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POISSON INVERSE PROBLEMS1

BY ANESTIS ANTONIADIS AND JÉREMIE BIGOT

University Joseph Fourier and University Paul Sabatier

In this paper we focus on nonparametric estimators in inverse problems
for Poisson processes involving the use of wavelet decompositions. Adopt-
ing an adaptive wavelet Galerkin discretization, we find that our method
combines the well-known theoretical advantages of wavelet–vaguelette de-
compositions for inverse problems in terms of optimally adapting to the
unknown smoothness of the solution, together with the remarkably simple
closed-form expressions of Galerkin inversion methods. Adapting the results
of Barron and Sheu [Ann. Statist. 19 (1991) 1347–1369] to the context of
log-intensity functions approximated by wavelet series with the use of the
Kullback–Leibler distance between two point processes, we also present an
asymptotic analysis of convergence rates that justifies our approach. In or-
der to shed some light on the theoretical results obtained and to examine the
accuracy of our estimates in finite samples, we illustrate our method by the
analysis of some simulated examples.

1. Introduction. In this article the problem of estimating nonparametrically
the intensity function of an indirectly observed nonhomogeneous Poisson process
is considered. Such a problem arises when data (counts) are collected according
to a Poisson process whose underlying intensity is indirectly related by a linear
operator K to the intensity (the object that we wish to estimate) of another Poisson
process. This kind of indirect problem is referred to as a Poisson inverse prob-
lem. In rigorous probabilistic terms, let F be a nonobservable Poisson process on
a measure space (E0,B(E0),µ0) and let tf (x) be its intensity function with re-
spect to the measure µ0 on B(E0); that is, for any set A ∈ B(E0), the number
of points of F lying in A is a random variable F(A) which is Poisson distributed
with parameter

∫
A tf (x) dµ0(x), and for any finite family of disjoint measurable

sets A1, . . . ,An of E0, F(A1), . . . ,F (An) are independent random variables. For
studying asymptotic properties, the function f , referred to as the scaled intensity
function, is held fixed and the positive real t , referred to as the “observation time,”
increases. The observable data form another Poisson process G on, possibly, an-
other measure space (E1,B(E1),µ1) with an intensity function th(y) with respect
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to a measure µ1. The scaled intensity functions f and h, considered as elements
of the separable Hilbert spaces L2(E0,µ0) and L2(E1,µ1), are related by an op-
erator equation h = Kf for some linear compact operator K mapping L2(E0,µ0)

into L2(E1,µ1). Observing the point process G must be understood in a measure
sense. Assuming therefore that for any v ∈ L2(E1,µ1) we observe

∫
v dG, the

natural goal is to estimate the scaled intensity f . In many applications, K is an
integral operator with a kernel representing the response of a measuring device;
in the special case where this linear device is translation-invariant, K reduces to a
convolution operator. Examples range from all kinds of image deblurring models,
mathematical models for positron emission tomography and nuclear magnetic res-
onance, or unfolding problems in stereology and high-energy physics, to cite only
a few. Solving such problems, that is, recovering f , is often difficult since in cases
which are of most interest scientifically, K is not invertible; that is, K−1 does not
exist as a bounded linear operator so that a small perturbation in the data may lead
to very different solutions to the recovery problem.

Related problems of inverse estimation for linear inverse problems with addi-
tive normal noise have been proposed in the literature, including smoothing kernel
methods [12], smoothing spline methods [21, 22], Gauss–Chebyshev-type quadra-
ture methods for solving integral equations [19] and singular value decomposition
(SVD) methods [11, 23, 25], to cite only a few. Wavelet and multiscale analysis
regularization methods for inverse problems have also recently received consider-
able attention in the statistics literature, exploiting the fact that wavelets provide
unconditional bases for a large variety of smoothness spaces. Fan and Koo [9]
have focused on nonparametric deconvolution density estimation based on wavelet
techniques. Donoho [7] proposed the wavelet–vaguelette decomposition (WVD),
which works by expanding the function f in a wavelet series

∑〈f,ψj,k〉ψj,k ,
constructing a corresponding vaguelette series for Kf and then estimating the co-
efficients using a suitable thresholding approach. Donoho showed that a WVD is
optimal in a minimax sense among all linear and nonlinear estimators for inverting
certain types of linear operators, including the Radon transform. Kolaczyk [15]
has numerically investigated the use of a WVD for tomographic reconstruction,
whereas Abramovich and Silverman [1] have theoretically and numerically stud-
ied variants of the WVD. A drawback of these methods is that they are limited to
special types of operators K (essentially homogeneous operators or convolution-
type operators under some additional technical assumptions) because one essen-
tially needs to calculate precisely the K−1ψj,k . Cohen, Hoffmann and Reiss [5]
have explored the application of Galerkin-type methods to white-noise embedded
inverse problems, using an appropriate but fixed wavelet basis. The underlying in-
tuition is that the inversion process required by WVD methods needs only to be
accurate to a certain error level if the object to be recovered is mostly smooth with
some singularities, and therefore the inversion can be performed approximately
using a Galerkin scheme. However, most of the techniques developed to date have
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been designed for Gaussian noise models and are not directly applicable in Poisson
inverse problems.

For Poisson inverse problems an alternative approach has been proposed by
Szkutnik [26] using a quasi-maximum likelihood (QML) histogram sieve estima-
tor when restricting h to step functions. Another recent attempt for solving re-
lated Poisson discrete inverse problems is a Bayesian multiscale framework for
Poisson inverse problems proposed by Nowak and Kolaczyk [20], extending their
earlier work for problems involving direct Poisson observations (see, e.g., [14, 16])
and based on a multiscale factorization of the Poisson likelihood function induced
by recursive partitioning of the data space. Regularization of the solution is ac-
complished through usage of formal prior probability distributions in a Bayesian
paradigm and the solution is a maximum a posteriori estimator, computed using
the expectation–maximization (EM) algorithm. However, the inverse problems ad-
dressed by the above authors are discrete inverse problems (Poisson sampling from
a discretized intensity related to a discretized version of the intensity of interest
through multiplication by a matrix of transition probabilities), and the question up
to which accuracy should the operators be discretized is not discussed. Similarly,
the work of Cavalier and Koo [3] on hard threshold estimators in the tomographic
data framework has shown that for a particular operator (the Radon transform) an
extension of WVD methods for Poisson data is theoretically feasible. It is, how-
ever, worthwhile pointing out that the authors do not provide any computational
algorithm for computing the estimate and do not address the problem of impos-
ing positivity of the estimator since Poisson intensity functions are nonnegative by
definition.

Encouraged by the developments cited above and inspired by the WVD meth-
ods for solving inverse problems, we explore in the sequel an alternative approach
via wavelet-based decompositions combined with thresholding strategies that ad-
dress adaptivity issues. Specifically, our framework extends the wavelet-Galerkin
methods of Cohen, Hoffmann and Reiss [5] to the Poisson setting. Rates of con-
vergence are derived for linear and nonlinear estimators, in analogy to classical
wavelet estimators based on projections and thresholding, respectively. In order
to ensure the positivity of the estimated intensity, the log-intensity is expanded in
a wavelet basis. The derivation of our results takes place within an extension of
the paradigm developed by Barron and Sheu [2] and involves the adaptation of
recent techniques on concentration inequalities for suprema of integral functionals
of Poisson processes which are analogous to Talagrand’s inequalities for empirical
processes. Although there are close similarities between wavelet-Galerkin tech-
niques and earlier techniques based on WVD or VWD systems, the use of the
wavelet-Galerkin machinery allows us to address inversion under a broad class of
operators (i.e., not just homogeneous operators) and to take advantage of certain
computational efficiencies.

