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EFFICIENT LIKELIHOOD ESTIMATION IN
STATE SPACE MODELS1
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Motivated by studying asymptotic properties of the maximum likelihood
estimator (MLE) in stochastic volatility (SV) models, in this paper we inves-
tigate likelihood estimation in state space models. We first prove, under some
regularity conditions, there is a consistent sequence of roots of the likelihood
equation that is asymptotically normal with the inverse of the Fisher infor-
mation as its variance. With an extra assumption that the likelihood equation
has a unique root for each n, then there is a consistent sequence of estimators
of the unknown parameters. If, in addition, the supremum of the log likeli-
hood function is integrable, the MLE exists and is strongly consistent. Edge-
worth expansion of the approximate solution of likelihood equation is also
established. Several examples, including Markov switching models, ARMA
models, (G)ARCH models and stochastic volatility (SV) models, are given
for illustration.

1. Introduction. Motivated by studying asymptotic properties of the maxi-
mum likelihood estimator (MLE) in stochastic volatility (SV) models, in this pa-
per we investigate likelihood estimation in state space models. A state space model
is, loosely speaking, a sequence {ξn}∞n=0 of random variables obtained in the fol-
lowing way. First, a realization of a Markov chain X = {Xn,n ≥ 0} is created.
This chain is sometimes called the regime and is not observed. Then, conditional
on X, the ξ -variables are generated. Usually the dependence of ξn on X is more
or less local, as when ξn = g(Xn, ξn−1, ηn) for some function g and random se-
quence {ηn}, independent of X. ξn itself is generally not Markov and may, in fact,
have a complicated dependence structure. When the state space of {Xn,n ≥ 0} is
finite, it is the so-called hidden Markov model or Markov switching model.

The statistical modeling and computation for state space models have attracted
a great deal of attention recently because of their importance in applications to
speech recognition [49], signal processing [17], ion channels [1], molecular bi-
ology [40] and economics [8, 19, 51]. The reader is referred to [20, 34, 41] for
a comprehensive summary. The main focus of these efforts has been state space
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modeling and estimation, algorithms for fitting these models and the implementa-
tion of likelihood based methods.

The state space model here is defined in a general sense, in which the obser-
vations are conditionally Markovian dependent, and the state space of the driving
Markov chain need not be finite or compact. When the state space is finite and
the observation is a deterministic function of the state space, Baum and Petrie [3]
established the consistency and asymptotic normality of the MLE. When the ob-
served random variables are conditionally independent, Leroux [44] proved strong
consistency of the MLE, while Bickel, Ritov and Rydén [7] established asymp-
totic normality of the MLE under mild conditions. Jensen and Petersen [39], Douc
and Matias [14] and Douc, Moulines and Rydén [15] studied asymptotic proper-
ties of the MLE for general “pseudo-compact” state space models. By extending
the inference problem to time series analysis where the state space is finite and the
observed random variables are conditionally Markovian dependent, Goldfeld and
Quandt [30] and Hamilton [33] considered the implementation of the maximum
likelihood estimator in switching autoregressions with Markov regimes. Francq
and Roussignol [21] studied the consistency of the MLE, while Fuh [23] estab-
lished the Bahadur efficiency of the MLE in Markov switching models. We now
give two examples of state space models.

EXAMPLE 1 [GARCH(p, q) model]. For given p ≥ 1 and q ≥ 0, let

Yn = σnεn and σ 2
n = δ +

p∑
i=1

αiσ
2
n−i +

q∑
j=1

βjY
2
n−j ,(1.1)

where δ > 0, αi ≥ 0 and βj ≥ 0 are constants, εn is a sequence of indepen-
dent and identically distributed (i.i.d.) random variables, and εn is independent
of {Yn−k, k ≥ 1} for all n. This is the celebrated GARCH(p, q) model proposed
by Bollerslev [8]. When q = 0 or βj = 0, for j = 1, . . . , q , this is the ARCH(p)

model first considered by Engle [19]. The reader is referred to [9] and [20] for a
comprehensive summary.

For convenience of notation, we assume that p,q ≥ 2, and by adding some αi

or βj equal to zero if necessary. Denote ηn = σ−1
n Yn, τn = (α1 + β1η

2
n,α2, . . . ,

αp−1) ∈ Rp−1, ζn = (η2
n,0, . . . ,0) ∈ Rp−1, β = (β2, . . . , βq−1) ∈ Rq−2, and let

Ip−1 and Iq−2 be identity matrices. Let An be a (p + q − 1) × (p + q − 1) matrix
written in block form as

An =




τn αp β βq

Ip−1 0 0 0

ζn 0 0 0

0 0 Iq−2 0


 .(1.2)

Note that {An,n ≥ 0} are i.i.d. random matrices.
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Let Z = (δ,0, . . . ,0)′ ∈ Rp+q−1 and Xn = (σ 2
n+1, . . . , σ

2
n−p+2, Y

2
n , . . . ,

Y 2
n−q+2)

′, where “ ′” denotes transpose. Following the idea of Bougerol and
Picard [10], we have the following state space representation of the GARCH(p, q)

model: Xn is a Markov chain governed by

Xn+1 = An+1Xn + Z,(1.3)

and ξn := g(Xn) = (Y 2
n , . . . , Y 2

n−q+2)
′, the observed random quantity, is a nonin-

vertible function of Xn.

EXAMPLE 2 (Stochastic volatility models). Let

Yn = σnεn,(1.4)

where logσ 2
n follows an AR(1) process and εn is a sequence of i.i.d. random

variables with standard normal probability density function. This is the discrete
time stochastic volatility model proposed by Taylor [51]. The reader is referred
to [29, 50, 52] for a comprehensive summary. Note that Genon-Catalot, Jeantheau
and Larédo [27] studied the ergodicity and mixing properties of stochastic volatil-
ity models from the hidden Markov model point of view.

Write Xn := logσ 2
n and Yn = σεn exp(Xn/2), where σ is a scale parame-

ter. Squaring the observations in the above equation and taking logarithms gives
logY 2

n = logσ 2 + Xn + log ε2
n. Alternatively, we have

logY 2
n = ω + Xn + ζn,(1.5)

where ω = logσ 2 + E log ε2
n, so that the disturbance ζn has mean zero by con-

struction. The scale parameter σ also removes the need for a constant term in the
stationary first-order autoregressive process

Xn = αXn−1 + ηn, |α| < 1,(1.6)

where ηn is a sequence of i.i.d. random variables distributed as N(0, σ 2
η ). More-

over, we assume that ζn and ηn are independent. Note that in (1.5) and (1.6) the
observed random quantity is ξn := logY 2

n . {Xn,n ≥ 0} and forms a Markov chain
with transition probability

p(xk−1, xk) = (2πσ 2
η )−1/2 exp

{
−1

2

(xk − αxk−1)
2

σ 2
η

}
(1.7)

and stationary distribution π ∼ N(0, σ 2
η /(1 − α)).

For given observations y = (logy2
1 , . . . , logy2

n) from the state space model (1.5)
and (1.6), the likelihood function of the parameter θ = (α,σ 2

η ) is

l(y; θ) =
∫
x0∈X

· · ·
∫
xn∈X

π(x0)

n∏
k=1

p(xk−1, xk)

(1.8)
× fζ (logy2

k − ω − xk) dxn · · ·dx0,
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where fζ (·) is the probability density function of ζ1.
A major difficulty in analyzing the likelihood function in state space models is

that it can be expressed only in integral form; see equation (1.8), for instance. In
this paper we provide a device which represents the integral likelihood function as
the L1-norm of a Markovian iterated random functions system. This new represen-
tation enables us to apply results of the strong law of large numbers, central limit
theorem and Edgeworth expansion for the distributions of Markov random walks,
and to verify strong consistency of the MLE and first-order efficiency and Edge-
worth expansion on the solution of the likelihood equation. Note that third-order
efficiency follows from Edgeworth expansion by a standard argument (cf. [28]).
Another essential point worth being mentioned is that we introduce a weight func-
tion in a suitable way [see (4.1)–(4.3), Assumptions K2, K3 and Definition 2 in
Section 4, and C1 in Section 5] to relax the condition of a compact state space for
the underlying Markov chain, and to cover several interesting examples.

The remainder of this paper is organized as follows. In Section 2 we define
the state space model as a general state Markov chain in a Markovian random
environment, and represent the likelihood function as the L1-norm of a Markov-
ian iterated random functions system. In Section 3 we give a brief summary of a
Markovian iterated random functions system, and provide an ergodic theorem and
the strong law of large numbers. The multivariate central limit theorem and Edge-
worth expansion for a Markovian iterated random functions system are given in
Section 4. Section 5 contains our main results, where we consider efficient likeli-
hood estimation in state space models, and state the main results. First, we compute
Fisher information and prove the existence of an efficient estimator in a “Cramér
fashion.” Second, we characterize Kullback–Leibler information, and prove strong
consistency of the MLE. Last, we establish Edgeworth expansion of the approxi-
mate solution of the likelihood equation. In Section 6 we consider a few examples,
including Markov switching models, ARMA models, (G)ARCH models and SV
models, which are commonly used in financial economics. The proofs of the lem-
mas in Section 5 are given in Section 7. Other technical proofs are deferred to the
Appendix.

2. State space models. A state space model is defined as a parameterized
Markov chain in a Markovian random environment with the underlying environ-
mental Markov chain viewed as missing data. Specifically, let X = {Xn,n ≥ 0}
be a Markov chain on a general state space X, with transition probability kernel
P θ(x, ·) = P θ {X1 ∈ ·|X0 = x} and stationary probability πθ(·), where θ ∈ 
 ⊆ Rq

denotes the unknown parameter. Suppose that a random sequence {ξn}∞n=0, taking
values in Rd , is adjoined to the chain such that {(Xn, ξn), n ≥ 0} is a Markov
chain on X × Rd satisfying P θ {X1 ∈ A|X0 = x, ξ0 = s} = P θ {X1 ∈ A|X0 = x}
for A ∈ B(X), the σ -algebra of X. And conditioning on the full X sequence, ξn is
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a Markov chain with probability

P θ {ξn+1 ∈ B|X0,X1, . . . ; ξ0, ξ1, . . . , ξn}
(2.1)

= P θ {ξn+1 ∈ B|Xn+1; ξn} a.s.

for each n and B ∈ B(Rd), the Borel σ -algebra on Rd . Note that in (2.1) the
conditional probability of ξn+1 depends on Xn+1 and ξn only. Furthermore, we
assume the existence of a transition probability density pθ(x, y) for the Markov
chain {Xn,n ≥ 0} with respect to a σ -finite measure m on X such that

P θ {X1 ∈ A,ξ1 ∈ B|X0 = x, ξ0 = s0}
(2.2)

=
∫
y∈A

∫
s∈B

pθ(x, y)f (s; θ |y, s0)Q(ds)m(dy),

where f (ξk; θ |Xk, ξk−1) is the conditional probability density of ξk given ξk−1

and Xk , with respect to a σ -finite measure Q on Rd . We also assume that the
Markov chain {(Xn, ξn), n ≥ 0} has a stationary probability with probability den-
sity function π(x)f (·; θ |x) with respect to m × Q. In this paper we consider
θ = (θ1, . . . , θq) ∈ 
 ⊆ Rq as the unknown parameter, and the true parameter
value is denoted by θ0. We will use π(x) for πθ(x), p(x, y) for pθ(x, y), f (ξ0|X0)

for f (ξ0; θ |X0), and f (ξk|Xk, ξk−1) for f (ξk; θ |Xk, ξk−1), here and in the se-
quel, depending on our convenience. Now we give a formal definition as fol-
lows.

