200.
But in this case, all size values are small and power is very low, and hence, they
are not reported here.

5. Proofs of Theorems 2.1 and 2.2. This section gives the proofs of Theo-
rems 2.1 and 2.2.

PROOF OF THEOREM 2.1. Let Sn = ∑n
t=1 Xt and p = 1 + ι. From K =

1,2, . . . , let l = [√K] and define At,K = ‖∑K
j=1[Xt+j − E(Xt+j |Fl(t + j))]‖p

and Bt,K = ‖∑K
j=1 E(Xt+j |Fl(t + j))‖p . Since E(Xt+j |Fl(t + j)) are l-de-

pendent and the Lp(ν) NED assumption holds, it can be readily shown that
there is a constant α > 0 such that At,K + Bt,K = O(K1−α) uniformly in t . So,
‖∑K

i=1 Xt+i‖p = O(K(1−α)). By Proposition 1 of [37], we have

∥∥∥∥ max
1≤t≤2k

|St |
∥∥∥∥
p

≤
k∑

r=0

[2k−r∑
i=1

∥∥S2r i − S2r (i−1)

∥∥p
p

]1/p

.
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Thus, for some 0 < ρ < 1, ‖max1≤t≤2k |St |‖p = O(2kρ), from which (a) and (b)
follow easily. �

To prove Theorem 2.2, we need the following lemma which is used for (5.2),
(5.7) and (5.10).

LEMMA 5.1. Let Xt be defined as in Theorem 2.2. Then (a)∥∥∥∥∥
j∑

t=i+1

{Xt − E[Xt |Ft−i(t)]}
∥∥∥∥∥

2+ι

/[ j∑
t=i+1

1

(t − i)2ν

]1/2

= O(1),

uniformly in j and i < j , and (b) furthermore, if (2.1) holds, then we have∥∥∥∥∥
j−1∑
t=1

{E[X−t |F−t+j (−t)] − E[X−t |F−t+j−1(−t)]}
∥∥∥∥∥

2+ι1

= O(1).

PROOF. Let p = 2 + ι and ξt,k = Xt − E[Xt |Fk(t)] for k ≥ 0. Since
Xt is an Ft -measurable martingale difference and {εt } is independent, we
know that ξt,t−i is an Ft -measurable martingale difference. By Definition 2.1,
supi<j supi<t≤j [‖ξt,t−i‖p(t − i)ν] = supi<j supi<t≤j sup0≤k<∞(‖ξt,k‖pkν) ≤
sup 0≤k<∞ sup−∞<t<∞(‖ξt,k‖pkν) = O(1). By Burkholder’s inequality in [10],
page 384, there exists a constant B , depending only on ι, such that

E

∣∣∣∣∣
j∑

t=i+1

ξt,t−i

∣∣∣∣∣
p

≤ BE

( j∑
t=i+1

|ξt,t−i |2
)p/2

≤ B

( j∑
t=i+1

‖ξt,t−i‖2
p

)p/2

,

where the last step uses Minkowski’s inequality. Thus, (a) holds. Since E[X−t |
F−t+j (−t)] − E[X−t |F−t+j−1(−t)] is an F−t -measurable martingale difference
and 2ν1 > 1, similarly, we can prove that (b) holds. �

PROOF OF THEOREM 2.2. By Theorem 2 in [13], the proof of (a) is much
easier than that of (b). So, only the latter is presented here.

Let X
(0)
t,i = E[Xt |F−i+1(0)] − E[Xt |F−i(0)] for i ≤ −1. Note that E(Xt |

F−t (0)) = EXt = 0 when t ≤ −1. We have the decomposition

−1∑
t=−k

Xt =
−1∑

t=−k

{Xt − E[Xt |Fk+1(0)]} +
−1∑

t=−k

t∑
i=−k

X
(0)
t,i

=
−1∑

t=−k

{Xt − E[Xt |Fk+1(0)]} +
−1∑

i=−k

−1∑
t=i

X
(0)
t,i(5.1)

=
−1∑

t=−k

{Xt − E[Xt |Fk+1(0)]} +
k∑

j=1

j∑
t=1

X
(0)
−t,−j .
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Note that E[Xt |Fk+1(0)] = E[Xt |Ft+k+1(t)] when t ≤ 0 and t + k + 1 ≥ 0.
By Lemma 5.1(a), ‖∑−1

t=−k{Xt − E[Xt |Fk+1(0)]}‖2+ι = O([∑−1
t=−k(t + k +

1)−2ν]1/2) = O[(∑k
t=1 t−2ν)1/2]. Thus, by the Cauchy–Schwarz inequality, for

any ε > 0, we have

P

(
max
l≤k

∣∣∣∣∣ 1

k1/2−δ

−1∑
t=−k

{Xt − E[Xt |Fk+1(0)]}
∣∣∣∣∣ > ε

)

≤
∞∑
k=l

P

(
1

k1/2−δ

∣∣∣∣∣
−1∑

t=−k

{Xt − E[Xt |Fk+1(0)]}
∣∣∣∣∣ > ε

)

≤ 1

ε2+ι

∞∑
k=l

1

k(1/2−δ)(2+ι)
E

∣∣∣∣∣
−1∑

t=−k

{Xt − E[Xt |Fk+1(0)]}
∣∣∣∣∣
2+ι

(5.2)

≤ O(1)

ε2+ι

∞∑
k=l

1

k(1/2−2δ)(2+ι)

(
k∑

t=1

1

t2ν+2δ

)1+ι/2

= O

(
1

l(1/2−2δ)(2+ι)−1

)
,

as δ > 0 is small enough such that (1/2 − 2δ)(2 + ι) > 1. By Lemma 1 in [10],
page 31 and (5.2),

−1∑
t=−k

{Xt − E[Xt |Fk+1(0)]} = O(k1/2−δ) a.s.(5.3)

The second term in (5.1) can be rewritten as

k+1∑
j=2

Y0j and Y0j =
j−1∑
t=1

X
(0)
−t,−j+1.

