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A SIMPLE SMOOTH BACKFITTING METHOD FOR
ADDITIVE MODELS

BY ENNO MAMMEN1 AND BYEONG U. PARK2

University of Mannheim and Seoul National University

In this paper a new smooth backfitting estimate is proposed for addi-
tive regression models. The estimate has the simple structure of Nadaraya–
Watson smooth backfitting but at the same time achieves the oracle property
of local linear smooth backfitting. Each component is estimated with the same
asymptotic accuracy as if the other components were known.

1. Introduction. In additive models it is assumed that the influence of differ-
ent covariates enters separately into the regression model and that the regression
function can be modeled as the sum of the single influences. This is often a plau-
sible assumption. It circumvents fitting of high-dimensional curves and for this
reason it avoids the so-called curse of dimensionality. On the other hand, it is a
very flexible model that also allows good approximations for more complex struc-
tures. Furthermore, the low-dimensional curves fitted in the additive model can be
easily visualized in plots. This allows a good data-analytic interpretation of the
qualitative influence of single covariates.

In this paper we propose a new backfitting estimate for additive regression mod-
els. The estimate is a modification of the smooth backfitting estimate of Mammen,
Linton and Nielsen [9]. Their versions of smooth backfitting have been introduced
for Nadaraya–Watson smoothing and for local linear smoothing. Smooth back-
fitting based on Nadaraya–Watson smoothing has the advantage of being easily
implemented and of having rather simple intuitive interpretations. On the other
hand, local linear smooth backfitting leads to more complicated technical imple-
mentations. The backfitting formula has no easy interpretation. But, the local linear
smooth backfitting estimate has very nice asymptotic properties. It achieves the as-
ymptotic oracle bounds. The local linear smooth backfitting estimate of an additive
component has the same asymptotic bias and variance as a theoretical local linear
estimate that uses knowledge of the other components. In this paper we introduce
a smooth backfitting estimate that has the simple structure of a Nadaraya–Watson
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estimate but at the same time has the asymptotic oracle property of local linear
smoothing.

Several approaches have been proposed for fitting additive models: the clas-
sical backfitting procedure by Buja, Hastie and Tibshirani [1], the marginal in-
tegration method of Linton and Nielsen [8] and Tjøstheim and Auestad [16],
the smooth backfitting estimate of Mammen, Linton and Nielsen [9], the local
quasi-differencing approach of Christopeit and Hoderlein [2], and the two-step
procedures of Horowitz, Klemelä and Mammen [5]. All estimates require several
estimation steps.

The marginal integration estimate makes use of a full-dimensional nonparamet-
ric regression estimate as a pilot estimate. Each component of the additive model
is fitted by marginal integration of the full-dimensional fit, that is, by integrat-
ing out all other arguments. Versions of marginal integration have been proposed
that achieve oracle bounds [4]. The algorithm is unstable for moderate and large
numbers of additive components and calculation of the full-dimensional regres-
sion estimate causes problems. On the other hand, backfitting avoids fitting a full-
dimensional regression estimate. It is based on an iterative algorithm. In each step
only one additive component is updated. All other components are fixed. So, only
one-dimensional smoothing is applied. Asymptotic theory for the classical back-
fitting is complicated by the fact that the estimate is defined as a limit of the itera-
tive backfitting algorithm but no explicit definition is given. Asymptotic theory is
available under restrictive conditions on the design densities [13, 14]. In general,
the classical backfitting estimates do not achieve the oracle bounds. For practical
implementations of the backfitting estimates, see [15].

Smooth backfitting estimates are defined as the minimizers of a smoothed least
squares criterion. As backfitting estimates they can be calculated by an iterative
backfitting algorithm. Asymptotic analysis becomes simpler because of the ex-
plicit definition of the estimate. Furthermore, making use of an approach in [10],
the estimate can be interpreted as an orthogonal projection of the data vector onto
the space of additive functions. As with the classical backfitting estimates, smooth
backfitting does not make use of a full-dimensional estimate and for this reason
it avoids the curse of dimensionality. Smooth backfitting also achieves the ora-
cle bounds. This has been shown for smooth backfitting estimates based on lo-
cal linear fitting (see [9]). For practical implementations of smooth backfitting,
see [12] and [11]. Some two-step procedures have been proposed for additive mod-
els. Christopeit and Hoderlein [2] use local quasi-differencing in the second step,
an idea coming from efficient estimation in semiparametric estimation. Horowitz,
Klemelä and Mammen [5] and Horowitz and Mammen [6] develop a general ap-
proach that allows oracle efficient estimates for a broad class of smoothing meth-
ods. For a related approach, see also [7].

In the original version of local linear smooth backfitting, both the estimated
value and the estimated slope of an additive component are updated. This is done
by application of a two-dimensional integral operator. This definition leads to
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lengthy formulas, which makes it hard to implement the method. Furthermore,
the understanding of the method and of its asymptotic properties is complicated
by the two-dimensional nature of the integral operator. On the other hand, smooth
backfitting for Nadaraya–Watson smoothing is rather simple to understand and it
can be rather easily implemented. Again, an integral operator is used in the backfit-
ting steps. But now the operator can be easily interpreted as an empirical analogue
of a conditional expectation. In this paper we propose a smooth backfitting es-
timate that inherits the advantages of Nadaraya–Watson and local linear smooth
backfitting. As with Nadaraya–Watson smoothing, it is based on one-dimensional
updating. This essentially simplifies the interpretation and asymptotic analysis of
the algorithm. On the other hand, the new estimate achieves the asymptotic ora-
cle bounds of local linear smooth backfitting. Our numerical study confirms this
asymptotic equivalence, and suggests that the new estimate has a slightly better
performance.

