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VOLATILITY ESTIMATORS FOR DISCRETELY SAMPLED
LÉVY PROCESSES

BY YACINE AÏT-SAHALIA1 AND JEAN JACOD

Princeton University and Université de Paris-6

This paper studies the estimation of the volatility parameter in a model
where the driving process is a Brownian motion or a more general symmetric
stable process that is perturbed by another Lévy process. We distinguish be-
tween a parametric case, where the law of the perturbing process is known,
and a semiparametric case, where it is not. In the parametric case, we con-
struct estimators which are asymptotically efficient. In the semiparametric
case, we can obtain asymptotically efficient estimators by sampling at a suffi-
ciently high frequency, and these estimators are efficient uniformly in the law
of the perturbing process.

1. Introduction. Models allowing for sample path discontinuities or jumps
are becoming increasingly popular, especially in mathematical finance. Among
jump processes, Lévy processes play a central role due to their analytical tractabil-
ity and their ability to span the behavior of most discontinuous processes. How-
ever, even for Lévy processes, relatively little is known about the corresponding
inference problem, especially for high frequency data. Specifically, suppose that
a Lévy process X, say the log-price of a financial asset, is observed at n times
�n,2�n, . . . , n�n. Since X0 = 0, this amounts to observing the n increments
χn

i = Xi�n − X(i−1)�n . Their density, and hence the corresponding likelihood
function and Fisher information, are not known in closed form. Moreover, un-
der the natural asymptotics for high frequency data, where the sampling interval
�n → 0, these densities explode.

When � > 0 is fixed, we are on familiar ground. We observe n i.i.d. variables
distributed as X�. If, further, this variable has a density which depends smoothly
on the parameter of interest, η, the Fisher information at stage n has the form
In,�(η) = nI�(η), where I�(η) > 0 is the Fisher information of the model based
on the observation of the single variable X�, we have the LAN property with rate√

n, the asymptotically efficient estimators η̂n are those for which
√

n(η̂n − η)

converges in law to the normal distribution N(0, I�(η)−1) and the MLE solves the
problem (see, e.g., [5–7]). In this setting, a variety of other methods have been pro-
posed in the literature: using the empirical characteristic function as an estimating
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equation (see, e.g., [8, 10, 18, 19] and Chapter 4 in [23]), maximum likelihood by
Fourier inversion of the characteristic function (see [9]), a regression based on the
explicit form of the characteristic function (see [14]) or other numerical approxi-
mations (see [16, 17]). Some of these methods were compared in [3].

Things become more complicated when sampling takes place at increasingly
higher frequency, that is when �n → 0. Here, the χn

i ’s are i.i.d. for any given n,
but their laws depend on n. The Fisher information at stage n still has the form
In,�n(η) = nI�n(η), but the asymptotic behavior of I�n(η) is far from obvious
and estimating all of the parameters of a general Lévy process in this setting still
remains out of our reach. So, in this paper we study an example which, despite its
apparent simplicity, turns out to be already quite complex. We suppose that

Xt = σWt + Yt ,(1)

where σ > 0 is the parameter of interest, W is a standard symmetric stable process
with index β ∈ (0,2] and Y is another Lévy process, independent of W and viewed
as a perturbation of W . We assume that Y is dominated by W in a sense to be stated
below: for example, when W is a Wiener process (β = 2), this just means that Y

has no Brownian part; when β < 2, Y could, for example, be another stable process
with index α < β or a compound Poisson process. For instance, in many financial
applications, W is a Wiener process and Y may represent frictions that are due to
the mechanics of the trading process, in which case, Y would have infinite activity.
Alternatively, σW could represent the ordinary fluctuations of the asset value and
Y the infrequent arrival of information related to the asset, in which case Y is a
compound Poisson process. A number of papers are devoted to the estimation of
the integrated volatility

∫ t
0 σ 2

s ds in the model Xt = ∫ t
0 σsdWs + Yt , where W is a

Wiener process, Y is typically a compound Poisson or other specific Lévy process
and σ may be stochastic (see, e.g., [4, 15, 21, 22]).

We start with the fully parametric case, where the law of Y is given. Viewing Y

as a perturbation of W , our interest then lies in deciding whether we can estimate
the parameter σ with the same degree of accuracy as when the process Y is absent,
at least asymptotically. The answer to this question is “yes,” which we show by an-
alyzing the Fisher information, proving the LAN property and exhibiting efficient
estimators, in the strong sense that asymptotically they behave as well as when Y is
absent. When W is a Wiener process, this means that one can distinguish between
the jumps due to Y and the continuous part of X; this fact was already known in
some specific examples (see [1]). It comes as more of a surprise when β < 2—we
can then discriminate between the jumps due to W and those due to Y , despite the
fact that both processes jump and we have only discrete observations. This surpris-
ing property is our main motivation for studying the case when W is more general
than a Wiener process (but dominates Y ).

But, given the nature of the problem, we would rather not fully specify the law
of Y , so we treat it as a nuisance parameter. This gives rise to a semiparametric
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situation. There, we show that obtaining asymptotically efficient estimators of σ

requires �n to convergence sufficiently fast to 0, but we can then exhibit estimators
that are uniformly efficient when the law of Y stays in a set sufficiently separated
from the law of W . And, in general, we can exhibit a large class of estimators
which are consistent and achieve a specified rate.

In both the parametric and semiparametric cases, we construct estimators which
are as simple as possible to implement. For example, in the parametric situation
where the law of Y is known, one can, in principle, compute the MLE, which is, of
course, efficient. In practice, this is hardly feasible as the likelihood function de-
rived from the convolution of the densities of W and Y will, in most situations, not
be available in closed form. So, we provide a number of other simpler estimators
which achieve the efficient rate of convergence.

In this paper, we focus on a single parameter, σ . In a companion paper, [2], we
study the optimal rate at which other parameters of the model, namely β and a
scale parameter θ for the Y process, can be estimated. While we show here that σ

can be estimated optimally at rate n1/2, independently of the specification of the
Y process, this is not the case in general for β and θ . In particular, the rate for β

is faster than n1/2, and is also unaffected by the presence of Y, but the rate for θ is
strongly dependent upon the precise nature of the Y process, and is affected by the
presence of the W process.

The paper is organized as follows. In Section 2 we outline the problem and de-
fine the class of processes Y that are dominated by W . In Section 3 we summarize
the statistical properties in the baseline case where Xt = σWt . In Section 4 we
exhibit the behavior of the Fisher information and prove the LAN property. We
construct our classes of estimators in the parametric and semiparametric cases and
state their asymptotic properties in Sections 5 and 6, respectively. In Sections 7, 8,
9 and 10 we study a number of examples in some detail. The proofs are given in
the last three sections.

2. Setup. The process W is a standard symmetric stable process with index
β ∈ (0,2]. This means that if β = 2, then W is a Wiener process and if β < 2, then
its characteristic function is E(eiuWt ) = e−t |u|β . The Lévy process Y is indepen-
dent of W and its law is entirely specified by the law G� of the variable Y� for any
given � > 0, for instance, Y1. We write G = G1 and recall that the characteristic
function of G� is given by the Lévy–Khintchine formula

E(eivY�) = exp�

(
ivb − cv2

2
+

∫
F(dx)

(
eivx − 1 − ivx1{|x|≤1}

))
,(2)

where (b, c,F ) is the “characteristic triple” of G (or of Y ): b ∈ R is the drift, c ≥ 0
is the local variance of the continuous part of Y and F is the Lévy jump measure
of Y , which satisfies

∫
(1 ∧ x2)F (dx) < ∞ (see, e.g., Chapter II.2 in [12]).

We define the “domination” of Y by W in terms of the property that G belongs
to one of the classes defined below for some α ≤ β . Let � be the class of all
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nonnegative continuous functions on [0,1] and � be the set of all φ ∈ � with
φ(0) = 0. If φ ∈ �, then we set

G(φ,α) = the set of all infinitely divisible distributions with c = 0 and

∀x ∈ (0,1]


xαF ([−x, x]c) ≤ φ(x), if α < 2,

x2F([−x, x]c) ≤ φ(x) and∫
{|y|≤x}

|y|2F(dy) ≤ φ(x), if α = 2,

(3)

G′(φ,α) = {G ∈ G(φ,α), G is symmetrical about 0},(4)

Gα = ⋃
φ∈�

G(φ,α), Gα = ⋃
φ∈�

G(φ,α), G
′
α = ⋃

φ∈�

G′(φ,α).(5)

Observe that as x ↓ 0, we always have∫
{|y|≤x}

|y|2F(dy) → 0 and x2F([−x, x]c) → 0,

hence

α ∈ (0,2] �⇒ Gα =
{
G is infinitely divisible, c = 0,

lim
x↓0

xαF ([−x, x]c) = 0
}
,

α = 2 �⇒ G2 = G2 = {G is infinitely divisible, c = 0}.
(6)

The definition (6) for Gα certainly appears simpler than (5), but we will need each
class G(φ,α) separately for the purpose of stating precise uniformity results for
the Fisher information and estimators below.

Note that α < α′ implies that Gα ⊂ Gα ⊂ Gα′ . If G is a (not necessarily sym-
metric) stable law with index γ , then it belongs to Gα for all α > γ , but not to Gγ .
If Y is a compound Poisson process plus a drift, then G ∈ ⋃

α>0 Gα .
We let Pσ,G denote the law of the process X in (1). We observe the n i.i.d.

increments χn
i = Xi�n − X(i−1)�n . These variables have densities which de-

pend smoothly on σ . The Fisher information of our experiment is In,�n(σ,G) =
nI�n(σ,G), where I�(σ,G) is the Fisher information associated with the obser-
vation of a single variable X�, which we will compute below.

Let us also recall what the LAN (local asymptotic normality) property means in
this context. Denote by Zn(σ

′|σ,G) the log–likelihood of the law of the sequence
(χn

i : 1 ≤ i ≤ n) under Pσ ′,G relative to its law under Pσ,G. We say that LAN holds
at σ with rate

√
n and asymptotic Fisher information I > 0 if there are random

variables Un = Un(σ) converging in law under Pσ,G to an N(0,1) variable and
such that for any real u, we have Zn(σ + u/

√
n|σ,G) − u

√
IUn + u2I/2 → 0

in Pσ,G-probability. A sequence σ̂n is then efficient for estimating σ > 0 if√
n(σ̂n − σ) converges in law under Pσ,G to an N(0,1/I) variable.
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3. The baseline case where Y is absent. Because we will show that the esti-
mation of σ in the presence of Y is asymptotically as good as when Y = 0, let us
start with the situation where we observe the stable process X = σW with scale
parameter σ > 0 and index parameter β ∈ (0,2]. The variables n1/βχn

i are then
i.i.d., with the same law as σW1. In addition, W1 has a density hβ which is C∞

and the nth derivative h
(n)
β behaves as

|h(n)
β (w)| ∼


cβ(1 + β)(2 + β) . . . (n + β)

|w|n+1+β
, if β < 2,

as |w| → ∞,

|w|ne−w2/2/
√

2π, if β = 2,

(7)

where cβ is a positive constant. Let us also associate with hβ the functions

h̆β(w) = hβ(w) + wh
(1)
β (w), h̃β(w) = h̆β(w)2

hβ(w)
,

(8)

hβ(w) = wh
(1)
β (w)

hβ(w)
.

Then h̃β is positive, even and continuous and h̃β(w) = 0(1/|w|1+β) as
|w| → ∞. Hence, h̃β is Lebesgue integrable. Moreover, the variable σW1 admits
the density hβ(x/σ)/σ . Then:

• The Fisher information I�(σ, δ0) associated with the observation of the single
variable X� does not depend on � and equals I(β)/σ 2, where

I(β) =
∫

h̃β(w)dw,(9)

which is well defined and positive. Moreover, if β = 2 (W is then Brownian
motion), then h

(1)
2 (w) = −wh2(w) and h̃2(w) = (1 − w2 + w4)h2(w) and thus

I(2) = 2.
• Since hβ (x/σ) /σ is a smooth function of σ , we have the LAN property at any

σ > 0 [for the observation of the increments (χn
i : 1 ≤ i ≤ n)] with rate

√
n and

asymptotic Fisher information I(β)/σ 2.
• The MLE σ̂n is asymptotically efficient, in the sense that

√
n(σ̂n −σ) converges

under Pσ,δ0 to an N(0, σ 2/I(β)) variable. In fact, σ̂n is a positive solution to the
equation Hn(u) = −1, where Hn(u) = n−1 ∑n

i=1 hβ(χn
i /u), and such a solution

always exists because Hn is continuous, tends to 0 when u → ∞ and tends to
−(1 + β) when u → 0.

