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BEST SUBSET SELECTION, PERSISTENCE IN
HIGH-DIMENSIONAL STATISTICAL LEARNING AND

OPTIMIZATION UNDER l1 CONSTRAINT

BY EITAN GREENSHTEIN

Purdue University

Let (Y,X1, . . . ,Xm) be a random vector. It is desired to predict Y based
on (X1, . . . ,Xm). Examples of prediction methods are regression, classifica-
tion using logistic regression or separating hyperplanes, and so on.

We consider the problem of best subset selection, and study it in the con-
text m = nα , α > 1, where n is the number of observations. We investigate
procedures that are based on empirical risk minimization. It is shown, that
in common cases, we should aim to find the best subset among those of size
which is of order o(n/ log(n)). It is also shown, that in some “asymptotic
sense,” when assuming a certain sparsity condition, there is no loss in letting
m be much larger than n, for example, m = nα, α > 1. This is in comparison
to starting with the “best” subset of size smaller than n and regardless of the
value of α.

We then study conditions under which empirical risk minimization subject
to l1 constraint yields nearly the best subset. These results extend some recent
results obtained by Greenshtein and Ritov.

Finally we present a high-dimensional simulation study of a “boosting
type” classification procedure.

1. Introduction and preliminaries. Let Zi = (Y i,Xi
1, . . . ,X

i
m), i = 1, . . . , n,

be i.i.d. vectors, Zi ∼ F where F is unknown. It is desired to find a good predictor
for Y given X1, . . . ,Xm, based on the observations Zi, i = 1, . . . , n. In this paper
we consider high-dimensional learning problems, where the objective is to select
a good predictor from a large class, based on minimizing an empirical risk. We
concentrate on the case where the dimension is much larger than the number of
observations, that is, m � n.

There are three main goals of this paper. One is to advocate the practice of
turning to high dimensions of explanatory variables for the purpose of finding
good predictors. Another is to give a perspective to the phenomenon of “not getting
overfit,” when applying high-dimensional procedures, as discussed in [2]. We will
suggest that often such procedures may be viewed as (sub-optimal) optimization
methods for finding the empirically best subset of explanatory variables. A final
goal is to show that often optimization under l1 constraint (as in “Lasso”) could be
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a helpful and computationally feasible method for finding good predictors in high
dimensions.

We describe now a few examples where an analysis with m � n is conducted.
In microarray experiments the explanatory variables are measurements describing
activity of certain m genes in n subjects, while the response could be survival
time or an indicator of the event that the subject has a certain disease, and so on;
see [21]. Under the current technology, a typical microarray experiment involves
thousands of genes, that is, the dimension m is of the order of thousands, while n

is of the order of hundreds or less.
In [25], page 496, the following pattern recognition example is described. It

is desired to train a machine to identify handwritten digits for the purpose of
recognizing handwritten zip codes. The raw data given to the machine comes from
256 pixels, that is, the raw data is made up of 256 variables. Yet, for their classifica-
tion method, they considered all interactions up to order 7. This creates m ≈ 1016

explanatory variables constructed from the initial set of 256. The amount of data
(or training set) they were using was n = 7291.

Finally, consider the following example as a plausible data mining application
of analysis with m � n. An insurance company is interested in estimating the
probability of a claim, due to a car accident, by various customers. We may define
for each customer quite a few categorical variables based on age, sex, car make, car
model, marital status, address, and so on. Considering also third- or fourth-order
interactions of these categorical variables, one does not need a lot of imagination to
come up with tens and hundreds of millions of categorical explanatory variables.
Of course, the insurance company might have access to a big historical database,
so n may also be very large.

Although our motivation is to understand the problem where m � n, there are
also implications to the following more classical problem when m < n. Informally
the problem may be stated as follows: how many observations, n, do we need, in
order to accurately estimate m parameters? Our asymptotic approach suggests that
in many cases the condition m log(m) = o(n) suffices. See further discussion at the
end of this section.

We will consider and formulate our problem in various degrees of generality.
The ideas are easier to introduce and motivate through the problem of best subset
selection in regression, but will be carried out in a more general context.

Let Z = (Y,X1, . . . ,Xm) be a random vector Z ∼ F , F unknown. Consider
first the problem of selecting a linear predictor for Y based on X1, . . . ,Xm, that
is, a function of the form

∑
j βjXj . We identify a predictor with the vector β =

(β1, . . . , βm). Its performance is evaluated based on

LF (β) = EF

(
Y − ∑

βjXj

)2
.(1)

The selection of a predictor is based on a sample of i.i.d. observations Zi , i =
1, . . . , n. In practice, as the sample size, n, increases, we might want to consider
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more complicated models or linear predictors, that is, increase the number m of
explanatory variables. Thus, a worthwhile asymptotic study is of a triangular array
form, where we are given n i.i.d. observations Z1

n, . . . ,Z
n
n at stage n, Zi

n ∼ Fn, Fn

is unknown, Fn ∈ Fn. In order to simplify notation, we will drop the index n of
the triangular array and write Zi ; thus, at stage n, Zi = (Y i,Xi

1, . . . ,X
i
m). Here

m = m(n) is the number of explanatory variables, which depends on n and typi-
cally grows with n. We will study asymptotics where m = nα , α > 1. See further
discussion on the triangular array setup in [13]. Further papers investigating a sim-
ilar regression triangular array structure are [16, 17, 19]. These papers also study
the Lasso and regularization via l1 constraints, as we do in this paper. A recent
paper that studies the virtue of letting m be much larger than n in classification
problems is [1].

The above regression setup motivates us to generalize as follows. Consider a
triangular array as before, equipped with an abstract triangular structure of para-
metrized predictors, that is, at stage n, a collection of functions

{gβ,β ∈ Bn},
where gβ = gβ(X1, . . . ,Xm(n)), and the parametrization is Euclidean. Consider a
general nonnegative prediction loss l, incurred for predicting gβ(X1, . . . ,Xm(n))

when the outcome is Y ,

l = l
(
Y,gβ

(
X1, . . . ,Xm(n)

))
.