DEFINITION 1. {ξn, n ≥ 0} is called a state space model if there is a Markov
chain {Xn,n ≥ 0} such that the process {(Xn, ξn), n ≥ 0} satisfies (2.1).

Note that this setting includes several interesting examples of Markov-switching
Gaussian autoregression of Hamilton [33], (G)ARCH models of Engle [19] and
Bollerslev [8], and SV models of Clark [12] and Taylor [51]. When the state space
X is finite or compact, this reduces to the hidden Markov model considered by
Francq and Roussignol [21], Fuh [22, 23, 25] and Douc, Moulines and Rydén [15].
Denote Sn = ∑n

t=1 ξt . When ξn are conditionally independent given X, the Markov
chain {(Xn,Sn), n ≥ 0} is called a Markov additive process and Sn is called a
Markov random walk. Furthermore, if the state space X is finite, {ξn, n ≥ 0} is the
hidden Markov model studied by Leroux [44], Bickel and Ritov [6] and Bickel,
Ritov and Rydén [7]. When the state space X is “pseudo-compact” and ξn are
conditionally independent given X, {ξn, n ≥ 0} is the state space model considered
in [39] and [14].
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For given observations s0, s1, . . . , sn from a state space model {ξn, n ≥ 0}, the
likelihood function is

pn(s0, s1, . . . , sn; θ)

=
∫
x0∈X

· · ·
∫
xn∈X

πθ(x0)f (s0; θ |x0)

(2.3)

×
n∏

j=1

pθ(xj−1, xj )

× f (sj ; θ |xj , sj−1)m(dxn) · · ·m(dx0).

Recall that πθ(x0)f (s0; θ |x0) is the stationary probability density with respect to
m × Q of the Markov chain {(Xn, ξn), n ≥ 0}.

To represent the likelihood pn(ξ0, ξ1, . . . , ξn; θ) as the L1-norm of a Markovian
iterated random functions system, let

M =
{
h|h :X → R+ is m-measurable and

∫
x∈X

h(x)m(dx) < ∞
}
.(2.4)

For each j = 1, . . . , n, define the random functions Pθ (ξ0) and Pθ (ξj ) on (X ×
Rd) × M as

Pθ (ξ0)h(x) =
∫
x∈X

f (ξ0; θ |x)h(x)m(dx), a constant,(2.5)

Pθ (ξj )h(x) =
∫
y∈X

pθ(x, y)f (ξj ; θ |y, ξj−1)h(y)m(dy).(2.6)

Define the composition of two random functions as

Pθ (ξj+1) ◦ Pθ (ξj )h(x)

=
∫
z∈X

pθ(x, z)f (ξj ; θ |z, ξj−1)(2.7)

×
(∫

y∈X
pθ(z, y)f (ξj+1; θ |y, ξj )h(y)m(dy)

)
m(dz).

For h ∈ M, denote ‖h‖ := ∫
x∈X h(x)m(dx) as the L1-norm on M with respect

to m. Then the likelihood pn(ξ0, ξ1, . . . , ξn; θ) can be represented as

pn(ξ0, ξ1, . . . , ξn; θ)

=
∫
x0∈X

· · ·
∫
xn∈X

πθ(x0)f (ξ0; θ |x0)

×
n∏

j=1

pθ(xj−1, xj )(2.8)

× f (ξj ; θ |xj , ξj−1)m(dxn) · · ·m(dx0)

= ‖Pθ (ξn) ◦ · · · ◦ Pθ (ξ1) ◦ Pθ (ξ0)πθ‖.
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Note that, for j = 1, . . . , n, the integrand pθ(x, y)f (ξj ; θ |y, ξj−1) of Pθ (ξj ) in
(2.6) and (2.8) represents Xj−1 = x and Xj ∈ dy, and ξj is a Markov chain with
transition probability density f (ξj ; θ |y, ξj−1) for given X. By definition (2.1),
{(Xn, ξn), n ≥ 0} is a Markov chain, and this implies that Pθ (ξj ) is a sequence of
Markovian iterated random functions systems (see Section 5 for a formal defini-
tion). Therefore, by representation (2.8), pn(ξ0, ξ1, . . . , ξn; θ) is the L1-norm of a
Markovian iterated random functions system.

3. Ergodic theorems for a Markovian iterated random functions system.
To analyze the asymptotic properties of efficient likelihood estimators in state
space models, in this section we study the ergodic theorem and the strong law of
large numbers for a Markovian iterated random functions system. The Markovian
iterated random functions system is a generalization of an iterated random func-
tions system, in which the random functions are driven by a Markov chain. For
a general account of an iterated random functions system, the reader is referred
to [13] for a recent survey.

For simplicity in our notation, let {Yn,n ≥ 0} [instead of {(Xn, ξn), n ≥ 0} in
Section 2] be a Markov chain on a general state space Y with σ -algebra A, which
irreducible with respect to a maximal irreducibility measure on (Y,A) and is ape-
riodic. The transition kernel is denoted by P(y,A). Let (M, d) be a complete sep-
arable metric space with Borel σ -algebra B(M). Denote by M0 a random variable
which is independent of {Yn,n ≥ 0}. A sequence of the form

Mn = F(Yn,Mn−1), n ≥ 1,(3.1)

taking values in (M, d) is called a Markovian iterated random functions system
(MIRFS) of Lipschitz functions providing the following:

(1) {Yn,n ≥ 0} is a Markov chain taking values in a second countable measur-
able space (Y,A), with transition probability kernel P(·, ·) and stationary proba-
bility π , and M0 is a random element on a probability space (�,F ,P ), which is
independent of {Yn,n ≥ 0};

(2) F : (Y×M,A⊗B(M)) → (M,B(M)) is jointly measurable and Lipschitz
continuous in the second argument.

Clearly, {(Yn,Mn), n ≥ 0} constitutes a Markov chain with state space Y × M and
transition probability kernel P, given by

P
(
(y, u),A × B

) :=
∫
z∈A

IB

(
F(z,u)

)
P(y, dz)(3.2)

for all y ∈ Y, u ∈ M,A ∈ A and B ∈ B(M), where I denotes the indicator
function. The n-step transition kernel is denoted Pn. For (y, u) ∈ Y × M, let
Pyu be the probability measure on the underlying measurable space under which
Y0 = y,M0 = u a.s. The associated expectation is denoted Eyu, as usual. For an
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arbitrary distribution ν on Y × M, we put Pν(·) := ∫
Pyu(·)ν(dy × du) with asso-

ciated expectation Eν . We use P and E for probabilities and expectations, respec-
tively, that do not depend on the initial distribution.

Let M0 be a dense subset of M and M(M0,M) the space of all mappings
h : M0 → M endowed with the product topology and product σ -algebra. Then the
space LLip(M,M) of all Lipschitz continuous mappings h : M → M properly em-
bedded forms a Borel subset of M(M0,M), and the mappings

LLip(M,M) × M � (h,u) �→ h(u) ∈ M,

LLip(M,M) � h �→ l(h) := sup
u 
=v

d(h(u),h(v))

d(u, v)

are Borel; see Lemma 5.1 in [13] for details. Hence,

Ln := l
(
F(Yn, ·)), n ≥ 0,(3.3)

are also measurable and form a sequence of Markovian dependent random vari-
ables.

An important point to characterize the limit in the ergodic theorem will be the
right use of the idea of duality. For this purpose, we introduce a time-reversed (or
dual) Markov chain {Ỹn, n ≥ 0} of {Yn,n ≥ 0} as follows. Assume that there exists
a σ -finite measure m on (Y,A) such that the probability measure P on (Y,A)

defined by P(A) = P(Y1 ∈ A|Y0 = y) is absolutely continuous with respect to
m, so that P(A) = ∫

A p(y, z)m(dz) for all A ∈ A, where p(y, ·) = dP/dm. The
Markov chain {Yn,n ≥ 0} is assumed to have an invariant probability measure π

which has a positive probability density function π (without any confusion, we
still use the same notation) with respect to m. We shall use ∼ to refer to the time-
reversed (or dual) process {Ỹn, n ≥ 0} with transition probability density

p̃(z, y) = p(y, z)π(y)/π(z).(3.4)

Denote P̃ as the corresponding probability. It is easy to see that both Yn and Ỹn

have the same stationary distribution π . In this section we will assume that the
initial distribution of Y0 is the stationary distribution π .

In the following, we write Fn(u) for F(Yn,u). For all 1 ≤ k ≤ n, let Fk:n :=
Fk ◦ · · · ◦ Fn, Fn:k := Fn ◦ · · · ◦ Fk , where ◦ denotes the composition of functions.
Denote Fn:n−1 as the identity on M, Hence

Mn = Fn(Mn−1) = Fn:1(M0)(3.5)

for all n ≥ 0. Closely related to these forward iterations, and in fact a key tool to
the analysis of the ergodic property, is the sequence of backward iterations

M̃n := F1:n(M0), n ≥ 0.(3.6)

The connection is established by the identity

π(y)P(Mn ∈ ·|Y0 = y) = π(z)P̃(M̃n ∈ ·|Ỹ0 = z)(3.7)
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for all n ≥ 0. Put also Mu
n := Fn:1(u) and M̃u

n := F1:n(u) for u ∈ M and note that∫
z∈Y

∫
y∈Y

P
(
(Mu

n , M̃u
n )n≥0 ∈ ·|Y0 = y, Ỹ0 = z

)
π(dy)π(dz)

(3.8)
=

∫
z∈Y

∫
y∈Y

P
(
(Mn, M̃n)n≥0 ∈ ·|Y0 = y, Ỹ0 = z

)
π(dy)π(dz).

Note that in (3.8), the probability P denotes a joint probability.
{Yn,n ≥ 0} is called Harris recurrent if there exist a set A ∈ A, a probability

measure � concentrated on A and an ε with 0 < ε < 1 such that Py(Yn ∈ A i.o.) =
1 for all y ∈ Y and, furthermore, there exists n such that P n(y,A′) ≥ ε�(A′) for
all y ∈ A and all A′ ∈ A.

A central question for an MIRFS (Mn)n≥0 is under which conditions it stabi-
lizes, that is, converges to a stationary distribution �. The next theorem summa-
rizes the results regarding this question.