4. Fisher information and LAN. We now return to the situation where Y is
present. The first result is a purely parametric one, when the law G of Y1 is known.
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THEOREM 1. For any � > 0, we have

I�(σ,G) ≤ 1

σ 2 I(β)(10)

and when G ∈ Gβ , we have, as � → 0,

I�(σ,G) → 1

σ 2 I(β).(11)

Furthermore, if G ∈ Gβ and �n → 0, then the LAN property holds at any σ > 0,
with rate

√
n and asymptotic Fisher information I(β)/σ 2, for the experiments

which consist of observing (χn
i : 1 ≤ i ≤ n).

The second result concerns the uniformity of the previous convergence when G

varies, so it is a semiparametric result. We will only state the result for the Fisher
information.

THEOREM 2. (a) For any φ ∈ �, α ∈ (0, β] and ε ∈ (0,1), we have, as � → 0,

sup
G∈G(φ,α),σ∈[ε,1/ε]

∣∣∣∣I�(σ,G) − I(β)

σ 2

∣∣∣∣ → 0.(12)

(b) For each n, let Gn denote the standard symmetric stable law of index αn,
with αn a sequence strictly increasing to β . Then for any sequence �n → 0 such
that (β − αn) log�n → 0 (i.e., the rate at which �n → 0 is sufficiently slow), the
I�n(σ,Gn) converge to a limit strictly less than I(β)/σ 2.

In other words, as soon as Y is dominated by W , the presence of Y has no
impact on the information terms I�: in the limit where � → 0, the parameter σ

can be estimated with exactly the same degree of precision whether Y is present
or not. Moreover, part (a) of Theorem 2 states that the convergence of the Fisher
information is uniform on the set G(φ,α) for all α ≤ β . This settles the case where
G is considered as a nuisance parameter for the purpose of estimating σ .

But, as soon as α tends to β , we see in part (b) that the convergence disappears.
This suggests that the class Gβ is effectively the largest one for which the presence
of Y does not affect the estimation of σ . For example, if β = 2, then in part (b), take
Gn to be the symmetric stable law with index αn ∈ (0,2) and scale parameter s, in
the sense that its characteristic function is u �→ exp(−s2|u|αn/2). Then if αn → 2,
for all sequences �n → 0 satisfying (2 − αn) log�n → 0, we have I�n(σ,Gn) →
2/(σ 2 + s2). This is, of course, to be expected since in the limit we are observing√

σ 2 + s2W and we supposedly know s and wish to estimate σ .

5. Estimation in the parametric case. Here, we suppose that G is known
and belongs to Gβ and we seek estimators for σ which are efficient in the sense of
Theorem 1.
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5.1. Some notation. We will need to center the increments χn
i by accounting

for the drift b of Y , as well as the drift coming from the asymmetry of the Lévy
measure F , when present. So, when G ∈ Gα with α ≤ β , we set

b′(G,α) =


b −
∫
{|x|≤1}

xF(dx), if α < 1,

b, if α ≥ 1.

(13)

Let Z�(α) = �−1/β(Y� − b′(G,α)�) and let G′
�,α denote the law of Z�(α).

Then we define the centered and scaled increments

χ ′n
i (G) = �−1/β

n

(
χn

i − b′(G,β)�n

)
.(14)

Next, for the purpose of constructing estimating equations, if u > 0, v ≥ 0,
z ∈ R and k is a bounded function, we define

�G,�,α,k(u, v, z) =
∫

hβ(x) dx

∫
G′

�,α(dw)k(ux + vw + z),

�k(u, z) =
∫

hβ(x)k(ux + z) dx,

(15)

so �k(u, z) = �G,�,α,k(u,0, z) for all G, � and α. Then we introduce the “tail
function,”

ψ(u) = P(|W1| > 1/u) = 2
∫ ∞

1/u
hβ(x) dx(16)

for u > 0 (this depends on β). It is C∞, strictly increasing from 0 to 1 and has
a nonvanishing first derivative. So, its reciprocal function ψ−1, from (0,1) into
(0,∞), is also C∞ and strictly increasing.

Finally, for α ∈ (0,2] and the function φ ∈ � defining the class G(φ,α), let
φ′(x) = sup(φ(y) : y ∈ [0, x]) for x ∈ [0,1] and

φα(x) =



φ′(x)

1 − α
, if α < 1,

φ′(x) + φ′(x)√
log(1/x)

+ φ
(
1 ∧ e−√

log(1/x)), if α = 1,

φ′(x) + φ′(
√

x)

α − 1
+ φ′(1)

α − 1
x

α−1
2 , if α > 1

(17)

[with exp(−√
log(1/x)) = 0 if x = 0]. This obviously defines an increasing func-

tion φα ∈ �, where φ ≤ φα and also φα ∈ � whenever φ ∈ �.

5.2. Construction of the estimators. Recall that, for now, G ∈ Gβ is known
and so, in particular, we know the centering number b′(G,β) used in the centering
of the increments (14) and also that G ∈ G(φ,β) for some φ ∈ �. In general, we
need to begin with a preliminary estimator Sn(G) for σ which is designed to rule
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out explosions. If we are willing to assume that σ belongs to the interval [ε,1/ε]
for some ε ∈ (0,1), then it would be possible to dispense with the preliminary esti-
mator Sn(G) by defining the estimating function in (24) below slightly differently.
Otherwise, we choose an arbitrary sequence mn of integers satisfying

mn ↑ ∞,
mn

n
→ 0,(18)

and recalling (14) and (16), we define the preliminary estimator as follows:

Vn(G) = 1

mn

mn∑
i=1

1{|χ ′n
i (G)|>1},

Sn(G) =
{

ψ−1(Vn(G)), if 0 < Vn(G) < 1,

1, otherwise.

(19)

To develop an estimating equation for the construction of the final estimator
of σ , we choose a function k satisfying

sup
x

|k(x)|
1 + |x|γ < ∞, I (k) :=

∫
h̆β(x)k(x) dx �= 0,(20)

where γ satisfies

γ ∈ [0,+∞), if β = 2,

γ ∈ [0, β/2), if β < 2.
(21)

Then we set

kn(x) =
{

k(x), if k is bounded,

k(x)1{|k(x)|≤νn}, otherwise,
(22)

where νn is an increasing sequence of numbers satisfying

νn → ∞, ν2
nφβ(�1/β

n ) → 0,
ν4
n

n
→ 0(23)

and where φβ is associated with φ [a function such that G ∈ G(φ,β)] by (17).
Conditions (23) limit the growth of kn and play purely technical roles such as
ensuring that the CLT holds.

Then, with pn = n − mn, and since each kn is bounded, we can define the esti-
mation functions (for u > 0)

Un,G,φ,k(u) = 1

pn

n∑
i=mn+1

kn

(
χ ′n

i (G)

Sn(G)

)
− �G,�n,β,kn

(
u

Sn(G)
,

1

Sn(G)
,0

)
.(24)

Finally, the estimators for σ are

σ̂n(G,φ, k) =


the u > 0 with Un,G,φ,k(u) = 0 closest to Sn(G),

if it exists,
1, otherwise.

(25)
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As the notation suggests, this estimator depends on G and k and it depends on φ

through the choice for kn made in (23). Of course, it also depends on β , but since
β is always fixed, we leave this dependence implicit in the notation.

5.3. Asymptotic distribution. With k and I (k) defined as in (20), the following
are two finite numbers:

J (k) = E(k(W1)
2) − (E(k(W1)))

2, �2(k) = J (k)

I (k)2 .(26)

THEOREM 3. Let φ ∈ � and let k be a function satisfying (20) for some γ

satisfying (21). Suppose, further, that �n → 0.

(a) The sequence
√

n(σ̂n(G,φ, k) − σ) converges in law to N(0, σ 2�2(k)),
under Pσ,G, uniformly in G ∈ G(φ,β) and in σ ∈ [ε,1/ε] for any ε > 0.

(b) We have �2(k) ≥ 1/I(β) and this inequality is an equality if we choose
k = hβ , that is, the σ -score from the density of σW� alone (without Y ).

REMARK 1. It is, of course, possible (and advisable) to select the function k so
as to minimize �2(k). The choice k = hβ is indeed possible: the function k = hβ

satisfies (20) with γ = 0 (resp. γ = 2) if β < 2 (resp. β = 2). Such a choice gives
asymptotically efficient estimators according to the optimality associated with the
LAN property (Theorem 1), which, furthermore, behave asymptotically like the
efficient estimators for the model Xt = σWt (with no perturbing term Y ).

REMARK 2. To put these estimators to use, we would need to numerically
compute the function �G,�,β,k(u, v,0) for a single value v = 1/Sn(G) and all
values of u (in principle). Except in special situations, there is no closed form for
this function and we would have to resort to numerical integration or to Monte
Carlo techniques. For this, it is, of course, helpful to have a closed form for k. In
general, this is not the case for the function k = hβ , except in the important case
where β = 2.

REMARK 3. As an example, we can take k(x) = |x|r for some r > 0 when
β = 2 and some r ∈ (0, β/2) otherwise (when β = 2 and r = 2, this is the optimal
choice since h2(x) = −x2): the function �G,�n,β,kn is still not explicit, but is easily
approximated by Monte Carlo techniques, at least when Yt can be easily simulated.
We discuss that choice in some detail in Section 8. Another possibility is to use
the empirical characteristic function of the sampled increments, which leads to a
closed form expression for �G,�n,β,kn . This will be done in Section 7.
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6. Estimation in the semiparametric case. Perhaps more realistic is the case
where we seek to estimate σ , but the measure G is unknown. Because of Theo-
rem 2(b), one cannot hope for estimators that are as efficient as in the absence
of Y , or even consistent, if all we know is that G ∈ Gβ . So, we will assume that G,
although unknown, belongs to the class Gα for some α < β . Since G is unknown,
the estimating equations must be based on the law of W alone (and neither on G

nor even on α). The challenge is then to achieve rate efficiency, despite the sparse
information we have about G. We will exhibit estimators which are efficient if
the sampling interval �n converges sufficiently fast to 0. The closer α is to β , the
faster �n needs to converge to 0.

6.1. Construction of the estimators. We refer to the (simpler) situation where
we know that G ∈ G

′
α (that is, G ∈ Gα and G is symmetrical) and to the situation

where we know only that G ∈ Gα as the symmetrical and asymmetrical cases,
respectively. The construction appears very similar to the one in the parametric
case, except that in the asymmetrical case, we now need to produce an estimator
Bn for the drift b′(G,α) in order to remove it. Of course, in the symmetrical case,
since we know that b′(G,α) = 0, we just set Bn = 0. In the asymmetrical case, we
set rn = [δn] for some arbitrary δ ∈ (0,1/2) ([x] denotes the integer part of x) so
that rn ∼ δn. Then we choose a C∞, strictly increasing and odd function θ , with
bounded derivative, θ(0) = 0 and θ(±∞) = ±1 [e.g., θ(x) = 2 arctan(x)/π ] and
set for u ∈ R,

Rn(u) = 1

rn

rn∑
i=1

θ
(
�−1/β

n (χn
i − u)

)
.(27)

Since u �→ Rn(u) is continuous and decreases strictly from +1 to −1 as u goes
from −∞ to +∞, we can set

Bn = inf(u : Rn(u) = 0) [= the only root of Rn(·) = 0].(28)

Next, we construct our preliminary estimator for σ . Exactly as in the parametric
case, if we are willing to assume that σ lies in a given interval [ε,1/ε], then this
preliminary estimator is not needed and can be replaced by Sn = 1. In the sym-
metrical case, with mn satisfying (18), we set qn = 0 and pn = n − mn. In the
asymmetrical case, with mn satisfying (18) and rn as in (27), we set qn = rn and
pn = n − mn − rn. Then in both cases we set

Vn = 1

mn

qn+mn∑
i=qn+1

1{|�−1/β
n (χn

i −Bn)|>1},

(29)

Sn =
{

ψ−1(Vn), if 0 < Vn < 1,

1, otherwise.
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To construct estimating equations for σ , we choose a function k satisfying (20)
with γ = 0 [that is, k is bounded and I (k) �= 0]. With the notation �k of (15), we
define the estimating functions (for u > 0)

Un(u) = 1

pn

n∑
i=qn+mn+1

k

(
�

−1/β
n (χn

i − Bn)

Sn

)
− �k

(
u

Sn

,0
)

(30)

and the final estimators

σ̂n(k) =
{

the u with Un(u) = 0 which is closest to Sn, if it exists,

1, otherwise.
(31)

Note that unlike the centering utilized for the estimating equation in the para-
metric case [recall (24)], the centering we now use, based on �k

(
u/Sn,0

)
in (30),

does not involve the measure G. Indeed, these estimators depend explicitly on
β and k, but on nothing else, and, in particular, not on G. As a result, they are
much easier to compute than in the parametric case. This is particularly true when
k(x) = cos(wx) for some w > 0 since then �k(u,0) = exp(−wβuβ/2) is invert-
ible in u. We will detail this example in the next section, but it is also true in
general: first, because the estimators depend only on the function �k(u, ·) which
is much simpler than the function �G,�,β,k accruing in the estimation in the para-
metric case; second, because, as a rule, u �→ �k(u,0) is at least “locally invertible”
around u = 1.