The paper is organized as follows. In the next section the method is introduced
and is shown to be asymptotically equivalent to local linear smooth backfitting
under some conditions on the kernel functions of the backfitting operator. Section 3
discusses some numerical properties of the new proposal. The assumptions for our
theoretical results and proofs are deferred to Section 4.

2. Local linear smooth backfitting. In this section we introduce our new
smooth backfitting method for local linear smoothing. It is based on a modification
of smooth backfitting for Nadaraya–Watson smoothing. We briefly recall the defin-
ition of Nadaraya–Watson backfitting from Mammen, Linton and Nielsen [9]. We
consider an additive model. For i = 1, . . . , n, it is assumed for one-dimensional
response variables Y 1, . . . , Y n that

Y i = m0 + m1(X
i
1) + · · · + md(Xi

d) + εi.(2.1)

Here, εi are error variables, m1, . . . ,md are unknown functions from R to R sat-
isfying Emj(X

i
j ) = 0, m0 is an unknown constant and Xi = (Xi

1, . . . ,X
i
d) are

random design points in R
d . Throughout the paper we make the assumption that

X1, . . . ,Xn are i.i.d. and that Xi
j takes its values in a bounded interval Ij . Further-

more, the error variables ε1, . . . , εn are assumed to be i.i.d. mean zero and to be
independent of X1, . . . ,Xn. This excludes interesting autoregression models, but
it simplifies our asymptotic analysis. We expect that our results can be extended to
dependent observations under mixing conditions.

The Nadaraya–Watson smooth backfitting estimate is defined as the minimizer
of the smoothed sum of squares

n∑
i=1

∫
I

[
Y i − m̂0 −

d∑
j=1

m̂j (xj )

]2

κ

(
Xi

1 − x1

h1
, . . . ,

Xi
d − xd

hd

)
dx,(2.2)



A SIMPLE BACKFITTING METHOD 2255

where κ is a d-variate kernel function and I = I1 × · · · × Id . The minimization is
done under the constraints∫

Ij

m̂j (xj )p̂j (xj ) dxj = 0, j = 1, . . . , d,(2.3)

where p̂j is a marginal kernel density estimate. The minimizer m̂j of (2.2) is
uniquely defined by the equations (see [9])

m̂j (xj ) = m̃j (xj ) − ∑
k �=j

∫
Ik

m̂k(xk)π̂jk(xj , xk) dxk, j = 1, . . . , d,(2.4)

where m̃j is a normalized marginal Nadaraya–Watson estimate and π̂jk is a kernel
density estimate of the conditional density pjk/pj . Here pjk denotes the marginal
density of (Xj ,Xk).

In this paper we propose to use other choices of m̃j and π̂jk , and define a new
estimate by (2.4) with these new choices. Let m̌j be the marginal local linear es-
timate. Together with the slope estimate m̌∗

j the local linear estimate is defined as
the minimizer of

n∑
i=1

[Y i − m̌j (xj ) − m̌∗
j (xj )(X

i
j − xj )]2Khj

(xj ,X
i
j ),(2.5)

where Khj
is a boundary corrected univariate kernel function. It is defined as

Khj
(uj , vj ) = [a(uj , hj )vj + b(uj , hj )]h−1

j K

(
vj − uj

hj

)
,

where K is a symmetric convolution kernel (i.e., a probability density function)
supported on [−1,1]. The functions a and b are chosen so that∫

Ij

Khj
(uj , vj ) dvj = 1,(2.6) ∫

Ij

(vj − uj )Khj
(uj , vj ) dvj = 0.(2.7)

We also write Khj
(vj −uj ) for the kernel h−1

j K[(vj −uj )/hj ]. This kernel should
not be confused with Khj

(uj , vj ). Specifically,

Khj
(uj , vj ) =

[µK,j,2(uj ) − (h−1
j (vj − uj ))µK,j,1(uj )

µK,j,0(uj )µK,j,2(uj ) − µK,j,1(uj )2

]
(2.8)

× h−1
j K

(
vj − uj

hj

)
,

where

µK,j,�(uj ) =
∫
Ij

(vj − uj )
�h−�

j Khj
(vj − uj ) dvj =

∫
Ij (uj ,hj ,+)

t�K(t) dt
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for Ij (uj , hj ,+) = {t :uj + hj t ∈ Ij }.
The normalized marginal estimate m̃j is defined as

m̃j (xj ) = m̌j (xj ) −
[∫

p̃j (u) du

]−1 ∫
m̌j (u)p̃j (u) du(2.9)

for a modified density estimate p̃j . The modified kernel density estimate p̃j is
defined as

p̃j (xj ) = p̂j (xj ) − p̂∗
j (xj )

2

p̂∗∗
j (xj )

,

where p̂j is the usual kernel density estimate,

p̂∗
j (xj ) = 1

n

n∑
i=1

Khj
(xj ,X

i
j )(X

i
j − xj ),

p̂∗∗
j (xj ) = 1

n

n∑
i=1

Khj
(xj ,X

i
j )(X

i
j − xj )

2.