THEOREM 1. Let {Yn,n ≥ 0} be an aperiodic, irreducible and Harris recur-
rent Markov chain, and let (Mn)n≥0 be an MIRFS of Lipschitz functions. Suppose
the initial distribution of Y0 is π , and

E log l(F1) < 0 and E log+ d
(
F1(u0), u0

)
< ∞(3.9)

for some u0 ∈ M. Then the following assertions hold:

(i) M̃n converges a.s. to a random element M̃∞ which does not depend on the
initial distribution.

(ii) Mn converges in distribution to M̃∞ under P.
(iii) Define � as the stationary distribution of (Ỹ∞, M̃∞). Then � is the unique

stationary probability of the Markov chain {(Yn,Mn), n ≥ 0}.
(iv) (Mn)n≥0 is ergodic under P�, that is, for any u ∈ M,

1

n

n∑
k=1

g(Mk) −→ E�(g(M̃∞)), P�-a.s.(3.10)

for all bounded continuous real-valued functions g on M.

We remark that Elton [18] showed in the situation of a stationary sequence
(Fn)n≥1 that Theorem 1 holds whenever E log+ l(F1) and E log+ d(F1(u0), u0)

are both finite for some (and then all) u0 ∈ M and the Lyapunov exponent γ :=
limn→∞ n−1 log l(Fn:1), which exists by Kingman’s subadditive ergodic theorem,
is a.s. negative. Since the initial distribution of Y0 is the stationary distribution π ,
the Markov chain Yn is a stationary sequence, and hence, Mn is a sequence of
iterated random functions generated by stationary sequences. Here, we impose the
Harris recurrent condition so that the invariant measure π exists, and we are able
to characterize M̃∞ in a Markovian setting. Since the proof is similar to that in [2],
it is omitted.
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4. Central limit theorem and Edgeworth expansion for distributions of a
Markovian iterated random functions system. Consider the Markovian iter-
ated random functions system {(Yn,Mn), n ≥ 0} defined in (3.1). Abuse the nota-
tion a little bit and let g be an Rp-valued function on M. In this section we study the
central limit theorem and Edgeworth expansion of the sum Sn = ∑n

k=1 g(Mk) and
g(n−1Sn) for a smooth function g : Rp → Rq . Let w :Y → [1,∞) be a measur-
able function, and let B be the Banach space of measurable functions h :Y → C

(:= the set of complex numbers) with ‖h‖w := supy |h(y)|/w(y) < ∞. Assume
further that {Yn,n ≥ 0} has a stationary distribution π with

∫
w(y)π(dy) < ∞,

and

lim
n→∞ sup

y

{∣∣∣∣E[h(Yn)|Y0 = y] −
∫

h(z)π(dz)

∣∣∣∣/w(y) :y ∈ Y, |h| ≤ w

}
= 0,(4.1)

sup
y

{E[w(Yp)|Y0 = y]/w(y)} < ∞,(4.2)

for some p ≥ 1. Condition (4.1) says that the chain is w-uniformly ergodic, which
implies that there exist γ > 0 and 0 < ρ < 1 such that, for all h ∈ B and n ≥ 1,

sup
y

∣∣∣∣E[h(Yn)|Y0 = y] −
∫

h(z)π(dz)

∣∣∣∣/w(y) ≤ γρn‖h‖w,(4.3)

(cf. pages 382–383 and Theorem 16.0.1 of [46]). We remark that, for w = 1, con-
dition (4.1) is the classical uniform ergodicity condition for {Yn,n ≥ 0}.

The following assumption will be assumed throughout this section.

ASSUMPTION K.
K1. Let {Yn,n ≥ 0} be an aperiodic, irreducible Markov chain satisfying condi-

tions (4.1)–(4.2). Furthermore, we assume the initial distribution of Y0 is π .
K2. The MIRFS (Mn)n≥0 has the weighted mean contraction property, that is,

there exists a p ≥ 1 such that

sup
y

{
E

(
log

Lpw(Yp)

w(y)

∣∣∣Y0 = y

)}
< 0.

K3. There exists u0 ∈ M for which

Ed2(
F1(u0), u0

)
< ∞ and sup

y

{
E

(
L1w(Y1)

w(y)

∣∣∣Y0 = y

)}
< ∞.

REMARK 1. (a) Assumption K1 is a condition for the underlying Markov
chain {Yn,n ≥ 0} which is general enough to include several practical used
models studied in Section 6. Assumption K2 is a weighted mean contrac-
tion condition which is different from the standard mean contraction condition
E logL1 < 0 used in Theorem 1. Assumption K3 is a weighted moment condition.
Note that under Assumptions K1–K3, and the extra assumption that {(Yn,Mn),
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n ≥ 0} is an irreducible, aperiodic and Harris recurrent Markov chain, Theorems
13.0.1 and 17.0.1(i) of [46] imply that Theorem 1 still holds. Furthermore, we will
prove the central limit theorem and Edgeworth expansion for the distributions of a
Markovian iterated random functions system in Theorem 2.

(b) To have better understanding of Assumption K, we consider a simple state
space model. Given p ≥ 1 as in Assumption K2, and |α| < 1, let Yn = αYn−1 +
εn, ξn = βYnξn−1 + ηn, where εn are i.i.d. random variables with E|ε1| = c < ∞,
and ηn are i.i.d. random variables with E|η1| < ∞. Further, we assume both ε1
and η1 have positive probability density function with respect to Lebesgue mea-
sure, and that they are mutually independent. Denote b = (1 − |α|p)/(1 − |α|) and
a = 1/(bc + 1) < 1, and assume |βy | < a1/p < 1 for all y ∈ Y. It is known that
w(y) = |y| + 1 (cf. pages 380 and 383 of [46]). Let d(u, v) = |u − v|. It is easy
to see that Assumption K1 and the first part of Assumption K3 hold. To check
Assumption K2, we have

sup
y

{
E

(
log

Lpw(Yp)

w(y)

∣∣∣Y0 = y

)}

= sup
y

{
E

(
log

|βYp · · ·βY1 |(|αpy + ∑p−1
k=0 αkεp−k| + 1)

|y| + 1

∣∣∣Y0 = y

)}
(4.4)

< log sup
y

{
a(|αpy| + E|∑p−1

k=0 αkεp−k| + 1)

|y| + 1

}

= log sup
y

{
a(|αpy| + bc + 1)

|y| + 1

}
= 0.

By using the same argument, we have the second part of Assumption K3. When
εn are i.i.d. N(0,1), ηn are i.i.d. N(0,1), and they are mutually independent. Then
a = √

2π/(2b + √
2π ) < 1.

Recall that � is defined in Theorem 1(iii) and denote Q(B) := �(Y × B) for
all B ∈ B(M). Let g ∈ L2

0(Q) be a square integrable function taking values in Rp

with mean 0, that is, g = (g1, . . . , gp) with each gk a real-valued function on M,
and ∫

M
gk(u)Q(du) = 0, ‖gk‖2

2 =
∫

M
g2

k (u)Q(du) < ∞,(4.5)

for k = 1, . . . , p. Consider the sequence

Sn = Sn(g) = g(M1) + · · · + g(Mn), n ≥ 1,(4.6)

which may be viewed as a Markov random walk on the Markov chain {(Yn,Mn),

n ≥ 0}.
Note that there are two special properties of the Markov chain induced by

the Markovian iterated random functions system (2.4)–(2.7). First, the hypothe-
sis that the transition probability possesses a density leads to a classical situation
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in the context of the so-called “Doeblin condition” for Markov chains. Second,
a positivity hypothesis on M defined in (2.4) in the support of the Markov chain
leads to contraction properties, on which basis we will develop the spectral theory.
The reader is referred to [37] for a general account of the perturbation theory of
Markovian operators. We need the following notation first.

DEFINITION 2. Let w :Y → [1,∞) be a weight function. For any measurable
function ϕ :Y × M → [1,∞), given u0 ∈ M, define

‖ϕ‖w := sup
y∈Y,u∈M

|ϕ(y,u)|
w(y)

and

‖ϕ‖h := sup
y∈Y,u,v:0<d(u,v)≤1

|ϕ(y,u) − ϕ(y, v)|
(w(y) d(u, v))δ

,

for 0 < δ < 1. We define H as the set of ϕ on Y × M for which ‖ϕ‖wh := ‖ϕ‖w +
‖ϕ‖h is finite, where wh represents a combination of the weighted variation norm
and the bounded weighted Hölder norm.

Let ν be an initial distribution of (Y0,M0) and let Eν denote expectation under
the initial distribution ν on (Y0,M0). For ϕ ∈ H , g ∈ L2(Q), y ∈ Y, u ∈ M and
p × 1 vectors α = (α1, . . . , αp)′ ∈ Rp , define linear operators Tα , T, να and Q on
the space H as

(Tαϕ)(y,u) = E
{
eiα′g(M1)ϕ(Y1,M1)|Y0 = y,M0 = u

}
,(4.7)

(Tϕ)(y,u) = E{ϕ(Y1,M1)|Y0 = y,M0 = u},(4.8)

ναϕ = Eν

{
eiα′ϕ(u)ϕ(Y0, u)

}
, Qϕ = E�{ϕ(Y0, u)}.(4.9)

In the case of a w-uniformly ergodic Markov chain, Fuh and Lai [26] have shown
that there exists a sufficiently small δ > 0 such that, for |α| ≤ δ, H = H1(α) ⊕
H2(α) and

TαQαϕ = λ(α)Qαϕ for all ϕ ∈ H ,(4.10)

where H1(α) is a one-dimensional subspace of H , λ(α) is the eigenvalue of Tα

with corresponding eigenspace H1(α) and Qα is the parallel projection of H onto
the subspace H1(α) in the direction of H2(α). Extension of their argument to the
weight functions w and l defined in Definition 2 is given in the Appendix, which
also proves the following lemmas.

LEMMA 1. Let {(Yn,Mn), n ≥ 0} be the MIRFS of Lipschitz functions de-
fined in (2.1) and satisfying Assumption K. Assume g ∈ Lr (Q) for some r > 2.
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Then T and Q are bounded linear operators on the Banach space H with norm
‖ · ‖wh, and satisfy

‖Tn − Q‖wh = sup
ϕ∈H ,‖ϕ‖wh≤1

‖Tnϕ − Qϕ‖wh < γ∗ρn∗ ,(4.11)

for some γ∗ > 0 and 0 < ρ∗ < 1.