6.2. Asymptotic distribution. Recall the notation I (k), J (k), �2(k) of (20)
and (26) and define

ρ(α,β) = 2(β − α)

β(2 + α)
, ρ′(α,β) = β − α

β
.(32)

Observe that ρ(α,β) < ρ′(α,β) when α < β . The two theorems below cover the
properties of the estimators in the symmetrical and asymmetrical cases, respec-
tively.

THEOREM 4. Let α ∈ (0, β), φ ∈ �, k be a bounded function with I (k) �= 0
and ε ∈ (0,1). Take the symmetrical version of the estimators.

(a) If

sup
n

n�2ρ′(α,β)
n → 0,(33)

then the sequence
√

n(σ̂n(k)−σ) converges in law to N(0, σ 2�2(k)), under Pσ,G,
uniformly in σ ∈ [ε,1/ε] and in G ∈ G′(φ,α).

(b) In general, the variables (
√

n ∧ �
−ρ′(α,β)
n )(σ̂n(k) − σ) are tight under

Pσ,G, uniformly in n ≥ 1 and in σ ∈ [ε,1/ε] and G ∈ G′(φ,α).
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THEOREM 5. Let α ∈ (0, β), φ ∈ �, k be a bounded function with I (k) �= 0
and ε ∈ (0,1). Take the asymmetrical version of the estimators.

(a) If

sup
n

n�2ρ(α,β)
n → 0,(34)

then the sequence
√

n(σ̂n(k) − σ) converges in law to N(0, σ 2�2(k)/(1 − δ)),
under Pσ,G, uniformly in σ ∈ [ε,1/ε] and in G ∈ G(φ,α).

(b) In general, the variables (
√

n∧�
−ρ(α,β)
n )(σ̂n(k)−σ) are tight under Pσ,G,

uniformly in n ≥ 1 and in σ ∈ [ε,1/ε] and G ∈ G(φ,α).

The optimal choice of the function k was discussed after Theorem 3: when
β < 2, we still have asymptotic efficiency in the situation of Theorem 4(a), pro-
vided that k = hβ . When β = 2, the choice k = hβ is not permitted here, but with
truncation as in k(x) = −x21{|x|≤A}, one achieves an asymptotic variance which
approaches the optimal variance when A goes to infinity; see Section 8.

REMARK 4. When α increases, then ρ(α,β) and ρ′(α,β) decrease, so (33)
and (34) are more difficult to obtain and the rate in (b) of the two theorems above
gets worse, as it should. Also, when (34) fails, the actual rate of convergence [that
is, a sequence δn such that the law of δn(σ̂n(k) − σ) converges to a nondegenerate
limit, or at least admits some nondegenerate weak limiting measures] is not only
unknown, but actually depends on the true underlying measure G and, in particular,
on the minimal index α′ such that G ∈ Gα′ (we know α′ ≤ α, but the inequality
could be strict). In other words, the rate could be, for example,

√
n for a particular

G, even without (34).

REMARK 5. However, we will see in the examples below (see Section 10 in
particular) that (33) is necessary for convergence to a centered distribution with
rate

√
n and also that the rate in (b) of Theorem 4 is sharp, relative to the class

G′(φ,α) on which uniformity holds. We do not know whether (34) or the rate in
(b) are optimal for Theorem 5.

REMARK 6. Of course, there might exist other, entirely different, estimators
behaving better than the σ̂n(k)’s and perhaps having a better rate than in part (b)
of these theorems [the rate cannot be improved in (a), of course]. We think this
doubtful, however.

REMARK 7. The most interesting situation is when we have asymptotic ef-
ficiency in the sense of having the same asymptotic variance as when Y is ab-
sent (this happens when G is symmetrical), or at least “rate efficiency” (that is
rate

√
n). We have this under (33) or (34), that is, when �n → 0 sufficiently fast.
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When �n = 1/n, rate efficiency is satisfied provided α ≤ β/2 for Theorem 4 and
provided α ≤ 2β/(4 +β) for Theorem 5. If Y is a compound Poisson process with
drift, then rate efficiency holds provided n�2

n is bounded, regardless of the value
taken by β ∈ (0,2] (take α = 0).

REMARK 8. When we do not know that G is symmetrical, we have rate ef-
ficiency when �n → 0 sufficiently fast, but cannot achieve the asymptotically ef-
ficient variance, even under (34). However, the asymptotic variances in the two
theorems above are the same, up to the factor 1 − δ. By choosing δ small, one can
approach asymptotic efficiency as closely as desired.

7. Example: the empirical characteristic function. We now turn to specific
estimators. Recall that a way of estimating a parameter for i.i.d. variables Xj is
to use the empirical characteristic function

∑
j∈J exp(iwXj), or

∑
j∈J cos(wXj )

in the symmetrical case, for some given w (or several w’s at once), where J is
the index set; in the Lévy process setting, see, for example, [8, 10, 18, 19] and
Chapter 4 in [23].

Here, in the parametric situation, the variable Xj at stage n is χ ′n
j (G) and J =

{mn + 1, . . . , n}. Those variables are “almost” symmetrical (the leading term W in
them is symmetrical). So, we consider, for any given w > 0, the variable

Vn(w) = 1

pn

n∑
i=mn+1

cos
(

wχ ′n
i (G)

Sn(G)

)
,(35)

where Sn(G) is the preliminary estimator. In other words, we take k(x) = cos(wx)

[a bounded function, so kn = k in (22)] and the estimating function of (24) is

Un,G,β,k(u) = Vn(w) − �G,�n,β,k

(
u

Sn(G)
,

1

Sn(G)
,0

)
.(36)

Furthermore, if ρ(u) is the exponent in (2), we get, for g(x) = exp(iwx),

�G,�,β,g(u, v,0) = exp
(
−wβuβ

2
+ �ρ(wv�−1/β) − iwvb′(G,α)�1−1/α

)
.

Taking the real part and using (13) and the fact that G ∈ Gβ , we see that for k(x) =
cos(wx), we have �G,�,β,k(u, v,0) = exp(A�(u, v)) cos(B�(u, v)), where

A�(u, v) = −wβuβ

2
+

∫
F(dx)

(
cos(wv�1−1/βx) − 1

)
,

(37)

B�(u, v) =


∫
F(dx) sin(wv�1−1/βx), if β < 1,∫
F(dx)

(
sin(wv�1−1/βx) − wv�1−1/βx1{|x|≤1}

)
, if β ≥ 1.
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So we can insert these formulas directly into (36). Moreover, we have
�k(u,0) = e−wβuβ/2. Then inserting this into (26) [recall �k(u,0) = E(k(uW1)),
hence I (k) = −� ′

k(1,0) and J (k) = (�k(2,0) + 1)/2 − �k(1,0)2], we get

�2(k) = 2
1 + e−(2w)β/2 − 2e−wβ

β2w2βe−wβ
.(38)

When β < 2, the minimal variance is achieved for some value w = wβ ∈ (0,∞);
when β = 2, the variance �2(k) goes to 1/2 as w → 0—recall, once more, that
1/2 is the efficient variance in that case.

For the semiparametric situation, things are even simpler. The estimating func-
tion of (30) becomes

Un,G,β,k(u) = Vn(w) − �k(u/Sn,0),(39)

provided that in (35), we sum over i ∈ {qn + mn + 1, . . . , n}. Moreover, u �→
�k(u,0) is invertible, so the estimator σ̂n(k) takes the simple explicit form

σ̂n(k) = Sn

21/β

w

(
− log

(
1

pn

n∑
i=qn+mn+1

cos
(

w�
−1/β
n (χn

i − Bn)

Sn

)))1/β

(40)

if the argument of the logarithm is positive [otherwise, set, e.g., σ̂n(k) = 1].

8. Example: power and truncated power functions. Another natural choice
for the function k is a power function k(x) = |x|r for some r > 0 when β = 2 and
r ∈ (0, β/2) otherwise (when β = 2, this is, in principle, optimal for r = 2). In gen-
eral, the function �G,�n,β,kn is not explicit, but can be numerically approximated
via Monte Carlo procedures, for example. However, the asymptotic variance is
explicit. If mr = E(|W1|r ), we get I (k) = −rmr and J (k) = m2r − m2

r , hence,

�2(k) = m2r − m2
r

r2m2
r

.(41)

When β = 2, �2(k) achieves its minimum of 1/2 (the optimal variance) at r = 2.
When β < 2, �2(k) goes to ∞ when r increases to β/2. We conjecture that �2(k)

is monotone increasing in r (this holds when β = 1); so one should take r as small
as possible, although r = 0 is, of course, excluded.

In the semiparametric setting, the previous choice is not admissible since k must
be bounded. So, we must “truncate” the argument, using the function

kγ (x) = |x|r1{|x|≤γ }(42)

for some constant γ . The function �kγ (u,0) = urE(|W1|r1{|W1|≤γ /u}) is invertible

from a neighborhood I of u = 1 onto some interval I ′ and we write �−1
hγ

(v) for
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the inverse function at v ∈ I ′. Then if Bn and Sn are the preliminary estimators and
if

Vn(γ ) = 1

pn�
r/β
n

n∑
i=mn+1

|χn
i − Bn|r1{|χn

i |≤γ�1/β },(43)

the estimator σ̂n(kγ ) is defined by σ̂n(kγ ) = Sn�
−1
kγ

(
Vn(γ Sn)/S

r
n

)
when the argu-

ment of �−1
kγ

above is in I ′ and σ̂n(kγ ) = 1 (for example) otherwise. This is almost
as explicit as (40) and

�2(kγ ) = Mγ,2r − M2
γ,r

(rMγ,r − 2hβ(γ )γ r+1)2 , where Mγ,s = E
(|W1|r1{|W1|≤γ }

)
.(44)

We can try to minimize this variance by appropriately choosing the constants γ > 0
and r > 0.

One could also use kγn , with the level γn > 0 depending on n. Our general
results do not apply, but similar results, with possibly other rates, obviously apply.
In the next section, we check, in a particular case, that it is best (for the rate of
convergence, at least) to take a constant level γn = γ , as implicitly proposed in the
method previously developed.

9. Example: Brownian motion plus Gaussian compound Poisson process.
In this section, we present a fully worked-out example, where W is Brownian
motion and Y is a compound Poisson process with Gaussian jumps, say N(0, η),
and intensity of jumps given by some λ > 0. We consider a number of choices of
k based on the power or truncated power variations

Vn(c, κ) = 1

pn�
r/2
n

n∑
i=mn+1

|χn
i |r1{|χn

i | ≤ c�
1/2+κ
n }(45)

for r ∈ (0,2]. The truncation rate is c�1/2+κ with c ∈ (0,∞] and κ ∈ (−1/2,∞)

(so c = ∞ corresponds to no truncation at all). Note that Vn above is Vn(c�
κ
n)

of (43); Y is symmetrical in this model, so Bn = 0. The associated estimator is
given by σ̂n = SnH

−1
�n

(Vn(cSn, κ)/Sr
n), where H−1

� is the local inverse around 1
of the function H�(u) = E(|uW�|r1{|uW�|≤c�1/2+κ }); the preliminary estimator
Sn is not needed in this case and one could set Sn = 1. When c = ∞, we get the
(nontruncated) r th power variation. If c < ∞ and κ = 0, this corresponds to taking
k = kc, as given by (42).