By (5.3), it is sufficient for (b) to show that we can define a sequence of i.i.d. m×1
normal vectors {G2t } with mean zero and covariance � such that

k+1∑
j=2

Y0j −
k∑

j=1

G2j = O(k1/2−δ) a.s.(5.4)

Since X
(0)
−t,−j+1 ∈ Fj (0), we know that Y0j ∈ Fj (0) and E(Y0j |Fj−1(0)) = 0.

Thus, {Y0j ,Fj (0), j = 1,2, . . .} is a sequence of forward martingale differences.
Using the strong invariance principle in [13], Theorem 1, it is sufficient for (5.4)
to verify the following conditions:

(i) there exists an ι̃ > 0 such that E|Y0j |2+ι̃ ≤ M , a constant, uniformly in j ;
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(ii) for some δ > 0, the following holds uniformly in s:

1

n1−δ

s+n∑
j=s+1

[E(Y0jY
′
0j ) − �] = O(1),(5.5)

1

n1−δ
E

∣∣∣∣∣
s+n∑

j=s+1

[E(Y0jY
′
0j |Fs(0)) − E(Y0jY

′
0j )]

∣∣∣∣∣ = O(1).(5.6)

Note that X
(0)
−t,−j+1 = E[X−t |Fj (0)] − E[X−t |Fj−1(0)] and E[X−t |Fj (0)] =

E[X−t |F−t+j (−t)] when t ≥ 1 and −t + j ≥ 0. When 2ν > 1, by Minkowski’s
inequality and Lemma 5.1(a), it follows that, uniformly in j ,

E|Y0j |2+ι = E

∣∣∣∣∣
j−1∑
t=1

X
(0)
−t,−j+1

∣∣∣∣∣
2+ι

≤ O(1)E

∣∣∣∣∣
j−1∑
t=1

{X−t − E[X−t |Fj (0)]}
∣∣∣∣∣
2+ι

(5.7)

+O(1)E

∣∣∣∣∣
j−1∑
t=1

{X−t − E[X−t |Fj−1(0)]}
∣∣∣∣∣
2+ι

= O(1).

That is, (i) holds. When 2ν = 1 and (2.1) is satisfied, (i) holds by Lemma 5.1(b).
For (ii), we make a decomposition as

Y0jY
′
0j =

(
s−1∑
t=1

X
(0)
−t,−j+1

)(
s−1∑
t=1

X
(0)
−t,−j+1

)′

+
(j−1∑

t=s

X
(0)
−t,−j+1

)(j−1∑
t=s

X
(0)
−t,−j+1

)′

+
[(j−1∑

t=s

X
(0)
−t,−j+1

)(
s−1∑
t=1

X
(0)
−t,−j+1

)′
(5.8)

+
(

s−1∑
t=1

X
(0)
−t,−j+1

)(j−1∑
t=s

X
(0)
−t,−j+1

)′]
≡ B1js + B2js + B3js .

We first show that

1

n1−δ

s+n∑
j=s+1

(EB2js − �) = o(1),(5.9)
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uniformly in s. Let Zt,j = E[X−t |Fj (0)]. Since E(X
(0)
−t,−j+1|F−t−1) = 0,

s+n∑
j=s+1

EB2js =
s+n∑

j=s+1

j−1∑
t=s

E
(
X

(0)
−t,−j+1X

(0)′
−t,−j+1

)

=
s+n∑

j=s+1

j−1∑
t=s

E(Zt,jZ
′
t,j ) −

s+n∑
j=s+1

j−1∑
t=s

E(Zt,j−1Z
′
t,j−1)

=
s+n∑

j=s+1

j−1∑
t=s

E(Zt,jZ
′
t,j ) −

s+n−1∑
j=s

j∑
t=s

E(Zt,jZ
′
t,j )

=
s+n−1∑

t=s

E(Zt,s+nZ
′
t,s+n) − E(Zs,sZ

′
s,s) −

n+s−1∑
j=s+1

E(Zj,jZ
′
j,j )

=
s+n−1∑

t=s

E(Zt,s+nZ
′
t,s+n),

where Zj,j = E(X−j |Fj (0)) = 0 is used since X−j is independent of Fj (0). Since
Zt,j = E[X−t |F−t+j (−t)], by the near-epoch dependence of Xt ,

1

n1−δ

∣∣∣∣∣
s+n−1∑

t=s

E(Zt,s+nZ
′
t,s+n − X−tX

′−t )