To simplify notation, we will abuse and write

l(β,Z) ≡ l
(
Y,gβ

(
X1, . . . ,Xm(n)

))
.

As in equation (1), we define

LF (β) = EF l(β,Z).(2)

Note in equation (1) we used a squared loss l. As an additional example, con-
sider classification where Y may be either +1 or −1, the predictors are of the type
gβ(X1, . . . ,Xm) = sign(

∑
βjXj ), and the prediction loss is 0–1.

In the current more abstract formulation, we will consider entry j of the para-
meter β “active” if βj �= 0. Note, in order to relate to regression and other impor-
tant examples, we denote both the dimension of the explanatory variables and of
the parameter space by m. However, in the abstract formulation the dimension of
the explanatory variables is actually not relevant. In the sequel, assumptions made
about m = m(n) may in fact be assumed only on the dimension of the parameter
space.

Let

β∗
Fn

= arg min
β∈Bn

LFn(β).
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From now, when we say triangular array, we mean a sequence of collections
of distributions Fn, a sequence Bn of collections of predictors which are available
at stage n, n = 1,2, . . . , and a prediction loss function l.

We will study sequences of procedures β̂ = β̂(Z1, . . . ,Zn) that select a predic-
tor β ∈ Bn, based on the observations Z1, . . . ,Zn. Here Zi are i.i.d. distributed
Fn, Fn ∈ Fn. The dependence of β̂ ≡ β̂n on n is often suppressed, and we will
loosely say the procedure β̂ .

DEFINITION 1. Given a triangular array, the sequence of procedures β̂n is
persistent with respect to Bn if, for every ε > 0,

sup
Fn∈Fn

PFn

(
LFn(β̂n) − LFn

(
β∗

Fn

)
> ε

) → 0.(3)

It is not difficult to see that the above is equivalent to the following: for any
sequence Fn ∈ Fn,

LFn(β̂n) − LFn

(
β∗

Fn

) p→0.

Here the distribution of β̂n is determined by Fn.

REMARK 1. (a) The concept of persistence is close to that of consistency. Yet,
in consistency there is a certain, usually “true,” fixed parameter to which a consis-
tent estimator converges. In our setup the analog of the true parameter is β∗

Fn
, which

changes with n. Also, in consistency convergence is usually in terms of the Euclid-
ean distance between the true parameter and its estimator, while in persistence the
distance is tied to the loss.

(b) Consider the triangular array structure that motivates us, where as n grows
we consider larger nested collections of predictors Bn. In such a nested structure
we may consider the joint distribution F 0∞ of all variables, that is, the joint distribu-
tion of (Y,X1, . . . ,Xm(∞)). Let F 0

n be the marginal of F 0∞ on σ(Y,X1, . . . ,Xm(n)).
Obviously LF 0

n
(β∗

F 0
n
) is monotone decreasing since Bn ⊂ Bn+1. Thus, there is a

limit

lim
n

LF 0
n

(
β∗

F 0
n

) = r(F 0∞).

When r(F 0∞) > 0, the persistence criterion should have appeal. In situations where
r(F 0∞) = 0, other criteria should be studied and rates of convergence become rele-
vant, rather than only persistence.

Under mild conditions, existence of a persistent procedure will follow if β∗
Fn

,
the best predictor in Bn, has kn = o(n/ log(n)) nonzero entries, also termed
o(n/ log(n)) sparsity rate. This may be shown by a simple entropy derivation;
see Theorem 1 of the next section. It will also be demonstrated in Section 2 that
if, for the relevant sequence Bn, the corresponding sequence β∗

Fn
has o(n/ log(n))

sparsity rate, then there is only a mild effect on the ability to find a predictor which
is nearly as good as β∗

Fn
, when increasing the dimension m dramatically.
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Discussion of the asymptotics and the sets Bn. We further discuss now our no-
tion of persistence with respect to sets Bn. The discussion is in light of the regres-
sion setup with m � n. Usually in asymptotics we evaluate procedures comparing
their estimates (or selected predictors) to the “true” parameter or the absolutely
best predictor. By absolutely best, we mean the best predictor among those that
are linear in X1, . . . ,Xm, rather than the best within a confined subset Bn. The
goal is to do nearly as well as the absolutely best predictor. In regression when
m � n there is no hope, in general, to do as well as the absolutely best linear pre-
dictor. A natural approach is to confine ourselves to various subsets Bn of the set of
all predictors linear in X1, . . . ,Xm, for example, the sets Bn = A(k), where A(k)

denotes the set of all the linear predictors which are functions only of k = k(n),
k < m, explanatory variables. Then we should try to find a predictor which is
nearly as good as the corresponding β∗

Fn
. Of course, the larger Bn, the more chal-

lenging is this task. Yet, for too large sets Bn, that task is impossible due to reasons
explained later using entropy.

It turns out that a sufficient condition for the existence of a persistent sequence
of predictors with respect to Bn is that the corresponding sequence β∗

F has a spar-
sity rate k(n) = o(n/ log(n)). Note, the last condition on the sparsity rate is trivially
satisfied for the sets Bn = A(k), where k = k(n) = o(n/ log(n)); hence, our further
development is always meaningful for such sets Bn.

Our phrasing is slightly different than that of Friedman et al. [11], who write
“Use a procedure that does well in sparse problems, since no procedure does well
in dense problems.” The slight difference in our point of view is that we consider a
procedure as doing well, when it does well relative to collection Bn of predictors
from which it is feasible to discover nearly the best predictor, with the given sample
size. We do not care (since we cannot do much about it) if the absolutely best
predictor is indeed in Bn or not. We certainly do not assume that the problem is
sparse, that is, that the absolutely best predictor is sparse.

To summarize, we set reasonably high, yet realistic, standards for our proce-
dures, rather than the highest but often impossible to achieve standards.