The rest of this paper is organized as follows. While the Galerkin approach
of Cohen, Hoffmann and Reiss [5] is relatively easy to describe when the inver-
sion problem is a white-noise embedded problem, this is not the case for Poisson
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inverse problems. After fixing the notation and recalling some basic definitions,
Section 2 contains an equivalent formulation of the wavelet-Galerkin approach for
log-intensities that involves a notion of information projection similar to the one
used by Barron and Sheu [2] for estimating a density, which is developed in Sec-
tion 3. In Section 4 a linear estimator for the linear inverse problem at hand is
proposed using the appropriate type of wavelets adapted to our case. In the spirit
of wavelet denoising methods [1, 7], and in order to gain in adaptivity, we then
improve, in Section 5, the estimator by applying a soft-threshold nonlinearity to
the Galerkin-vaguelette coefficients. The last section is devoted to the numerical
implementation of our procedures. We present the results of a small Monte Carlo
experiment designed to study the finite-sample behavior of our estimates. Techni-
cal proofs are given in the Appendix.

2. Preliminaries and notation. In this section we establish the notation and
the general framework of the models which are adopted in this paper for the Pois-
son inverse problem formulated in the Introduction. For this purpose let F and G

be two Poisson point processes on Borel measurable spaces (E0,B(E0),µ0) and
(E1,B(E1),µ1), respectively. Associated with these Poisson processes are the in-
tensity measures defined by

(a) λF (B) = E(F (B)) = ∫
B tf (x) dµ0(x),B ∈ B(E0),

(b) λG(B ′) = E(G(B ′)) = ∫
B ′ th(x) dµ1(x),B ′ ∈ B(E1),

where t is an “observation time” which will tend to infinity in our asymptotic con-
siderations. Observing the process G, we consider the problem of estimating the
scaled intensity function f , when the scaled intensity h results from the action of
a compact self-adjoint positive definite operator K :L2(E0,µ0) → L2(E1,µ1) on
the intensity function of the process F , that is, h = Kf . To simplify the notation,
we will assume in the following without any loss of generality that the observation
and unknown domains E0 and E1 are identical Borel subsets of R

d (d ≥ 1), say E,
and that µ0 = µ1 = µ where µ denotes Lebesgue measure. A discussion of how
one can handle the case E0 �= E1 or K not self-adjoint positive definite is deferred
to the end of this paper.

In order to estimate the unknown intensity function f , we will approximate the
logarithm of the intensity by a standard wavelet basis function expansion. A no-
table advantage of using such an exponential family intensity estimation is that it
forces positivity of the resulting estimator, which is not shared by other traditional
methods of nonparametric intensity estimation such as kernel estimators and or-
thogonal series expansions of the intensity rather than the log-intensity. To assess
the quality of the estimation, we will measure the discrepancy between an estima-
tor f̂t and the true intensity function f in the sense of relative entropy (Kullback–
Leibler distance) between two point processes,

�(f ; f̂t ) =
∫ (

f log
(

f

f̂t

)
− f + f̂t

)
dµ,
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where the logarithms above are taken with base e. One can show (see Lemma VII.3
of [3]) that the above distance of the two intensities is also the Kullback–Leibler
distance between the corresponding Poisson processes. It is well known that �

is nonnegative and equals zero if and only if f̂t = f a.e. The intensity f̂t in the
exponential family that is closest to f in this relative entropy sense is the so-called
information projection of f [6].

The ill-posed nature of the problem comes from the assumption that K is com-
pact and therefore its inverse is not L2-bounded. As in [5] we will express the
ill-posed condition of K by a smoothing action: K will map L2(E,µ) into some
smoothness space Hr for some r > 0. Following the notation in the paper cited
above, we will say that K has the smoothing property of order ν > 0 if K maps
the Sobolev space Hs onto Hs+ν or the Besov space Bs

p,q onto Bs+ν
p,q . Recall that

the Sobolev space Hs(R), s ∈ R, is the space of tempered distributions v such that

‖v‖2
s =

∫
R

(1 + |ξ |2)s |v̂(ξ)|2 dξ < ∞,

where

v̂(ξ) =
∫

R

eiξ t v(t) dt

denotes the Fourier transform of v. The Besov spaces form another particular fam-
ily of smoothness spaces. Essentially the Besov spaces Bs

p,q(R
d) consist of func-

tions that “have s derivatives in Lp”; the parameter q provides some additional
fine-tuning to the definition of these spaces.

For a self-adjoint positive definite operator K , the smoothing property can be
expressed by the ellipticity property,

〈Kf,f 〉 ∼ ‖f ‖2
H−ν/2,(2.1)

where 〈·, ·〉 denotes the standard inner product on L2(E,µ) and H−ν is the dual
space of Hν appended with appropriate boundary conditions depending on the
problem (homogeneous, periodic, etc.) (see [5]).

As already explained in the Introduction, a key ingredient for solving the
Poisson inverse problem is the use of standard wavelet bases of L2(E,µ) which
allow the characterization of the function spaces that describe both the smoothness
of the solution and the smoothing action of the operator K , since wavelet bases
provide also an unconditional basis for a variety of other useful Banach spaces
of functions, such as Hölder spaces, Sobolev spaces and, more generally, Besov
spaces. Assume that we have a scaling function φ and a wavelet function ψ . Scal-
ing and wavelet functions at scale j (i.e., resolution level 2j ) will be denoted by φλ

and ψλ, where the index λ summarizes both the usual scale and space parameters j

and k [e.g., for one-dimensional wavelets, λ = (j, k) and ψj,k = 2j/2ψ(2j · −k)].
If d ≥ 2, the notation ψλ stands for the adaptation of scaling and wavelet func-
tions to multidimensional domains. The notation |λ| = j will be used to denote a
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wavelet at scale j , while |λ| < j denotes some wavelet at scale j ′, with 0 ≤ j ′ < j

(we shall assume, merely for notational convenience, that the usual coarse level of
approximation j0 is equal to 0). With this notation, we assume that:

(a) The scaling functions (φλ)|λ|=j span a finite-dimensional space Vj within
a multiresolution hierarchy V0 ⊂ V1 ⊂ · · · ⊂ L2(E,µ), such that dim(Vj ) = 2jd

(periodic wavelets for notational convenience).
(b) We are in the orthonormal case, that is, the scaling functions (φλ)|λ|=j are

an orthonormal basis of Vj , and the wavelets (ψλ)|λ|=j form an orthonormal basis
of Wj which is the orthogonal complement of Vj into Vj+1.

(c) For any g ∈ L2(E,µ), its wavelet decomposition can be written as

g = ∑
|λ|=0

τλφλ +
∞∑

j≥0

∑
|λ|=j

βλψλ,

where τλ = 〈g,φλ〉 and βλ = 〈g,ψλ〉.
(d) To simplify the notation we shall use the convenient slight abuse of nota-

tion that sweeps up the coarsest-j scaling functions into the ψλ as well, that is,
we will sometimes write (ψλ)|λ|=−1 for (φλ)|λ|=0. We thus denote the complete
d-dimensional, inhomogeneous wavelet basis by {ψλ;λ ∈ 	}. By truncating the
wavelet decomposition at level j , we obtain the orthogonal projection onto Vj ,

Pjg = ∑
|λ|<j

βλψλ.

(e) We also assume that ‖ψλ‖∞ = ‖ψ‖∞2|λ|d/2.

Wavelets provide unconditional bases for the Besov spaces, and one can express
whether or not a function g on E belongs to a Besov space by a fairly simple and
completely explicit requirement on the absolute value of the wavelet coefficients
of g. More precisely, let us assume that the original one-dimensional φ and ψ

are in CL(R), with L > s, that σ = s + d(1/2 − 1/p) ≥ 0, and define the norm
‖ · ‖s,p,q by

‖g‖s,p,q =
( ∞∑

j=0

(
2jσp

∑
λ∈	,|λ|=j

|〈g,ψλ〉|p
)q/p)1/q

.