∣∣∣∣∣
≤ 1

n1−δ

[
s+n−1∑

t=s

E|X−t − Zt,s+n|2 + 2
s+n−1∑

t=s

E(|X−t − Zt,s+n||X−t |)
]

≤ O

(
1

n1−δ

)[
s+n−1∑

t=s

1

(n + s − t)2ν
+

s+n−1∑
t=s

(E|X−t − Zt,s+n|2E|X−t |2)1/2

]

= O

(
1

n1−δ

) s+n−1∑
t=s

1

(n + s − t)ν
= o(1),

for δ < ν, where O(1) and o(1) hold uniformly in s. Thus, (5.9) holds.
Since X

(0)
−t,−j+1 is an F−t -measurable martingale difference, we haveE|B1js | ≤

E|∑s−1
t=1 X

(0)
−t,−j+1|2 = ∑s−1

t=1 E|X(0)
−t,−j+1|2. When 2ν > 1, by the near-epoch de-

pendence of Xt , it follows that, uniformly in j ≥ s,

s−1∑
t=1

E
∣∣X(0)

−t,−j+1

∣∣2 ≤ O(1)

s−1∑
t=1

{E|X−t − Zt,j |2 + E|X−t − Zt,j−1|2}

≤ O(1)

s−1∑
t=1

1

(j − t)2ν
.
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When 2ν = 1, by (2.1) and Minkowski’s inequality, E|X(0)
−t,−j+1|2 ≤ O(1)(j −

t)−2ν1 and 2ν1 > 1. Letting ν̃ = 2ν or 2ν1 according as 2ν > 1 or 2ν = 1, we have,
for 0 < δ < (ν̃ − 1)/2,

1

n1−δ

n+s∑
j=s+1

E|B1js | ≤ O(1)

n1−δ

s+n∑
j=s+1

s−1∑
t=1

1

(j − t)ν̃

≤ O(1)
1

nδ

s+n∑
j=s+1

1

(j − s)1−2δ+δ̃

s−1∑
t=1

1

(s − t)ν̃−δ̃
(5.10)

= O(1),

uniformly in s as n → ∞, for 2δ < δ̃ < ν̃−1, where we have used j −s ≤ min{j −
t, n} and j − t ≥ s − t . By (5.9)–(5.10) and the Cauchy–Schwarz inequality, we
can show that

1

n1−δ

n+s∑
j=s+1

E|B3js | = O(1).(5.11)

By (5.8)–(5.11), we can establish (5.5). Since B2js ∈ F−s is independent of
Fs(0) when j > s, E[B2js |Fs(0)] = EB2js . By (5.8)–(5.11), uniformly in s, we
have

1

n1−δ
E

∣∣∣∣∣
n+s∑

j=s+1

{E[Y0jY
′
0j |Fs(0)] − �}

∣∣∣∣∣ = O(1).(5.12)

By (5.5) and (5.12), (5.6) holds. �

6. Proof of Theorem 3.1. We first present three lemmas. Lemma 6.1 comes
directly from Theorem 2.2, while Lemma 6.2 can be proved by using Theorem 2.1
and the details are given in [28].

LEMMA 6.1. If Assumptions 3.1(ii) and 3.2(ii) hold, then in the sense of The-
orem 2.2, we can define i.i.d. m × 1 normal vector sequences, {G1t } and {G2t },
with mean zero and covariance � such that, for some δ > 0,

(a) max
gn≤k≤n

kδ

∣∣∣∣∣ 1√
k

k∑
t=1

Dt(λ0) − 1√
k

k∑
t=1

G1t

∣∣∣∣∣ = op(1),

(b) max
gn≤k<n

kδ

∣∣∣∣∣ 1√
k

−1∑
t=−k

Dt(λ0) − 1√
k

−1∑
t=−k

G2t

∣∣∣∣∣ = op(1).

LEMMA 6.2. Let �0(k, η) = {λ :kι̃|λ − λ0| < η}. Suppose Assump-
tions 3.1(iii)–(iv), 3.2(iii) and 3.3(iii) hold. For any ε > 0, (1) if ι̃ = 0, then there
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is η > 0 such that the following (a)–(b) hold with δ = 0, and (2) if ι̃ > 0, then there
is δ > 0 such that the following (a)–(b) hold for any fixed η > 0:

(a) lim
n→∞P

(
max

gn≤k≤n
max

�0(k,η)

1

k1−δ

∣∣∣∣∣
k∑

t=1

[P̃t (λ) − �]
∣∣∣∣∣ ≥ ε

)
= 0,

(b) lim
n→∞P

(
max

gn≤n−k<n
max

�0(n−k,η)

1

(n − k)1−δ

∣∣∣∣∣
n∑

t=k+1

[P̃t (λ) − �]
∣∣∣∣∣ ≥ ε

)
= 0.

LEMMA 6.3. If the assumptions of Theorem 3.1 hold, then there exists a δ > 0
such that λ̂n(k) and λ̂1n(k) have the uniform expansions

(a) max
gn≤k≤n

kδ

∣∣∣∣∣√k[λ̂n(k) − λ0] − �−1
√

k

k∑
t=1

Dt(λ0)

∣∣∣∣∣ = op(1),

(b) max
gn≤n−k<n

(n − k)δ

∣∣∣∣∣√n − k[λ̂1n(k)−λ0]− �−1
√

n − k

n∑
t=k+1

Dt(λ0)

∣∣∣∣∣ = op(1).