By using an argument similar to Proposition 1 of [24], we have the following:

LEMMA 2. Let {(Yn,Mn), n ≥ 0} be the MIRFS defined in (2.1) satisfying As-
sumption K, such that the induced Markov chain {(Yn,Mn), n ≥ 0} with transition
probability kernel (3.2) is irreducible, aperiodic and Harris recurrent. Assume
g ∈ Lr (Q) for some r > 2. Then there exists δ > 0 such that, for α ∈ Rp with
|α| < δ, and for ϕ ∈ H ,

Eν

{
eiα′g(Mn)ϕ(Yn,Mn)

} = ναTn
αϕ = ναTn

α{Qα + (I − Qα)}ϕ
(4.12)

= λn(α)ναQαϕ + ναQn
α(I − Qα)ϕ,

and:

(i) λ(α) is the unique eigenvalue of the maximal modulus of Tα ;
(ii) Qα is a rank-one projection;

(iii) the mappings λ(α),Qα and I − Qα are analytic;
(iv) |λ(α)| >

2+ρ∗
3 and for each k ∈ N, the set of positive integers, there exists

c > 0 such that, for each n ∈ N and j1, . . . , jp with j1 + · · · + jp = k,∥∥∥∥ ∂k

∂α
j1
1 · · · ∂α

jp
p

(I − Qα)n
∥∥∥∥
wh

≤ c

(
1 + 2ρ∗

3

)n

;

(v) denote g = (g1, . . . , gp), and let γj := limn→∞(1/n)Eyu log‖gj (Mn)‖,
the upper Lyapunov exponent; it follows that

γj = ∂λ(α)

∂αj

∣∣∣∣
α=0

=
∫

Eyugj (M1)�(dy × du).(4.13)

Note that in Lemma 2 we need the extra assumption that the induced Markov
chain {(Yn,Mn), n ≥ 0} with transition probability kernel (3.2) is irreducible, ape-
riodic and Harris recurrent. In Section 5 we will show that this condition is satisfied
for the Markov chain induced by the Markovian iterated random functions system
(2.4)–(2.7).

For given Sn = ∑n
k=1 g(Mk) of the MIRFS {(Yn,Mn), n ≥ 0}, in this section we

will obtain Edgeworth expansions for the standardized distribution of Sn via the
representation (4.12) of the characteristic function E(eiα′g(Mn)|Y0 = y,M0 = 0).
Note that Lemma 1 implies that {(Yn,Mn), n ≥ 0} is geometrically mixing in the
sense that there exist r1 > 0 and 0 < γ1 < 1 such that, for all y ∈ Y, u ∈ M, k ≥ 0
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and n ≥ 1 and for all real-valued measurable functions ϕ1, ϕ2 with ‖ϕ2
1‖wh < ∞

and ‖ϕ2
2‖wh < ∞,

‖E{ϕ1(Yk,Mk)ϕ2(Yk+n,Mk+n)|Y0 = y,M0 = u}
− {Eϕ1(Yk,Mk)|Y0 = y,M0 = u}(4.14)

× {Eϕ2(Yk+n,Mk+n|Y0 = y,M0 = u)}‖wh ≤ r1γ
n
1 .

Let ϕ̃1, ϕ̃2 be real-valued measurable functions on (Y × M) × (Y × M). Denote
ϕ1(z, v) = E{ϕ̃1((z, v), (Y1,M1))|Y0 = z,M0 = v)}, and note that

E
{
ϕ̃1

(
(Yk,Mk), (Yk+1,Mk+1)

)|Y0 = y,M0 = u
}

= E{ϕ1(Yk,Mk)|Y0 = y,M0 = u}.
The same proof as that of Theorem 16.1.5 of [46] can be used to show that
there exist r1 > 0 and 0 < γ1 < 1 such that, for all y ∈ Y, u ∈ M, k ≥ 0 and
n ≥ 1 and for all measurable ϕ̃1, ϕ̃2 with ‖ supz,v ϕ̃2

1((y, u), (z, v))‖wh < ∞ and
‖ supz,v ϕ̃2

2((y, u), (z, v))‖wh < ∞,∥∥E
{
ϕ̃1

(
(Yk,Mk), (Yk+1,Mk+1)

)
× ϕ̃2

(
(Yk+n,Mk+n), (Yk+n+1,Mk+n+1)

)|Y0 = y,M0 = u
}

− E
{
ϕ(Yk,Mk)|Y0 = y,M0 = u

}
E{ϕ2(Yk+n,Mk+n)|Y0 = y,M0 = u}∥∥wh(4.15)

≤ r1γ
n−1
1 .

To establish Edgeworth expansion for a Markovian iterated random functions
system, we shall make use of (4.15) in conjunction with the following extension
of Cramér (strongly nonlattice) condition:

inf|v|>α
|1 − Eπ {exp(iv′S1(g)}| > 0 for all α > 0.(4.16)

In addition, we also assume the conditional Cramér (strongly nonlattice) condition
((2.5) on page 216 in [31]): There exists δ > 0 such that, for all m,n = 1,2, . . . ,

δ−1 < m < n, and all α ∈ Rp with |α| ≥ δ,

Eπ

∣∣E{
exp

(
iα′(g(Mn−m) + · · · + g(Mn+m)

))
∣∣(Yn−m,Mn−m), . . . , (Yn−1,Mn−1),(4.17)

(Yn+1,Mn+1), . . . , (Yn+m,Mn+m), (Yn+m+1,Mn+m+1)
}∣∣ ≤ e−δ.

Let

γ =
∫

Eyug(M1)�(dy × du)
(= λ′(0)

)
,(4.18)

and denote by V = (∂2λ(α)/∂αi ∂αj |α=0)1≤i,j≤p the Hessian matrix of λ at 0. By
Lemma 2,

lim
n→∞n−1Eν

{(
g(Mn) − nγ

)(
g(Mn) − nγ

)′} = V.(4.19)
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Let ψn(α) = Eν(e
iα′g(Mn)). Then by Lemma 2 and the fact that ναQαh1 has

continuous partial derivatives of order r − 2 in some neighborhood of α = 0, we
have the Taylor series expansion of ψn(α/

√
n ) for |α/

√
n| ≤ ε (some sufficiently

small positive number):

ψn

(
α/

√
n

){
1 +

r−2∑
j=1

n−j/2π̃j (iα)

}
e−α′V α/2 + o

(
n−(r−2)/2)

,(4.20)

where π̃j (iα) is a polynomial in iα of degree 3j whose coefficients are smooth
functions of the partial derivatives of λ(α) at α = 0 up to the order j + 2 and those
of ναQαh1 at α = 0 up to the order j . Letting D denote the p × 1 vector whose
j th component is the partial differentiation operator Dj with respect to the j th co-
ordinate, define the differential operator π̃j (−D). As in the case of sums of i.i.d.
zero-mean random vectors (cf. [5]), we obtain an Edgeworth expansion for the
“formal density” of the distribution of g(Mn) by replacing the π̃j (iα) and e−α′V α/2

in (4.20) by π̃j (−D) and φV (y), respectively, where φV is the density function of
the q-variate normal distribution with mean 0 and covariance matrix V . Through-
out the sequel we let Pν denote the probability measure under which (Y0,M0) has
initial distribution ν.

THEOREM 2. Let {(Yn,Mn), n ≥ 0} be the MIRFS defined in (2.1) satisfying
Assumption K, such that the induced Markov chain {(Yn,Mn), n ≥ 0}, with tran-
sition probability kernel (3.2), is irreducible, aperiodic and Harris recurrent. As-
suming g ∈ Lr (Q) for some r > 2, (4.16) and (4.17) hold. Let φj,V = π̃j (−D)φV

for j = 1, . . . , r −2. For 0 < a ≤ 1 and c > 0, let Ba,c be the class of all Borel sub-
sets B of Rp such that

∫
(∂B)ε φV (y) dy ≤ cεa for every ε > 0, where ∂B denotes

the boundary of B and (∂B)ε denotes its ε-neighborhood. Then

sup
B∈Ba,c

∣∣∣∣∣Pν

{
(Sn − nγ )/

√
n ∈ B

} −
∫
B

{
φV (y) +

r−2∑
j=1

n−j/2φj,V (y)

}
dy

∣∣∣∣∣
(4.21) = o

(
n−(r−2)/2)

.

A proof of Theorem 2 is given in the Appendix.
Note that under weaker moment conditions, and an alternative condition of

(4.16) and (4.17) (see Condition 1 of [42]) Lahiri [42] proved the asymptotic ex-
pansions for sums of weakly dependent random vectors.

Letting r = 2 in Theorem 2, we have the following:

COROLLARY 1. With the same notation and assumptions as in Theorem 2,
then

1√
n
(Sn − nγ ) −→ N(0,�) in distribution,
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where the variance–covariance matrix

� =
(

∂2λ(α)

∂αi ∂αj

∣∣∣∣
α=0

)
i,j=1,...,p

.(4.22)

In statistical applications one often works with g(n−1Sn) instead of Sn =∑n
k=1 g(Mk), where g : Rp → Rq is sufficiently smooth in some neighborhood

of the mean γ := (γ1, . . . , γp). Denote g = (g1, . . . ,gq) with each gi , 1 ≤ i ≤ q ,
a real-valued function on Rp . For the case of a sum of i.i.d. random variables,
Bhattacharya and Ghosh [4] made use of the Edgeworth expansion of the distri-
bution of (Sn − nγ )/

√
n to derive an Edgeworth expansion of the distribution of√

n{g(n−1Sn) − g(γ )}. Making use of Theorem 2 and a straightforward extension
of their argument, we can generalize their result to the case where Sn is the partial
sum of a Markovian iterated random functions system.

THEOREM 3. Under the same assumptions as in Theorem 2, suppose that
g : Rp → Rq has continuous partial derivatives of order r in some neighborhood
of γ . Let Jg = (Dj gi (γ ))1≤i≤q,1≤j≤p be the q ×p Jacobian matrix and let V (g) =
JgV J ′

g. Then

sup
B∈Ba,c

∣∣∣∣∣Pν

{√
n
(
g(n−1Sn) − g(γ )

) ∈ B
}

−
∫
B

{
φV (g)(y) +

r−2∑
j=1

n−j/2φj,V,g(y)

}
dy

∣∣∣∣∣(4.23)

= o
(
n−(r−2)/2)

,

where φj,V,g = π̃j,g(−D)φV and π̃j,g(y) is a polynomial in y(∈ Rp) whose coef-
ficients are smooth functions of the partial derivatives of λ(α) at α = 0 up to order
j + 2 and those of ναQαh1 at α = 0 up to order j together with those of g at µ up
to order j + 1.

In the next theorem we consider p = 1.

THEOREM 4. Under the same assumptions as in Theorem 2, assume g ∈
Lr (Q) for some r > 2. Then

1 − Pν{(Sn − nγ )/
√

n ≤ t}
1 − �(t)

= exp
(
t3/

√
n

)
ϕ

(
t/

√
n

)(
1 + O

(
t√
n

))
(4.24)

and
Pν{(Sn − nγ )/

√
n ≤ −t}

�(−t)
= exp

(−t3/
√

n
)
ϕ

(−t/
√

n
)(

1 + O

(
t√
n

))
,(4.25)

where �(t) is the standard normal distribution, and ϕ(t) is a power series which
converges for t sufficiently small in absolute value.



2042 C.-D. FUH

Theorem 4 states the moderate deviations results for the distribution of an
MIRFS, which will be used to prove Edgeworth expansion for the MLE in Sec-
tion 5. Since the proof is a straightforward generalization of Theorem 6 in [47], it
will not be repeated here.