For the definition of π̂jk , we consider the two-dimensional kernel density esti-
mate

p̃jk(xj , xk) = p̂jk(xj , xk) − p̂∗
jk(xj , xk)p̂

∗
j (xj )

p̂∗∗
j (xj )

,

where

p̂jk(xj , xk) = 1

n

n∑
i=1

Khj
(xj ,X

i
j )Lhk

(xk,X
i
k),

p̂∗
jk(xj , xk) = 1

n

n∑
i=1

Khj
(xj ,X

i
j )Lhk

(xk,X
i
k)(X

i
j − xj ).

The kernel Lhk
is defined as

Lhk
(uk, vk) = [c(vk, hk)uk + d(vk, hk)]h−1

k L

(
vk − uk

hk

)
,

where c and d are chosen so that ∫
Ik

Lhk
(uk, vk) duk = 1,(2.10) ∫

Ik

(vk − uk)Lhk
(uk, vk) duk = 0.(2.11)

Specifically,

Lhk
(uk, vk) =

[
µ∗

L,k,2(vk) − (h−1
k (vk − uk))µ

∗
L,k,1(vk)

µ∗
L,k,0(vk)µ

∗
L,k,2(vk) − µ∗

L,k,1(vk)2

]
h−1

k L

(
vk − uk

hk

)
,
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where

µ∗
L,k,�(vk) =

∫
Ik

(vk − uk)
�h−�

k Lhk
(vk − uk) duk =

∫
Ik(vk,hk,−)

t�L(t) dt

for Ik(vk, hk,−) = {t :vk − hkt ∈ Ik}. We use the following convolution kernel L:

L(u) = 2K1/
√

2(u) − K√
2(u).

This kernel satisfies
∫

L(u)du = 1,
∫

uL(u)du = 0 and
∫

u2L(u)du = − ∫
u2 ×

K(u)du. Other kernels with these moments will also work. Again, we also write
Lhj

(vj − uj ) for the kernel h−1
j L[(vj − uj )/hj ]. Note that the definition of Lhk

differs from that of Khj
. The difference comes from integration with respect to

different arguments in the moment equations. Note also that the moment condi-
tion (2.10) is required on their kernels Khk

(as well as Khj
) for the local linear

smooth backfitting estimate proposed by Mammen, Linton and Nielsen [9]. The
additional condition (2.11) on the first moment is needed here to mimic local lin-
ear smooth backfitting with a Nadaraya–Watson-type estimate.

We now define π̂jk as

π̂jk(xj , xk) = p̃jk(xj , xk)

p̃j (xj )
−

∫
p̃jk(u, xk) du∫

p̃j (u) du
.(2.12)

Our main result states that the estimate m̂j is asymptotically equivalent to local
linear smooth backfitting estimates. We will give motivation for the choice of π̂jk

at the end of this section.

THEOREM 2.1. Under Assumptions (A1)–(A5) stated in Section 4, we get the
following expansions for the estimate m̂j defined by (2.4) with m̃j at (2.5)–(2.9)
and π̂jk at (2.12):

m̂j (xj ) = mj(xj ) + h2
j

[
1

2
CK,j,2(xj )m

′′
j (xj ) + �j

]
(2.13)

+
[

1

n

n∑
i=1

Khj
(xj ,X

i
j )

]−1
1

n

n∑
i=1

Khj
(xj ,X

i
j )ε

i + op(n−2/5)

uniformly for xj ∈ Ij , where CK,j,�(xj ) = ∫
Ij

(vj − xj )
�h−�

j Khj
(xj , vj ) dvj ,

�j = −1

2
CK

[∫
mj(uj )p

′′
j (uj ) duj

− 2
∫

mj(uj )
p′

j (uj )
2

pj (uj )
duj +

∫
Ij

m′′
j (uj )pj (uj ) duj

]
and CK = ∫

u2K(u)du.
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We point out that CK,j,�(xj ) in the theorem is different from µK,j,�(xj ) defined
earlier. In fact, for Khj

satisfying (2.6) and (2.7) it follows that

CK,j,�(xj ) = µK,j,2(xj )µK,j,�(xj ) − µK,j,1(xj )µK,j,�+1(xj )

µK,j,0(xj )µK,j,2(xj ) − µK,j,1(xj )2 .

We compare the estimate m̂j with the local linear smooth backfitting estimate,
m̂j,SB, studied by Mammen, Linton and Nielsen [9]. There are differences at
the boundary and in the interior of Ij . For xj in the interior I−

j = {u ∈ Ij :u +
hj ∈ Ij , u − hj ∈ Ij } one gets CK,j,2(xj ) = CK . Thus the expansion of m̂j be-
comes

m̂j (xj ) = mj(xj ) + 1

2
CKh2

jm
′′
j (xj ) + h2

j�j

(2.14)

+
[

1

n

n∑
i=1

Khj
(xj ,X

i
j )

]−1
1

n

n∑
i=1

Khj
(xj ,X

i
j )ε

i + op(n−2/5).

For xj ∈ I−
j this expansion differs from the stochastic expansion of m̂j,SB only

by the constant term h2
j�j ; see [9] and [11]. This additive term comes from the

norming
∫
Ij

m̂j (uj )p̃j (uj ) duj = 0. This can be easily verified by observing that∫
Ij

mj (uj )p̃j (uj ) duj

= 1

2
CKh2

j

[∫
mj(uj )p

′′
j (uj ) duj − 2

∫
mj(uj )

p′
j (uj )

2

pj (uj )
duj

]
+ op(n−2/5).