PROOF. We only prove part (b). By Lemma A.1(b) in the Appendix,

P

(
max

gn≤n−k<n
|λ̂1n(k) − λ0| > ε

)

= P

{
|λ̂1n(k) − λ0| > ε,

n∑
t=k+1

[l̃t (λ̂1n(k)) − l̃n(λ0)] ≥ 0,

for some k ∈ [1, n − gn]
}

≤ P

{
max

gn≤n−k<n
sup

|λ−λ0|>ε

n∑
t=k+1

[l̃t (λ) − l̃t (λ0)] ≥ 0

}
= o(1),

for any ε > 0 and as n → ∞. Thus,

max
gn≤n−k<n

|λ̂1n(k) − λ0| = op(1).(6.1)

Using Taylor’s expansion for each element of ∂L1n(k, λ̂1n(k))/∂λ = 0, we have

λ̂1n(k) − λ0 =
(

1

n − k

n∑
t=k+1

P̃ ∗
nt

)−1
1

n − k

n∑
t=k+1

D̃t (λ0),(6.2)

for each k, where the ith row of P̃ ∗
nt is the ith row of P̃t (λ̂

∗(i)
1n (k)) for some λ̂

∗(i)
1n (k)

such that |λ̂∗(i)
1n (k) − λ0| ≤ |λ̂1n(k) − λ0| for i = 1, . . . ,m. Observing that Dt(λ0)
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is strictly stationary, by Lemma 6.1(b), the law of iterated logarithm (LIL) and
Assumption 3.3(ii), it follows that, for any δ0 > 0,

max
gn≤n−k<n

∣∣∣∣∣ 1

(n − k)0.5+δ0

n∑
t=k+1

D̃t (λ0)

∣∣∣∣∣ = op(1).(6.3)

Let δ1 ∈ (0,1/2). By Lemma 6.2(b) with ι̃ = 0 and (6.1)–(6.3),

max
gn≤n−k<n

|(n − k)δ1[λ̂1n(k) − λ0]| = op(1).(6.4)

By (6.2)–(6.4) and Lemma 6.2(b) with ι̃ = δ1, there exists some δ > 0 such that

max
gn≤n−k<n

(n − k)δ

∣∣∣∣∣√n − k[λ̂1n(k) − λ0] − �−1
√

n − k

n∑
t=k+1

D̃t (λ0)

∣∣∣∣∣
= max

gn≤n−k<n

∣∣∣∣∣
(

1

n − k

n∑
t=k+1

P̃ ∗
nt

)−1[
1

(n − k)1−2δ

n∑
t=k+1

(� − P̃ ∗
nt )

]

× �−1

(n − k)1/2+δ

n∑
t=k+1

D̃t (λ0)

∣∣∣∣∣ = op(1).

Furthermore, by Assumption 3.3(ii), (b) holds. �

We further need two lemmas, which are directly used for Theorem 3.1.

LEMMA 6.4. Under the assumptions of Theorem 3.1, it follows that

(a) max
k∈�n

|Wn(k) − Sn(k)| = op(1) and (b) max
k /∈�n

Wn(k) = Op(gn),

where �n = [logn,n − logn] and

Sn(k) =
∣∣∣∣∣�−1/2

√
k

k∑
t=1

Dt(λ0)

∣∣∣∣∣
2

+
∣∣∣∣∣ �−1/2
√

n − k

n∑
t=k+1

Dt(λ0)

∣∣∣∣∣
2

−
∣∣∣∣∣�−1/2

√
n

n∑
t=1

Dt(λ0)

∣∣∣∣∣
2

.

PROOF. (a) By Lemma 6.3, we have

max
k∈�n

∣∣∣∣∣√k[λ̂n(k) − λ0] − �−1
√

k

k∑
t=1

Dt(λ0)

∣∣∣∣∣ = Op(log−δ n),(6.5)

max
k∈�n

∣∣∣∣∣√n − k[λ̂1n(k) − λ0] − �−1
√

n − k

n∑
t=k+1

Dt(λ0)

∣∣∣∣∣ = Op(log−δ n),(6.6)

for some δ > 0. As for (6.3), by Lemma 6.1 and the LIL, we can show that

max
k∈�n

∣∣√k[λ̂n(k) − λ0]
∣∣ = Op[(log logn)1/2],(6.7)

max
k∈�n

∣∣√n − k[λ̂1n(k) − λ0]
∣∣ = Op[(log logn)1/2].(6.8)
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By Lemma 6.2(a)–(b) and Lemma 6.3, we know that maxk∈�n |�̂n(k)/n − �| =
Op(n−δ). By Lemma A.2 in the Appendix, we have maxk∈�n |�̂n(k) /n − �| =
Op(n−δ). Furthermore, by (6.7)–(6.8), it follows that

max
k∈�n

∣∣∣∣Wn(k) − k(n − k)

n
[λ̂n(k) − λ̂1n(k)]′�0[λ̂n(k) − λ̂1n(k)]

∣∣∣∣ = op(1),(6.9)

where �0 = ��−1�. Denote

ξn(k) =
√

k(n − k)

n

[
1

k

k∑
t=1

Dt(λ0) − 1

n − k

n∑
t=k+1

Dt(λ0)

]
.