The expected values of the truncated power variations are available in closed
form in this model, using the incomplete Gamma function of order a, which we
denote by �(a, ·). As described in the general theory, in the semiparametric case,
we use an approximate centering based on expectations of, in this case, truncated
moments, computed for the model X = σW (without Y ). The effect of the mis-
specification is to bias the resulting estimator. The bias of the estimator of σ based
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on approximate centering will vanish asymptotically in � and we will have a result
of the form√

n�
v1
n (σ̂n − σn) → N(0, v0), where σn = σ + b0�

b1
n + o(�b1

n )(46)

with b1 > 0. [If b1 = 0 for some choice of (r, κ, c), then the parameter σ is not
identified by an estimating function based on that combination.] Also, v1 = 0 cor-
responds to a rate of convergence of the estimator of n1/2 and any value v1 > 0
corresponds to a rate of convergence slower than n1/2. We also note that when
b1 > 0, the rate of convergence and asymptotic variance of the semiparametric es-
timator of σ are identical, at the leading order in �n, to the expressions one would
obtain in the fully parametric, correctly specified case where centering of the es-
timating equation is carried out under the assumption that Y is present, instead of
the approximate centering done without Y . Centering using the latter is, of course,
the only feasible estimator in the semiparametric case where the distribution of Y

is unknown.
In what follows, we fully characterize the asymptotic distribution of the semi-

parametric estimator of σ ; that is, we characterize the values (b0, b1, v0, v1) in (46)
as functions of (r, κ, c) and (σ, η,λ).

9.1. Power variations without truncation. If c = ∞, we have the following
for the asymptotic variance:

• if 0 < r < 1, then v1 = 0 and v0 = 1
r2 (

√
π

�( 1
2 +r)

�( 1+r
2 )2 − 1);

• if r = 1, then v1 = 0 and v0 = 1
2((π − 2)σ 2 + πλη);

• if 1 < r < 2, then v1 = r − 1 and v0 =
√

πσ 2−2rληr

r2
�( 1

2 +r)

�( 1+r
2 )2 .

As for the bias, when 0 < r < 2, we have b1 = 1 − r/2 and b0 = σ 1−rληr/2/r .

REMARK 9. The estimators based on power variations converge (not taking
the bias into consideration) at rate n1/2 only when r ≤ 1. When r > 1, the mixture
of jumps and volatility slows down the rate of convergence (v1 > 0). When r = 2,
the parameter σ is simply not identified, as is obvious from the fact that E(X2

�) =
(σ 2 + λη)�. This is also apparent from the fact that b1 ↓ 0 as r ↑ 2, so the bias no
longer vanishes asymptotically. And the bias even worsens the rate.

REMARK 10. When r < 1, the asymptotic variance v0 is identical to the ex-
pression obtained without jumps, as is the case when the log-likelihood score is
used as an estimating equation. When r = 1, the rate of convergence remains n1/2,
but v0 is larger in the presence of jumps.
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9.2. Power variations with �1/2 truncation. If c < ∞ and κ = 0, then v1 = 0
for all r ∈ (0,2] and

v0 = 2rσ 4+2r (
√

π(�(1
2 + r) − �(1

2 + r, c2

2σ 2 )) − (�(1+r
2 ) − �(1+r

2 , c2

2σ 2 ))2)

(
√

2c1+r exp(− c2

2σ 2 ) − 2r/2rσ 1+r (�(1+r
2 ) − �(1+r

2 , c2

2σ 2 )))2
.

As for the bias, we have b1 = 1 and

b0 = σλ(�(1+r
2 ) − �(1+r

2 , c2

2σ 2 ))

(�(1+r
2 ) − �(1+r

2 , c2

2σ 2 )) − 2(�(3+r
2 ) − �(3+r

2 , c2

2σ 2 ))
.

REMARK 11. Truncating at rate �1/2 restores the convergence rate n1/2 for
all values of r (again, regardless of the bias) and permits identification when r = 2.
When 0 < r < 1 (where the rate n1/2 was already achieved without truncation), not
truncating can lead to either a smaller or larger value of v0 than that which results
from truncating at rate �

1/2
n , depending on the values of (σ 2, c).

REMARK 12. The asymptotic variance v0 is identical to its expression when
no jumps are present, as it should be, in view of our general results (this type of
truncation leads to the estimators studied in Section 8). In all cases, the bias is
smaller than that which we would have without truncation.

9.3. Power variations with truncation slower than �1/2. If we now keep too
many increments by truncating according to −1/2 < κ < 0, then we have the fol-
lowing for r ∈ (0,2]:
• if −3/(2 + 4r) < κ < 0, then v1 = 0 and v0 = σ 2

r2 (
√

π
�( 1

2 +r)

�( 1+r
2 )2 − 1);

• if κ = −3/(2 + 4r), then v1 = 0 and

v0 = 21/2−rc1+2r
√

πλσ 2−2r

r2(1 + 2r)η1/2�(1+r
2 )2

+ σ 2

r2

(√
π

�(1
2 + r)

�(1+r
2 )2

− 1
)
;

• if −1/2 < κ < −3/(2 + 4r), then v1 = −κ − 2rκ − 3/2 > 0 and

v0 = 21/2−rc1+2r
√

πλσ 2−2r

r2(1 + 2r)η1/2�(1+r
2 )2

.

As for the bias, we have the following:

• if −1/(2 + 2r) < κ < 0, then b1 = 1 and b0 = −λσ
r

;

• if κ = −1/(2 + 2r), then b1 = 1 and b0 = λσ
(1+r)

( 21/2−r/2c1+r

r
√

ησ r�( 1+r
2 )

− 1 − 1
r
);

• if −1/2 < κ < −1/(2 + 2r), then b1 = 3/2 + κ + rκ > 0 and b0 =
21/2−r/2c1+rλσ 1−r

r(1+r)
√

η�( 1+r
2 )

.
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REMARK 13. When 0 < r < 1, we are automatically in the situation where
κ > −3/(2 + 4r), hence, keeping more than O(�

1/2
n ) increments results in the

convergence rate n1/2 and the same asymptotic variance v0 as that which results
from keeping all increments (i.e., not truncating at all). When 1 < r < 2, it is possi-
ble to obtain the convergence rate n1/2 by keeping more than O(�

1/2
n ) increments,

but still “not too many” of them (−3/(2 + 4r) ≤ κ < 0); but, even keeping a larger
fraction of the increments (−1/2 < κ < −3/(2 + 4r)) results in an improvement
over keeping all increments, since 3/2 − κ − 2rκ < r − 1, so that the rate of con-
vergence of σ̂n, although slower than n1/2, is nonetheless faster than n1/2�

(r−1)/2
n .

9.4. Power variations with truncation faster than �1/2. Finally, if we keep
too few increments by truncating according to κ > 0, then v1 = κ for all values of
r ∈ (0,2] and

v0 =
√

2π(1 + r)2σ 3

2c(1 + 2r)
, b1 = 1, b0 = σλ.

REMARK 14. Truncating at a rate faster than �1/2 causes the convergence
rate of the estimator to deteriorate from n1/2 to n1/2�

κ/2
n . While we successfully

eliminate the impact of jumps on the estimator, we are, at the same time, reduc-
ing the effective sample size utilized to compute the estimator (by truncating “too
much”), which increases its asymptotic variance.

9.5. Comparison with the general case. Let us compare the specific results
just obtained for this particular model with the general results obtained in Theo-
rems 4 and 5. Here, we have G ∈ G

′
0, so the general results assert that if

n�2
n → 0,(47)

then the estimators σ̂n converge at a rate
√

n and the limit of the normalized error
is Gaussian without bias; when (47) fails, but �n → 0 still holds, the sequence
(
√

n ∧ �−1
n )(σ̂n − σ) is tight. The estimators converge at rate

√
n when v1 =

0 and n�
2b1
n is bounded (then there is a bias) or when n�

2b1
n → 0 (there is no

bias). Otherwise, the sequence (

√
n�

v1
n ∧ �

−b1
n )(σ̂n − σ) is tight. Then we have

the following:

• Power variation without truncation: We have a rate
√

n only when r ∈ (0,1] and
n�2−r

n is bounded; otherwise, the rate is worse than in our general results (this
was expected, of course).

• Power variation with �1/2 truncation: If n�2
n → 0, then we have rate

√
n with

asymptotically unbiased error. If n�2
n → a ∈ (0,∞), we have rate

√
n with as-

ymptotically biased error. If n�2
n → ∞, then �−1

n (σ̂n − σ) converges in proba-
bility to the constant b0, this being slightly better than what we get by applying
the general results. This holds irrespective of r , but, of course, the asymptotic
variance depends on r and also on c.
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• Power variation with truncation slower than �1/2: The rate is
√

n if −1/

(2 + 2r) ≤ κ < 0 and n�2
n is bounded, or if −3(2 + 4r) ≤ κ < −1/(2 + 2r)

and n�3+2κ+2rκ
n is bounded. This is worse than the previous case.

• Power variation with truncation faster than �1/2: The rate is at most
√

n�κ
n and

always worse than in the �1/2 truncation case.

10. Example: sum of two stable processes. We now suppose that Y is also
a symmetric stable process with index α ∈ (0, β), so that G ∈ G

′
α . Related results

for this model can be found in [13]. First, we can consider estimators based on the
empirical characteristic function, that is, k(x) = cos(wx) for some w > 0. We have
the parametric estimator σ̂n = σ̂n(G,φ, k) of (25) and the sequence

√
n(σ̂n − σ)

converges in law to N(0, σ 2�2(k)), where �2(k) is given by (38). We also have
the semiparametric estimators σ̂n(k) of (31), which behave as follows. Under

n�2(β−α)/β
n → 0,(48)

√
n(σ̂n(k) − σ) converges in law to N(0, σ 2�2(k)) and the sequence (

√
n ∧

�
−(β−α)/β
n ) (σ̂n −σ) is always tight. In fact, since we are in the symmetrical case,

the preliminary estimator Sn = Sn(G) is the same for both σ̂n and σ̂n(k), which are
the solutions of Un(u) = 0 and U ′

n(u) = 0, respectively, closest to Sn and

Un(u) − U ′
n(u) = Ûn(u) = �G,�n,β,k

(
u

Sn

,
1

Sn

,0
)

− �k

(
u

Sn

,0
)

[recall (36) and (39)]. If we use the explicit form (37), we obtain

Ûn(u) = e−wβuβ/2S
β
n
(
ewα�

(β−α)/β
n /2Sα

n − 1
)
,

which is equivalent to
(
wα/2σα

)
�

(β−α)/β
n exp(−wβ/2) as n → ∞ and u → σ

(recall that Sn → σ in probability). Since �k(u,0) = exp(−uβwβ/2), we have
∂�k(1,0)/∂u = −βwβ exp(−wβ/2)/2 �= 0 and deduce that the difference σ̂n(k)−
σ̂n is equivalent (in probability) to −�

(β−α)/β
n /(wβ−αβσα).

Therefore, in addition to the fact that
√

n(σ̂n(k) − σ) converges in law to
N(0, σ 2�2(k)) under (48), we have the following:

• if n�
2(β−α)/β
n → a2 ∈ (0,∞), then

√
n(σ̂n(k) − σ) converges in law to

N(−a/(wβ−αβσα), σ 2�2(k));
• if n�

2(β−α)/β
n → ∞, then �

−(β−α)/β
n (σ̂n(k) − σ) converges in probability to

the constant −1/(wβ−αβσα).

We conclude that the results of Theorem 4 are sharp, at least for k(x) =
cos(wx).