One could use other normings for estimation of mj . We briefly discuss two other
normings,

m̂j,+(xj ) = m̂j (xj ) −
∫
Ij

m̂j (uj )p̂j (uj ) duj ,(2.15)

m̂j,++(xj ) = m̂j (xj ) − 1

n

n∑
i=1

m̂j (X
i
j ).(2.16)

For these two modified estimates the following expansions hold.

COROLLARY 2.1. Under the assumptions of Theorem 2.1, the expansion
(2.13) applies for the estimates m̂j,+(xj ) and m̂j,++(xj ) defined at (2.15)
and (2.16), respectively, with �j replaced by

�j,+ = −1
2CK

[∫
mj(uj )p

′′
j (uj ) duj +

∫
Ij

m′′
j (uj )pj (uj ) duj

]
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for m̂j,+ and by

�j,++ = −1
2CK

[∫
Ij

m′′
j (uj )pj (uj ) duj

]
for m̂j,++.

For the local linear smooth backfitting estimate m̂j,SB, we get the expansion
(2.14) with �j,SB = 0 for xj in the interior I−

j ; see [9] and [11]. There a different
norming was used for a combination of the smooth backfitting estimate of mj and
its derivative; see (3.4) in [11]. The norming of m̂j,++ is chosen so that the mean
integrated squared error

∫
Ij

[m̂j,++(xj )−m(xj )]2p(xj ) dxj is asymptotically min-
imized. Note that∫

Ij

[m̂j,++(xj ) − mj(xj )]p(xj ) dxj =
∫
Ij

m̂j,++(xj )p(xj ) dxj = oP (n−2/5).

Furthermore, our estimate m̂j differs from the local linear smooth backfitting
estimate m̂j,SB on the boundary Ij\I−

j . The estimates have slightly different as-
ymptotic biases on the boundary. The difference is due to the fact that they use
different boundary corrected kernels. Recall that the local linear estimate in the
univariate nonparametric regression with a conventional kernel K , without bound-
ary modification, has the asymptotic bias

1

2
m′′(x)

µK,2(x)2 − µK,1(x)µK,3(x)

µK,0(x)µK,2(x) − µK,1(x)2 h2;

see [3]. Here m is the nonparametric regression function, h is the bandwidth,
µK,�(x) = ∫

I (u−x)�h−�Kh(u−x)du for � ≥ 0 and I is the support of the covari-
ate. A similar bias expansion holds for the local linear smooth backfitting estimate
m̂j,SB(xj ). Recall that in the construction of m̂j,SB, boundary corrected kernels
K∗

hk
that satisfy

∫
Ik

K∗
hk

(xk, vk) dxk = 1 for all k (including j ) are used. Note that
this moment condition is different from (2.6) but is the same as (2.10) that we re-
quire on L. By an extension of the arguments given in [9] and [11], one gets for
the bias of m̂j,SB(xj ) the expansion

1

2
m′′

j (xj )
CK∗,j,2(xj )

2 − CK∗,j,1(xj )CK∗,j,3(xj )

CK∗,j,0(xj )CK∗,j,2(xj ) − CK∗,j,1(xj )2 h2
j ,

where CK∗,j,� is defined in the same way as CK,j,� but with Khj
being replaced

by K∗
hj

. The bias expansion of our estimate is simplified since CK,j,0 = 1 and
CK,j,1 = 0 from (2.6) and (2.7), respectively.

The asymptotic variances of our estimate m̂j and the local linear smooth back-
fitting estimate m̂j,SB are also slightly different on the boundary. They are identical
in the interior of Ij , however. The difference on the boundary is also due to the use
of different kernels as is discussed above.
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We now give motivation for our choice of π̂jk when d = 2. We give some
heuristic arguments why our proposal is a second-order modification of local lin-
ear smooth backfitting. We restrict the discussion to points in the interior of Ij

and for simplicity we neglect boundary effects. For this reason in the heuristics
we use convolution kernels that are not corrected at the boundary. The local linear
smooth backfitting estimate of Mammen, Linton and Nielsen [9] is defined as the
minimizer of

n∑
i=1

∫
[Y i − m̂0 − m̂1(x1) − m̂∗

1(x1)(X
i
1 − x1) − m̂2(x2)

(2.17)
− m̂∗

2(x2)(X
i
2 − x2)]2Kh1(X

i
1 − x1)Kh2(X

i
2 − x2) dx1 dx2.

Here m̂1 and m̂2 are the estimates of the additive components m1 and m2, respec-
tively, and m̂∗

1 and m̂∗
2 are the estimates of the slopes of m1 and m2. Minimization

of (2.17) with respect to m̂1(x1) and m̂∗
1(x1) for fixed x1 and for fixed functions

m̂2(·), m̂∗
2(·) leads to

0 =
n∑

i=1

∫
[Y i − m̂0 − m̂1(x1)

− m̂∗
1(x1)(X

i
1 − x1) − m̂2(x2) − m̂∗

2(x2)(X
i
2 − x2)](2.18)

×
(

1
Xi

1 − x1

)
Kh1(X

i
1 − x1)Kh2(X

i
2 − x2) dx2.

This equation is used in the smooth backfitting algorithm for updating m̂1 and m̂∗
1.

We modify this equation so that the slope estimates m̂∗
1 and m̂∗

2 do not enter the
updating equation and thus the algorithm only keeps track of the values of m̂1
and m̂2.