5. Efficient likelihood estimation. For a given state space model defined
in (2.1) which involves several parameters θ = (θ1, . . . , θq), the estimation prob-
lem we consider in this section is the case of estimating one of the parameters at
a time; the other parameters play the role of nuisance parameters. The true para-
meter is denoted by θ0. Recall pn = pn(ξ0, ξ1, . . . , ξn; θ) defined as (2.3). When
∂ logpn/∂θ exists, one can seek solutions of the likelihood equations

∂ logpn

∂θ
= 0.(5.1)

In the following, we denote Eθ
x as the expectation defined under P θ(·, ·) in (2.1)

with initial state X0 = x, and Eθ
(x,s) as the expectation defined under P θ(·, ·)

in (2.1) with initial state X0 = x, ξ0 = s. The following conditions will be used
throughout the rest of this paper.

C1. For given θ ∈ 
, the Markov chain {(Xn, ξn), n ≥ 0} defined in (2.1)
and (2.2) is aperiodic, irreducible, and satisfies (4.1) and (4.2) with weight function
w(·). Assume 0 < pθ(x, y) < ∞ for all x, y ∈ X, and 0 < supx∈X f (s1; θ |x, s0) <

∞, for all s0, s1 ∈ Rd . Denote gθ (s0, ξ1) = supx0∈X

∫
pθ(x0, x1)f (ξ1; θ |x1, s0) ×

m(dx1). Furthermore, we assume that there exists p ≥ 1 as in Assumption K2 such
that

sup
(x0,s0)∈X×Rd

Eθ
(x0,s0)

{
log

(
gθ (s0, ξ1)

p w(Xp, ξp)

w(x0, s0)

)}
< 0,(5.2)

sup
(x0,s0)∈X×Rd

Eθ
(x0,s0)

{
gθ (s0, ξ1)

w(X1, ξ1)

w(x0, s0)

}
< ∞.(5.3)

C2. The true parameter θ0 is an interior point of 
. For all x ∈ X, s0, s1 ∈ Rd ,
θ ∈ 
 ⊂ Rq , and for i, j, k = 1, . . . , q , the partial derivatives

∂f (s0; θ |x)

∂θi

,
∂2f (s0; θ |x)

∂θi ∂θj

,
∂3f (s0; θ |x)

∂θi ∂θj ∂θk

exist,

as well as the partial derivatives

∂f (s1; θ |x, s0)

∂θi

,
∂2f (s1; θ |x, s0)

∂θi ∂θj

,
∂3f (s1; θ |x, s0)

∂θi ∂θj ∂θk

,

and for all x, y ∈ X, θ → pθ(x, y) and θ → πθ(x) have twice continuous deriva-
tives in some neighborhood Nδ(θ0) := {θ : |θ − θ0| < δ} of θ0.
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C3.∫
X

sup
θ∈Nδ(θ0)

∣∣∣∣∂πθ(x)

∂θi

∣∣∣∣m(dx) < ∞,

∫
X

sup
θ∈Nδ(θ0)

∣∣∣∣∂
2πθ(x)

∂θi ∂θj

∣∣∣∣m(dx) < ∞,

and for all x ∈ X, i, j = 1, . . . , q ,∫
X

sup
θ∈Nδ(θ0)

∣∣∣∣∂pθ(x, y)

∂θi

∣∣∣∣m(dy) < ∞,

∫
X

sup
θ∈Nδ(θ0)

∣∣∣∣∂
2pθ(x, y)

∂θi ∂θj

∣∣∣∣m(dy) < ∞.

C4. For all x ∈ X, s0 ∈ Rd and θ ∈ 
,

Eθ
x

∣∣∣∣∂f (ξ0; θ |x)

∂θi

∣∣∣∣ < ∞, Eθ
x

∣∣∣∣∂
2f (ξ0; θ |x)

∂θi ∂θj

∣∣∣∣ < ∞,

Eθ
(x,s0)

∣∣∣∣∂f (ξ1; θ |x, s0)

∂θi

∣∣∣∣ < ∞, Eθ
(x.s0)

∣∣∣∣∂
2f (ξ1; θ |x, s0)

∂θi ∂θj

∣∣∣∣ < ∞.

Furthermore, we assume that, for all x ∈ X, s0 ∈ Rd and uniformly for θ ∈ Nδ(θ0),∣∣∣∣∂
3 logf (ξ0; θ |x)

∂θi ∂θj ∂θk

∣∣∣∣ < Hijk(x, ξ0),

∣∣∣∣∂
3 logf (ξ1; θ |x, s0)

∂θi ∂θj ∂θk

∣∣∣∣ < Gijk

(
(x, s0), ξ1

)
,

where Hijk and Gijk are such that E
θ0
x Hijk(x, ξ0) < ∞ and E

θ0
(x,s0)

Gijk((x, s0),

ξ1) < ∞, for all i, j, k = 1, . . . , q and for all x ∈ X, s0 ∈ Rd .
C5.

sup
x∈X

Eθ0
x

(
sup

|θ−θ0|<δ

sup
y,z∈X

f (ξ0; θ |y)f (ξ1; θ |y, ξ0)

f (ξ0; θ |z)f (ξ1; θ |z, ξ0)

)2

< ∞.

C6. The equality

pn(ξ0, ξ1, . . . , ξn; θ) = pn(ξ0, ξ1, . . . , ξn; θ ′)
holds P -almost surely, for all nonnegative n, if and only if θ = θ ′.

C7. For all x, y ∈ X, θ → pθ(x, y), θ → πθ(x) and θ → ϕx(θ), are continuous,
and θ → f (s0; θ |x), as well as θ → f (s1; θ |x, s0), are continuous for all x ∈ X
and s0, s1 ∈ Rd . Furthermore, for all x ∈ X and s0, s1 ∈ Rd , f (s0; θ |x) → 0 and
f (s1; θ |x, s0) → 0, as |θ | → ∞.

C8. E
θ0
x | log(f (ξ0; θ0|x)f (ξ1; θ0|x, ξ0))| < ∞ for all x ∈ X.

C9. For each θ ∈ 
, there is δ > 0 such that, for all x ∈ X,

Eθ0
x

(
sup

|θ ′−θ |<δ

[
log

(
f (ξ0; θ ′|x)f (ξ1; θ ′|x, ξ0)

)]+)
< ∞,

where a+ = max{a,0}. And there is a b > 0 such that, for all x ∈ X,

Eθ0
x

(
sup

|θ ′|>b

[
log

(
f (ξ0; θ ′|x)f (ξ1; θ ′|x, ξ0)

)]+)
< ∞.
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REMARK 2. (a) Condition C1 is the w-uniform ergodicity condition for the
underlying Markov chain, which is considerably weaker than the uniformly recur-
rent condition A1 of [39], and that of [14]. Furthermore, we impose conditions
(5.2) and (5.3) to guarantee that the induced Markovian iterated random functions
system satisfies Assumptions K2 and K3 in Section 4.

(b) To have better understanding of these properties, we first consider a simple
state space model Xn = αXn−1 + εn, ξn = Xn + ηn, where |α| < 1, εn and ηn are
i.i.d. standard normal random variables, and they are mutually independent. Since
ξn are independent for given Xn, the weight function w depends on X0 only and we
have w(x) = |x| + 1. Note that X = R. Denote b = (1 − |α|p)/(1 − |α|). Observe
that

sup
x∈R

∫ ∞
−∞

exp{−(y − αx)2/2}√
2π

exp{−(s − y)2/2}√
2π

dy

= sup
x∈R

√
1/2√
2π

exp{−(αx − s)2/4}

×
∫ ∞
−∞

1√
2π(1/2)

exp
{−(

y − (αx + s)/2
)2

/2(1/2)
}
dy

=
√

1/2√
2π

sup
x∈R

exp{−(αx − s)2/4} = 1√
4π

.

A simple calculation leads to

sup
(x0,s0)∈R×R

Eα
(x0,s0)

{
log

(
g(s0, ξ1)

p w(Xp, ξp)

w(x0, s0)

)}

< log sup
x0∈R

Eα
x0

{ |αpx0 + ∑p−1
k=0 αkεp−k| + 1

(4π)p/2(|x0| + 1)

}
(5.4)

≤ log sup
x0∈R

{ |αpx0| + Eα
x0

|∑p−1
k=0 αkεp−k| + 1

(4π)p/2(|x0| + 1)

}

= log sup
x0∈R

{ |αpx0| + 2b/
√

2π + 1

(4π)p/2(|x0| + 1)

}
< 0.

This implies that (5.2) holds. By using the same argument, we see (5.3) holds.
Next, we consider the case that εn and ηn are i.i.d. double exponential(1) ran-

dom variables. Observe that

sup
x∈R

∫ ∞
−∞

exp{−|y − αx|}√
2

exp{−|s − y|}√
2

dy

= 1

4
sup
x∈R

(
(1 + |αx − s|) exp{−|αx − s|}) = 1

4
.
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By making use of the same argument as in (5.4), we see that (5.2) and (5.3) hold.
The extension to ξn = βXnξn−1 + ηn, studied in Remark 1(b), is straightforward
and will not be repeated here. Other practical used models of the Markov-switching
model, ARMA models, (G)ARCH models and SV models will be given in Sec-
tion 6.

(c) Note that the mean contraction property E logL1 < 0 is not satisfied in
the above examples. Instead of applying Theorem 1 directly, we will explore
the special structure of the likelihood function in Lemma 4 below, such that
{((Xn, ξn),Mn), n ≥ 0} is an irreducible, aperiodic and Harris recurrent Markov
chain. Hence, we can apply Theorem 1 for the Markovian iterated functions sys-
tem on M induced from (2.4)–(2.7).

(d) C2–C4 are standard smoothness conditions. C5 is the technical condition for
the existence of the Fisher information to be defined in (5.9) below. C8 and C9 are
integrability conditions that will be used to prove strong consistency of the MLE.
Condition C6 is the identifiability condition for state space models. That is, the
family of mixtures of {f (ξ1; θ |x, ξ0) : θ ∈ 
} is identifiable. This condition will be
used to prove strong consistency of the MLE. Although it is difficult to check this
condition in a general state space model, in many models of interest the parameter
itself is identifiable only up to a permutation of states such as a finite state hidden
Markov model with normal distributions. A sufficient condition for the identifiable
issue can be found in Theorem 1 of [14]. See also the paper by Itô, Amari and
Kobayashi [38] for necessary and sufficient conditions in the case that the state
space is finite and ξi is a deterministic function of Xi .

(e) When the state space of the Markov chain {Xn,n ≥ 0} is finite, and the
observations ξn are conditionally independent, this reduces to the so-called hidden
Markov model. It is easy to see that condition C1 implies (A1) by choosing w(x) =
1, and conditions C2–C4 reduce to (A2), (A3) and (A5) of [7]. Conditions C6–C9
reduce to conditions C1–C6 in [44]. We will discuss condition C5 in Remark 3
after Lemma 5.