We can undertake a similar analysis for the estimators based on the truncated
power variation Vn(γ ) of (43) with Bn = 0 (because Y is symmetrical). That is, we
consider the truncated power variations at the level �

1/β
n . When n�

2(β−α)/β
n → ∞,
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one can show that for sufficiently small γ (but it is probably true for all γ > 0), the
sequence �

−(β−α)/β
n (σ̂n − σ) is tight and its limiting distributions include some

Dirac masses at nonvanishing constants. So, here, again, the results of Theorem 4
are sharp. But, of course, as previously stated, this does not completely rule out
the existence of estimators constructed in a different way and behaving better.

11. Technical preliminaries. In the sequel, a constant which depends only
on β and on another parameter γ is denoted by Cγ and it may change from line to
line.

LEMMA 1. Let φ ∈ �, α ∈ (0,2] and φα be the associated function defined as
in (17). For all G ∈ G(φ,α) and ε ∈ (0,1], we have

∫
{|x|≤ε}

|x|qF (dx) ≤


q

q − α
εq−αφα(ε), if q > α,

φα(ε), if q = α = 2,

(49)

∫
{ε<|x|≤1}

|x|F(dx) ≤


φα(1), if α < 1,

φα(ε) log(1/ε), if α = 1,

φα(ε)ε1−α, if α > 1.

(50)

PROOF. When q = α = 2, (49) is trivial because φ ≤ φα . When q > α, Fu-
bini’s theorem and (3) together yield∫

{|x|≤ε}
|x|qF (dx) =

∫
{|x|≤ε}

F(dx)q

∫ |x|
0

yq−1 dy = q

∫ ε

0
yq−1F(|x| > y)dy

≤ q

∫ ε

0
φ(y)yq−1−α dy ≤ q

q − α
φ′(ε)εq−α

because φ′ is increasing [recall the notation in (17)]. So, we again get (49). In a
similar way, for every z ∈ [ε,1], we get∫

{ε<|x|≤1}
|x|F(dx) =

∫
{ε<|x|≤1}

F(dx)

∫ |x|
0

dy

=
∫ ε

0
F(ε < |x| ≤ 1) dy +

∫ z

ε
F (y < |x| ≤ 1) dy

+
∫ 1

z
F (y < |x| ≤ 1) dy

≤ φ′(ε)ε1−α + φ′(z)
∫ z

ε
y−α dy + φ′(1)

∫ 1

z
yα dy.

A simple calculation, using (17), allows us to deduce (50); we take z = 1 when
α < 1, z = 1 when α = 1 and ε ≥ 1/e, z = exp−√

log(1/ε) when α = 1 and
ε < 1/e and z = √

ε when α > 1. �
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In the next lemma, we use the notation b′(G,α), Z�(α) and G′
�,α , introduced

in (13) and thereafter, and also ρ(α,β) and ρ′(α,β), as defined by (32).

LEMMA 2. (a) If G ∈ Gβ , then G′
�,β converges to the Dirac mass δ0 as

� → 0.
(b) If α ≤ β , φ ∈ �, Gn is a sequence of measures in G(φ,α) and �n → 0, then

the associated sequence G′n
�n,α converges to the Dirac mass δ0 as n → ∞.

(c) If α ≤ β and φ ∈ �, then there exists a constant C = Cφ,α such that for all
functions g with |g(x)| ≤ K(1 ∧ |x|) and all � ∈ (0,1], we have (with φα defined
as in the previous lemma)

G ∈ G(φ,α), |g(x)| ≤ K(1 ∧ |x|)
�⇒ E(|g(Z�(α))|) ≤ CK�ρ(α,β)φα

(
�

2+β
β(2+α)

)
,

G ∈ G′(φ,α), |g(x)| ≤ K(1 ∧ x2)

�⇒ E(|g(Z�(α))|) ≤ CK�ρ′(α,β)φα

(
�

1
β
)
.

(51)

PROOF. If φ ∈ �, then limx→0 φα(x) = 0, so (c)⇒(b)⇒(a). For proving (c),
we say that we are in the asymmetrical (resp. symmetrical) case if G and g are
given as in the first (resp. the second) statement in (51).

Let η ∈ (0,1/2], to be chosen later. With any given G ∈ G(φ,α), we associate
the Lévy process Y and the characteristics (b,0,F ). Let F ′ and F ′′ be the re-
strictions of F to the sets [−η,η] and [−η,η]c, respectively. We can decompose
Y into the sum Yt = at + Y ′

t + Y ′′
t , where Y ′ is a Lévy process with character-

istics (0,0,F ′), Y ′′ is a compound Poisson process with Lévy measure F ′′ and
a = b − ∫

{η<|x|≤1} xF(dx). Then a′ = a − b′(G,α) is given by

a′ =


∫
{|x|≤η}

xF(dx), if α < 1,

−
∫
{η<|x|≤1}

xF(dx), if α ≥ 1.

Therefore, a′ = 0 in the symmetrical case, whereas in the asymmetrical case, (49)
and (50) yield for a constant C = Cα not depending on G ∈ G(φ,α),

|a′| ≤
{

Cη1−αφα(η), if α �= 1,

C log(1/η)φα(η), if α = 1.
(52)

Also, since Y ′ has no drift, no Wiener part and no jump bigger than 1, one
knows [by differentiating (2), for example] that E((Y ′

t )
2) = t

∫
x2F ′(dx). Then

(49) again yields, for some C = Cα ,

E(|Y ′
�|2) ≤ C�η2−αφα(η).(53)
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We have |g(Z�(α))| ≤ K . If, further, Y ′′
� = 0, then Y� = a� + Y ′

�, therefore
Z�(α) = �−1/β(Y ′

�+a′�), therefore |g(Z�(α))| ≤ K�−1/β(|Y ′
�|+�|a′|) in the

asymmetrical case and |g(Z�(α))| ≤ K�−2/βY ′2
� in the symmetrical case. Next,

P(Y ′′
� �= 0) ≤ �F ′′(R) ≤ �φα(η)/ηα because G ∈ G(φ,α). Therefore, we deduce

from (52) and (53) that for some constant C = Cφ,α ,

E(|g(Z�(α))|)

≤
{

CK
(
�η−1 + �1/2−1/βη1/2 + �1−1/β log(1/η)

)
φ1(η), if α = 1,

CK
(
�η−α + �1/2−1/βη1−α/2 + �1−1/βη1−α

)
φα(η), otherwise

in the asymmetrical case and E(|g(Z�(α))|) ≤ CK
(
�η−α + �1−2/βη2−α

)
φα(η)

otherwise. Then take η = �(2+β)/β(2+α) (resp. η = �1/β ) to obtain (51). �

Next, we study the functions defined in (15).

LEMMA 3. (a) Let k satisfy the first half of (20) with some γ ≥ 0 such that
γ < β whenever β < 2. Then �k is C∞ on (0,∞) × R. If, in addition, γ > 0,
ν ∈ (0,∞) and kν(x) = k(x)1{|k(x)|≤ν}, then for all K > 0, there exists a constant
MK,k such that |z| ≤ K and ν ≥ MK,k imply∣∣∣∣ ∂j+l

∂uj ∂zl
�k(u, z) − ∂j+l

∂uj ∂zl
�kν (u, z)

∣∣∣∣
(54)

≤
Cj,l,k,Kuβ−j ν1−(l+β)/γ , if β < 2,

Cj,l,k,Kuγ e−ν1/γ /u, if β = 2.

(b) If k is bounded, then for all η ∈ (0,1), we have, with ‖k‖ being the sup norm,

η ≤ u ≤ 1/η �⇒
∣∣∣∣ ∂j+l

∂uj ∂zl
�k(u, z)

∣∣∣∣ ≤ Cl,j,η‖k‖.(55)

PROOF. We can rewrite the second display of (15) as

�k(u, z) = 1

u

∫
hβ

(
x

u

)
k(x + z) dx = 1

u

∫
hβ

(
x − z

u

)
k(x) dx.(56)

(a) For an integer l, the j th derivative of u �→ (−1)lh
(l)
β (x/u)/ul+1 takes the

form hl,j (x/u)/uj+l+1 for a function hl,j (x) which is a linear combination of

products of h
(l+i)
β (x)xi for 0 ≤ i ≤ j . By (7), hl,j satisfies, for all x,

|hl,j (x)| ≤
{

Cj,l/(1 + |x|1+l+β), if β < 2,

Cj,l(1 + |x|2j+2l)e−x2/2, if β = 2.
(57)
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The above estimate for β < 2 also holds for β = 2. Moreover, for all β ∈ (0,2],
the derivative satisfies ∣∣h(1)

l,j (x)
∣∣ ≤ Cj,l

1 + |x|2+l+β
.(58)

Therefore, we easily deduce from (56) that �k is C∞, with [by differentiating l

times the last term in (56), then differentiating j times the analogue of the last
term, with h

(l)
β instead of hβ ]

∂j+l

∂uj ∂zl
�k(u, z) = 1

uj+l+1

∫
hl,j (x/u)k(x + z) dx

= 1

uj+l

∫
hl,j (x)k(ux + z) dx.

(59)

In particular, since |k(x) − kν(x)| = ∣∣k(x)1{|k(x)|>ν}
∣∣ ≤ Ck(1+|x|γ )1{|k(x)|>ν}, we

have ∣∣∣∣ ∂j+l

∂uj ∂zl
�k(u, z) − ∂j+l

∂uj ∂zl
�kν (u, z)

∣∣∣∣
≤ Ck

uj+l+1

∫
{1+|x+z|γ >νεk}

(1 + |x + z|γ )
∣∣hl,j (x/u)

∣∣dx

since {(x, z) : |k(x +z)| > ν} ⊂ {(x, z) : 1+|x +z|γ > νεk} for some εk > 0. Then
a simple computation using (57) yields (54).

(b) When k is bounded, (57) implies that hl,j is integrable and so (59)
yields (55). �

LEMMA 4. If k is bounded, then �G,�,α,k(u, v, z) is C∞ in (u, z) and for any
η ∈ (0,1), we have

η ≤ u ≤ 1/η �⇒
∣∣∣∣ ∂j+l

∂uj ∂zl
�G,�,α,k(u, v, z)

∣∣∣∣ ≤ Cl,j,η‖k‖(60)

and also, for � ≤ 1, and z ∈ R, u ∈ [η,1/η] and v ∈ (0,1/η],

G ∈ G(φ,α) �⇒
∣∣∣∣ ∂j

∂uj
�G,�,α,k(u, v, z) − ∂j

∂uj
�k(u,0)

∣∣∣∣
≤ Cj,η‖k‖(|z| + �ρ(α,β)φα

(
�

2+β
β(2+α)

))
,

G ∈ G′(φ,α) �⇒
∣∣∣∣ ∂j

∂uj
�G,�,α,k(u, v, z) − ∂j

∂uj
�k(u,0)

∣∣∣∣
≤ Cj,η‖k‖(|z| + �ρ′(α,β)φα

(
�

1
β
))

.

(61)
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PROOF. Observe that by (15), �G,�,α,k(u, v, z) = ∫
G′

�,α(dw)�k(u, vw+z).
Then by (55), �G,�,α,k is C∞ in (u, z), with

∂j+l

∂uj ∂zl
�G,�,α,k(u, v, z) =

∫
G′

�,α(dw)
∂j+l

∂uj ∂zl
�k(u, vw + z)(62)

and for any η ∈ (0,1), we have (60). Next, we prove the first part of (61). From
(58), we have that

|y| ≤ 1 �⇒ |h0,j (x + y) − h0,j (x)| ≤ Cj,m

|y|
1 + |x|2+β

.(63)

Recalling (59) and (62), we have

∂j

∂uj
�G,�,α,k(u, v, z) − ∂j

∂uj
�k(u, z) =

∫
G′

�,α(dw)g(w),(64)

where

g(w) = ∂j

∂uj
�k(u, vw + z) − ∂j

∂uj
�k(u, z)

= 1

uj

∫
h0,j (x)

(
k(ux + vw + z) − k(ux + z)

)
dx

= 1

uj

∫ (
h0,j

(
x − vw

u

)
− h0,j (x)

)
k(ux + z) dx

for u, v, z, j fixed. Let η ∈ (0,1) and suppose that η ≤ u ≤ 1/η and v ≤ 1/η.
If |w| ≤ 1, then (63) yields |g(w)| ≤ Cj,η‖k‖|w|, whereas (55) always yields
|g(w)| ≤ Cj,η‖k‖; so, |g(w)| ≤ Cj,η‖k‖(|w| ∧ 1) and in view of (64), we read-
ily deduce from (51) that∣∣∣∣ ∂j

∂uj
�G,�,α,k(u, v, z) − ∂j

∂uj
�k(u, z)

∣∣∣∣ ≤ Cj,η‖k‖�ρ(α,β)φα

(
�

2+β
β(2+α)

)
.(65)

Since, further, | ∂j

∂uj �k(u, z) − ∂j

∂uj �k(u,0)| ≤ Cj,η‖k‖|z| by (55), we obtain the
result.