In Section 2 the procedures achieving persistence will be of the type of best
subset selection. More precisely, these procedures search for the empirically best
predictor among those in the set Bn = A(k), k = k(n) = o(n/ log(n)). Their algo-
rithmic complexity makes such procedures impractical. In Section 3 persistent pro-
cedures with lower algorithmic complexity will be introduced for problems with
the following intermediate level of generalization. We will consider cases where
the function gβ(X1, . . . ,Xm) may be presented as ρ(

∑
βjXj ). We will then show

that, for those intermediate level of generalization setups, often Lasso-type pro-
cedures are useful. By Lasso-type procedures, we mean minimization of L

F̂
(β)

subject to a constraint on the l1 norm of β . Here F̂ is the empirical distribution
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based on the data Z1, . . . ,Zn and

L
F̂
(β) = 1

n

∑
i

l(β,Zi).

Finally, in Section 4 a simulation study, in high dimensions, is presented for
a classification method tied to boosting. The simulated classification method in-
volves optimization under l1 constraint.

The case where m < n. Our formulation and problems are meaningful also in
the case m < n. Consider regression again. Let Bn be, as is customary, the set of
all linear functions of X1, . . . ,Xm. Then β∗

Fn
is the absolutely best predictor. A re-

lated problem in a triangular array formulation was studied by Huber [15], Yohai
and Marona [26] and Portnoy [23]; see further references there. In their setup it
is desired to estimate the coefficients in a regression problem, where the num-
ber of explanatory variables is increased with the number of observations. Under
their model, where it is assumed that Y = ∑

βjXj + ε, Eε = 0, the error is not
(necessarily) normal and may have heavy tails; also, the explanatory variables are
nonrandom. They study consistency in terms of l2 distance between the estimate
and the true parameter. The results by Huber and by Yohai and Marona suggest
that a sufficient condition for consistency is that the rate that m increases with n is
m = o(

√
n ). Note that when assuming finite variance for ε, and that the minimal

eigenvalue of the design matrix is of order O(n) (as in the case where the columns
are orthogonal and the entries are of order 1), a rate m = o(n) is possible using the
least squares estimator. However, their interest was mainly in situations involving
heavy tails where the variance is not finite.

Portnoy [23] showed that, under natural assumptions, we may let m grow much
faster and allow a rate of m = o(n/ log(n)). Notice the huge gap compared to
the former mentioned rate of o(

√
n ). We will also show that the rate suggested

by Portnoy should imply persistence in many cases. Yet, we are also left with a
similar huge gap; see Remark 4 in Section 2.

2. Sparsity and persistence. In this section we will give conditions on trian-
gular arrays under which there exists a procedure satisfying (3).

The following condition will be assumed on the prediction loss l given a trian-
gular array.

CONDITION 1. For every ε, there exists M(ε), such that for large enough n,
if LFn(β) > LFn(β

∗
Fn

)+ 2ε, then the truncated random variable Tε ≡ min(l(β,Z),

M(ε)) satisfies

EFnTε > LFn

(
β∗

Fn

) + ε.

Note that Condition 1 is obviously satisfied for a bounded prediction loss l.
In fact, under Condition 1 we may later assume w.l.o.g. that l(β,Z) is bounded
uniformly under all the distributions in Fn. This will enable us to apply large de-
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viations principles on the fluctuations of L
F̂
(β) from its mean LF (β).

The following easily proved theorem, Theorem 1, is stated for a general trian-
gular array setup. It is a key theorem to understand why, for very general triangular
array setups, a predictor should be searched among the set A(kn) of predictors with
corresponding parameters having at most kn = o(n/ log(n)) active entries. In The-
orem 6 of [13], it is shown in a regression setup that this rate cannot be improved,
that is, an example is given where the sparsity rate is kn = O(n/ log(n)), in which
there exists no persistent procedure (of any kind!).

The idea of that proof applies for more general situations, as treated in the cur-
rent paper. Thus, it seems that, for quite general triangular arrays, when m = nα,

α > 1, the rate kn = o(n/ log(n)) is also an upper bound for achieving persistence.

ε-entropy. We will use the concept of ε-entropy of a set of predictors indexed
by β , β ∈ B , given a collection of distributions F and a prediction loss l. The
definition for it is ε-entropy ≡ log(N), where N is the minimal number of points,
denoted β1, . . . , βN , satisfying that for each β ∈ B there exists a point βj such
that, for every F ∈ F , |LF (βj ) − LF (β)| < ε. A set of such N points will be
called an ε-grid.

Note, given any F , F ∈ F , in order to select a predictor whose performance
is within ε of the optimal predictor β∗

F , it is enough to select the best among an
ε-grid of points.

REMARK 2. In order to prove the existence of a persistent procedure with
respect to a sequence Bn, it is enough to show the existence of a sequence of pro-
cedures satisfying (3) for every fixed ε. Then, a diagonalization argument implies
the existence of a persistent procedure. Hence, in the following and throughout we
will concentrate on showing, for any ε > 0, the existence of a procedure (depend-
ing on ε) satisfying (3).

THEOREM 1. Given a triangular array satisfying Condition 1, assume the
following:

(i) For every sequence Fn, n = 1,2, . . . , the parameter β∗
Fn

belongs to a
kn = o(n/ log(n))-dimensional cube centered at the origin, with Euclidean vol-
ume Rn, where log(Rn) = o(n). [Note, in particular, the implied sparsity rate is
o(n/ log(n)).]

(ii) The functions LFn(β) satisfy the following Lipschitz condition: for any
ε > 0, there exist δ > 0 and γ > 0, such that if ‖β − β ′‖2 < δn−γ , β,β ′ ∈ A(kn),
then |LFn(β) − LFn(β

′)| < ε, uniformly in Fn ∈ F n.

Then, for every ε > 0 there exists a sequence of procedures satisfying (3), and
whence, there exists a persistent procedure.