We first discuss how m̂∗
2 can be dropped. The basic idea is to replace equation

(2.18) by

0 =
n∑

i=1

∫
[Y i − m̂0 − m̂1(x1) − m̂∗

1(x1)(X
i
1 − x1) − m̂2(x2)]

(2.19)

×
(

1
Xi

1 − x1

)
Kh1(X

i
1 − x1)Lh2(X

i
2 − x2) dx2.

Here, Lh2 is a kernel such that the right-hand sides of (2.18) and (2.19) are asymp-
totically equivalent. This can be accomplished by choosing Lh2 so that∫

[m̂2(x2) + m̂∗
2(x2)(X

i
2 − x2)]Kh2(X

i
2 − x2) dx2 �

∫
m̂2(x2)Lh2(X

i
2 − x2) dx2.

This is done if we choose L to satisfy
∫

L(u)du = 1,
∫

uL(u)du = 0 and∫
u2L(u)du = − ∫

u2K(u)du since

m̂2(x2) � m̂2(X
i
2) − m̂′

2(X
i
2)(X

i
2 − x2) + 1

2m̂′′
2(X

i
2)(X

i
2 − x2)

2,

m̂∗
2(x2) � m̂′

2(X
i
2) − m̂′′

2(X
i
2)(X

i
2 − x2).
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It remains to modify (2.19) further so that m̂∗
1 does not appear. This can be easily

achieved by solving (2.19) with respect to m̂1. It gives

m̂1(x1) =
[

n∑
i=1

(Xi
1 − x1)

2Kh1(X
i
1 − x1)

n∑
i=1

ZiKh1(X
i
1 − x1)

−
n∑

i=1

(Xi
1 − x1)Kh1(X

i
1 − x1)

n∑
i=1

Zi(Xi
1 − x1)Kh1(X

i
1 − x1)

]

×
[

n∑
i=1

(Xi
1 − x1)

2Kh1(X
i
1 − x1)

n∑
i=1

Kh1(X
i
1 − x1)

−
(

n∑
i=1

(Xi
1 − x1)Kh1(X

i
1 − x1)

)2]−1

− m̂0

with Zi = Y i − ∫
m̂2(x2)Lh2(X

i
2 − x2) dx2. This is equivalent to

m̂1(x1) = m̌1(x1) − m̂0 −
∫

m̂2(x2)
p̃12(x1, x2)

p̃1(x1)
dx2,

which implies

m̂1(x1) = m̃1(x1) −
∫

m̂2(x2)π̂12(x1, x2) dx2.

The above argument is valid for xj ∈ I−
j . For the boundary area Ij \ I−

j , it con-

tinues to hold if one uses the boundary corrected kernel Lh2(x2,X
i
2) instead of

Lh2(X
i
2 − x2) and Kh1(x1,X

i
1) instead of Kh1(X

i
1 − x1).

3. Numerical properties. In this section we compare some numerical prop-
erties of the new and the local linear smooth backfitting estimates. For this, we
drew 500 datasets (Xi, Y i), i = 1, . . . , n, with n = 100 and 400 from the model

Y i = m1(X
i
1) + m2(X

i
2) + m3(X

i
3) + εi,(M1)

where m1(x1) = x2
1 , m2(x2) = x3

2 , m3(x3) = −x4
3 and εi are distributed as

N(0,0.01). The covariates were generated from truncated three-dimensional nor-
mal distributions with marginals N(0.5,0.5) and correlations ρ12 = ρ13 = ρ23 = ρ,
where ρij denotes the correlation between Xi and Xj . The truncation was done
for the covariates to have the compact support [0,1]3. To be specific, a random
variate generated from one of the three-dimensional normal distributions was dis-
carded if one of the covariates fell outside the interval [0,1]. The correlation levels
used were ρ = 0 and 0.5. The kernel that we used for the backfitting algorithm
was the biweight kernel K(u) = (15/16)(1 − u2)2I[−1,1](u). For the local linear
smooth backfitting estimate, we used Khj

that satisfy
∫

Khj
(u, v) du = 1 for all j ,
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but neither (2.6) nor (2.7). For a fair comparison, we used for the new estimate the
conventional kernels Khj

(v −u) instead of Khj
(u, v) given in (2.8). Also, both the

new and the local linear smooth backfitting estimates were recentered according
to the formula (2.16).

Figures 1 and 2 and Table 1 summarize the results. The target functions are
mj − Emj(Xj ) rather than mj since Emj(Xj ) �= 0. Figures 1 and 2 depict the
bias, the variance and the mean squared error curves of the new and the local
linear smooth backfitting estimates, which are based on 500 pseudosamples of
size 400. The results for the samples of size 100 are not presented here, but they
give the same message as those for the samples of size 400. Table 1 shows the

FIG. 1. Bias, variance and mean squared error curves when ρ = 0. The solid curves correspond
to the new estimates m̂j , and the dashed curves are for the local linear smooth backfitting estimates
m̂j,SB. The three rows show the bias, the variance and the mean squared error curves. In each row,
the leftmost panel corresponds to m1 and the next two to the right are for m2 and m3. These are
based on 500 pseudosamples of size 400.
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FIG. 2. Bias, variance and mean squared error curves when ρ = 0.5. Line types and arrangement
of panels are the same as in Figure 1. These are also based on 500 pseudosamples of size 400.

integrated squared biases, integrated variances and integrated mean squared errors.
It is observed from Figures 1 and 2 that the bias property of the new estimate m̂j

is nearly the same as that of the local linear smooth backfitting estimate m̂j,SB in
the interior and on the boundary. In the interior the variance properties of the two
estimates are also nearly the same, while on the boundary the new estimate is seen
to be slightly more stable. Because of less variability on the boundary, the new
estimate has a slightly improved mean integrated squared error property, as shown
in Table 1.