Let {(Xn, ξn), n ≥ 0} be the Markov chain defined in (2.1) and (2.2). Recall
from (2.8) that the log likelihood can be written as

l(θ) = logpn(ξ1, . . . , ξn; θ) = log‖Pθ (ξn) ◦ · · · ◦ Pθ (ξ1) ◦ Pθ (ξ0)π‖
= log

‖Pθ (ξn) ◦ · · · ◦ Pθ (ξ1) ◦ Pθ (ξ0)π‖
‖Pθ (ξn−1) ◦ · · · ◦ Pθ (ξ1) ◦ Pθ (ξ0)π‖(5.5)

+ · · · + log
‖Pθ (ξ1) ◦ Pθ (ξ0)π‖

‖Pθ (ξ0)π‖ .

For each n, denote

Mn := Pθ (ξn) ◦ · · · ◦ Pθ (ξ1) ◦ Pθ (ξ0)(5.6)
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as the Markovian iterated random functions system on M induced from (2.4)–(2.7).
Then {((Xn, ξn),Mn), n ≥ 0} is a Markov chain on the state space (X× Rd)× M,
with transition probability kernel Pθ defined as in (3.2). Let �θ be the stationary
distribution of {((Xn, ξn),Mn), n ≥ 0} defined in Theorem 1(iii). Then the log-
likelihood function l(θ) can be written as Sn := ∑n

k=1 g(Mk−1,Mk) with

g(Mk−1,Mk) := log
‖Pθ (ξk) ◦ · · · ◦ Pθ (ξ1) ◦ Pθ (ξ0)π‖

‖Pθ (ξk−1) ◦ · · · ◦ Pθ (ξ1) ◦ Pθ (ξ0)π‖ .(5.7)

In order to apply Theorems 1–4, we need to check that the Markovian iterated
random functions system satisfies Assumption K, and the induced Markov chain
is aperiodic, irreducible and Harris recurrent. For this purpose, we need to define
a suitable metric on the space M, which has been defined in (2.4). First, we add a
further condition on M to have

M =
{
h|h :X → R+ is m-measurable,

∫
h(x)m(dx) < ∞ and sup

x∈X
h(x) < ∞

}
.

For convenience of notation, we still use the notation M, and will use h to represent
an element in M, which is different from the notation u used in Sections 3 and 4.
We define the variation distance between any two elements h1, h2 in M by

d(h1, h2) = sup
x∈X

|h1(x) − h2(x)|.(5.8)

Note that (M, d) is a complete metric space with Borel σ -algebra B(M), but it
is not separable. Thus, Theorems 1–4 do not apply. However, rather than deal with
the measure-theoretic technicalities created by an inseparable space, we can apply
the results developed in Section 7 of [13] for a direct argument of convergence.
Therefore, Theorems 1–4 still hold under the regularity conditions.

In order to describe our main results, we need the following lemmas first. Their
proofs are given in Section 7.

LEMMA 3. Assume C1–C5 hold or C1, C6–C9 hold. Then for each θ ∈ 
 and
j = 1, . . . , n, the random functions Pθ (ξ0) and Pθ (ξj ), defined in (2.5) and (2.6),
from (X×Rd)×M to M are Lipschitz continuous in the second argument, and the
Markovian iterated random functions system (2.4)–(2.7) satisfies Assumption K.
Furthermore, the function g defined in (5.7) belongs to Lr (Q) for any r > 0.

For each θ ∈ 
, recall that {((Xn, ξn),Mn), n ≥ 0} is a Markov chain induced
by the Markovian iterated random functions system (2.4)–(2.7) on the state space
(X × Rd) × M.

LEMMA 4. Assume C1–C5 hold or C1, C6–C9 hold. Then for each θ ∈ 
,
{((Xn, ξn),Mn), n ≥ 0} is an aperiodic, (m × Q × Q)-irreducible and Harris re-
current Markov chain.
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LEMMA 5. Assume C1–C5 hold. Then the Fisher information matrix

I(θ) = (Iij (θ))

=
(

Eθ
�

[(
∂ log‖Pθ (ξ1) ◦ Pθ (ξ0)π‖

∂θi

)
(5.9)

×
(

∂ log‖Pθ (ξ1) ◦ Pθ (ξ0)π‖
∂θj

)])

is positive definite for θ in a neighborhood Nδ(θ0) of θ0. Recall that Eθ
� := E� is

defined as the expectation under P� in (3.2).

REMARK 3. Note that the Fisher information (5.9) is defined as the expected
value under the stationary distribution �θ of the Markov chain {((Xn, ξn),Mn),

n ≥ 0}. It is worth mentioning that only ξn appears in Mn, in which it reflects the
nature of state space models.

When the state space X is finite, and the random variables ξn are conditionally
independent for given Xn, let H := H(ξ1, ξ0, ξ−1, . . .) = ∑1

m=−∞ Hm(ξ1, ξ0, . . .),

where

Hm(ξ1, ξ0, . . .) := Eθ0
{
∂ logf (ξm; θ |Xm)

∂θ

∣∣∣ξ1, ξ0, . . .

}

− Eθ0
{
∂ logf (ξm; θ |Xm)

∂θ

∣∣∣ξ0, ξ−1, . . .

}

+ Eθ0
{
∂ logpθ(Xm,Xm+1)

∂θ

∣∣∣ξ1, ξ0, . . .

}

− Eθ0
{
∂ logpθ(XmXm+1)

∂θ

∣∣∣ξ0, ξ−1, . . .

}
.

Under their Assumptions 1–4, Bickel and Ritov [6] showed that H ∈ L2(P θ0
) and

defined IH(θ0) := Eθ0{HHt }. They also showed that

lim
n→∞

1

n
Eθ0

((
∂ log‖Tnπ‖|θ=θ0

∂θ

)(
∂ log‖Tnπ‖|θ=θ0

∂θ

)t)
= IH(θ0).

In this paper we represent the log likelihood function of an additive functional of
the Markov chain {((Xn, ξn),Mn), n ≥ 0} in (5.7), and then apply the strong law
of large numbers for Markovian iterated random functions given in Theorem 1(iv)
to have, with probability 1,

lim
n→∞

1

n

∂2

∂θi ∂θj

log‖Pθ (ξn) ◦ · · · ◦ Pθ (ξ1) ◦ Pθ (ξ0)π‖ = −Iij (θ).

Hence, under Assumptions 1–4 of [6], I(θ) is well defined and is equal to IH (θ).
The moment condition in Assumption 4 of [6] can be relaxed to the follow-
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ing: there exists a δ > 0 with ρ0(ξ) := sup|θ−θ0|<δ maxx,y∈X
f (ξ ;θ |x)
f (ξ ;θ |y)

, such that

supx∈X P θ0{ρ0(ξ1) = ∞|X0 = x} < 1; see [7].

LEMMA 6. Assume C1–C5 hold. Let l′j (θ0) = ∂l(θ)/∂θj |θ=θ0 . Then,
as n → ∞,

1√
n
(l′j (θ0))j=1,...,q −→ N

(
0, I(θ0)

)
in distribution.(5.10)

THEOREM 5. Assume C1–C5 hold. Then there exists a sequence of solutions
θ̂n of (5.1) such that θ̂n → θ0 in probability. Furthermore,

√
n(θ̂n − θ0) is as-

ymptotically normally distributed with mean zero and variance–covariance matrix
I−1(θ0).

Since the proof of Theorem 5 follows a standard argument, we will not give it
here.

COROLLARY 2. Under the assumptions of Theorem 5, if the likelihood equa-
tion has a unique root for each n and all ξ1, . . . , ξn, then there is a consistent
sequence of estimators θ̂n of the unknown parameters θ0.

Next, we prove strong consistency of the MLE when the log likelihood function
is integrable. A crucial step is to give an appropriate definition of the Kullback–
Leibler information for state space models, so that we can apply Theorem 1 to
have a standard argument of strong consistency for the MLE. Here, we define the
Kullback–Leibler information as

K(θ0, θ) = Eθ0
�

(
log

‖Pθ0(ξ1) ◦ Pθ0(ξ0)πθ0‖
‖Pθ (ξ1) ◦ Pθ (ξ0)πθ‖

)
(5.11)

:=
∫

log
‖Pθ0(ξ1) ◦ Pθ0(ξ0)πθ0‖
‖Pθ (ξ1) ◦ Pθ (ξ0)πθ‖ �

(
d(x, ξ) × dπθ0

)
.

THEOREM 6. Assume that C1, C6–C9 hold and let θ̂n be the MLE based on n
observations ξ0, ξ1, . . . , ξn. Then θ̂n −→ θ0 P θ0-a.s. as n → ∞.

Since the proof of Theorem 6 follows a standard argument, we will not give it
here.

To derive the Edgeworth expansion for the MLE, we need to define the fol-
lowing notation and assumptions first. For nonnegative integral vectors ν =
(ν(1), . . . , ν(q)), write |ν| = ν(1) + · · · + ν(q), ν! = ν(1)! · · ·ν(q)!, and let Dν =
(D1)

ν(1) · · · (Dq)
ν(q)

denote the νth derivative with respect to θ . Suppose assump-
tions C2, C3, C4 and C5 are strengthened so that there exists r ≥ 3, as follows.



LIKELIHOOD ESTIMATION IN SSM 2049

C2′. The true parameter θ0 is an interior point of 
. For all x ∈ X, s0, s1 ∈ Rd ,
θ ∈ 
 ⊂ Rq , the partial derivatives

D1f (s0; θ |x), D2f (s0; θ |x), . . . ,Drf (s0; θ |x),

as well as the partial derivatives

D1f (s1; θ |x, s0), D2f (s1; θ |x, s0), . . . ,D
rf (s1; θ |x, s0),

and for all x, y ∈ X, θ → pθ(x, y) and θ → πθ(x) have r − 1 continuous deriva-
tives in some neighborhood Nδ(θ0) := {θ : |θ − θ0| < δ} of θ0.

C3′.∫
X

sup
θ∈Nδ(θ0)

|D1πθ(x)|m(dx) < ∞, . . . ,

∫
X

sup
θ∈Nδ(θ0)

|Dr−1πθ(x)|m(dx) < ∞,

and for all x ∈ X,∫
X

sup
θ∈Nδ(θ0)

|D1pθ(x, y)|m(dy) < ∞, . . . ,

∫
X

sup
θ∈Nδ(θ0)

|Dr−1pθ(x, y)|m(dy) < ∞.

C4′. For all x ∈ X, s0 ∈ Rd and θ ∈ 
,

Eθ
x

∣∣Dνf (ξ0; θ |x)
∣∣r < ∞, Eθ

(x,s0)

∣∣Dνf (ξ1; θ |x, s0)
∣∣r < ∞,

for 1 ≤ |ν| ≤ r , and

Eθ
x

(
sup

θ∈Nδ(θ0)

∣∣Dνf (ξ0; θ |x)
∣∣r) < ∞,

Eθ
(x,s0)

(
sup

θ∈Nδ(θ0)

∣∣Dνf (ξ1; θ |x, s0)
∣∣r) < ∞,

for |ν| = r + 1.
C5′.

sup
x∈X

Eθ0
x

(
sup

|θ−θ0|<δ

sup
y,z∈X

f (ξ0; θ |y)f (ξ1; θ |y, ξ0)

f (ξ0; θ |z)f (ξ1; θ |z, ξ0)

)r

< ∞.