By (6.5)–(6.6), we have

max
k∈�n

∣∣∣∣
√

k(n − k)

n
[λ̂n(k) − λ̂1n(k)] − �−1ξn(k)

∣∣∣∣ = Op(log−δ n).(6.10)

By (6.7)–(6.8) and (6.10), it follows that

max
k∈�n

∣∣∣∣{
√

k(n − k)

n
[λ̂n(k) − λ̂1n(k)] − �−1ξn(k)

}′
�0

(6.11)

×
{√

k(n − k)

n
[λ̂n(k) − λ̂1n(k)]

}∣∣∣∣ = op(1).

By (6.9) and (6.11), we can show that maxk∈�n |Wn(k)−ξ ′
n(k)�−1ξn(k)| = op(1).

By direct calculation, we have Sn(k) = ξ ′
n(k)�−1ξn(k). Thus, (a) holds. The proof

of (b) is easy and can be found in [28]. �

LEMMA 6.5. Let {Gt, t = 1,2, . . .} be an i.i.d. sequence of m × 1 random
vectors with EGt = 0 and E(GtG

′
t ) = I . If E|Gt |2+ι < ∞ for some ι > 0, then,

for each µ ∈ (0,1) and for any x,

P

(
1

an(m)

[
max

logn≤k≤µn

∣∣∣∣∣ 1√
k

k∑
t=1

Gt

∣∣∣∣∣
2

− bn(m)

]
≤ x

)
→ exp(−e−x/2),

as n → ∞, where an(m) and bn(m) are defined in Theorem 3.1.

PROOF. The lemma can be proved readily by using Lemma 2.2 of [17] and
Corollary A.2 of [12]. �

PROOF OF THEOREM 3.1. Let Sn(k) be defined as in Lemma 6.4 and denote

S̃1(k) = �−1/2
√

k

k∑
t=1

Dt(λ0) and S̃2n(k) = �−1/2
√

n − k

n∑
t=k+1

Dt(λ0).
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Let µ ∈ (0,0.5). By Lemma 6.1(a) and the continuous mapping theorem,∣∣∣∣ max
logn≤k≤µn

Sn(k) − max
logn≤k≤µn

|S̃1(k)|2
∣∣∣∣

≤ max
logn≤k≤µn

∣∣Sn(k) − |S̃1(k)|2∣∣
= max

logn≤k≤µn

∣∣|S̃2n(k)|2 − |S̃1(n)|2∣∣
−→L max

0≤τ≤µ

∣∣∣∣ |B(1) − B(τ)|2
1 − τ

− |B(1)|2
∣∣∣∣,

as n → ∞, where →L denotes convergence in distribution and {B(τ) : τ ∈ [0,1]}
is a standard Brownian motion. Thus, for any ε > 0,

lim sup
n→∞

P

(∣∣∣∣ max
logn≤k≤µn

Sn(k) − max
logn≤k≤µn

|S̃1(k)|2
∣∣∣∣ > ε

)
→ 0,(6.12)

as µ → 0. Similarly, as µ → 0,

lim sup
n→∞

P

(∣∣∣∣ max
logn≤n−k≤µn

Sn(k) − max
logn≤n−k≤µn

|S̃2n(k)|2
∣∣∣∣ > ε

)
→ 0.(6.13)

Denote B1(k) = �−1/2 ∑k
t=1 G1t /

√
k and B2(k) = �−1/2 ∑−1

t=−k G2t /
√

k, where
{G1t } and {G2t } are defined as in Lemma 6.1. By Lemma 6.1(a), for each µ, we
have ∣∣∣∣ max

logn≤k≤µn
|S̃1(k)|2 − max

logn≤k≤µn
|B1(k)|2

∣∣∣∣
≤ max

logn≤k<n

∣∣√log log k[S̃1(k) − B1(k)]∣∣ |B1(k)| + |S̃1(k)|√
log log k

= op(1),

as n → ∞. Furthermore, by Lemma 6.5(a), for each µ and x, it follows that

lim
n→∞P

([
max

logn≤k≤µn
|S̃1(k)|2 − bn(m)

]/
an(m) < x

)
= exp(−e−x/2).(6.14)

Applying the same argument to S̃∗
2 (k) = (k�)−1/2 ∑1

t=−k Dt(λ0) and B2(k) with
the help of Lemma 6.1(b), and observing that maxlogn≤k≤µn |S̃∗

2 (k)|2 has the same
distribution as maxlogn≤n−k≤µn |S̃2n(k)|2, we have

lim
n→∞P

([
max

logn≤n−k≤µn
|S̃2n(k)|2 − bn(m)

]/
an(m) < x

)
= exp(−e−x/2).(6.15)

Using a similar method as for (5.2), we can show that

�n ≡ max
logn≤n−k≤µn

∣∣∣∣∣ �−1/2

(n − k)0.5−δ

n∑
t=k+1

{Dt(λ0) − E[Dt(λ0)|Ft−k(t)]}
∣∣∣∣∣ = op(1),
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for some δ > 0. Let S0
2n(k) = �−1/2 ∑n

t=k+1 E[Dt(λ0)|Ft−k(t)]/
√

n − k. So,∣∣∣∣ max
logn≤n−k≤µn

|S̃2n(k)|2 − max
logn≤n−k≤µn

|S0
2n(k)|2

∣∣∣∣
≤ max

logn≤n−k≤µn

∣∣|S̃2n(k)|2 − |S0
2n(k)|2∣∣

≤ �2
n + 2�n max

logn≤n−k≤µn

∣∣∣∣∣ 1

(n − k)0.5+δ

n∑
t=k+1

Dt(λ0)