The bandwidths hj used for these results were chosen as

hj = n−1/5
[
E(εi)2

∫
K2(t) dt

]1/5[
C2

K

∫ 1

0
m′′

j (uj )
2pj (uj ) duj

]−1/5

.(3.1)
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TABLE 1
Integrated squared bias, integrated variance and integrated mean squared error, multiplied by 103,

of the new and the local linear smooth backfitting estimates based on 500 pseudosamples
of size 400

Corr. Target Estimate Integrated Integrated Integrated
level function sq. bias variance MSE

ρ = 0 m1 m̂1,SB 0.0073 0.3479 0.3552
m̂1 0.0071 0.3234 0.3305

m2 m̂2,SB 0.0070 0.4027 0.4097
m̂2 0.0081 0.3768 0.3849

m3 m̂3,SB 0.0136 0.4040 0.4176
m̂3 0.0138 0.3660 0.3798

ρ = 0.5 m1 m̂1,SB 0.0114 0.3910 0.4024
m̂1 0.0114 0.3657 0.3771

m2 m̂2,SB 0.0179 0.3928 0.4107
m̂2 0.0179 0.3629 0.3808

m3 m̂3,SB 0.0334 0.3967 0.4301
m̂3 0.0326 0.3601 0.3927

This is the optimal bandwidth for local linear smoothing in univariate nonpara-
metric regression models (i.e., additive models with one additive component) and
also the optimal bandwidth for the local linear smooth backfitting estimate m̂j,SB;
see [11] for the latter. In additive models the optimal bandwidth depends on the
norming of the estimate. In particular, for the MISE-optimal norming we get the
estimate m̂j,++(xj ) (see the discussion after Theorem 2.1) and an asymptotically
optimal bandwidth that is defined as in (3.1) but with m′′

j (uj ) replaced by m′′
j (uj )−∫

Ij
m′′

j (vj )p(vj ) dvj . We used the bandwidth as defined in (3.1). In this respect we
follow the usual practice in classical nonparametric regression and do not min-
imize MISE by using estimates of

∫
mj(u)pj (u) du that have parametric rate

n−1/2. Note that in univariate nonparametric regression an estimate m̂(x) could
be improved by the modification m̂∗(x) = m̂(x) − 1

n

∑n
i=1 m̂(Xi) + n−1 ∑n

i=1 Y i .
For example, if m̂(x) is the local linear smoother, then the asymptotic bias of
m̂∗(x) equals 1

2CK [m′′(x) − ∫
m′′(u)p(u)du]h2, leading to a smaller first-order

integrated squared bias. We tried other fixed bandwidths around the optimal band-
width (3.1), but the lessons were essentially the same.

4. Assumptions and proofs.

4.1. Assumptions. Below, we collect the assumptions used in this paper.

(A1) The kernel K is bounded and symmetric about zero. It has compact support
([−1,1], say) and is Lipschitz continuous.
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(A2) The d-dimensional vector Xi has compact support I = I1 × · · · × Id for
bounded intervals Ij and its density is bounded from below and from above
on I .

(A3) E(εi)2 < +∞.
(A4) The functions m′′

j , p′′
j , D2

xj
pjk(xj , xk) for 1 ≤ j , k ≤ d exist and are con-

tinuous, where Dxj
denotes the partial derivative operator with respect to xj

and D2
xj

is the operator of order 2.

(A5) The bandwidths h1, . . . , hd are of order n−1/5.

4.2. Proof of Theorem 2.1. Define ηi
kj = mk(X

i
k) − E[mk(X

i
k)|Xi

j ] and

m̌A
j (xj ) = 1

n

n∑
i=1

Khj
(xj ,X

i
j )

p̂j (xj )
εi,

m̌B
j (xj ) = m0 + mj(xj ) + ∑

k �=j

∫
Ik

pjk(xj , xk)

pj (xj )
mk(xk) dxk

+ 1

2
CK,j,2(xj )h

2
j(4.1)

×
[
m′′

j (xj ) + ∑
k �=j

D2
xj

∫
pjk(xj , xk)

pj (xj )
mk(xk) dxk

]

+ 1

n

n∑
i=1

Khj
(xj ,X

i
j )

p̂j (xj )

∑
k �=j

ηi
kj .

For the local linear estimate m̌j , the following expansion holds:

m̌j (xj ) = m̌A
j (xj ) + m̌B

j (xj ) + op(n−2/5)(4.2)

uniformly for xj ∈ Ij . These expansions follow by standard asymptotic smoothing
theory. Define now

mB
j (xj ) = mj(xj ) + 1

2CK,j,2(xj )h
2
jm

′′
j (xj ),

mA
j (xj ) = m̌A

j (xj ).

We will show that for S = A,B

mS
j (xj ) = m̌S

j (xj ) − ∑
k �=j

∫
Ik

mS
k (xk)

p̃jk(xj , xk)

p̃j (xj )
dxk + op(n−2/5)(4.3)

uniformly for xj ∈ Ij . Below we argue that (4.3) implies the statement of Theo-
rem 2.1. The proof of (4.3) will be given afterwards.