We will assume conditions (4.16) and (4.17) hold for Z
(ν)
j := Dν logp1(ξ0,

ξ1; θ0), 1 ≤ |ν| ≤ r . Let Zj := {Z(ν)
j : 1 ≤ |ν| ≤ r} be p-dimensional random vec-

tors for j ≥ 1, where p is the number of all distinct multi-indices ν, 1 ≤ |ν| ≤ r .
In the following, denote Z̄ = (1/n)

∑n
k=1 Zk .

Use a standard argument involving the sign change of a continuous function,
or a fixed point theorem in the multi-parameter case (cf. [4]), to prove that the
likelihood equation has a solution which converges in probability to θ0. Note that
the following notation is interpreted in the multi-dimensional sense. Applying the
moderate deviation result on Z̄ in Theorem 4, it is possible to ensure that, with
P θ0 -probability 1 − o(n−1), θ̂n satisfies the likelihood equation and lies on (θ0 ±
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logn/
√

n ). It is this solution we take as our θ̂n. If the likelihood equation has
multiple roots, assume we have a consistent estimator Tn such that Tn lies in (θ0 ±
logn/

√
n ) with P θ0 -probability 1 −o(n−1). In this case, we may take the solution

nearest to Tn. By the preceding reasoning, this solution, which is identifiable from
the sample, will lie in (θ0 ± logn/

√
n ) with P θ0 -probability 1 − o(n−1).

Clearly, with θ̂n as above, with probability 1 − o(n−1),

0 = Z̄(es) +
r−1∑
|ν|=1

1

ν! Z̄
(es+ν)(θ̂n − θ0)

ν + Rn,s(θ̂n), 1 ≤ s ≤ q,(5.12)

where es has 1 as the sth coordinate and zeros otherwise.
We rewrite equation (5.12) as

0 = A(Z̄, θ̂n) + Rn.(5.13)

Note 0 = A(γ (θ0), θ0) and ∂A
∂θ

|γ (θ0),θ0 = −(Fisher information) 
= 0.

Hence, by the implicit function theorem, there are a neighborhood N of γ and
q uniquely defined real-valued infinitely differentiable functions gi (1 ≤ i ≤ q)
on N such that θ = g(z) = (g1(z), . . . ,gq(z)) satisfies (5.13). This implies, with
probability 1 − o(n−1), |θ̂n − θ0| ≤ K(logn/

√
n )4.

To derive the asymptotic expansion of P θ0{√n(θ̂n − θ0) ∈ B}, note that θ̂n =
g(n−1Zn), where g : Rp → Rq is sufficiently smooth in some neighborhood of γ .
For the case of i.i.d. ξn, Bhattacharya and Ghosh [4] made use of the Edgeworth
expansion of the distribution of (Sn − nγ )/

√
n to derive an Edgeworth expan-

sion of the distribution of
√

n{g(n−1Sn) − g(γ )}. Making use of Theorem 4 and a
straightforward extension of their argument, we can generalize their result to have
the following theorem.

THEOREM 7. Assume C1, C2′–C5′ hold for some r ≥ 3. Assume (4.16)
and (4.17) hold. Let Jg = (Dj gi (γ ))1≤i≤q,1≤j≤p be the q × p Jacobian matrix
and let V (g) = JgV J ′

g. Then there exists a sequence of solutions θ̂n of (5.1), and
there exist polynomials pj in q variables (1 ≤ j ≤ r − 2) such that

sup
B∈Ba,c

∣∣∣∣∣Pθ0
ν

{√
n(θ̂n − θ0) ∈ B

} −
∫
B

{
φV (g)(y) +

r−2∑
j=1

n−j/2φj,V,g(y)

}
dy

∣∣∣∣∣
= o

(
n−(r−2)/2)

,

where φj,V,g = π̃j,g(−D)φV and π̃j,g(y) is a polynomial in y(∈ Rp) whose coef-
ficients are smooth functions of the partial derivatives of λ(α) at α = 0 up to order
j + 2, and those of ναQαh1 at α = 0 up to order j together with those of g at µ

up to order j + 1.

The application of Theorem 7 to third-order efficiency for the MLE and third-
order efficient approximate solution of the likelihood equation follows directly
from [28].
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6. Examples. From a theoretical point of view, Theorems 5–7 are adequate
for state space model estimation problems in providing assurance of the existence
of efficient estimators, characterizing them as solutions of likelihood equations
and prescribing their asymptotic behavior. In practice, however, one must still
contend with certain statistical and numerical difficulties, such as implementa-
tion of the maximum likelihood estimator. In this section we apply our results
to study some examples which include Markov switching models ARMA models,
(G)ARCH models and SV models. For simplicity, in these examples we consider
only specific structure of normal error assumption in most cases. Although strong
consistency and asymptotic normality of the MLE in ARMA and GARCH(p, q)

have been known in the literature, we provide alternative proofs in the framework
of state space models. Furthermore, we can apply Theorem 7 to have Edgeworth
expansion for the MLE. To the best of our knowledge, the asymptotic normality
of the MLE in the AR(1)/ARCH(1) model, considered in Section 6.3, seems to
be new. The results of asymptotic properties for the MLE in stochastic volatility
models not only provide theoretical justification, but also give some insight into
the structure of the likelihood function, which can be used for further study.

6.1. Markov switching models. We start with a simple real-valued fourth-
order autoregression around one of two constants, µ1 or µ2:

ξn − µXn =
4∑

k=1

ϕk

(
ξn−k − µXn−k

) + εn,(6.1)

where εn ∼ N(0, σ 2), and {Xn,n ≥ 0} is a two-state Markov chain. This model
was studied by Hamilton [33] in order to analyze the behavior of U.S. real GNP.
To apply our theory in the form of (6.1), we consider a simple case of order 1 in
(6.1). In this case, the likelihood function for given Xn = xn, n ≥ 0, is

f (ξn|xn; θ) = 1√
2πσ

exp
(−[(

ξn − µxn

) − ϕ1
(
ξn−1 − µxn−1

)]2
/(2σ 2)

)
.(6.2)

Denote by [pxy]x,y=1,2 the transition probability of the underlying Markov chain
{Xn,n ≥ 0} and let θ = (p11,p21, ϕ1,µ1,µ2, σ

2) be the unknown parameter. As-
sume that |ϕ1| < 1, and that there exists a constant c > 0 such that σ 2 > c. More-
over, we assume that µ1 
= µ2 such that the identifiability condition C6 holds.
Since the state space of Xn is finite, we consider 0 < pxy < 1 for all x, y = 1,2,
and let w(x) = |x| + 1 such that the condition C1 holds. Under the normal distrib-
ution assumption, it is easy to see that conditions C2–C4 and C7–C9 are satisfied
in this model. To check that C5 holds note that condition C5 reduces to

sup
x∈X

Eθ0

x

([
sup

|θ−θ0|<δ

max
y,z∈X

f (ξ0; θ |y)f (ξ1; θ |y, ξ0)

f (ξ0; θ |z)f (ξ1; θ |z, ξ0)

]2)
< ∞.(6.3)

Since the maximum over x, y and z is applied to a finite set X, and f defined in
(6.1) is a normal density, it is easy to check that (6.3) is satisfied.



2052 C.-D. FUH

When ξn = Xn as in (6.1), that is, µ1 = µ2 = µ are given, this reduces to
the classical autoregressive model with unknown parameters θ = (ϕ1, . . . , ϕ4, σ

2).
The Fisher information matrix is then given by

I(θ) =
(

σ−2� 0

0 2(σ 4)−1

)
,(6.4)

where � = (γi−j )4×4 for 1 ≤ i, j ≤ 4 with γk = EXnXn+k . A simple calculation
shows that (5.9) reduces to (6.4) in this case. When ϕk = 0 as in (6.1), this is the
hidden Markov model with normal mixture distributions considered in Example 1
of [7].

6.2. ARMA models. We start with a univariate Gaussian causal ARMA(p, q)

model which can be written as a state space model by defining r = max{p,q + 1},
ξn − µ = α1(ξn−1 − µ) + α2(ξn−2 − µ) + · · · + αr(ξn−r − µ)

(6.5)
+ εn + β1εn−1 + β2εn−2 + · · · + βr−1εn−r+1,

where αj = 0 for j > p and βj = 0 for j > q . Furthermore, we assume εn are i.i.d.
random variables with distribution N(0, σ 2). Asymptotic properties of the MLE in
the ARMA model can be found in [35] and [53]. A general treatment of the MLE
in the Gaussian ARMAX model can be found in Chapter 7 of [11].

By using the same idea as that in [34], we consider the following state space
representation of (6.5):

Xn+1 =




α1 α2 · · · αr−1 αr

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0




Xn +




εn+1

0

0
...

0




(6.6)

and

ξn = µ + [1 β1 β2 · · ·βr−1 ]Xn.(6.7)

Assume that the roots of 1 − α1z − α2z
2 − · · · − αpzp = 0 lie outside the unit

circle. It is easy to see that {Xn,n ≥ 0} forms a w-uniformly ergodic Markov
chain with w(x) = ‖x‖2 (cf. Theorem 16.5.1 in [46]). And ξn are conditionally
independent given {Xn,n ≥ 0}. Since the verification of the weighted mean con-
traction property and the weighted moment assumption is the same as those in
Remark 2(b), it will not be repeated here. This implies that condition C1 holds.
The assumption εn ∼ N(0, σ 2) also implies that conditions C2–C5, C2′–C5′ and
C7–C9 are satisfied in model (6.5). Since the verification is straightforward, we do
not report it here. Suppose the conditional distribution of ξn given X0, . . . ,Xn is
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of the form FXn−1,Xn from (6.7). The Cramér conditions (4.16) and (4.17) hold for

Z
(ν)
j := Dν logp1(ξ0, ξ1; θ0), since the conditional density of ξn given {xn,n ≥ 0}

is N(0, σ 2) and

lim sup
|θ |→0

∣∣∣∣
∫ ∞
−∞

∫ ∞
−∞

{∫ ∞
−∞

eiθξ dFx,αx+z(ξ)

}
ϕ(z) dzπ(dx)

∣∣∣∣ < 1,(6.8)

where ϕ(·) is the normal density function of ε1, and π is the stationary distribu-
tion of {Xn}. The identification issue in C6 can be found in Chapter 9 of [11] or
Chapter 13 of [34].