Finally, the function h0,j is C∞ and all of its derivatives satisfy the esti-

mates (57). Hence, the functions h
(1)
0,j and H(x) = supy∈[x−1/η2,x+1/η2] |h(2)

0,j (y)|
are integrable. We have

|w| ≤ 1 ⇒
∣∣∣∣h0,j

(
x − vw

u

)
− h0,j (x) − h

(1)
0,j (x)

vw

u

∣∣∣∣ ≤ Cj,ηw
2H(x),(66)

provided that v < 1/η and η ≤ u ≤ 1/η. Therefore, we can write g = g1 + g2,
where

g1(w) = vw

uj+1 1{|w|≤1}
∫

h
(1)
0,j (x)k(ux + z) dx,

g2(w) = g(w)1{|w|>1}

+ 1{|w|≤1}
∫ (

h0,j

(
x − vw

u

)
− h0,j (x) − h

(1)
0,j (x)

vw

u

)
k(ux + z) dx.
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On the one hand, if G ∈ G′(φ,α), then G′
�,α is symmetrical about 0 and∫

g1(w)G′
�,α(dw) = 0 because g2 is bounded and odd. On the other hand,

(66), the integrability of H and |g(w)| ≤ Cj,η‖k‖ collectively yield |g2(w)| ≤
Cj,η‖k‖(w2 ∧ 1). Hence, using (51), we get [instead of (65)]∣∣∣∣ ∂j

∂uj
�G,�,α,k(u, v, z) − ∂j

∂uj
�k(u, z)

∣∣∣∣ ≤ Cj,η‖k‖�ρ′(α,β)φα(�1/β)

and the second part of (61) follows analogously. �

12. Estimating equations. We prove here a general result concerning esti-
mating equations, which will be used several times below. Its content is basically
known, but we adapt it to our setting, at the desired level of generality.

Suppose that we seek to estimate a parameter σ > 0. At stage n, we observe
pn i.i.d. variables χn

i and two auxiliary variables Sn > 0 and Qn ∈ R. Under the
associated probability measure Pn,σ , we suppose that the families (Sn,Qn) and
(χn

i : 1 ≤ i ≤ pn) are independent and, of course, pn → ∞. Let us introduce the
following conditions:

(A1) if σn → σ > 0, then Sn → σ in Pn,σn -probability;
(A2) if σn → σ > 0, then the sequence (Qn | Pn,σn) is tight.

Next, we consider two families of functions (fn,s,q)s>0 and (Hn,s)s>0,q∈R, on
R and (0,∞), respectively, and we associate with them the following estimating
functions and estimators:

Un,s,q(u) = 1

pn

pn∑
i=1

(
fn,s,q(χ

n
i ) − Hn,s(u)

)
,(67)

σ̂n(s, q) =


the u > 0 with Un,s,q(u) = 0 which is closest to s,

if it exists,
1, otherwise

(68)

(if Un,s,q = 0 has two closest solutions at an equal distance of s, then we choose
the smaller one). We also set

Fn,s,q(σ ) = En,σ (fn,s,q(χn
i )), F ′

n,s,q(σ ) = En,σ (fn,s,q(χn
i )2).(69)

Let us now list a series of assumptions on the previously introduced functions.

(B1) We have sups>0, q∈R ‖fn,s,q‖4/pn → 0 when n → ∞ (here, ‖fn,s,q‖ is the
sup norm).

(B2) Hn,s is continuously differentiable.
(B3) For all s > 0, there exists a differentiable function F s on (0,∞) such that

whenever sn → s, Hn,sn and H
(1)
n,sn converge locally uniformly to F s and

F
(1)

s , respectively.
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(B4) F
(1)

s (s) �= 0 for all s > 0.
(B5) F ′

n,sn,qn
(un) converges to a limit F ′(u) for any two sequences un and sn

converging to the same limit u > 0 and any bounded sequence qn.
(B6) There exists a sequence wn → +∞ such that supn wn|Fn,sn,qn(un) −

Hn,sn(un))| < ∞ for any two sequences un and sn converging to the same
limit u > 0 and any bounded sequence qn.

THEOREM 6. Assume (A1), (A2) and (B1)–(B6).

(a) The sequence ((wn ∧ √
pn)(σ̂n(Sn,Qn) − σ)) is tight under Pn,σ , uni-

formly in n and in σ in any compact subset of (0,∞).
(b) If wn/

√
pn → ∞, then the sequence (

√
pn(σ̂n(Sn,Qn)−σ)) converges in

law under Pn,σ , uniformly in σ in any compact subset of (0,∞), toward the cen-

tered normal distribution with variance �2(σ ) := (
F ′(σ ) − Fσ (σ )2)

/F
(1)

σ (σ )2.

We devote the remainder of this section to proving this theorem, assuming for
the rest of the section (A1), (A2) and (B1)–(B6). First, we state a lemma which
gathers some classical limit theorems. For each n, let (ζ n

i : i = 1, . . . , κn) be real-
valued and i.i.d. random variables, possibly defined on different probability spaces
(�n,Fn,Pn) when n varies.

LEMMA 5. Assume that ζ n
i is square integrable and set γn = En(ζ

n
i ) and

�n = En((ζ
n
i )2) − γ 2

n . If κn → ∞ and �n/κn → 0, then we have

1

κn

κn∑
i=1

ζ n
i − γn

L2(Pn)−→ 0.(70)

Furthermore, if �n → � for some limit � ≥ 0 and if E(|ζ n
i |4)/κn → 0, then we

have

√
κn

(
1

κn

κn∑
i=1

ζ n
i − γn

)
L(Pn)−→ N(0,�).(71)

In the next three lemmas, we suppose that σn → σ > 0 and write Pn = Pn,σn .

LEMMA 6. Let sn → σ and let qn be a bounded sequence.

(a) The sequence
(
(wn ∧ √

pn)Un,sn,qn(σn) | Pn

)
is tight.

(b) If wn/
√

pn → ∞, then the sequence (
√

pnUn,sn,qn(σn) | Pn) converges in
law to N(0,F ′(σ ) − Fσ (σ )2).

PROOF. We have Un,sn,qn(σn) = 1
pn

∑pn

i=1 ζ n
i , where for each n, the ζ n

i ’s are
i.i.d. with mean and variance given by

γn = Fn,sn,qn(σn) − Hn,sn(σn), �n = F ′
n,sn,qn

(σn) − Fn,sn,qn(σn)
2,
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respectively, and, further, |ζ n
i | ≤ αn for αn satisfying α4

n/pn → 0, by (B1).
Now, (B6) yields that γn → 0, which, together with (B3), yields Fn,sn,qn(σn) →
Fσ (σ ). On the other hand, (B5) implies F ′

n,sn,qn
(σn) → F ′(σ ). Therefore,

(
√

pn

(
Un,sn,qn(σn) − γn

) | Pn) converges in law to N(0,F ′(σ ) − Fσ (σ )2) by (71)
and since supn wn|γn| < ∞ by (B6), we readily obtain the two results. �

LEMMA 7. (a) The sequence ((wn ∧ √
pn)Un,Sn,Qn(σn) | Pn) is tight.

(b) If wn/
√

pn → ∞, then the sequence (
√

pnUn,Sn,Qn(σn) | Pn) converges in
law to N(0,F ′(σ ) − Fσ (σ )).

PROOF. For both results, it is enough to prove that from any subsequence
one can extract a sub-subsequence for which the results hold and thus, using (A1)
and (A2), we can indeed assume that the pair (Sn,Qn) converges in law. Due
to the independence of (Sn,Qn) and (Un,s,q : s > 0, q ∈ R), we can replace the
pair (Sn,Qn) in Un,Sn,Qn by any other pair (S′

n,Q
′
n) having the same law under

Pn as (Sn,Qn) and still independent of (Un,s,q : s > 0, q ∈ R). In particular, by
the Skorokhod representation theorem, we can indeed assume that Sn converges
pointwise to σ and also that Qn converges pointwise to a limit Q.

(a) Let Vn,s,q = (wn ∧ √
pn)Un,s,q(σn). The previous lemma implies that, pro-

vided the deterministic sequence sn converges to σ , we have for all B > 0

lim
k→∞ sup

n≥1
uk,B(n, sn) = 0, where uk,B(n, s) = sup

|q|≤B

Pn(|Vn,s,q | > k).(72)

If the sequence (Vn,Sn,Qn | Pn) is not tight, then there exist some ε > 0 and an
infinite sequence nk such that Pnk

(|Vnk,Snk
,Qnk

| > k) ≥ ε. Since (Sn,Qn) is inde-
pendent of the family (Vn,s,q : s > 0, q ∈ R), we have

Pnk
(|Vnk,Snk

,Qnk
| > k)

≤ Enk
[Pnk

(|Vnk,Snk
,Qnk

| > k|Snk
,Qnk

)]
≤ Enk

[1{|Qnk
|>B} + 1{|Qnk

|≤B}Pnk
(|Vnk,Snk

,Qnk
| > k|Snk

,Qnk
)]

≤ Pnk
(|Qnk

| > B) + Enk
(uk,B(nk, Snk

))).

Then by (72), Snk
→ σ and Lebesgue’s theorem, we have

lim sup
k

Pnk
(|Vnk,Snk

,Qnk
| > k) ≤ sup

k

Pnk
(|Qnk

| > B)

for all B > 0 and, in view of (A2), we deduce that lim supk Pnk
(|Vnk,Snk

,Qnk
| >

k) = 0. This contradicts the definition of the sequence nk and we thus have the
result.

(b) Let us denote by V a variable with law ν = N(0,F ′(σ )−Fσ (σ )). Let νn,s,q

be the law of Vn,s,q := √
pnUn,s,q(σn). The claim amounts to proving that

En(g(Vn,Sn,Qn)) → E(g(V ))(73)
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for all bounded continuous functions g. We have

En(g(Vn,Sn,Qn)) = En

(∫
νn,Sn,Qn(dx)g(x)

)
.

Since Sn → σ and Qn → Q, we deduce from Lemma 6(b) that
∫

νn,Sn,Qn(dx)g(x)

converges pointwise to
∫

ν(dx)g(x) = E(g(V )), and that it is bounded by ‖g‖, so
Lebesgue’s theorem yields (73). �

LEMMA 8. The sequence σ̂n converges in Pn-probability to σ .