Then this norm is equivalent to the traditional Besov norm, that is, there exist
strictly positive constants A and B such that

A‖g‖s,p,q ≤ ‖g‖Bs
p,q

≤ B‖g‖s,p,q .

The condition that σ ≥ 0 is imposed to ensure that Bs
p,q(R

d) is a subspace
of L2(Rd); we shall restrict ourselves to this case in this paper.

To end this section, and since our estimation procedures will be based on a
wavelet-Galerkin projection method, we recall here some useful results on linear
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Galerkin projection methods for solving linear problems h = Kf . For a more de-
tailed description the reader is referred to the the fairly extensive presentation in
the paper by Cohen, Hoffmann and Reiss [5].

Let f ∈ L2(E,µ); then the function fj ∈ Vj is said to be the Galerkin approxi-
mation of f if for all v ∈ Vj

〈Kfj , v〉 = 〈Kf,v〉.
Let Fj ∈ R

2jd
be the vector of wavelet coefficients of fj ∈ Vj ; then the Galerkin

projection method for approximating f amounts to solving the linear system

KjGj = GK,

where Kj = (〈Kψλ,ψκ〉)|λ|<j,|κ|<j is a symmetric positive definite matrix and
GK = (〈Kf,ψκ〉)|κ|<j is a “data” vector. Now, define the Galerkin wavelets

u
j
λ ∈ Vj as

〈Ku
j
λ, v〉 = 〈ψλ, v〉 for all v ∈ Vj .(2.2)

Let U
j
λ be the vector of wavelet coefficients of u

j
λ ∈ Vj ; then

U
j
λ = K−1

j �λ,

where �λ = (〈ψλ,ψκ〉)|κ|<j is a vector with zero entries except for the λth com-
ponent which is equal to 1. Note that

〈uj
λ,Kf 〉 = (U

j
λ )T (〈ψκ,Kf 〉)|κ|<j

= (U
j
λ )T GK

= �T
λ K−1

j GK = �T
λ Gj = Gj,λ,

where Gj,λ = 〈fj ,ψλ〉 denotes the λth component of Gj . Hence, if we define

fj ∈ Vj by 〈fj ,ψλ〉 = 〈Kf,u
j
λ〉, then fj is the Galerkin approximation of f .

3. Information projection-based estimation. Information projection for
the estimation of density functions has been studied by Barron and Sheu [2].
They obtained various existence results and asymptotic bounds for the distance∫

p log(p/q) between two probability density functions p and q . Their estimation
procedure is based on sequences of exponential families spanned by orthogonal
functions such as polynomials, splines and trigonometric series. Estimation of
density functions by approximation of log-densities with wavelets has been con-
sidered by Koo and Kim [17].

We adapt in this section the results of Barron and Sheu [2] to the context
of log-intensity functions approximated by wavelet series with the use of the
Kullback–Leibler distance between two point processes. More precisely, let j ≥ 0.
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If θ denotes a vector in R
2jd

, then θλ denotes its λth component. The wavelet-based
exponential family Ej at scale j will be defined as the set of functions

Ej =
{
fj,θ (·) = exp

( ∑
|λ|<j

θλψλ(·)
)
, θ = (θλ)|λ|<j ∈ R

2jd

}
.

Following Csiszár [6], the intensity fj,θ in the exponential family Ej that is closest
to the true intensity f in the relative entropy sense is characterized as the unique
intensity function in the family for which 〈f

j,θ̂t
,ψλ〉 = 〈f,ψλ〉. It seems there-

fore natural to estimate the unknown intensity function f by searching for some
θ̂t ∈ R

2jd
such that

〈
f

j,θ̂t
,ψλ

〉 = 1

t

∫
u

j
λ dG = α̂t

λ for all |λ| < j.

If there exists a solution to this problem, then f
j,θ̂t

will be called the Galerkin
information projection estimate of f at scale j , since in the context of the wavelet-
Galerkin approach for solving y = Kf +σ dW , the estimation 〈y,u

j
λ〉 of 〈Kf,u

j
λ〉

is replaced by 1
t

∫
u

j
λ dG = α̂t

λ, while 〈fj ,ψλ〉 is replaced by 〈f
j,θ̂t

,ψλ〉.
We already pointed out the advantage of such an approach since one can guar-

antee that the intensity function estimates are positive. The following lemma states
some of the I-projection properties onto Ej (see also [6]).

LEMMA 3.1. Let α ∈ R
2jd

. Assume that there exists some θ(α) ∈ R
2jd

such
that for all |λ| < j

〈
fj,θ(α),ψλ

〉 = αλ.

Then, for any intensity function f ∈ L2(E,µ) such that 〈f,ψλ〉 = αλ and for all
θ ∈ R

2jd
, the following Pythagorean-like identity holds:

�(f ;fj,θ ) = �
(
f ;fj,θ(α)

) + �
(
fj,θ(α), fj,θ

)
.

A consequence of the above lemma, and since �(f ;h) > 0 unless f = h almost
everywhere, is that θ(α) (if it exists) uniquely minimizes �(f ;fj,θ ) for θ ∈ R

2jd
.

From now on assume that there exists some constant Aj < ∞ such that for all
v ∈ Vj

‖v‖∞ ≤ Aj‖v‖L2 .

A key lemma relating distances between the intensities in the parametric family to
distance between the corresponding wavelet coefficients is then the following.
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LEMMA 3.2. Let θ0 ∈ R
2jd

, α0,λ = 〈fj,θ0,ψλ〉 and α ∈ R
2jd

be a given vec-
tor. Let b = exp(‖ log(fj,θ0)‖∞) and e = exp(1). If ‖α − α0‖2 ≤ 1

2ebAj
, then the

solution θ(α) to 〈
fj,θ(α),ψλ

〉 = αλ for all |λ| < j

exists and satisfies

‖θ(α) − θ0‖2 ≤ 2eb‖α − α0‖2,(3.1) ∥∥∥∥log
(

fj,θ(α0)

fj,θ(α)

)∥∥∥∥∞
≤ 2ebAj‖α − α0‖2,(3.2)

�
(
fj,θ(α0);fj,θ(α)

) ≤ 2eb‖α − α0‖2
2.(3.3)

The proof of this lemma relies upon a series of lemmas on bounds within expo-
nential families for the Kullback–Leibler distance and is given in the Appendix.

4. Linear estimation. Let M be some fixed constant and let F s
p,q(M) denote

the set of scaled intensity functions such that

F s
p,q(M) = {

f = exp(g), ‖g‖Bs
p,q

≤ M
}
.

Note that assuming that f ∈ F s
p,q(M) implies that f is strictly positive.

For f ∈ F s
p,q(M), let g = loge(f ) and define

Dj = ‖g − Pjg‖L2,

γj = ‖g − Pjg‖∞.

Basic to our analysis is a decomposition of the relative entropy between the
true and the estimated intensities into the sum of two terms which correspond to
approximation error and estimation error (bias and variance in a familiar mean
squared error analysis). The proof of this result, which relies upon some concen-
tration inequalities for Poisson processes, is postponed to the Appendix.