∣∣∣∣∣ = op(1),

where the last step holds by Lemma 6.1(b), the LIL and the strict stationarity of
{Dt(λ0)}. Furthermore, by (6.15), for each µ and x, it follows that

lim
n→∞P

([
max

logn≤n−k≤µn
|S0

2n(k)|2 − bn(m)

]/
an(m) < x

)
= exp(−e−x/2).

By (6.14), the above two equations and independence of maxlogn≤n−k≤µn

|S0
2n(k)|2 and maxlogn≤k≤µn |S̃1(k)|2, for each µ ∈ (0,0.5) and x, it follows that

P

([
max

{
max

logn≤k≤µn
|S̃1(k)|2,

max
logn≤n−k≤µn

|S̃2n(k)|2
}

− bn(m)

]/
an(m) < x

)
= exp(−2e−x/2) + o(1).

Since an(m) = 1+o(1), by (6.12)–(6.13) and the preceding equation, we can show
that, for each x and any ε > 0, there exist N > 0 and a constant µ0 ∈ (0,1/2) such
that, as n > N ,∣∣∣∣P([

max
{

max
logn≤k≤µ0n

Sn(k), max
logn≤n−k≤µ0n

Sn(k)

}
− bn(m)

]/
an(m) < x

)

− exp(−2e−x/2)

∣∣∣∣ <
ε

2
.

By Lemma 6.1(a) and the continuous mapping theorem, we have

max
µ0n≤k≤n−µ0n

Sn(k) −→L max
µ0≤τ≤1−µ0

{ |B(τ)|2
τ

+ |B(1) − B(τ)|2
1 − τ

− |B(1)|2
}
,

as n → ∞. By the preceding two equations, for any x, we can show that

lim
n→∞P

([
max

k∈[logn,n−logn]Sn(k) − bn(m)

]/
an(m) < x

)
= exp(−2e−x/2).

Finally, by Lemma 6.4(a)–(b), the conclusion holds. �
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7. Proof of Theorem 4.1. It is sufficient for Theorem 4.1 to verify Assump-
tions 3.1–3.3. For simplicity, we only consider the case with p = q = 0, while the
general case can be similarly verified.

In this case, the following expansions hold:

yt =
∞∑
i=0

c0iεt−i and εt (λ) = (1 − B)dyt =
∞∑
i=0

a0i (λ)yt−i ,(7.1)

where c00 = a00(λ) = 1, c0i = O(i−1+d0) and a0i (λ) = O(i−1−d). We further
have

∂εt (λ)

∂d
= log(1 − B)(1 − B)dyt ,

∂2εt (λ)

∂d2 = log2(1 − B)(1 − B)dyt and
∂3εt (λ)

∂d3 = log3(1 − B)(1 − B)dyt ,

where log(1 − B) = −∑∞
i=1 Bi/i and logk(1 − B)(1 − B)d = ∑∞

i=1 akiB
i with

aki(λ) = O(i−1−d logk i) for k = 1,2,3.

PROOF OF ASSUMPTIONS 3.1–3.2. By Assumption 4.1, {yt } is strictly
stationary with E|yt |2+ι < ∞. Since � is compact, there exist constants d

and d̃ such that 0 < d ≤ d ≤ d̃ < 0.5 and d0 ∈ (d, d̃). Thus, supλ∈� |aki(λ)| =
O(i−1−d logk i) for k = 0,1,2,3, and

sup
�

|εt (λ)| = sup
�

∣∣∣∣∣
∞∑
i=0

a0i (λ)yt−i

∣∣∣∣∣ ≤ |yt | + O(1)

∞∑
i=1

1

i1+d
|yt−i |.

Treating sup� |εt (λ)| and yt as elements in the L2+ι space, we have∥∥∥∥sup
�

|εt (λ)|
∥∥∥∥

2+ι

≤ O(1)

[
‖yt‖2+ι +

∞∑
i=1

‖yt−i‖2+ι

i1+d

]
< ∞,(7.2)

that is, the first part of Assumption 3.1(i) holds. The proof of the second part
and Assumption 3.1(ii) can be found in [29]. Similar to (7.2), it can be proved
that ‖ sup�[|∂2εt (λ)/∂d2|+ |∂3εt (λ)/∂d3|]‖2+ι < ∞. Thus, we can show that As-
sumption 3.1(iii)–(iv) holds. For a (large) integer K ,∥∥∥∥∥sup

�

∣∣∣∣∣εt (λ) −
K∑

i=0

a0i (λ)yt−i

∣∣∣∣∣
∥∥∥∥∥

2+ι

≤ O(1)

∞∑
i=K+1

‖yt−i‖2+ι

i1+d
= O

(
1

Kd

)
.