We apply Theorems 2 and 3 in [9]. We will do this with our p̃jk , p̃j , m̂S
j , m̌S

j ,

respectively, taking the roles of their p̂jk , p̂j , m̃S
j , m̂S

j . It is easy to verify the
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conditions of these theorems. From their Theorem 2 with Sj = Ij and �n = n−2/5

together with our (4.3) we get

m̂A
j (xj ) = m̌A

j (xj ) −
[∫

p̃j (u) du

]−1 ∫
m̌A

j (u)p̃j (u) du + op(n−2/5)(4.4)

uniformly for xj ∈ Ij . Here for S = A,B the random function m̂S
j is defined by

m̂S
j (xj ) = m̌S

j (xj ) −
[∫

p̃j (u) du

]−1 ∫
m̌S

j (u)p̃j (u) du

− ∑
k �=j

∫
Ik

m̂S
k (xk)π̂jk(xj , xk) dxk,

∫
m̂S

j (u)p̃j (u) du = 0.

It is easy to check that the second term on the right-hand side of (4.4) is of order
op(n−2/5). Therefore we have

m̂A
j (xj ) = m̌A

j (xj ) + op(n−2/5).(4.5)

Note that

m̂j (xj ) = m̂A
j (xj ) + m̂B

j (xj ).(4.6)

We now apply Theorem 3 in [9] with αn,j (xj ) = mB
j (xj ), β(x) ≡ 0, µ̂n,0 = 0,

αn,0 = 0, Sj = Ij and �n = n−2/5. This gives

m̂B
j (xj ) = mB

j (xj ) −
[∫

p̃j (u) du

]−1 ∫
mB

j (u)p̃j (u) du + op(n−2/5)(4.7)

uniformly for xj ∈ Ij . Note that up to terms of order op(n−2/5) the second term
on the right-hand side of (4.7) is asymptotically equal to a deterministic sequence.
In the statement of Theorem 3 this sequence was called γn,j . The statement of
Theorem 2.1 easily follows from (4.5)–(4.7).

We remark that in Assumption (A2) in [9] it was assumed that p̃jk(xj , xk) =
p̃kj (xk, xj ) (in the notation of the current paper). Our choice of p̃jk does not satisfy
this symmetry constraint. It can be checked that Theorems 2 and 3 in [9] continue
to hold when this symmetry constraint is dropped. Let us also mention that in
their Assumption (A9) of Theorem 3

∫
αn,j (u)p̂j (u) du = γn,j − op(�n) should

be replaced by the correct assumption [∫ p̂j (u) du]−1 ∫
αn,j (u)p̂j (u) du = γn,j +

op(�n).
It remains to show (4.3).
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Proof of (4.3) for S = B . We first note that the following expansions hold:

p̃jk(xj , xk)

p̃j (xj )
= p̂jk(xj , xk)

p̂j (xj )
+ CK,j,2(xj )h

2
j

pjk(xj , xk)

pj (xj )3 p′
j (xj )

2

(4.8)

− CK,j,2(xj )h
2
j [Dxj

pjk(xj , xk)]
p′

j (xj )

pj (xj )2 + op(n−2/5),

uniformly for xj ∈ Ij and xk ∈ I−
k , and

p̃jk(xj , xk)

p̃j (xj )
= p̂jk(xj , xk)

p̂j (xj )
+ Op(n−2/5),(4.9)

uniformly for xj ∈ Ij and xk ∈ Ik \ I−
k . These claims immediately follow from

p̂∗
j (xj ) = CK,j,2(xj )h

2
jp

′
j (xj ) + op(n−2/5),(4.10)

p̂∗∗
j (xj ) = CK,j,2(xj )h

2
jpj (xj ) + op(n−2/5),(4.11)

p̂∗
jk(xj , xk) = CK,j,2(xj )h

2
jDxj

pjk(xj , xk) + op(n−2/5),(4.12)

uniformly for xj ∈ Ij and xk ∈ I−
k , and p̂∗

j (xj ), p̂∗∗
j (xj ), p̂∗

jk(xj , xk) are all

Op(n−2/5) uniformly for xj ∈ Ij and xk ∈ Ik \ I−
k .

Now, it follows that uniformly for xj ∈ Ij∫
Ik

mk(xk)p̂jk(xj , xk) dxk

= 1

n

n∑
i=1

Khj
(xj ,X

i
j )

∫
Ik

mk(xk)Lhk
(xk,X

i
k) dxk

= 1

n

n∑
i=1

Khj
(xj ,X

i
j )mk(X

i
k)

− 1

2
CKh2

k

[
1

n

n∑
i=1

Khj
(xj ,X

i
j )m

′′
k(X

i
k)

]
+ op(n−2/5)

= 1

n

n∑
i=1

Khj
(xj ,X

i
j )

∫
Ik

pjk(X
i
j , xk)

pj (X
i
j )

mk(xk) dxk

+ 1

n

n∑
i=1

Khj
(xj ,X

i
j )η

i
kj

− 1

2
CKh2

k

∫
Ik

pjk(xj , xk)m
′′
k(xk) dxk + op(n−2/5)

= p̂j (xj )

∫
Ik

pjk(xj , xk)

pj (xj )
mk(xk) dxk(4.13)
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+ CK,j,2(xj )h
2
j p̂j (xj )

[(
Dxj

∫
Ik

pjk(xj , xk)

pj (xj )
mk(xk) dxk

)p′
j (xj )

pj (xj )

+ 1

2
D2

xj

∫
Ik

pjk(xj , xk)

pj (xj )
mk(xk) dxk

]

− 1

2
CKh2

k

∫
Ik

pjk(xj , xk)m
′′
k(xk) dxk + 1

n

n∑
i=1

Khj
(xj ,X

i
j )η

i
kj

+ op(n−2/5).