THEOREM 4.1. Assume that ψ is compactly supported and that f ∈ F s
p,q(M)

(with s > d/p ≥ d/2). Let M1 > 1 be a constant such that M−1
1 ≤ f ≤ M1 (see

Lemma A.4), and let εj = 2M2
1e2γj+1DjAj . If εj ≤ 1, the information projection

exists, that is, there exists θ∗
j ∈ R

2jd
such that〈

fj,θ∗
j
,ψλ

〉 = 〈f,ψλ〉 for all |λ| < j,

and the approximation error satisfies

�
(
f ;fj,θ∗

j

) ≤ Ceγj D2
j .
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Moreover, suppose that ψ is in Hs+d/2−ν (with s > ν − d/2) and has r van-
ishing moments with r > s + d/2. Let δt

j = 4M2
1e2εj+2γj+2A2

jρj,t , where ρj,t =
(2j (ν+d/2)/

√
t +2j (ν+(3/2)d)/t)2 +2−2js . If δt

j ≤ 1, then for every η2 ≤ 1
δt
j

there is

a set of probability less than exp(−η), such that outside this set there exists some
θ̂t ∈ R

2jd
which satisfies

〈
f

j,θ̂t
,ψλ

〉 = 1

t

∫
u

j
λ dG for all |λ| < j,

and the estimation error satisfies

�
(
fj,θ∗

j
;f

j,θ̂t

) ≤ Cη2e1+γj+εj ρj,t .

Note that by using the above theorem, explicit bounds are obtained which are
applicable for each finite value of j and t , subject to εj and δt

j ≤ 1. We can now
state the general result on the nonadaptive Galerkin information projection estima-
tor of the unknown intensity function.

THEOREM 4.2. Assume that ψ is compactly supported and that f ∈ F s
2,2(M)

(with s > d/2). Moreover, suppose that ψ is in Hs+d/2−ν (with s > ν − d/2)
and has r vanishing moments with r > s + d/2. Let j (t) be such that 2−j (t) =
(1

t
)1/(2s+2ν+d). Then, with probability tending to 1 as t → ∞, the Galerkin infor-

mation projection exists and satisfies

�
(
f ;f

j(t),θ̂t

) ≤ O

((
1

t

)2s/(2s+2ν+d))
.

The above estimator therefore converges almost surely with the optimal rate
for intensities in F s

2,2(M). However, the main defect of the estimator defined in
Theorem 4.2 is that it is suited for smooth functions and does not attain the optimal
rates when, for example, g = log(f ) has singularities. We therefore propose in
the next section another estimator derived by applying an appropriate nonlinear
thresholding procedure.

5. Nonlinear estimation. It is well known that linear estimators do not
achieve the optimal rates of convergence when the functions to be recovered be-
long to Besov spaces Bs

p,p with index 1 ≤ p < 2 (the case of functions which are
not very smooth). In order to attain such a rate we need therefore some kind of
nonlinear procedure and this is our aim in this section.

Our estimation procedure simply consists of applying a soft thresholding al-
gorithm on the “data” to which we apply the Galerkin information projection in-
version which was described previously, exploiting the fact that the model with
Poisson intensity is not too different from the usual Gaussian white-noise model.
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Let us first recall that the coefficients defining the Galerkin information projec-
tion estimate of f at scale j , as derived in the previous section, are given by

α̂t,λ = 1

t

∫
u

j
λ dG = (U

j
λ )T

1

t

(∫
ψµ dG

)
|µ|<j

,

where U
j
λ = K−1

j �λ.

For some j ≥ 0 (to be fixed further), we define the thresholded coefficients

Pt(α̂t,λ) = (U
j
λ )T

(
Tε(t)

(
1

t

∫
ψκ dG

))
|κ|<j

for all |λ| < j,

where Tε(t)(x) = sign(x)(x − ε(t))+ for x ∈ R denotes the usual soft thresholding
operator with threshold ε(t).

In order to build an optimal solution for the Poisson inverse problem we
will use a level-dependent wavelet thresholding procedure by setting ε(t) =
t−1/22ν|λ|√| log t |. The role of 2ν|λ| is to take into account the amplification of
the noise by the inversion process. The following theorem shows that the resulting
estimator behaves in an optimal way provided that the cutoff resolution level j (t)

is chosen such that 2−j (t) ≤ t−1/(2ν), where ν is the degree of ill-posedness of the
estimator.

THEOREM 5.1. Assume that ψ is compactly supported and that f ∈ F s
p,p(M)

with s > 0 and 1/p = 1/2 + s/(2ν +d). Moreover, suppose that ψ is in Hs+d/2−ν

(with s > ν − d/2) and has r vanishing moments with r > s + d/2. Also assume
that K is an isomorphism between L2 and Hν and that it has the smoothing prop-
erty of order ν with respect to the space Bs

p,p . Then, the above described Galerkin
information projection estimator, say f

j(t),θ̂t
, satisfies the minimax rate

E
(
�

(
f ;f

j(t),θ̂t

)) ≤ O

((
1

t

√
| log t |

)2s/(2s+2ν+d))
,

provided that j (t) is such that 2−j (t) ≤ t−1/(2ν).

Note that the lower bound on j (t) does not depend on the unknown smoothness
of f and therefore Theorem 5.1 allows us to build an adaptive solution to our
Poisson inverse problem. The assumption that K−1 maps Hν into L2 in the above
theorem is also implicit in the vaguelette–wavelet method of Donoho [7] for white-
noise inverse problems.

6. Implementation and some numerical results. The purpose of this section
is to describe the implementation of our approach and to briefly explore the perfor-
mance of our method from a numerical point of view. As in [5] we will focus on a
simple example of a logarithmic potential kernel in dimension 1. We will consider
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FIG. 1. Artificial intensity functions (left) and their folded versions (right) by the action of the
logarithmic potential kernel. Top-left: the intense peak; bottom-left: the burst-like intensity.

its action on two typical test intensity functions, which, together with their folded
versions by the action of K , are displayed in Figure 1.

The logarithmic potential operator K that we will consider is defined by

Kf (x) =
∫ 1

0
k(x, y)f (y) dy,

where

k(x, y) = − log
(

1

2

∣∣∣∣sin
y − x

2

∣∣∣∣
)
, x, y ∈ [0,1].

Such a kernel is singular on the diagonal x = y but integrable. The corresponding
operator is known to be an elliptic operator of order −1, which maps H−1/2 into
H 1/2 and therefore satisfies the assumptions made in this paper with ν = 1. The
first test function we will consider is

f (x) = max{1 − |30(x − 0.5)|,0.1}, x ∈ [0,1],
which presents an intense peak and is badly approximated by the singular functions
of K but has a very sparse representation in a wavelet basis. We will also con-
sider a fast rise-exponential decay model, giving rise to the abbreviation “FRED”
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in the astronomy literature, to model burst phenomena which are of the form
f (x) = f0 +∑3

i=1 fi(x) where f0 models the relatively constant background level
of gamma-ray photon arrivals and fi models the ith peak in the burst of a form

fi(x) =
{

ai exp
(−|x − mi |/σ νi

r,i

)
, if x ≤ mi ,

ai exp
(−|x − mi |/σ νi

d,i

)
, if x > mi .

In the expression above mi denotes the location of the ith peak, and the factors
ai , σr,i , σd,i and νi control respectively the amplitude, the rise, the decay and the
peakedness.