CONVENTION. Throughout, we require conditions to hold at β∗
Fn

or at β̂ =
arg minβ∈Bn L

F̂
(β). When these points are not unique, such a condition should be

understood as being satisfied if it holds for one of the relevant points.
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PROOF OF THEOREM 1. The proof is based on a simple entropy calcula-
tion. There are less than mkn subsets of coordinates of size kn. For each such
subset, consider all the predictors determined by active parameters in this sub-
set. For any Fn ∈ F n, the function LFn(β), confined to this subset, is viewed as a
kn-dimensional function. Divide the corresponding kn-dimensional cube into dis-
joint small cubes with vertices of length δ/

√
knn

γ . Thus, each point in the cube is
within Euclidean distance δn−γ from the center of one of the small cubes, in par-
ticular, its true for the point β∗

Fn
. These centers determine an ε-grid with respect

to the confined versions of LFn(β),Fn ∈ Fn, given a specific subset and a corre-
sponding kn-dimensional cube; this follows from the Lipschitz condition (ii). The
cardinality of the defined ε-grid is Rn/[δ/√knn

γ ]kn = exp(log(Rn) + [log(1
δ
) +

log(
√

kn ) + γ log(n)]kn) ≡ An. There are less than Bn ≡ mkn = exp(α log(n)kn)

such subsets, so altogether, the number of points needed to construct an ε-grid,
with respect to the set of all predictors containing only points β with at most kn

nonzero coordinates and belonging to a cube as in (i), is less than N = An × Bn.
Now, log(An × Bn) is of order o(n) if kn = o(n/ log(n)).

It is now standard to show that selecting arg minL
F̂
(β), where the minimiza-

tion is over an ε
2 -grid, will yield a procedure that satisfies (3). The reason is as

follows: by Condition 1, we may, w.l.o.g., assume that l is bounded and thus, we
may conclude exponential rates of convergence to zero of probabilities of large
deviations (see, e.g., Hoeffding’s inequality [25], page 185). Let Cn be the ε

2 -grid
of points. Since log(N) is of order o(n), where N is the cardinality of Cn, we
obtain, by applying large deviation exponential rates coupled with Bonferroni,
PFn(supβ∈Cn

LFn(β) − L
F̂n

(β) > ε) → 0. The result now follows. �

The conditions of Theorem 1 imply persistence of procedures that are confined
to search for the empirically best predictor among those in A(kn). The search is
also restricted to points which are located in a predetermined cube centered at the
origin, where the log of its volume is of order o(n). The best point is “known”
to be in such a cube. The last restriction is very weak since the volume of the
cube may grow fast. Still, the last restriction could be “mathematically annoying.”
Under condition (a) of the following Corollary 1, this restriction may be avoided.

Another issue is that the procedure achieving persistence in the proof of Theo-
rem 1 searches in a predetermined grid of points. This is again an artificial restric-
tion. Condition (b) in Corollary 1 requires an analog of the Lipschitz condition
in Theorem 1 to hold under the empirical function, L

F̂
(β). Then, it may be con-

cluded that the empirical risk minimization procedure, minimizing over the entire
set A(kn), is persistent, that is, there is no need to minimize in a predetermined set
of grid points.

COROLLARY 1. Consider a triangular array satisfying Condition 1. Assume
condition (ii) of Theorem 1. Assume further a sparsity rate kn = o(n/ log(n)). Fi-
nally, assume the following:
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(a) With probability approaching 1 uniformly for sequences Fn,
β̂ = arg minβ∈A(kn) LF̂n

(β) belongs to a kn = o(n/ log(n))-dimensional cube cen-
tered at β∗

Fn
, with Euclidean volume Rn, where log(Rn) = o(n).

(b) With probability approaching 1 uniformly in sequences Fn, the random
function L

F̂n
(β) satisfies the following Lipschitz condition: for any ε > 0, there ex-

ist δ > 0 and γ > 0, such that if ‖β − β ′‖2 < δn−γ , then |L
F̂n

(β) − L
F̂n

(β ′)| < ε,
β,β ′ ∈ A(kn).

Then the procedure β̂ = arg minβ∈A(kn) LF̂n
(β) is persistent.

PROOF. Condition (b) implies that minimizing with respect to A(kn) is as-
ymptotically equivalent to minimizing with respect to a predetermined (dense
enough) grid contained in A(kn). Similarly, condition (a) implies that minimiz-
ing with respect to A(kn) is asymptotically equivalent to minimizing with respect
to its intersection with a predetermined cube centered at β∗

F . The conclusion now
follows by applying Theorem 1. �

Note, often condition (ii) of Theorem 1 follows from condition (b) of Corol-
lary 1.

Under condition (b) of Corollary 1 and condition (ii) of Theorem 1, for a
bounded l, the following may be proved similarly to the proof of Corollary 1.
Denote by A(kn,Rn) the union of all kn-dimensional cubes with volume Rn each.
Suppose log(Rn) = o(n) and kn = o(n/ log(n)). Let ε > 0, and Fn ∈ Fn be a se-
quence of distributions. Then

PFn

(
sup

β∈A(kn,Rn)

∣∣L
F̂n

(β) − LFn(β)
∣∣ > ε

)
→ 0.(4)

VC dimension. There is another approach to obtain the type of result in Corol-
lary 1, that is, avoiding the annoying assumption that the optimal predictor is lo-
cated in a huge cube, and avoiding artificial procedures that search for a predictor
in a predetermined grid. It is related to the sophisticated and deep concept of VC
dimension.

A way of showing that selecting the predictor that empirically minimizes the
risk is equivalent to a search on a grid of N points is through the concept of VC di-
mension of a class of functions. Using this concept, one may also bound N . These
bounds depend only on properties of the class of functions l(β, z), as functions
of z and not of the collection of distributions F that is involved.

Consider the collection of functions l(β, z) ≡ lβ(z), β ∈ Bn, as functions of z.
Let us confine ourselves to subsets of functions lβ(z) parametrized by β , whose
parameter β may have nonzero entries only for certain kn indices. Suppose the VC
dimension of each such confined subset of functions is of order O(kn). Ideas as in
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Theorem 1 and Corollary 1 imply that the procedure β̂ = arg minβ∈A(kn) LF̂n
(β) is

persistent when kn = o(n/ log(n)) and a kn sparsity rate is assumed.
In the following Example 1, we rederive and generalize a result of Greenshtein

and Ritov [13]. This is by a simple application of Theorem 1 and Corollary 1.
Unlike here, Greenshtein and Ritov used properties of the minimal eigenvalue of a
Wishart matrix to establish their result.