PROOF. Exactly as in the previous proof, without loss of generality, we can
assume that the pair (Sn,Qn) converges pointwise to (σ,Q), with Q a suitable
random variable. Lemma 7 implies that Un,Sn,Qn(σn) → 0 in probability (recall
that both wn and pn go to infinity). Observe that Un,Sn,Qn(u) − Un,Sn,Qn(σn) =
Hn,Sn(σn) − Hn,Sn(u), which, by (B3), converges (pointwise) locally uniformly
in u toward H(u) := Fσ (σ ) − Fσ (u). Hence, Un,Sn,Qn(u) also converges locally
uniformly in u toward H(u), in Pn-probability. But, by (B4), the function H is
null at σ and is either strictly decreasing or strictly increasing in a neighborhood
of σ . The definition (68) of σ̂n(Sn,Qn) then immediately gives the result. �

PROOF OF THEOREM 6. The proof follows a familiar pattern. As usual, to
get the local uniformity in σ for the tightness in (a) [resp. the convergence in (b)],
it is enough to obtain the tightness (resp. convergence) under Pn = Pn,σn for any
sequence σn → σ > 0. Let us write, for simplicity, σ̂n = σ̂n(Sn,Qn) and Un =
Un,Sn,Qn . By (B2), Un is continuously differentiable. From Lemma 8, we deduce
the existence of sets An with Pn(An) → 1, such that on An, we have Un(σ̂n) = 0
and thus Taylor’s formula yields a random variable Tn taking its values between
σn and σ̂n and such that

Un(σn) = −(σ̂n − σn)U
(1)
n (Tn) on the set An.(74)

Observe that U
(1)
n (Tn) = −H

(1)
n,Sn

(Tn). Since both Sn and Tn converge in probabil-

ity to σ , (B3) implies that U
(1)
n (Tn) → −F

(1)

σ (σ ) in probability. Since F
(1)

σ (σ ) �= 0
by (B4), all of the results of our theorem are now easily deduced from (74) and
Lemma 7. �

13. Proofs of the main theorems.

13.1. Fisher information and LAN. For Theorems 1 and 2, the key role is
played by the density p�(·|σ,G) of the variable X� in (1). From independence
of W and Y , we have

p�(x|σ,G) = 1

σ�1/β

∫
G�(dy)hβ

(
x − y

σ�1/β

)
.(75)
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Since hβ is C∞ and satisfies (7), it follows that σ �→ p�(x|σ,G) is also C∞ and
the first two derivatives are

ṗ�(x|σ,G) = − 1

σ 2�1/β

∫
G�(dy)h̆β

(
x − y

σ�1/β

)
,(76)

p̈�(x|σ,G) = 1

σ 3�1/β

∫
G�(dy)ĥβ

(
x − y

σ�1/β

)
,(77)

where ĥβ(x) = hβ(x) + 3xh
(1)
β (x) + x2h

(2)
β (x). The Fisher information I�(σ,G)

is then

I�(σ,G) =
∫

ṗ�(x|σ,G)2

p�(x|σ,G)
dx.(78)

Taking advantage of (75) and (76), using b′(G,α) and G′
�,α [see (13)] and per-

forming the change of variable x ↔ (x − �b′(G,α))/σ�1/β in (78) and (80), we
obtain, for any α ∈ [0, β],

I�(σ,G) = 1

σ 2

∫
s�,σ,G(x) dx(79)

with s�,σ,G(x) = (
∫

G′
�,α(du)h̆β(x − u/σ))2∫

G′
�,α(du)hβ(x − u/σ)

.

To prove the LAN property, we also need the Hellinger integral of order γ ∈
(0,1) between the laws of X� for two different values of σ and the same G, that
is,

H�(γ | σ,σ ′,G) =
∫

p�(x|σ,G)1−γ p�(x|σ ′,G)γ dx.(80)

The LAN property in Theorem 1 is equivalent to the weak convergence of statis-
tical experiments having log-likelihoods Zn(σ + u/

√
n|σ,G) to a Gaussian shift

experiment with unit variance I(β)/σ 2 (see Definition 80.1, Theorem 80.2 and
Corollary 80.6 in [20]). Due to the form of the Hellinger processes for a Gaussian
shift and also for i.i.d. observations (see, e.g., [12]), and to Theorem 5.3 of [11], to
prove the LAN property, it is enough to prove that for all u, v ∈ R and γ ∈ (0,1),

n
(
1 − H�n(γ | σ + u/

√
n,σ + v/

√
n,G)

) → γ (1 − γ )(u − v)2

2σ 2 I(β).(81)

PROOF OF (10). Apply the Cauchy–Schwarz inequality with the product of
h̆β/

√
hβ and

√
hβ to get

s�,σ,G(x) ≤
∫

G′
�,α(du)h̃β(x − u/σ).

Therefore, (79) yields

I�(σ,G) ≤ 1

σ 2

∫
dx

∫
G′

�,α(du)h̃β(x − u/σ) = 1

σ 2 I(β)
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[recall (9)] and we have (10). �

PROOF OF THEOREM 2(a). It suffices to prove that if σn → σ > 0, �n → 0
and Gn is a sequence of measures in G(φ,α) for some φ ∈ � and some α ∈ (0, β],
then

I�n(σn,G
n) → 1

σ 2 I(β).(82)

Since hβ and h̆β are continuous and bounded, Lemma 2(b) yields that s�n,σn,Gn →
h̃β pointwise. Fatou’s lemma yields lim infn I�n(σn,G

n) ≥ I(β)σ 2. Combining
this with (10), we obtain (82). �

PROOF OF THEOREM 2(b). Let ρn = �
1/αn−1/β
n , which, by our assumption

on �n, converges to 1. The measure G′n
�n,αn

associated with Gn has the density
x �→ gn(x) = hαn(xρn)/ρn, which converges to hβ(x); so, G′n

�n,αn,β weakly con-
verges to the law with density hβ and, exactly as in the previous proof,

s�n,σ,Gn(x) → s(x) := (
∫

hβ(u)h̆β(x − uθ/σ)du)2∫
hβ(u)hβ(x − uθ/σ)du

.(83)

On the other hand, |h̃β(y)| ≤ C(1 ∧ 1/|y|1+β) and g′
n(y) ≤ C(1 ∧ 1/|y|1+αn).

Using once more the Cauchy–Schwarz inequality, we deduce from (79) that

s�n,σ,Gn(x) ≤
∫

gn(u)h̃β(x − uθ/σ)du

≤ s′(x) = C

∫ (
1 ∧ 1

|u|1+β−ε

)(
1 ∧ 1

|x − uθ/σ |1+β

)
du

for yet another constant C, provided αn > β − ε for some fixed ε ∈ (0, β). But,∫
s′(x) dx < ∞, so (83) and the dominated convergence theorem yield

I�n(σ, θ,Gn) → 1

σ 2

∫
s(x) dx.(84)

Finally, exactly as above, we deduce from the Cauchy–Schwarz inequality
and from the fact that the functions

√
hβ and h̆β/

√
hβ are not Lebesgue-almost

surely multiples of one another, while hβ > 0 identically, that, in fact, s(x) <∫
hβ(u)h̃β(x − uθ/σ)du for all x. Therefore,∫

s(x) dx <

∫
dx

∫
hβ(u)h̃β(x − uθ/σ)du

=
∫

hβ(u)du

∫
h̃β(y) dy =

∫
h̃β(y) dy = I(β)

and (84) yields that I�n(σ,Gn) converges to a limit strictly less that I(β)/σ 2. �
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PROOF OF THEOREM 1. We have proved (10) above and (11) follows from
Theorem 2, so it remains to prove LAN, that is, (81). Fix σ > 0, G ∈ Gβ , γ ∈
(0,1) and u, v ∈ R. To simplify notation, we write pn(x) = p�n(x|σ,G), ṗn(x) =
ṗ�n(x|σ,G) and qn(z, x) = (p�n(x|σ + z/

√
n,G) − pn(x))/pn(x). We have

H�n(γ | σ +u/
√

n,σ +v/
√

n,G) =
∫

pn(x)
(
1+qn(u, x)

)γ (
1+qn(v, x)

)1−γ
dx.

Note that qn(z, x) ≥ −1. By a Taylor expansion, we get, for δ ∈ (0,1),∣∣∣∣(1 + qn(z, x)
)δ − 1 − δqn(z, x) + δ(1 − δ)

2
qn(z, x)2

∣∣∣∣ ≤ C|qn(z, x)|3(85)

when |qn(z, x)| ≤ 1/2 and (85) is trivial when qn(z, x) ∈ [−1,−1/2)∪(1/2,+∞).
Therefore,∣∣∣∣(1 + qn(u, x)

)γ (
1 + qn(v, x)

)1−γ − 1 − γ qn(u, x) − (1 − γ )qn(v, x)

+ γ (1 − γ )

2

(
qn(u, x) − qn(v, x)

)2
∣∣∣∣(86)

≤ C
(|qn(u, x)|3 + |qn(v, x)|3)

.

Another Taylor expansion gives

qn(z, x) = z√
n

ṗn(x)

pn(x)
+ 1

pn(x)

∫ z/
√

n

0
(z/

√
n − w)p̈�n(x|σ + w,G)dw.(87)

Next, for any ε ∈ (0,1/2), we have |(y + y′)2 − y2| ≤ 2εy2 + y′2/ε. With y =
(u − v)ṗn(x)/

√
npn(x) and y′ = qn(u, x) − qn(v, x) − y, we deduce∣∣∣∣(qn(u, x) − qn(v, x)

)2 − (u − v)2

n

ṗn(x)2

pn(x)2

∣∣∣∣
≤ Cε

n

ṗn(x)2

pn(x)2 + 1

nεpn(x)2

(∫ u/
√

n

v/
√

n
|p̈�n(x|σ + w,G)|dw

)2
(88)

(recall that the constant C can change from line to line) and therefore∣∣∣∣∫ pn(x)
(
qn(u, x) − qn(v, x)

)2
dx − (u − v)2

n
I�n(σ,G)

∣∣∣∣
≤ Cε

n
I�n(σ,G) + Cbn

nε
,

(89)

where

bn =
∫ 1

pn(x)

(∫ u/
√

n

v/
√

n
|p̈�n(x|σ + w,G)|dw

)2

dx.

Observing that
∫

pn(x) dx = 1 and
∫

pn(x)qn(z, x) dx = 0, (85) and (89) yield∣∣1 − H�n(γ | σ + u/
√

n,σ + v/
√

n,G) − (u − v)2γ (1 − γ )I�n(σ,G)/2
∣∣

≤ Can

n
+ Cε

n
I�n(σ,G) + Cbn

nε
,

(90)
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where, with the notation zn = (|u| + |v|)/√n,

an = n

∫ 1

pn(x)2

(∫ zn

−zn

|ṗ�n(x|σ + w,G)|dw

)3

dx.

Since (90) holds for any ε ∈ (0,1/2) and I�n(σ,G) → I(β)/σ 2, we see that
(81) holds, provided that we prove an → 0 and bn → 0. Using (75), (76) and (77),
we see that if we define

cn = nj

�
1/β
n

∫ (
∫ zn−zn

dw
∫

G�n(dy)g(
x−y

(σ+w)�
1/β
n

))2+j

(
∫

G�n(dy)hβ(
x−y

σ�
1/β
n

))1+j
dx,

then an ≤ Ccn if j = 1 and g = |h̆β |, and bn ≤ Ccn if j = 0 and g = |ĥβ |. At
this point, we use Hölder’s inequality, with conjugate exponents r = 2 + j and
s = (2 + j)/(1 + j), first for the integral with respect to dw,(∫ zn

−zn

dw

∫
G�n(dy)g

(
x − y

(σ + w)�
1/β
n

))2+j

≤
(∫ zn

−zn

dw

)1+j ∫ zn

−zn

(∫
G�n(dy)g

(
x − y

(σ + w)�
1/β
n

))2+j

dw,

and second for the inside integral with respect to G�n(dy), to obtain(∫
G�n(dy)g

(
x − y

(σ + w)�
1/β
n

))2+j

≤
(∫

hβ

(
x − y

σ�
1/β
n

)
G�n(dy)

)1+j

×
∫

G�n(dy)g

(
x − y

(σ + w)�
1/β
n

)2+j

hβ

(
x − y

σ�
1/β
n

)−(1+j)

.

Therefore,

cn ≤ nj (2zn)
1+j

�
1/β
n

∫
G�n(dy)

∫ zn

−zn

dw

∫
dx

g(
x−y

(σ+w)�
1/β
n

)2+j

hβ(
x−y

σ�
1/β
n

)1+j
.(91)

Next, we introduce the change of variable from x to z = (x − y)/�
1/β
n to obtain

cn ≤ nj (2zn)
1+j

∫
G�n(dy)

∫ zn

−zn

dw

∫
dz

g( z
σ+w

)2+j

hβ( z
σ
)1+j

≤ Cnjz2+j
n .

To obtain the last inequality, we note that
∫

G�n(dy) = 1 and use the fact that
g( z

σ+w
)2+j /hβ( z

σ
)1+j is less than C/|z|1+β for all |w| ≤ σ/2, in light of (7).

Since njz
2+j
n → 0 when j = 0 and j = 1, we obtain cn → 0 and the proof is

finished. �
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13.2. Proof of Theorem 3. We begin with (b). With the notation H = h̆β/hβ ,
we see that in addition to (26), we have I (k) = E(k(W1)H(W1)) and I(β) =
E(H(W1)

2). Integration by parts yields E(H(W1)) = 0, so J (k) = E(k′(W1)
2)

and I (k) = E(k′(W1)H(W1)) if k′(x) = k(x)−E(k(W1)). The desired inequality,
which is I (k)2 ≤ J (k)I(β), follows from Cauchy–Schwarz. If k = hβ , we also
have k = 1 + H , so this inequality is obviously an equality.