Most often data can only be observed in binned form because of the discrete
nature of the measurement apparatus or because binning may be enforced by data
handling and computing efficiency. We therefore have chosen to discretize K for a
maximal resolution level J = 11 by computing the stiffness matrix KJ with entries

(KJ )�,k=0,...,2J −1 = (〈KJ φJ,�, φJ,k〉)�,k=0,...,2J −1,

where the φJ,k = 2J/2I[k2−J ,(k+1)2−J ) are the Haar scaling functions. Each integral

〈KJ φJ,�, φJ,k〉 =
∫ 1

0

∫ 1

0
k(x, y)φJ,�(x)φJ,k(y) dx dy

was computed by Riemann approximation at scale 2−16. Note that the kernel k is
such that k(x, y) = h(x −y) where h(·) is a 1-periodic function. The discretization
KJ of K is therefore a Toeplitz cyclic matrix and the fast Fourier transform makes
the computation of the action of K on functions approximated in the Haar basis
numerically fast and easy. But this is not the only reason we have used the Haar-
based discretization for both f and KJ . More specifically, the Haar scaling basis at
resolution J induces a partition of the interval [0,1) into 2J disjoint and measur-
able bins Bk = [k2−J , (k + 1)2−J ). Integrating the function tKJ f with respect to
the Poisson counting measure G simply leads to observed data consisting of counts
observed in the bins Bk . By the Poisson nature of G, these are independent Poisson
counts with expected values within each bin t

∫
Bk

h, k = 0, . . . ,2J − 1. Moreover,
taking a high-resolution J permits the approximation of

∫
Bk

h by 2−J h(k/2J ) and
this is what we have done for creating the simulated data in the examples.

For the examples treated in this paper, the estimation was implemented using
Symmlets with six vanishing moments. Since the set {x1, . . . , xn} of the n = 2J

points at which the data is sampled is dyadic, any scalar product involving a
wavelet at a lower resolution is computed via the discrete wavelet transform. The
information projection estimator was obtained by solving the system of equations
given in Theorem 5.1 at some maximal resolution Jmax.

To find the estimate θ̂ t we have used, inspired by a similar approach in [13],
a modified version of the Newton–Raphson method. Let S(θ) denote the Jmax-
dimensional vector of elements

S(θ)λ = (
Pt(α̂t,λ) − 〈ft,θ ,ψλ〉),
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and H(θ) the Jmax × Jmax Hessian matrix whose (λ,λ′) entry is given by

H(θ)λ,λ′ =
∫

ft,θ (x)ψλ(x)ψλ′(x) dx.

The method to compute θ̂ t is to start with an initial guess θ0 and iteratively deter-
mine θm+1 according to

θm+1 = θm + H−1(θm)S(θm),

with a standard criterion for stopping the iterations.
One difficulty in implementing the above algorithm is that Symmlets have no

closed-form functional expression and the integration involved in the computation
of the Hessian H can be very time consuming if one has to compute a table of the
appropriate values of the function ψλ. We have used instead an efficient filter-bank
algorithm for computing such integrals similar to the one used by Vannucci and
Corradi [27] or Kovac and Silverman [18] to compute the diagonal elements of the
covariance structure of the wavelet coefficients, which amounts to computing the
fast two-dimensional wavelet transform of the diagonal matrix whose diagonal is
the vector ft,θ (xi), i = 1, . . . , Jmax, and to retain only the diagonal blocks of the
transform.

For our first example, we consider the peaky function and choose a maximal res-
olution Jmax = 10 and an “observation time” t = 108 (corresponding to the noise
level used by Cohen, Hoffmann and Reiss [5] for a similar white-noise model).
A typical sample from the simulated model is shown in the top-left panel of Fig-
ure 2.

Let us recall that our nonlinear information projection estimator depends on the
cutoff level j (t) given by 2−j (t) ≤ (1

t
)1/(2ν) and the level-dependent thresholds

ε(t) = 2ν|λ|t−1/2√| log t |. We therefore have used these expressions with ν = 1 to
estimate the unfolded intensity function. The top-right panel of Figure 2 displays
the nonlinear Galerkin estimator for the folded Poisson data displayed in the top-
left panel of Figure 2. We observe, and this is true also for the second example,
that the peak is very well estimated. However, some oscillations are observed on
the right side of the central peak. A possible remedy to this defect could be to use
a translation-invariant procedure, but such an approach is beyond the scope of this
paper.

Our second example concerns the burst-like intensity function. The data dis-
played in the bottom-left panel of Figure 2 is simulated as above using for an
unfolded intensity a burst signal with a constant intensity of 20 assigned to the
background and three peaks. Since we are using the same logarithmic potential
kernel to fold the intensity, we have also used here a value of ν equal to 1. Max-
imal resolution, smooth cutoff level and thresholds were chosen exactly as in the
previous example and the estimation procedure provides us the fit in the bottom-
right panel of Figure 2 for the unfolded burst-like intensity, confirming the good
behavior of our procedure even for complicated intensity structures.
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FIG. 2. Simulated Poisson data obtained by folding the intensity functions with the logarithmic
potential. Top-left: the intense peak; bottom-left: the burst-like intensity. The right panels display the
corresponding unknown intensities (solid) and their nonlinear Garlekin estimates (dashed).

7. Conclusions. The methodology of this paper was motivated by wavelet–
vaguelette decomposition (WVD) methods that have been developed in the lit-
erature for solving inverse problems with Gaussian white-noise perturbations.
Such methods are most appropriate only for the restricted class of homogeneous
operators, particularly from a computational perspective, and extra theoretical and
numerical work is required to handle more general operators or Poisson inverse
problems. The method developed is particularly well suited for our Poisson prob-
lem because it is designed for positive definite operators, its numerical implemen-
tation is straightforward, it can easily be extended to approximately known oper-
ators and it leads to positive estimated intensities. It combines the numerical sim-
plicity of Galerkin projection methods on a high-dimensional space as an inversion
procedure and wavelet thresholding as an adaptive smoothing technique.

Our attention was restricted to inverse problems in which E0 and E1 are identi-
cal Borel subsets of R

d and the operator K is self-adjoint positive definite. In the
case where E0 �= E1 and K is not self-adjoint but just injective, one may choose, as
is done in [5], E1 = K(E0) and solve instead the inverse problem K∗h = K∗Kf
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where K∗ denotes the adjoint of K . In such a way we are led back to the wavelet-
Galerkin information projection method developed in this paper.

Another approach, which is worth investigating in the future, would be to de-
rive a Landweber-type iterative algorithm that involves a denoising procedure at
each iteration step and provides a sequence of approximations converging in norm
to the maximum penalized likelihood minimizer as is done by Figueiredo and
Nowak [10], who derive such an iterative algorithm for inverting a convolution
operator acting on objects that are sparse in the wavelet domain.

APPENDIX: PROOFS OF THE MAIN RESULTS

We first derive the proof of Lemma 3.1.

PROOF OF LEMMA 3.1. Note that

�(f ;fj,θ ) = D(f,fj,θ ) +
∫ (−f + fj,θ(α)

)
dµ +

∫ (−fj,θ(α) + fj,θ

)
dµ,

where

D(f,fj,θ ) =
∫

f log
(

f

fj,θ

)
dµ = D

(
f,fj,θ(α)

) + D
(
fj,θ(α), fj,θ

)
by Lemma 4 of [2], which completes the proof. �

To prove Lemma 3.2 we need some preliminary lemmas on bounds within ex-
ponential families for the Kullback–Leibler distance; their proofs can be easily
derived from the proofs of Lemmas 1 and 4 of [2] and thus they are omitted.

LEMMA A.1. Let f and h be two intensity measures in L2(E,µ). Assume
that log(

f
h
) is bounded; then

�(f ;h) ≥ 1

2
e−‖ log(f/h)‖∞

∫
f

(
log

(
f

h

))2

dµ,

�(f ;h) ≤ 1

2
e‖ log(f/h)‖∞

∫
f

(
log

(
f

h

))2

dµ.

LEMMA A.2. For j ≥ 0, let θ0, θ ∈ R
2dj and b = exp(‖ log(fj,θ0)‖∞); then∥∥∥∥log

(
fj,θ0

fj,θ

)∥∥∥∥∞
≤ Aj‖θ0 − θ‖2,

�
(
fj,θ0;fj,θ

) ≥ 1

2b
e−Aj‖θ0−θ‖∞‖θ0 − θ‖2

2,

�
(
fj,θ0;fj,θ

) ≤ b

2
eAj‖θ0−θ‖∞‖θ0 − θ‖2

2.
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We can proceed to the proof of Lemma 3.2.