EXAMPLE 1. Let Zi
n = (Y i,Xi

1, . . . ,X
i
m(n)), m = nα,α > 1, where Zi

n are
i.i.d. multivariate normal of dimension m(n) + 1 with bounded second moments
for Xi

j and Y i under {Fn}. Consider a regression setup, that is, a squared prediction
loss l and the set of linear predictors. Under these conditions, we will show that, for
Bn = A(kn), where kn = o(n/ log(n)), the procedure β̂ = arg minβ∈A(kn) LF̂n

(β) is
persistent.

Now, by appropriate reparametrization and invariance considerations, we may
assume w.l.o.g., that Xj , j = 1, . . . ,m, are uncorrelated standard normals; also,
w.l.o.g., Y is uncorrelated with the explanatory variables, that is, β∗

Fn
= 0. Let

var(Y ) = σ 2. Then LF (β) = ‖β‖2
2 + σ 2, and hence

∣∣LFn(β) − LFn(β
′)

∣∣ = ∣∣‖β‖2
2 − ‖β ′‖2

2
∣∣ ≤ ||β − β ′||22,(5)

and condition (ii) of Theorem 1 is satisfied.
In the following we will check conditions (a) and (b) of Corollary 1, in order to

finally apply that corollary.
First, the Lipschitz condition, condition (b) of Corollary 1, is satisfied by

L
F̂n

(β) with probability approaching 1. Observe that, for large enough γ ′,
P(max(X1, . . . ,Xm) > nγ ′ ≡ M) approaches 0, this by combining Chebyshev and
Bonferroni. Thus, with high probability, for β,β ′ ∈ A(kn), |∑βjX

i
j −∑

β ′
jX

i
j | <

M
∑ |βj − β ′

j | < M
√

2kn‖β − β ′‖2. The last inequality is by Cauchy–Schwarz.
Condition (b) of Corollary 1 follows, for a squared loss l, from the last inequality,
when applied similarly to Zi , i = 1, . . . , n.

Condition 1 follows from the multivariate normality. In fact, for the set of ran-
dom variables l(β,Z) with ‖β‖2 < R, for some R < ∞, we have uniform integra-
bility and thus, w.l.o.g., the set consists of bounded random variables.

We now turn to condition (a). We will show that, with probability approaching 1,
β̂ = arg minβ∈A(kn) LF̂n

(β) belongs to a ball with radius (say) 2σ 2, centered at

β∗
Fn

= 0. Let G be the union of all kn-dimensional balls of radius 2σ 2. Then by the
above and by (4), given any ε0 > 0,

PFn

(
sup
β∈G

∣∣LFn(β) − L
F̂n

(β)
∣∣ > ε0

)
→ 0.(6)

Note, that since w.l.o.g. β∗
Fn

= 0, we have (*) LFn(β
∗
Fn

) = LFn(0) = σ 2. For β

on the boundary of G, ‖β‖2 = 2σ 2, hence, for such β we have (**) LFn(β) =
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2σ 2 + σ 2. Condition (a) now follows by the convexity of L
F̂n

(β), from (*), (**)
and (6).

Finally, applying Corollary 1, we obtain that the procedure β̂ which selects the
empirically best predictor from the set A(kn) is persistent.

REMARK 3. (i) In the last example we used only multivariate normality to
conclude Condition 1. Hence, the result holds in much more general situations.
A proof along the lines of Example 1 is possible for other prediction losses, for
example, l(β,Z) = |Y − ∑

βjXj |.
REMARK 4. Consider a regression case, as in Example 1. Suppose we replace

the multivariate normal assumption by the assumption that the entries of Zi are
bounded under the possible distributions in the triangular array. We cannot prove
the o(n/ log(n)) rate for kn, as in Example 1. The reason is that Condition 1 is not
implied. Note, existence of M(ε) for every fixed n is trivially implied by bounded-
ness, but not existence of M(ε) that holds uniformly for every n. In [13] a sparsity
rate of kn = o(

√
n/ log(n) ) is shown to imply persistence, under an additional as-

sumption, that the minimal eigenvalue of the covariance matrix of (X1, . . . ,Xm)

does not approach 0. Whether we may obtain persistence under higher rates, as-
suming only boundedness, is suggested there as a problem. We still do not know
the answer to this problem.

3. Optimization under l1 constraint and the Lasso. In the main result of
this section, Theorem 2, we will show for special classes of parametrized predic-
tors that we may achieve persistence and approximate the best subset of a certain
size through optimization under l1 constraint. The special classes are of the form

gβ(X1, . . . ,Xm) = ρ
(∑

βjXj

)
.(7)

As a further example, consider the class of predictors

gβ(X1, . . . ,Xm) = exp[∑βjXj ]
1 + exp[∑βjXj ] .(8)

The optimization under the constraint that the number of nonzero entries of β

is kn has high complexity in general. It is desired to replace it by a constraint that
determines a convex feasible set. When the target function L

F̂
(β) is also convex,

then the problem has an algorithmically efficient solution; see [20].
An example where both the target function and the feasible set are convex is the

Lasso procedure, that is,

min
β

L
F̂
(β) = min

β

1

n

∑
i

(
Y i − ∑

βjX
i
j

)2
,(9)

subject to the constraint ‖β‖1 < b for a proper b. See [24]; also see basis pursuit
in [5]. Recently Efron et al. [8] developed an efficient algorithm, called least angle



2378 E. GREENSHTEIN

regression, to solve the above optimization problem. We will elaborate on another
example involving convex optimization in the next section.