When k > i, by Lemma 2 in [35], it follows that

‖yt−i − E[yt−i |Fk(t)]‖2+ι
2+ι = E

∣∣∣∣∣
∞∑

j=k−i

c0j εt−i−j

∣∣∣∣∣
2+ι

= O(1)

( ∞∑
j=k−i

c2
0j

)1+ι/2

= O

[
1

(k − i)(1−2d0)(1+ι/2)

]
.
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Let K = [k/2]. By the expansion of εt (λ) in (7.1) and the preceding two equations,∥∥∥∥sup
�

|εt (λ) − E[εt (λ)|Fk(t)]|
∥∥∥∥2+ι

2+ι

≤ O

(
1

kd(2+ι)

)
+ O(1)

{
K∑

i=0

sup
�

|a0i (λ)|‖yt−i − E[yt−i |Fk(t)]‖2+ι

}2+ι

≤ O

(
1

kd(2+ι)

)
+ O(1)

[
K∑

i=0

1

(i + 1)1+d(k − i)(1−2d0)/2

]2+ι

= O

(
1

k2ν0

)
,

for some ν0 > 0. Using this with (7.2), we can show that Assumption 3.2(i) holds.
Similarly, we can show that Assumption 3.2(iii) holds. Note that (1 −B)d0yt = εt .
By Lemma 2 in [35],

‖Dt(λ0) − E[Dt(λ0)|Fk(t)]‖2+ι
2+ι = σιE

∣∣∣∣∣
∞∑
i=k

εt−i

i

∣∣∣∣∣
2+ι

= O
(
k−(2+ι)×0.5)

,

where σι = E|εt |2+ι < ∞. Thus, 2ν = 1. Uniformly in t , it follows that

‖E[Dt(λ0)|Fk+1(t)] − E[Dt(λ0)|Fk(t)]‖2+ι
2+ι = σιE

∣∣∣∣εt−k

k

∣∣∣∣2+ι

= O

(
1

k2+ι

)
.

Thus, we have that ι1 = ι and ν1 = 1. By the preceding two equations, we know
that Assumption 3.2(ii) holds. �

PROOF OF ASSUMPTION 3.3. Since yt = 0 for t ≤ 0, by (7.1), we have

E

[
sup
�

|εt (λ) − ε̃t (λ)|
]2

= E

[
sup
�

∣∣∣∣∣
∞∑
i=t

a0i (λ)yt−i

∣∣∣∣∣
]2

= O(t−2d).

Using this with (7.2), we can show that Assumption 3.3(i) holds. Similarly, we can
show that the first part of Assumption 3.3(iii) holds. We now verify the second
parts of Assumption 3.3(ii) and 3.3(iii). Denote

At = εt (λ0) − ε̃t (λ0) =
∞∑
i=t

a0i (λ0)yt−i ,

A1t = ∂εt (λ0)

∂d
− ∂ε̃t (λ0)

∂d
=

∞∑
i=t

a1i (λ0)yt−i ,

A2t = ∂εt (λ0)

∂d
− vt = −

∞∑
i=t

1

i
εt−i ,
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where vt = −∑t−1
i=1 εt−i/ i. We next make the decomposition

−Dt(λ0) + D̃t (λ0) = εt (λ0)A1t + ∂ε̃t (λ0)

∂d
At

(7.3)
= AtA2t − AtA1t + Atvt + εt (λ0)A1t .

By (7.1), we can write At as

At =
∞∑
i=t

∞∑
j=i

a0i (λ0)c0j−iεt−j =
∞∑
j=t

[ j∑
i=t

a0i (λ0)c0j−i

]
εt−j .

By Lemma 2 in [35], we can show that E|At |2+ι is bounded by

C

{ ∞∑
j=t

[ j∑
i=t

a0i (λ0)c0j−i

]2}1+ι/2

≤ O(1)

{ ∞∑
j=t

[ j∑
i=t

1

(j − i + 1)1−d0 i1+d0

]2}1+ι/2

,

where C is some constant independent of t . Furthermore, by Lemma A.3 with
u = 1 − d0 and v = 1 + d0, it follows that

E|At |2+ι ≤ O(1)

[ ∞∑
j=t

(
1

j1−d0 td0

)2
]1+ι/2

= O
(
t−(1+ι/2)).(7.4)

Furthermore, we can show that

E|A1t |2+ι = O((log2 t/t)1+ι/2) and E|A2t |2+ι = O
(
t−(1+ι/2)).(7.5)

By (7.3)–(7.5), we can show that ‖Dt(λ0) − D̃t (λ0)‖1+ι/2 = O(t−1/2 log t), that
is, the second part of Assumption 3.3(iii) holds.

Denote k̃ = n − k. By (7.4)–(7.5), E|AtAit | ≤ (EA2
t EA2

it )
1/2 ≤

(E|At |2+ι)1/(2+ι)(E|Ait |2+ι)1/(2+ι) = O(t−1 log2 t). When i = 1,2, by Lemma
A.3 with u = 1/2 − δ and v = 1 and the Cauchy–Schwarz inequality, we can show
that

P

(
max

gn≤k̃<n

1

k̃1/2−δ

n∑
t=k+1

|AtAit | > ε

)
(7.6)

≤ P

(
n∑

t=1

|AtAit |
(n − t + 1)1/2−δ

> ε

)
→ 0.