PROOF OF LEMMA 3.2. This proof is inspired by the proof of Lemma 5 of [2].
Let

F(θ) = θ · α − H(θ),

where H(θ) = ∫
fj,θ (x) dµ(x). If α = α0, then the result is trivial. Now, if α �= α0,

note that for any θ ∈ R
2dj

�
(
fj,θ0;fj,θ

) = α0 · (θ0 − θ) + H(θ) − H(θ0).

Hence,

F(θ0) − F(θ) = �
(
fj,θ0;fj,θ

) − (α0 − α) · (θ0 − θ).

So, by Lemma A.2 and the Cauchy–Schwarz inequality, we have that

F(θ0) − F(θ) ≥ 1

2b
e−Aj‖θ0−θ‖∞‖θ0 − θ‖2

2 − ‖α0 − α‖2‖θ0 − θ‖2.

This inequality is strict if θ �= θ0. For all θ such that ‖θ0 − θ‖2 = 2eb‖α0 − α‖2,

F(θ0) − F(θ) > 2eb‖α0 − α‖2
2
(
e1−2Aj eb‖α0−α‖2 − 1

)
.

The right-hand side is positive whenever 2Ajeb‖α0 − α‖2 ≤ 1. Hence, F(θ0) >

F(θ) for all θ such that ‖θ0 − θ‖2 = 2eb‖α0 − α‖2. Consequently, F has an ex-
treme point θ∗ such that ‖θ0 − θ∗‖2 < 2eb‖α0 −α‖2. The gradient of F at θ∗ must
satisfy

〈fj,θ∗,ψλ〉 = αλ for all |λ| < j,

and so θ(α) = θ∗. Hence, inequality (3.1) immediately follows. Inequality (3.2)
follows from Lemma A.2. Since F(θ(α)) ≥ F(θ0), we have that

�
(
fj,θ(α0);fj,θ(α)

) ≤ (α0 − α) · (
θ0 − θ(α)

)
≤ ‖α0 − α‖2‖θ0 − θ‖2

≤ 2eb‖α0 − α‖2
2,

which completes the proof. �

To prove the main results of this paper we shall need a series of technical lem-
mas, stated and proved below. Throughout this section, C will denote a constant
whose value may change from line to line.

LEMMA A.3. If ψ is compactly supported, then∥∥∥∥∥
∑

|λ|=j

βλψλ

∥∥∥∥∥∞
≤ C2jd/2‖βj‖2.
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PROOF. This lemma immediately follows from the proof of Lemma 1 of [17].
�

The following lemma is similar to Lemma 2 of [17].

LEMMA A.4. Assume that ψ is compactly supported and that f ∈ F s
p,q(M).

If s > d/p ≥ d/2, then there exists a constant M1 such that

0 <
1

M1
≤ f ≤ M1 < ∞.

PROOF. Let g = log(f ) = ∑∞
j=−1

∑
|λ|=j βλψλ. Since ‖g‖Bs

p,q
≤ M , we have

‖βj‖p =
( ∑

|λ|=j

|βλ|p
)1/p

≤ M2−js′
,

where s′ = s + d(1/2 − 1/p). If s > d/p ≥ d/2, then

‖βj‖2 ≤ ‖βj‖p ≤ C2−js′
.(A.1)

Then, by Lemma A.3

‖g‖∞ ≤
∞∑

j=−1

∥∥∥∥∥
∑

|λ|=j

βλψλ

∥∥∥∥∥∞

≤
∞∑

j=0

C2jd/2‖βj‖2

≤ C

∞∑
j=0

2j (d/2−s′)

≤ C

∞∑
j=0

2−j (s−d/p).

Since s > d/p,
∑∞

j=0 2−j (s−d/p) < ∞ and therefore there exists some constant
M1 > 1 such that ‖g‖∞ = ‖ logf ‖∞ ≤ logM1. �

Now we give bounds for Aj , Dj and γj .

LEMMA A.5. Assume that ψ is compactly supported; then

Aj = C2jd/2.

Moreover suppose that f ∈ F s
p,q(M). If s > d/p ≥ d/2, then

Dj ≤ C2−j (s+d(1/2−1/p)),

γj ≤ C2−j (s−d/p).
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PROOF. The result for Aj immediately follows from Lemma A.3. Note that
from (A.1),

D2
j = ∑

j ′≥j

‖βj ′‖2
2 ≤ C

∑
j ′≥j

2−2j ′(s+d(1/2−1/p)) = O
(
2−2j (s+d(1/2−1/p))).

By definition,

γj = ‖g − Pjg‖∞ ≤ AjDj ≤ C2−j (s−d/p),

which completes the proof. �

We may now proceed to the proofs of our main results.

PROOF OF THEOREM 4.1.

Approximation error term. Let g = log(f ) = ∑∞
j=−1

∑
|λ|=j βλψλ, and for

all |λ| < j , let αj,λ = 〈exp(Pjg),ψλ〉 and αλ = 〈f,ψλ〉. Observe that the coef-
ficients (αj,λ − αλ), |λ| < j , are the coefficients of the orthogonal projection of
f − exp(Pjg) onto Vj . Hence by Bessel’s inequality

‖αj − α‖2
2 ≤ ‖f − exp(Pjg)‖2

L2 .

Given our assumptions on ψ and f , Lemma A.4 implies that

‖αj − α‖2
2 ≤ M1

∫
(f − exp(Pjg))2

f
dµ,

and so by Lemma 2 of [2],

‖αj − α‖2
2 ≤ M1e

2‖g−Pjg‖∞
∫

f (g − Pjg)2 dµ ≤ M2
1e2γj D2

j .

Now, apply Lemma 3.2 with θ0,λ = βλ, αλ = 〈f,ψλ〉 for all |λ| < j and b =
e‖ log(exp(Pj g))‖∞ . Since ‖ log(f/ exp(Pjg))‖∞ = γj , we have that
‖ log(exp(Pjg))‖∞ ≤ logM1 + γj and therefore b ≤ M1e

γj . From Lemma 3.2,
we have that if M1e

γj Dj ≤ 1
2ebAj

, that is, if εj ≤ 1, then θ∗
j = θ(α) exists. By

Lemma 3.1 (Pythagorean-like relationship), we obtain that

�
(
f ;fj,θ∗

j

) ≤ �
(
f ; exp(Pjg)

)
.

Thence, by Lemma A.1,

�
(
f ;fj,θ∗

j

) ≤ 1
2e‖g−Pjg‖∞

∫
f (g − Pjg)2 dµ

≤ 1
2M1e

γj D2
j ,

which completes the proof of the first assertion of the theorem.
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Estimation error term. Using the above notation and proof, and since by as-
sumption εj ≤ 1, let θ∗

j ∈ R
2jd be the parameter vector achieving the minimum

of the relative entropy for intensities in the exponential family. For all |λ| < j ,
define α0,λ = 〈f,ψλ〉 = 〈fj,θ∗

j
,ψλ〉 and let α̂t,λ = 1

t

∫
u

j
λ dG. It is easy to see that

E(α̂t,λ) = 〈uj
λ,Kf 〉. We now have

‖α̂t − α0‖2
2 = ∑

|λ|<j

(α̂t,λ − α0,λ)
2

(A.2)

≤ 2

( ∑
|λ|<j

(α̂t,λ − 〈uj
λ,Kf 〉)2 + (〈uj

λ,Kf 〉 − α0,λ)
2

)
.