We study the replacement of the constraint on the number of nonzero entries
of β by a convex constraint on its l1 norm. In recent papers by Donoho [6] and [7],
a general setup is described, in which optimization under l1 constraint gives the
actual optimal solution under the constraint on the number of nonzero entries.
Our ultimate goal is not to find a predictor with a sparse representation; for us,
searching for a sparse solution is only a means of regularization and of controlling
the entropy. Thus, we need weaker results compared to those of Donoho; for our
purpose, it is enough to show some kind of (weaker) equivalence between the so-
lutions obtained under the two types of constraints. From the following Lemma 1,
it follows that predictors with parameters that are obtained through optimization
under a constraint on their l1 norm might (appear to) have more than kn “active
entries,” but in fact it will be shown that, keeping the l1 constraint in the right mag-
nitude (depending on kn), they are equivalent to predictors with parameters that
have only kn active entries. From the last fact, our main theorem of this section,
Theorem 2, will follow. It is a generalization of a result obtained by Greenshtein
and Ritov [13] for regression.

The following Lemma 1 is given without proof. It is a rephrasing of a result
by Maurey (see [22]; a version of it may be found in [13], Lemma 4, and in [16],
Proposition 2.2). There, the analogous result is stated for a single distribution G,
but the same proof works for a pair G1 and G2, as in what follows.

LEMMA 1. Let G1 and G2 be two distributions under which Xj , j =
1, . . . ,m, are bounded by M . Let β be an m-dimensional vector such that
‖β‖1 = b. Let δ > 0. Then for every κ > 0, there exists a corresponding vector β ′,
where ‖β ′‖1 = b, having at most κ nonzero coefficients, such that

PGi

(∣∣∣∑βjXj − ∑
β ′

jXj

∣∣∣ > δ
)

< M2b2/δ2κ, i = 1,2.

We will confine ourselves to triangular arrays where, for each n, the pair consist-
ing of prediction loss l and the collection of predictors {gβ} satisfies the following:

CONDITION 2. For a fixed y, the function

h
(
y,

∑
βjXj

)
≡ l

(
Y,gβ(X1, . . . ,Xm)

)

is bounded and uniformly continuous in
∑

βjXj , uniformly in y.

The boundedness condition on l may be circumvented in various examples. It
may be weakened assuming a condition like Condition 1, or uniform integrability
of l(β,Z), β ∈ Bn. In Theorem 2 we will also require boundedness of Xi

j , this is in
order to apply Lemma 1. If this assumption is avoided, the required sparsity rate in
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Theorem 2 would be o(n/ log(n)dn), where dn = supFn
EFn[max(X1, . . . ,Xm)]2.

Again, the boundedness assumption on Xi
j may be avoided in special cases, like

regression with multivariate normal Zi , as treated in Section 4 of [13]. We will
leave the boundedness assumption for a clearer exposition.

Our main theorem for this section is the following.

THEOREM 2. Consider a triangular array satisfying Condition 2 and having
bounded Xi

j . Suppose the sparsity rate is kn = o(n/ log(n)). Suppose further that
‖β∗

Fn
‖2 is bounded by R (w.l.o.g. R = 1) for every Fn, Fn ∈ Fn, n = 1,2, . . . . Then

the following procedure is persistent. Select the predictor β̃ , where

β̃ = arg min
β

L
F̂n

(β),(10)

subject to the constraints ‖β‖1 ≤ √
kn.

LEMMA 2. Assume Xi
j are bounded by M . Then Condition 2 implies both

Lipschitz conditions, that is, condition (ii) in Theorem 1 and condition (b) in Corol-
lary 1.

PROOF. Observe that∣∣∣∑βjXj − ∑
β∗

j Xj

∣∣∣ < M
∑ |βj − β∗

j |
(11)

< M
√

kn‖β − β∗‖2 < Mn0.5‖β − β∗‖2.

Here we have applied Cauchy–Schwarz and the fact that kn < n.
The proof follows from the uniform continuity and boundedness of l. �

PROOF OF THEOREM 2. Let β̃ be the solution of (10) for a data set coming
from Fn. Then by Lemma 1, given ε1 > 0 and δ1 > 0, for any sequence κn such
that kn = o(κn), there exists a parameter β ′ having at most κn nonzero entries, such
that both for G1 = Fn and for G2 = F̂n we have

PGi

(∣∣∣∑β ′
jXj − ∑

β̃jXj

∣∣∣ > δ1

)
< ε1, i = 1,2.(12)

Moreover,

‖β ′‖1 = ‖β̃‖1 ≤ √
kn.(13)

We choose a sequence κn which is o(n/ log(n)), so that (12) is satisfied.
By Condition 2, (12) implies both∣∣LFn(β̃) − LFn(β

′)
∣∣ < ε = ε(ε1, δ1)(14)

and ∣∣L
F̂n

(β̃) − L
F̂n

(β ′)
∣∣ < ε = ε(ε1, δ1).(15)
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Note that we may obtain (14) and (15) for ε > 0 arbitrarily small, by select-
ing large enough κn = o(n/ log(n)). By (13) and by construction, β ′ belongs to a
κn = o(n/ log(n))-dimensional cube centered at β∗

Fn
, where the logarithm of the

cube’s volume is o(n). Also, by Lemma 2, both condition (b) of Corollary 1 and
condition (ii) of Theorem 1 are satisfied. Hence, by (4) we obtain

PFn

(∣∣L
F̂n

(β ′) − LFn(β
′)

∣∣ > ε
) → 0.(16)

Note, by assumption ‖β∗
Fn

‖2 ≤ 1, whence, by Cauchy–Schwarz, ‖β∗
Fn

‖1 ≤ √
kn.

Thus, by the definition of β̃ we have

L
F̂n

(β̃) ≤ L
F̂n

(
β∗

Fn

)
.(17)

Finally, by the law of large numbers we have

PFn

(∣∣LFn

(
β∗

Fn

) − L
F̂n

(
β∗

Fn

)∣∣ > ε
) → 0.(18)

From (14), (15), (16), (17) and (18), we obtain persistence of β̃ , and the proof
of the theorem follows. �

As remarked before, in practice the proper value for the l1 constraint is un-
known. One should try various values and test the resulting predictors on a test
set. Our theory suggests that the resulting optimal l1 constraint will be of order√

n/ log(n).