For (a), it is enough to prove that if Gn is a sequence in G(φ,β) for some φ ∈ �,
then the sequence

√
n(σ̂n(G

n,φ, k) − σ) converges in law to N(0, σ 2�2(k)),
under Pσ,Gn and uniformly in σ in compact subsets of (0,∞). For this, and
since pn ∼ n, we apply Theorem 6(b) with Pn,σ = Pσ,Gn and the pn increments
{χn

i }mn+1≤i≤n, which are independent of the increments {χn
i }1≤i≤mn and therefore

of Sn. The first step consists in proving (A1) for Sn = Sn(G). This amounts to the
following lemma, where σn → σ > 0 and Pn = Pσn,Gn :

LEMMA 9. The sequence Sn converges to σ in Pn-probability.

PROOF. By Lemma 2(b), the variables Zn
�n

(β) associated with the law Gn

converge in law to 0. The variables χ ′n
i , which equal σnW1 + Zn

�n
(β) in law, con-

verge in law to σW1. Hence, γn := Pn(|χ ′n
i | > 1) → ψ(σ). If ζ n

i = 1{|χ ′n
i |>1}, then

(70) applied with κn = mn yields Vn
Pn−→ ψ(σ). Since ψ−1 is C∞ and strictly

monotone, the result readily follows. �

Next, we set Qn = 0, so (A2) is satisfied and

fn,s,q(x) = kn

(
�

−1/β
n (x − b′(Gn,β)�n)

s

)
,

Hn,s(u) = �Gn,�n,β,kn

(
u

s
,

1

s
,0

)
.

On comparing (24) and (25) with (67) and (68), we see that σ̂n(G
n,φ, k) =

σ̂n(Sn,Qn). Therefore, it remains to prove (B1)–(B6), with a sequence wn in (B6)
satisfying wn/

√
pn → ∞, and that

�2(σ ) = σ 2J (k)/I (k)2.(92)

Observe that, under Pσ,Gn , the variables χn
i have the same law as σW1 + Z�n(β).

Then (69) gives Fn,s,q(σ ) = Hn,s(σ ), so (B6) holds with wn arbitrarily large, while
(B2) follows from Lemma 4. If k is bounded, then we have ‖fn,s‖ ≤ ‖k‖ and (B1)
is obvious; further, (61) with α = β and kr yields

j = 0,1, r = 1,2, η ≤ u ≤ 1

η
, v ≤ 1

η

�⇒
∣∣∣∣ ∂j

∂uj
�Gn,�n,β,kr (u, v,0) − ∂j

∂uj
�kr (u,0)

∣∣∣∣ ≤ Cη,kφβ(�1/β
n ),
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which gives (B3) with F s(u) = �k(u/s,0) and (B5) with F ′(u) = �k2(1,0). On
the other hand, when k is unbounded, we have ‖fn,s‖ ≤ νn and thus (B1) follows
from (23).

Further, νn → ∞ and we can combine (61) for the difference ∂j

∂uj �Gn,�n,β,kr
n
(u,

v,0) − ∂j

∂uj �kr
n
(u,0), with (54) for the difference ∂j

∂uj �kr
n
(u,0) − ∂j

∂uj �kr (u,0), to
obtain, for all n sufficiently large and j = 0,1, r = 1,2, η ≤ u ≤ 1/η, v ≤ 1/η,∣∣∣∣ ∂j

∂uj
�Gn,�n,β,kr

n
(u, v,0) − ∂j

∂uj
�kr (u,0)

∣∣∣∣
≤


Cη,k

(
νr
nφβ(�

1/β
n ) + 1

ν
β/rγ−1
n

)
, if β < 2,

Cη,k

(
νr
nφ2(�

1/2
n ) + e−ην

1/rγ
n

)
, if β = 2.

Then, in view of (23) and the fact that 2γ < β when β < 2, we again deduce (B3)
with F̄s(u) = �k(u/s,0) and (B5) with F ′(u) = �k2(1,0).

Since h0,1 = −h̆β , we deduce that F
(1)

σ (σ ) = (1/σ)∂�k(1,0)∂u = −I (k)/σ

[recall (59) and the second part of (20)], hence (B4) holds. We also have Fσ (σ ) =
�k(1,0) = E(k(W1)) and F ′(σ ) = E(k(W1)

2), hence J (k) = F ′(σ ) − Fσ (σ )2

and (92) follows.

13.3. Proof of Theorems 4 and 5. As above, we refer to Theorems 4 and 5 as
the symmetrical and the asymmetrical cases, respectively. We fix α ∈ (0, β), φ ∈ �

and let ζ = φα(1) and

ρ =


ρ′(α,β), in the symmetrical case,

λn = √
n ∧ 1

�
ρ
n

.

ρ(α,β), in the asymmetrical case,

(93)

It is enough to take a sequence σn → σ > 0 and a sequence Gn in G′(φ,α) in the
symmetrical case [resp. G(φ,α) in the asymmetrical case] and to prove the tight-
ness or convergence in law of the suitably normalized estimation errors σ̂n − σn

under the measures Pn = Pσn,Gn . Below, we fix the sequences σn and Gn and
�n → 0 (so we can assume that �n ≤ 1 for all n). Let Zn := Zn

�n
(α) be the vari-

able associated with the measure Gn by (13) and set b′
n = �

1−1/β
n b′(Gn,α), which

vanishes in the symmetrical case.
Let Qn = λnB

′
n, where B ′

n = (�
−1/β
n Bn − b′

n). We want to prove that the se-
quence Qn satisfies (A2). This is obvious in the symmetrical case because Qn = 0.
So, we suppose that we are in the asymmetrical case. We introduce some notation.
With j = 1,2 and [θj ](p) being the pth derivative of θj , let

�j,p(σ,u) = (−1)pE
([θj ](p)(σW1 − u)

) = (−1)p
∫

[θj ](p)(σx − u)hβ(x) dx.
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Note that �j,p(σ,u) = ∂p�j,0(σ,u)/∂up . Observe that B ′
n is the only root of

Rn(.) = 0, where

Rn(u) = Rn

(
�1/β

n (u + b′
n)

) = 1

rn

rn∑
i=1

ζ n
i (u),

with ζ n
i (u) = θ(�

−1/β
n χn

i − u − b′
n).

The ζ n
i (u)’s for i ≥ 1 are i.i.d. with the same law (under Pn) as the variable

θ(σnW1 + Zn − u). Here, we have used the scaling property of W .
The functions γn,j (u) = En((ζ

n
i (u)j ) for j ∈ N are C∞ and bounded (along

with their derivatives), uniformly in u and n, and we can interchange differen-
tiation and expectation. So, we can apply the first part of (51) to the functions
gn,j,p(w) = ∫

hβ(x)(∂pθj/∂up)(σnx + w − u) − (∂pθj /∂up)(σnx − u)) dx to
obtain, for p, j ∈ N ,∣∣∣∣ ∂p

∂up
γn,j (u) − �j,p(σn,u)

∣∣∣∣ ≤ Cp,j ζ�ρ
n.(94)

Now, Rn is also C∞ and bounded (along with all of its derivatives) uniformly
in n, u and ω. Hence, an application of Lemma 5 and the continuity of the functions
�j,p readily yield

∂p

∂up
Rn(u) → �1,p(σ,u), locally uniformly in u, in Pn-probability,(95)

ηn := √
rn

(
Rn(0) − γn,1(0)

) L(Pn)−→ N
(
0,�2,0(σ,0) − �1,0(σ,0)2)

.(96)

The properties of θ imply that u �→ �1,0(σ, .) decreases strictly and vanishes at 0
because the function θ is odd. By construction, Rn(B

′
n) = 0, so (95), for p = 0,

implies B ′
n

Pn−→ 0 and also implies R(1)
n (B ′′

n)
Pn−→ �1,1(σ,0) for any sequence B ′′

n

of random variables converging to 0 in Pn-probability. Since Rn(B
′
n) = 0, we have

R(1)
n (B ′′

n)B ′
n = −Rn(0) = − ηn√

rn
− γn,1(0)(97)

for some random variable B ′′
n satisfying |B ′′

n | ≤ |B ′
n|. Moreover, from �1,0(σ,0) =

0, we have |γn,1(0)| ≤ Cζ�
ρ
n , by (94). Since R(1)

n (B ′′
n)

Pn−→ �1,1(σ,0) �= 0, we
deduce that Qn = λnB

′
n satisfies (A2), from (96) [recall rn ∼ δn and (93)].

Next, we proceed to prove the consistency of the preliminary estimators Sn.
In the symmetrical case, the variables Vn and Sn are the variables Vn(G

n) and
Sn(G

n) of (14) and (19), respectively (they do not depend on Gn, in fact), so the
result follows from Lemma 9. In the asymmetrical case, set

Vn(v) = 1

mn

qn+mn∑
i=qn+1

1{|�−1/β
n (χn

i −v)|>1}, δn(v) = Pn

(|�−1/β
n (χn

i − v)| > 1
)
.
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Then (70) yields Vn(vn)−δn(vn)
Pn−→ 0 for any sequence vn. However, �−1/β

n (ξn
i −

vn) has the same distribution as σnW1 +Zn + b′
n −�

−1/β
n vn, which, by Lemma 2,

converges in law to σW1 provided that b′
n − �

−1/β
n vn → 0. Since Bn and

(Vn(v) : v ∈ R) are independent and since B ′
n = �

−1/β
n Bn − b′

n

Pn−→ 0 [because

Qn = λnB
′
n satisfies (A2) and λn → ∞], we deduce that Vn = Vn(Bn)

Pn−→ ψ(σ).
The consistency is then proved as in the end of the proof of Lemma 9.

At this stage, we apply Theorem 6, with the variables (Sn,Qn) as above and
the i.i.d. variables (χn

qn+mn+i : 1 ≤ i ≤ pn), which we recall are independent of
(Sn,Qn). With the notation (68) and (31), we have σ̂ ′

n(k) = σ̂n(Sn,Qn). We have
shown (A1) and (A2) in the two previous steps. Set

fn,s,q(x) = k

(
�

−1/β
n x − b′

n − q/λn

s

)
, Hn,s(u) = �k

(
u

s
,0

)
.

Then (69) gives, for r = 1,2,

Fn,s,q(u) = �Gn,�n,α,k

(
u

s
,

1

s
,− q

sλn

)
,

F ′
n,s,q(u) = �Gn,�n,α,k2

(
u

s
,

1

s
,− q

sλn

)
.

Let us check (B1)–(B6). Since k is bounded, (B1) is obvious, whereas (B2)
follows from Lemma 3. Next, if we set F s(u) = �k(u/s,0) and F ′(u) = �k2(1,0),
Lemma 4 yields, for j = 0,1, η ∈ (0,1), s, u ∈ [η,1/η] and |q| ≤ 1/η,∣∣∣∣ ∂j

∂uj
Hn,s(u) − ∂j

∂uj
F s(u)

∣∣∣∣ ≤ Ck,ηζ�ρ
n,

|F ′
n,s,q(u) − F ′

s(u)| ≤ Ck,η

(
ζ�ρ

n + 1

λn

)
,

|Fn,s,q(u) − Hn,s(u)| ≤ Ck,η

(
ζ�ρ

n + 1

λn

)
.

These give (B3) and (B5), as well as (B6) with wn = λn. Finally, (B4) holds be-

cause F
(1)

s (s) = (∂/∂u)ψk(1,0)/s = −I (k)/s and (92) holds here as well as in the
previous section.

We can thus apply Theorem 6. The sequence λn(σ̂n −σn) is tight under Pn in all
cases and this gives the two claims (b). Under (33) or (34), we have λn/

√
n → ∞,

hence, λn
√

pn → ∞ as well, so
√

pn(σ̂n − σn) converges in law under Pn to a
centered Gaussian variable with variance �2(σ ) = (F ′(σ ) − Fσ (σ )2)/F σ (σ )2,
which, in view of the fact that Fσ (σ )2 = J (k)/σ 2, equals σ 2�2(k). Since pn ∼ n

in the symmetrical case and pn ∼ (1 − δ)n in the asymmetrical case, we obtain the
two claims (a).
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