Concerning the second term of the right-hand side of inequality (A.2), using ex-
pression (2.2), note that

(〈uj
λ,Kf 〉 − 〈f,ψλ〉)2 = (〈f,Ku

j
λ − ψλ〉)2 ≤ ‖f ‖2

L2‖Ku
j
λ − ψλ‖2

L2

= ‖f ‖2
L2(‖Ku

j
λ‖2

L2 + 1 − 2〈Ku
j
λ,ψλ〉).

By definition we have that 〈Ku
j
λ,ψλ〉 = 〈ψλ,ψλ〉 = 1. It follows that

‖Ku
j
λ‖2

L2 = ∑
|µ|<j

〈Ku
j
λ,ψµ〉2 + ∑

|µ|≥j

〈Ku
j
λ,ψµ〉2

= 1 + ∑
|µ|≥j

〈Ku
j
λ,ψµ〉2.

Given the assumptions on the wavelet ψ and the operator K , u
j
λ belongs to

Hs+d/2−ν and hence Ku
j
λ belongs to Hs+d/2. Since r > s + d/2, it follows from

approximation theory that∑
|µ|≥j

〈Ku
j
λ,ψµ〉2 ≤ 2−2j (s+d/2),

and therefore

(〈uj
λ,Kf 〉 − 〈f,ψλ〉)2 ≤ ‖f ‖2

L22−2js−jd .

Thence we obtain for the second term of the right-hand side of inequality (A.2)∑
|λ|<j

(〈uj
λ,Kf 〉 − 〈f,ψλ〉)2 ≤ ‖f ‖2

L22−2js .(A.3)

To control the first term of the right-hand side of (A.2), let Sj = span{uj
λ; |λ| < j}

and set

χ2(Sj ) = ∑
|λ|<j

(α̂t,λ − 〈uj
λ,Kf 〉)2 = ∑

|λ|<j

(
1

t

∫
u

j
λ dG − 〈uj

λ,Kf 〉
)2

.
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Noticing that

χ(Sj ) = sup
{a∈Rjd ;‖(aλ)|λ|<j‖2<1}

∫ ∑
|λ|<j aλu

j
λ

t
(dG − tKf dµ),

we can use Corollary 2 of [24] about concentration inequalities for Poisson
processes to get, for any w > 0 and ε > 0,

P
{
χ(Sj ) ≥ (1 + ε)E(χ(Sj )) + √

12v0w + κ(ε)b0w
} ≤ exp(−w),(A.4)

where κ(ε) = 1.25 + 32/ε,

v0 = sup
{a∈Rjd ;‖a‖2<1}

∫ ∑
|λ|<j (aλu

j
λ)

2

t2 tKf dµ

and

b0 = sup
{a∈Rjd ;‖a‖2<1}

‖∑
|λ|<j aλu

j
λ‖∞

t
.

In what follows we provide precise control of the constants v0 and b0 involved in
inequality (A.4). It is easy to show that

v0 ≤ ‖Kf ‖∞
t

sup
{a∈Rjd ;‖a‖2<1}

∫ ( ∑
|λ|<j

aλu
j
λ

)2

dµ.

For any vector a ∈ R
jd we have

∫ ( ∑
|λ|<j

aλu
j
λ

)2

dµ = ∑
|λ|<j,|λ′|<j

aλaλ′
∫

u
j
λu

j

λ′ dµ(A.5)

≤ ∑
|λ|<j

aλaλ′‖uj
λ‖L2‖uj

λ′‖L2 .(A.6)

As argued in [5], the ellipticity property (2.1) yields

‖uj
λ‖2

H−ν/2 ≤ 〈Ku
j
λ,u

j
λ〉 = 〈ψλ,u

j
λ〉

≤ ‖ψλ‖L2‖uj
λ‖L2 = ‖uj

λ‖L2,

and the inverse inequality (see [5]) states that ‖uj
λ‖L2 ≤ 2νj/2‖uj

λ‖H−ν/2 , which

implies that (dividing by ‖uj
λ‖L2 )

‖uj
λ‖L2 ≤ 2νj .(A.7)

Using the above bound in the inequality (A.6) we finally obtain

∫ ( ∑
|λ|<j

aλu
j
λ

)2

dµ ≤ 22νj

( ∑
|λ|<j

aλ

)2

≤ 2j (2ν+d)‖a‖2
2.
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It follows that

v0 ≤ ‖Kf ‖∞
2j (2ν+d)

t
.

Now, by definition of the constants Aj and since
∑

|λ|<j aλu
j
λ ∈ Vj , we have∥∥∥∥∥

∑
|λ|<j

aλu
j
λ

∥∥∥∥∥∞
≤ Aj

∥∥∥∥∥
∑

|λ|<j

aλu
j
λ

∥∥∥∥∥
L2

,

and it follows that, for ‖a‖2 ≤ 1,∥∥∥∥∥
∑

|λ|<j

aλu
j
λ

∥∥∥∥∥
L2

≤ 2j (ν+d),

which combined with the statement of Lemma A.5 gives

b0 = O

(
2j (ν+(3/2)d)

t

)
.

Now, recall that Var(1
t

∫
u

j
λ dG) = 1

t

∫
(u

j
λ)

2Kf dµ. Hence, using again the bound
in inequality (A.7) we have

∑
|λ|<j

Var
(

1

t

∫
u

j
λ dG

)
≤ 1

t
‖Kf ‖∞2j (d+2ν),(A.8)

which implies that

E(χ2(Sj )) ≤ 1

t
‖Kf ‖∞2j (d+2ν).

Combining (A.8) and (A.3) yields finally

E

( ∑
|λ|<j

(
1

t

∫
u

j
λ dG − 〈f,ψλ〉

)2
)

≤ 2
(

1

t
‖Kf ‖∞2j (d+2ν) + ‖f ‖2

L22−2js

)
.

From the Cauchy–Schwarz inequality and expression (A.4) with ε = w it follows
that there exists a constant C > 0, such that, for any w > 0

P
{
χ2(Sj ) ≥ C(1 + w)2(

2j (ν+d/2)/
√

t + 2j (ν+(3/2)d)/t
)2} ≤ exp(−w).

Combining the above inequalities, and using the fact that f is bounded in L2, we
get finally

P{‖α̂t − α0‖2
2 ≥ C(1 + w)2ρj,t } ≤ exp(−w).

It remains to set η = (1 + w) and recall that ρj,t = (2j (ν+d/2)/
√

t + 2j (ν+(3/2)d)/

t)2 + 2−2js to get

P{‖α̂t − α0‖2
2 ≥ C1η

2ρj,t } ≤ exp(−η).
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Now, applying Lemma 3.2 with θ0 = θ∗
j , α = α̂t and b = e

‖ log(fj,θ∗
j
)‖∞

, we have

that ‖ log(fj,θ∗
j
/ exp(Pjg))‖∞ ≤ εj , and so b ≤ M1e

εj+γj . Hence, if η2ρt
j ≤

1
4e2b2A2

j

, that is, if δt
j ≤ 1/η2, then except in the set above, Lemma 3.2 implies

that θ̂t = θ(α̂t ) ∈ R
2jd

exists and satisfies

�
(
fj,θ∗

j
;f

j,θ̂t

) ≤ 2eb‖α − α0‖2
2

≤ 2M1e
1+εj+γj η2ρj,t ,

which completes the proof. �

PROOF OF THEOREM 4.2. From the bounds for Aj , Dj and γj given by
Lemma A.5 and since s > d/2, we obtain that γj (t) → 0 as t → ∞ and so εj (t) =
O(Aj�j ) = O(2−j (t)(s−d/2)). Hence, εj (t) → 0 as t → ∞ which implies that
δt
j (t) = O(2−j (t)(2s−d)). Since εj (t) → 0 and δt

j (t) → 0 as t → ∞, Theorem 4.1
implies that

�
(
f ;fj(t),θ∗

j (t)

) ≤ O
(
2−2j (t)s),

while for the estimation error, we have that as t → ∞, then with probability tend-
ing to 1, f

j(t),θ̂t
exists and by the Borel–Cantelli lemma satisfies

�
(
fj(t),θ∗

j (t)
;f

j(t),θ̂t

) ≤ O
(
2−2j (t)s).