REMARK 5. From the proof of Theorem 2, we obtain, even when not assum-
ing sparsity, an appealing feature of rules based on optimization under l1 con-
straint. The feature is self consistency of such procedures. The self consistency is
in the following sense.

Suppose β̃ is obtained by (10) for kn = o(n/ log(n)). Suppose Conditions 1
and 2 hold. Then for every ε > 0 and every sequence Fn,

PFn

(∣∣L
F̂n

(β̃) − LFn(β̃)
∣∣ > ε

) → 0.

COROLLARY 2. From the above it follows that, under Condition 2, the proce-
dure defined by (10) is persistent with respect to Bn, the sequence of l1 balls with
an l1 radius of order kn = o(

√
n

log(n)
).

(There is no need to assume sparsity.)

Discussion. Regularization by general lq constraints. The l1 constraint is mo-
tivated through a constraint on the number of nonzero parameters, which may also
be represented as an l0 constraint. The advantage of the l1 constraint relative to
other lq constraints, q < 1, is the convexity of the feasible set. Yet, from Theo-
rem 2, we conclude that we will not gain much by optimizing via an l0 or lq, q < 1,
constraint. This is since persistence under a o(n/ log(n)) sparsity rate is already
achieved using l1 constraint, while the proofs in this paper and the forementioned
Theorem 6 of Greenshtein and Ritov [13] indicate that, in general, persistence can-
not be achieved for higher rates.
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Lack of persistence of ridge regression. Regularization via lq constraint with
q > 1 will usually lead to nonpersistent procedures, which are also not self-
consistent. Consider, for example, the case q = 2 in a regression context with a
squared loss, called ridge regression. Suppose Zi , i = 1, . . . , n, are multivariate
normal, and suppose β∗

Fn
= 0, that is, Y i are not correlated with the correspond-

ing m explanatory variables. Assume also that Xj are uncorrelated standard nor-
mals. Denote σ 2 = var(Y ). Minimizing the empirical risk subject to a constraint∑

β2
j < δ2 will yield (typically) a solution ˆ̂

β which is on the boundary of the fea-

sible set when δ2 < σ 2, that is, the estimate will have an l2 norm δ. This situation
remains when m and n approach infinity in a way that m � n, no matter how small

is δ > 0. Thus, LFn(
ˆ̂
β) = δ2 + σ 2 + op(1), while LFn(β

∗
Fn

) = LFn(0) = σ 2.
When the regularization is via an l1 constraint, as suggested in this paper, again

the minimizer of the empirical risk, denoted β̂ , will be on the boundary of the l1
ball, which is the feasible set. Yet now, when the l1 constraint is chosen properly
to be o(

√
n/ log(n) ), the l2 norm of that solution will be of order op(1), hence,

LFn(β̂) = σ 2 + op(1). This property of the l1 constraint is a consequence of our
Theorem 2.

Further discussion of the l1 constraint regularization method and its comparison
with l2 regularization may be found in [11] and [4].

In general, regularization may be achieved by introducing penalty functions.
For example, using Lagrange multipliers, one may see that the solution of the op-
timization problem, under lq constraint, is the same as the solution of the related
optimization problem when introducing the penalty function λ

∑ |βj |q , called lq
penalization, for an appropriate λ. A study of regularization using general penal-
izations was conducted by Fan and Li [9] and by Fan and Peng [10]. In their setup
analogous to our prediction loss l(·) is the log-likelihood, but the essence is the
same (see some elaboration on it in [12]). They treat a general class of penalty
functions, including the lq penalties. In particular, for lq penalization with q < 1
and a proper choice of λ, they show that a certain oracle optimality is achieved by
penalized maximum likelihood procedures, while for q = 1, such optimality does
not seem to be implied (the recommended penalty functions in those papers are
not an lq type, but a class of penalty functions called SCAD which possesses fur-
ther nice properties). In a sparse setup, an oracle optimality of procedures means
the following. The rate of convergence to the estimated parameter is the same as
the rate that may be achieved when knowing which are the zero entries of the
parameter. These results are obtained also under a triangular array setup in [10],
but when m(n) � n. In particular, for m = o(nα), α = 1

5 , 1
4 , 1

3 , under various as-
sumptions and regularity conditions. These oracle optimality properties are much
more delicate and strong than the persistence suggested by us. Such strong opti-
mality criteria may be achieved by procedures, due to the slow rate at which the
dimension m = m(n) increases with n, in comparison to the rate in our setting.



2382 E. GREENSHTEIN

4. Numerical study. In this section we examine through simulation the fol-
lowing high-dimensional classification problem. Consider Z = (Y,X1, . . . ,Xm),
where the value of Y is either −1 or +1. The prediction loss is

l(β,Z) = h
(
Y,

∑
βjXj

)
= exp

(
−Y

∑
βjXj

)
.(19)

The convex loss (19) is used to motivate the boosting classification procedure;
see, for example, [14], page 305, or [3]. It may also be motivated as follows. Sup-
pose we classify according to gβ(X1, . . . ,Xm) = sign(

∑
βjXj ). Now the value

of
∑

βjXj is interpreted both through its sign and the magnitude of its absolute
value. The sign determines the classification decision and the magnitude is inter-
preted as the “confidence in that decision.” That is why wrong classifications with
large magnitude are severely penalized and vice versa.

Our optimization under l1 constraint is similar to the approach of Lugosi and
Vayatis [18]. As observed by them, there could be many other interesting and nat-
ural convex prediction losses other than the above; for example, see their Exam-
ple 3. Yet, (19) has attracted a lot of attention recently and we elaborate on it.

In the following we present a simulation study where the dimension m is of the
order of thousands, while the sample size n is of the order of hundreds.

The simulation. We simulate n i.i.d. vectors. Each is M-dimensional and con-
sists of M i.i.d. N(0,1), random variables. Denote the j th component of the ith
vector by Xi

j .