Next, consider the third term in (7.3). We first make the decomposition

n∑
t=k+1

vtAt = −
k−1∑
i=1

1

i

n∑
t=k+1

εt−iAt −
n−1∑
i=k

1

i

n∑
t=i+1

εt−iAt ,
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where the last term is obtained by exchanging order of
∑n

t=k+1
∑t−1

i=k εt−iAt/i.
Since At is F0-measurable, by Lemma 2 in [35] and Minkowski’s inequality,

there exists a constant B , depending on ι and E|εt |2+ι, such that∥∥∥∥∥
n∑

t=k+1

εt−iAt

∥∥∥∥∥
2+ι

2+ι

≤ B

[
n∑

t=k+1

(E|At |2+ι)2/(2+ι)

]1+ι/2

≤ O(1)

(
n∑

t=k+1

1

t

)1+ι/2

,

uniformly in i = 1, . . . , n. Let δ be small enough such that (1/2 − 2δ)(2 + ι) > 1.
Since k̃ ≥ n − t + 1, by the Markov and Minkowski inequalities, we have

P

(
max

gn≤k̃<n

1

k̃1/2−δ

∣∣∣∣∣
k−1∑
i=1

1

i

n∑
t=k+1

εt−iAt

∣∣∣∣∣ > ε

)

≤ O(1)

n−1∑
k̃=gn

1

k̃(1/2−δ)(2+ι)

∥∥∥∥∥
k−1∑
i=1

1

i

∣∣∣∣∣
n∑

t=k+1

εt−iAt

∣∣∣∣∣
∥∥∥∥∥

2+ι

2+ι

≤ O(1)

n−1∑
k̃=gn

1

k̃(1/2−δ)(2+ι)

[
k−1∑
i=1

1

i

∥∥∥∥∥
n∑

t=k+1

εt−iAt

∥∥∥∥∥
2+ι

]2+ι

≤ O(1)

n−1∑
k̃=gn

1

k̃(1/2−δ)(2+ι)

[
k−1∑
i=1

1

i

(
n∑

t=k+1

1

t

)1/2]2+ι

≤ O(1)

n−1∑
k̃=gn

1

k̃(1/2−2δ)(2+ι)

{
k−1∑
i=1

1

i

[
n∑

t=k+1

1

(n − t + 1)2δt

]1/2}2+ι

≤ O(1)

n−1∑
k̃=gn

1

k̃(1/2−2δ)(2+ι)

(
k−1∑
i=1

log1/2 n

inδ

)2+ι

= o(1),

where the next-to-last step uses Lemma A.3. Similarly, we have

P

(
max

gn≤k̃<n

1

k̃1/2−δ

∣∣∣∣∣
n−1∑
i=k

1

i

n∑
t=i+1

εt−iAt

∣∣∣∣∣ > ε

)

≤ O(1)

n−1∑
k̃=gn

1

k̃(1/2−δ)(2+ι)

[
n−1∑
i=k

1

i

(
n∑

t=i+1

1

t

)1/2]2+ι

= o(1),

where we have used k̃ ≥ n − i ≥ n − t + 1. By the preceding two inequalities, we
have

P

(
max

gn≤k̃<n

1

k̃1/2−δ

∣∣∣∣∣
n∑

t=k+1

vtAt

∣∣∣∣∣ > ε

)
= o(1).(7.7)
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Similarly, we can show that

P

(
max

gn≤k̃<n

1

k̃1/2−δ

∣∣∣∣∣
n∑

t=k+1

εtA1t

∣∣∣∣∣ > ε

)
= o(1).(7.8)

Finally, by (7.3) and (7.6)–(7.8), we can show that the second part of Assump-
tion 3.3(ii) holds. The first part of Assumption 3.3(ii) can be similarly proved and,
hence, the details are omitted. �

APPENDIX: LEMMAS A.1–A.3

We state three lemmas here whose proofs can be found in [28].

LEMMA A.1. If Assumptions 3.1(i), 3.2(i) and 3.3(i) hold, then for any η > 0

(a) lim
n→∞P

(
max

gn≤k≤n
sup

|λ−λ0|≥η

k∑
t=1

[l̃t (λ) − l̃t (λ0)] + √
k > 0

)
= 0,

(b) lim
n→∞P

(
max

gn≤n−k<n
sup

|λ−λ0|≥η

n∑
t=k+1

[l̃t (λ) − l̃t (λ0)] + √
n − k > 0

)
= 0.

LEMMA A.2. If the assumptions of Theorem 3.1 hold, then there exists a δ > 0
such that

(a) max
gn≤k≤n

kδ

n

∣∣∣∣∣
k∑

t=1

[
D̃t (λ̂n(k))D̃′

t (λ̂n(k)) − �

]∣∣∣∣∣ = op(1),

(b) max
gn≤n−k<n

(n − k)δ

n

∣∣∣∣∣
n∑

t=k+1

[D̃t (λ̂1n(k))D̃′
t (λ̂1n(k)) − �]

∣∣∣∣∣ = op(1).

LEMMA A.3. For any u ∈ (0,1) and v ∈ (0,∞), it follows that

j∑
t=r+1

1

(j − t + 1)utv
= O(1)

 j1−u−v, if v < 1,
j−u log j, if v = 1,
j−ur1−v, if v > 1,

where O(1) holds uniformly in j > r ≥ 1.
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