The result now follows from the Pythagorean-like relationship (Lemma 3.1)

�
(
f ;f

j(t),θ̂t

) = �
(
f ;fj(t),θ∗

j (t)

) + �
(
fj(t),θ∗

j (t)
;f

j(t),θ̂t

)
. �

PROOF OF THEOREM 5.1. Note that

‖δt (α̂t ) − α0‖2
2 = ∑

|λ|<j

(
δt (α̂t,λ) − 〈f,ψλ〉)2

≤ 2

( ∑
|λ|<j

(
δt (α̂t,λ) − 〈uj

λ,Kf 〉)2 + (〈uj
λ,Kf 〉 − 〈f,ψλ〉)2

)
.

From the proof of Theorem 4.1 [see (A.3)], we have (with the assumed conditions
on ψ and K) ∑

|λ|<j

(〈uj
λ,Kf 〉 − 〈f,ψλ〉)2 ≤ ‖f ‖2

L22−2js .

Note that the space Bs
p,p is continuously embedded in Hζ whenever ζ ≤ s +

d/2 − d/p = 2νs/(2ν + d). Moreover, since 2ν/(2ν + d) < 1 and f is uniformly
bounded, we therefore obtain the estimate∑

|λ|<j

(〈uj
λ,Kf 〉 − 〈f,ψλ〉)2 ≤ O

(
2−4jsν/(2ν+d)).
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This gives the optimal order (1
t
)2s/(2s+2ν+d) provided j (t) is large enough so that

2−j (t) ≤ (1
t
)(ν+d/2)/(ν(2s+2ν+d)). For t > 1, we have (1

t
)1/(2ν) ≤

(1
t
)(ν+d/2)/(ν(2s+2ν+d)), since s ≥ 0, with equality if s = 0. Therefore, if 2−j (t) ≤

(1
t
)1/(2ν), we obtain

∑
|λ|<j

(〈uj
λ,Kf 〉 − 〈f,ψλ〉)2 ≤ O

((
1

t

)2s/(2s+2ν+d))
.(A.9)

Note also that∑
|λ|<j

(
δt (α̂t,λ) − 〈uj

λ,Kf 〉)2

= ∑
|λ|<j

[
�T

λ K−1
j

(
Tε(t)

(
1

t

∫
ψµ dG

)
− 〈h,ψµ〉

)
|µ|<j

]2

=
∥∥∥∥K−1

j

(
Tε(t)

(
1

t

∫
ψµ dG

)
− 〈h,ψµ〉

)
|µ|<j

∥∥∥∥
2

2
,

where h = Kf . Since K is an isomorphism between L2 and Hν , using the proof
of Theorem 1 of [5] we have that for any U = (uλ)|λ|<j ∈ R

2jd ,

‖K−1
j U‖2

2 ≤ C‖U‖Hν = ∑
|λ|<j

22ν|λ||uλ|2.(A.10)

Hence, it follows that

∑
|λ|<j

(
δt (α̂t,λ) − 〈uj

λ,Kf 〉)2 ≤ ∑
|λ|<j

22ν|λ|
(
Tε(t)

(
1

t

∫
ψλ dG

)
− 〈h,ψλ〉

)2

.

We remark that Tε(t)(
1
t

∫
ψλ dG) − 〈h,ψλ〉 is exactly the error when estimating

〈h,ψλ〉 by the thresholding procedure on the “data” 1
t

∫
ψλ dG. We are thus left

with finding a threshold ε(t) and some appropriate bounds for the estimation of h

based on the thresholded coefficients Tε(t)(
1
t

∫
ψλ dG), |λ| < j , which would yield

a bound for E‖δt (α̂t ) − α0‖2
2.

To simplify the notation set β̂λ,t = 1
t

∫
ψλ dG and let βλ,0 = ∫

ψλhdµ. Since

G is a Poisson process with intensity th it is easy to see that E(β̂λ,t ) = βλ,0 and
that Var(β̂λ,t ) = 1

t

∫
ψ2

λhdµ = 1
t
σ 2

λ . In order to bound the intensity estimation
risk by a corresponding white-noise model risk, we will apply Lemma V of [3]
to construct an approximation η̂λ,t having an exact Gaussian distribution with the
same mean βλ,0 and the same variance Var(β̂λ,t ). To this end, let gλ = 1

σλ
ψλ and

note that
∫

g2
λhdµ = 1 and ‖gλ‖∞ = 1

σλ
‖ψλ‖∞ = 2|λ|d/2

σλ
:= Hλ, say. We construct

η̂λ,t = βλ,0 + t−1/2σλZλ by the following recipe.
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First, if σλ ≥ C2|λ|d log3 t
t

, then use Lemma V of [3] to construct Zλ and note
that

Vλ,t = E(β̂λ,t − η̂λ,t )
2 = σ 2

λ

t
E(t−1/2Sλ,t − Zλ)

2 ≤ C2|λ|d t−2,

where Sλ,t = ∫
ψλ(dG − th dµ).

Second, if σλ < C2|λ|d log3 t
t

, choose an independent Zλ ∼ N(0,1) and simply
use the inequality

Vλ,t ≤ 2 Var(β̂λ,t ) + 2t−1σ 2
λ ≤ C2|λ|d log3 t

t2 .

In either case, we have therefore for all |λ| < j and all t > 0,

Vλ,t ≤ C2|λ|d log3 t

t2 .

To apply the Gaussian approximation to Tε(t)(β̂λ,t ) note that

E
(
Tε(t)(β̂λ,t ) − βλ,0

)2 ≤ 2E
(
Tε(t)(β̂λ,t ) − Tε(t)(η̂λ,t )

)2 + 2E
(
Tε(t)(η̂λ,t ) − βλ,0

)2
.

Since the mapping y → T (y, ε) is a contraction (see [8]) regardless of the value
of ε, it follows that

E
(
Tε(t)(β̂λ,t ) − βλ,0

)2 ≤ 2Vλ,t + 2r
(
ε(t); t−1/2σλ;βλ,0

)
,

where r(ε(t);σ ;β) is the Gaussian mean squared error E(Tε(β + σZ) − β)2 for
estimation of β from a single Gaussian observation with mean β and variance σ 2.
Since all intensities h ∈ F s

p,p(M) are uniformly bounded, we have σλ ≤ ‖h‖∞ and
therefore

E
(
Tε(t)(β̂λ,t ) − βλ,0

)2 ≤ 2Vλ,t + 2r
(
ε(t); t−1/2‖h‖∞;βλ,0

)
.(A.11)

Using the level-dependent threshold ε(t) = 2ν|λ|t−1/2√| log t |, the upper bound
in inequality (A.11), the fact that h belongs to a Besov ball Bs+ν

p,p (M̃) for some

finite constant M̃ and the stability property (A.10), we obtain the rate

E

( ∑
|λ|<j

(
δt (α̂t,λ) − 〈uj

λ,Kf 〉)2
)

= O

((
1

t

√
| log t |

)2s/(2s+2ν+d))
,

as a particular case of classical results on soft wavelet thresholding (e.g., see
[4]). Combining the above upper bound with inequality (A.9) and using again
Lemma 3.2 concludes the proof of the theorem. �
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