For each vector i, i = 1, . . . , n, let Wi be a N(0,0.25) random number inde-
pendent of Xi

j and define

Y i = sign
(

Xi
1 + · · · + Xi

25

5
+ Wi

)
= sign(V i + Wi),

where V i is implicitly defined. Thus, the first 25 “explanatory variables” (out of
the M available ones) are the relevant predictors for Y i , and the prediction should
be through V i .

Now we create, for each i, five additional random numbers (or simulated
explanatory variables), denoted Xi

M+1, . . . ,X
i
M+5, as follows: Xi

j = V i + Ui
j ,

j = M + 1, . . . ,M + 5; here Ui
j ∼ N(0,9) are again independent of all the others

and of each other.
Notice we have m = M + 5 explanatory variables; only the first 25 are relevant

for predicting Y i . Yet, if we may choose only a single explanatory variable to base
our prediction on, we would rather choose Xi

j from the group of the last five;
obviously if we may choose as many as 25 or more, we would choose the first 25.

Our indirect method of searching for the best subset is through optimization
under l1 constraint. Practically, the right constraint may be determined by cross-
validation or a test set. In our simulation study, the performance of a predictor,
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TABLE 1
n = 500 and M = 1000 (m = 1005)

V-training V-real B1-1-norm B2-1-norm β-1-norm λ

0.132 2.365 7.409 0.444 22.422 0.01
0.361 0.850 3.985 0.291 9.757 0.03
0.538 0.810 2.277 0.270 5.030 0.05
0.673 0.817 1.430 0.240 2.767 0.07
0.742 0.850 0.825 0.277 1.540 0.09
0.815 0.860 0.499 0.246 0.887 0.11
0.859 0.880 0.243 0.242 0.523 0.13
0.877 0.895 0.142 0.229 0.379 0.15
0.887 0.902 0.084 0.224 0.311 0.17

obtained through such optimization under l1 constraint, was tested on an indepen-
dent sample of size 1000. In Tables 1–3 the average prediction loss on the “data
set”/“training set” is denoted V-training, while the average on the additional inde-
pendent sample of size 1000 is denoted V-real.

Our optimization is conducted using “Lagrange multipliers,” that is, instead of
optimization under l1 constraint, we optimize, for appropriate λ > 0,

L
F̂
(β) + λ

∑ |βj |.
We try various values of λ that correspond to various constraints on the l1 norm
of β . The optimization is through steepest descent, where special care is taken
when computing the “partial derivative” of λ

∑ |βj |, for coordinates j where for
the current iteration βj = 0.

In Tables 1–3 we summarize simulation results for various m and n. Only for the
case n = 500, M = 1000 is a detailed table given, with the performance under var-
ious constraints. For the other cases, n = 100, M = 1000 and n = 500, M = 5000,
only the performance under the optimal constraint is given. Each row is based on
averages of 20 repetitions for a fixed λ. In the same table, different rows corre-
spond to different λ, and the bigger λ is, the more severe is the constraint. Indeed,
one may see in Table 1 that as λ decreases the difference between V-training and
V-real increases, that is, the generalization power (or self consistency property)
is reduced. We record the constraint also in terms of the l1 norm of β in the col-

TABLE 2
n = 100 and M = 1000 (m = 1005)

V-training V-real B1-1-norm B2-1-norm β-1-norm λ

0.861 0.926 0.010 0.207 0.264 0.30
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TABLE 3
n = 500 and M = 5000 (m = 5005)

V-training V-real B1-1-norm B2-1-norm β-1-norm λ

0.690 0.862 0.680 0.271 2.181 0.09

umn β-1-norm. The columns B1-1-norm and B2-1-norm record the l1 norm of the
first 25 and of the last five coordinates, respectively.

In practice, the column V-real will be replaced by evaluation of the performance
of the suggested predictor on a test set or cross-validation (the evaluation would
be less accurate when the test set is smaller than the 1000 used in our simula-
tion). Thinking of the V-real column as results from a test set, we get the follow-
ing. When there are only n = 100 observations available, a test set would suggest
to predict mainly based on the last five explanatory variables using λ ≈ 0.3 and
with risk ≈ V -real = 0.926. Note, the l1 mass of the first 25 coefficients is only
0.01, while the l1 mass of the last five is 0.207. When there are n = 500 observa-
tions, a test set would suggest λ ≈ 0.05 with resulting risk about 0.81. Note, when
n = 500, the l1 mass of the first 25 coefficients is 2.277, while that of the last five is
only 0.27. Indeed, with only 100 observations, the attempt to reveal the 25 “best”
explanatory variables is too ambitious and the procedure gives up on it and settles
for the inferior group of five. When the sample size is increased to 500, there is a
shift toward the first 25 variables.

Comparing the simulated results with M = 1000 to those with M = 5000, we
see that by screening in advance many superfluous explanatory variables, reducing
from m = 5005 to m = 1005, we hardly improve. In the case m = 5005 the best
value is attained when λ = 0.09 and equals V -real = 0.862; in the case m = 1005
the best value is attained when λ = 0.05 and equals V -real = 0.810. The improve-
ment is by 0.052. One could argue that this improvement might be significant when
compared to the risk magnitudes, 0.810 and 0.862. As remarked in the Introduc-
tion, when the risk is small (or approaches 0), a more delicate analysis of rates of
convergence, rather than only persistence, is desired.

Note, however, that the slight advantage demonstrated when screening out suc-
cessfully 4000 superfluous explanatory variables (in our simulation changing m

from 5005 to 1005) seems to occur in the “twilight zone,” that is, the zone where
the constraint is not severe enough to produce estimators with generalization
power (or that are self-consistent). Compare in Table 1 for the optimal constraint
λ = 0.05, V-real = 0.81, while V-training = 0.538. Such a “twilight zone” could
be very abrupt in very high dimensions. Moving further from that zone will intro-
duce singularity and the selected predictors will be totally unreliable.

Acknowledgment. I am grateful to Anirban DasGupta for comments that led
to a better presentation.
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