Furthermore,∫
Ik

[
1

2
CKh2

km
′′
k(xk)

]
p̃jk(xj , xk)

p̃j (xj )
dxk

(4.14)

= 1

2
CKh2

k

∫
Ik

pjk(xj , xk)

pj (xj )
m′′

k(xk) dxk + op(n−2/5).

Using (4.8), (4.13) and (4.14) gives∫
Ik

mB
k (xk)

p̃jk(xj , xk)

p̃j (xj )
dxk

=
∫
Ik

pjk(xj , xk)

pj (xj )
mk(xk) dxk + 1

n

n∑
i=1

Khj
(xj ,X

i
j )

p̂j (xj )
ηi

kj(4.15)

+ 1

2
CK,j,2(xj )h

2
j

∫
Ik

[
D2

xj

pjk(xj , xk)

pj (xj )

]
mk(xk) dxk + op(n−2/5).

Plugging (4.15) and (4.1) into the right-hand side of (4.3) gives uniformly for
xj ∈ Ij ,

m̌B
j (xj ) − ∑

k �=j

∫
Ik

mB
k (xk)

p̃jk(xj , xk)

p̃j (xj )
dxk

= mj(xj ) + 1

2
CK,j,2(xj )h

2
jm

′′
j (xj ) + op(n−2/5)

= mB
j (xj ) + op(n−2/5).

This shows (4.3) for S = B .

Proof of (4.3) for S = A. We have to show for k �= j and xj ∈ Ij ,∫
Ik

m̌A
k (xk)

p̃jk(xj , xk)

p̃j (xj )
dxk = op(n−2/5).
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For this claim, it suffices to show that for k �= j and xj ∈ Ij ,∫
Ik

m̌A
k (xk)

p̂jk(xj , xk)

p̂j (xj )
dxk = op(n−2/5),(4.16)

∫
Ik

m̌A
k (xk)

pjk(xj , xk)

pj (xj )3 p′
j (xj )

2 dxk = op(1),(4.17)

∫
Ik

m̌A
k (xk)[Dxj

pjk(xj , xk)]
p′

j (xj )

pj (xj )2 dxk = op(1).(4.18)

For the proof of (4.16)–(4.18), note that the left-hand sides of these equa-
tions can be written as n−1 ∑n

i=1 wi(xj )εi where the weights wi(xj ) depend on
n,X1, . . . ,Xn, xj , but not on ε1, . . . , εn. By standard smoothing theory it can be
shown that in all three cases

sup
1≤i≤n,xj∈Ij

|wi(xj )| = Op(1), sup
1≤i≤n,xj∈Ij

|w′
i (xj )| = Op(1).

These bounds imply

sup
xj∈Ij

∣∣∣∣∣1

n

n∑
i=1

wi(xj )εi

∣∣∣∣∣ = op(n−2/5).(4.19)

We give a short outline of the proof for (4.19).
Choose C > 0 and consider the event E that |wi(xj )| ≤ C and |w′

i (xj )| ≤ C for
1 ≤ i ≤ n and xj ∈ Ij . We define

wi(xj ) =
{

wi(xj ), on E,
1, elsewhere.

Furthermore, for δ > 0 small enough define

εi = εi1(|εi | ≤ n1/2+δ) − Eεi1(|εi | ≤ n1/2+δ).

Note that

P

[
max

1≤i≤n
|εi | > n1/2+δ

]
≤ nP [|ε1| > n1/2+δ]

≤ n−2δEε2
1 = o(1)

and that ∣∣Eε11(|ε1| ≤ n1/2+δ)
∣∣ = ∣∣Eε11(|ε1| > n1/2+δ)

∣∣
≤ n−1/2−δEε2

1.

Therefore on E we get

1

n

n∑
i=1

wi(xj )εi − 1

n

n∑
i=1

wi(xj )εi = Op(n−1/2−δ) = op(n−2/5).
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Thus, it remains to show that

sup
xj∈Ij

∣∣∣∣∣1

n

n∑
i=1

wi(xj )εi

∣∣∣∣∣ = op(n−2/5).(4.20)

For the proof of (4.20) we argue that

sup
xj∈Ij

∣∣∣∣∣1

n

n∑
i=1

w′
i (xj )εi

∣∣∣∣∣ = Op(n1/2+δ),(4.21)

and that for each � > 0 there exist constants C′,C′′ > 0 such that

sup
xj∈Ij

P

[
1

n

n∑
i=1

wi(xj )εi > �n−2/5

]
≤ C′ exp(−C′′n1/10−δ).(4.22)

We prove (4.22). On the event E,

P

[
1

n

n∑
i=1

wi(xj )εi > �n−2/5

]

≤ exp(−n1/2−δ�n−2/5)E exp

[
n1/2−δn−1

n∑
i=1

wi(xj )εi

]

≤ exp(−�n1/10−δ)

×
n∏

i=1

[
1 + E

(
n−1−2δwi(xj )

2ε2
i exp

(
2n−1/2−δ|wi(xj )|n1/2+δ))]

≤ exp(−�n1/10−δ)

n∏
i=1

[1 + C2 exp(2C)n−1−2δEε2
i ]

≤ exp(−�n1/10−δ) exp[n−2δC2 exp(2C)Eε2
1]

= O(1) exp(−�n1/10−δ).

This shows (4.22) and completes the proof of Theorem 2.1.
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