6.3. (G)ARCH models. In this subsection we study two specific (G)ARCH
models. To start with, we consider the AR(1)/ARCH(1) model

Xn = β0 + β1Xn−1 +
√

α0 + α1X
2
n−1εn,(6.9)

where αi, βi are unknown parameters for i = 0,1 with α0 > 0,0 < α1 < 1, 3α2
1 <

1 and 0 < β1 < 1. Here εn are i.i.d. random variables with the standard normal
distribution. Note that in (6.9) X = (Xn) is defined as the autoregressive scheme

AR(1) with ARCH(1) noise (
√

α0 + α1X
2
n−1εn)n≥1. When β0 = β1 = 0, this is

the classical ARCH(1) model first considered by Engle [19].
Model (6.9) is conditionally Gaussian, and therefore the likelihood function of

the parameter θ = (α0, α1, β0, β1) for given observations x = (x0 = 0, x1, . . . , xn)

from (6.9) is

l(x; θ) = (2π)−n/2
n∏

k=1

(α0 + α1x
2
k−1)

−1/2

(6.10)

× exp

{
−1

2

n∑
k=1

(xk − β0 − β1xk−1)
2

α0 + α1x
2
k−1

}
.

Assume β0 = 0 and α0, α1 are given. The maximum likelihood estimator β̂1 of
β1 is the root of the equation ∂l(x; θ)/∂β1 = 0. In view of (6.9) and (6.10), we
obtain

β̂1 =
∑n

k=1(xk − β0)xk−1/(α0 + α1x
2
k−1)∑n

k=1 x2
k−1/(α0 + α1x

2
k−1)

(6.11)

= β1 +
∑n

k=1 xk−1εk/
√

α0 + α1x
2
k−1∑n

k=1 x2
k−1/(α0 + α1x

2
k−1)

.

Meyn and Tweedie [46], pages 380 and 383, establish w-uniform ergodicity
[with w(x) = |x|+1] of the AR(1) model Xn = β0 +β1Xn−1 +εn by proving that
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a drift condition is satisfied, where |β1| < 1 and the εn are i.i.d. random variables,
with E|εn| < ∞, whose common density function q with respect to Lebesgue
measure is positive everywhere. The strongly nonlattice condition holds as that
in model (6.5). By using an argument similar to Theorem 1 of [45], we have the
asymptotic identifiability of the likelihood function (6.10). Letting ξn = Xn, and
using an argument similar to that in Remark 2(b), condition C1 holds. The verifica-
tion of conditions C2–C9 and C2′–C5′ is straightforward and tedious, and is thus
omitted. By Theorems 5–7, we have the strong consistency, asymptotic normality
and Edgeworth expansion of the MLE β̂1. The asymptotic properties of the MLE
of β0, α0 and α1 can be verified in a similar way.

Next, we consider the GARCH(p, q) model of (1.1) in Example 1. It is known
that the necessary and sufficient condition for (1.1) defining a unique strictly sta-
tionary process {Yn,n ≥ 0} with EY 2

n < ∞ is

p∑
i=1

αi +
q∑

j=1

βj < 1.(6.12)

We assume (6.12) holds.
Similar to the estimation for ARMA models, the most frequently used estimators

for GARCH models are those derived from a (conditional) Gaussian likelihood
function (cf. [20]). Without the normal assumption of εn in (1.1), and imposing
the moment condition E(ε4

1) < ∞, Hall and Yao [32] established the asymptotic
normality of the conditional maximum likelihood estimator in GARCH(p, q).
They also established asymptotic results when the case of the error distribu-
tion is heavy-tailed. Earlier in the literature, when p = q = 1, Lee and Hansen
[43] and Lumsdaine [45] proved, under some regularity conditions, the consis-
tency and asymptotic normality for the quasi-maximum likelihood estimator in
the GARCH(1,1) model.

By using the state space representation (1.2) and (1.3), it is known (cf. Theo-
rem 3.2 of [1]) that the Markov chain {Xn,n ≥ 0} defined in (1.3) is stationary if
and only if the top Lyapunov exponent γ of An is strictly negative. It is easy to see
that {Xn,n ≥ 0} is an aperiodic, irreducible and w-uniformly [with w(x) = ‖x‖2]
ergodic Markov chain. Furthermore, we assume εn are i.i.d. random variables with
distribution N(0, σ 2). An argument similar to that in Remark 2(b) leads to condi-
tion C1 holding. The normal error assumption also implies that conditions C2–C5,
C2′–C5′ and C7–C9 are satisfied in model (1.3). When p = q = 1, Theorem 1
of [45] proves the asymptotic identifiability of the likelihood function.

6.4. Stochastic volatility models. Consider the stochastic volatility model
(1.4)–(1.8). To check that condition C1 holds, we note that w(x) = |x| + 1 in
the AR(1) model Xn = αXn−1 + ηn by proving that a drift condition is satisfied,
where |α| < 1 and the ηn are i.i.d. random variables, with E|η1| < ∞, whose com-
mon density function q with respect to Lebesgue measure is positive everywhere.
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Since εn ∼ N(0,1), ζn = log ε2, ηn ∼ N(0, σ 2
η ), and ζn and ηn are mutually inde-

pendent, an argument similar to that in Remark 2(b) leads to the result that the rest
of condition C1 holds. Conditions C2–C5, C2′–C5′ and C7–C9 are also satisfied in
model (1.5) and (1.6) (cf. pages 22–23 of [50]). Denote ξn := logY 2

n . Note that the
conditional density of Xn exists, and this implies that the conditional distribution
of ξn given X0, . . . ,Xn is of the form FXn−1,Xn such that

lim sup
|t |→0

∣∣∣∣
∫
X

∫ ∞
−∞

{∫ ∞
−∞

eits dFx,αx+z(s)

}
ϕ(z) dzπ(dx)

∣∣∣∣ < 1,(6.13)

where ϕ(·) is the normal density function of ζ1 and π is the stationary distribution
of {Xn}. Let Sn = ∑n

i=1 ξi , S0 = 0. Then {(Xn,Sn), n ≥ 0} is strongly nonlattice.
To check the identification condition C6, the reader is referred to Chapter 13 of [34]
and Section 2.4.3 of [29].

Next, we assume that εn ∼ N(0,1), ζn = log ε2
n and ηn is a sequence of i.i.d.

double exponential(1) random variables. Furthermore, we assume ζn and ηn are
mutually independent. By using an argument similar to that in Remark 2(b), con-
dition C1 holds. Simple calculations also lead conditions C2–C5, C2′–C5′ and
C7–C9 to hold in this case. Under the assumption that the conditional distrib-
ution of ξn given X0, . . . ,Xn is of the form FXn−1,Xn such that (6.13) holds,
{(Xn,Sn), n ≥ 0} is strongly nonlattice.

Without the normal assumption, quasi-maximum likelihood (QML) estimators
of the parameters are obtained by treating ζn and ηn as though they were normal
and maximizing the prediction error decomposition form of the likelihood obtained
via the Kalman filter or implied volatility. That is, we assume that ζn is a sequence
of independent and identically distributed N(0, σ 2

ζ ) random variables. For given
observations y = (logy2

1 , . . . , logy2
n) from (1.5) and (1.6), the likelihood function

of the parameter θ = (α,σ 2
η , σ 2

ζ ) is

l(y; θ) =
∫
x0∈X

· · ·
∫
xn∈X

π(x0)(2πσ 2
ζ )−n/2

×
n∏

k=1

p(xk−1, xk)(6.14)

× exp

{
−1

2

n∑
k=1

(logy2
k − ω − xk)

2

σ 2
ζ

}
dx0 dx1 · · ·dxn,

where p(xk−1, xk) is defined in (1.7). By using the results of [16], Harvey, Ruiz
and Shephard [36] showed that the quasi-maximum likelihood estimators are as-
ymptotically normal under some regularity conditions. Further study of the MLE
in stochastic volatility models will be published in a separate paper.
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7. Proofs of Lemmas 3–6. For convenience of notation, denote {Zn,n ≥
0} := {((Xn, ξn),Mn), n ≥ 0} as the Markov chain induced by the Markovian iter-
ated random functions system (2.4)–(2.7) on the state space (X× Rd)× M. In the
proof of Lemma 3, we omit θ in Pθ (·) for simplicity.

PROOF OF LEMMA 3. We consider only the cases of P(ξ1), since the cases of
P(ξ0) and P(ξj ), for j = 2, . . . , n, are a straightforward consequence. For any two
elements h1, h2 ∈ M, and two fixed elements s0, s1 ∈ Rd , by (5.8) we have

d
(
P(s1)h1,P(s1)h2

)
= sup

x0∈X

∣∣∣∣
∫

pθ(x0, x1)f (s1; θ |x1, s0)h1(x1)m(dx1)

−
∫

pθ(x0, x1)f (s1; θ |x1, s0)h2(x1)m(dx1)

∣∣∣∣
≤ d(h1, h2) sup

x0∈X

∫
pθ(x0, x1)f (s1; θ |x1, s0)m(dx1)

≤ C

(
sup
x0∈X

∫
pθ(x0, x1)m(dx1)

)
d(h1, h2),

where 0 < C = supx1∈X f (s1; θ |x1, s0) < ∞ by assumption C1 is a constant. Note
that supx0∈X

∫
pθ(x0, x1)m(dx1) = 1. The equality holds only if h1 = h2 m-almost

surely. This proves the Lipschitz continuous condition in the second argument.
Note that C1 implies Assumption K1 holds. Recall that Mn = P(ξn) ◦ · · · ◦

P(ξ1) ◦ P(ξ0) in (5.6). To prove the weighted mean contraction property K2, we
observe that, for p ≥ 1,

sup
x0,s0

E(x0,s0)

{
log

(
Lp

w(Xp, ξp)

w(x0, s0)

)}

= sup
x0,s0

E(x0,s0)

{
log

(
sup

h1 
=h2

d(Mph1,Mph2)

d(h1, h2)

w(Xp, ξp)

w(x0, s0)

)}

< sup
x0,s0

E(x0,s0)

{
log

([
sup
x0∈X

∫
pθ(x0, x1)f (ξ1; θ |x1, s0)m(dx1)

]p

(7.1)

× w(Xp, ξp)

w(x0, s0)

)}

< 0.

The last inequality follows from (5.2) in condition C1.
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To verify that Assumption K3 holds, as m is σ -finite, we have X = ⋃∞
n=1 Xn,

where the Xn are pairwise disjoint and 0 < m(Xn) < ∞. Set

h(x) =
∞∑

n=1

IXn(x)

2nm(Xn)
.(7.2)

It is easy to see that
∫
x∈X h(x)m(dx) = 1 and, hence, belongs to M. Observe that

Ed2(
P(ξj )h,h

)
= E sup

xj−1∈X

∣∣∣∣
∫

pθ(xj−1, xj )(7.3)

× f (ξj ; θ |xj , ξj−1)h(xj )m(dxj ) − h(xj−1)

∣∣∣∣.
By definition of h(x) in (7.2), it is piecewise constant, and pθ(xj−1, xj )f (ξj ;
ϕxj

(θ)|ξj−1) is a probability density function integrable over the subset Xn. These
imply (7.3) is finite.

Finally, we observe

sup
x0,s0

E(x0,s0)

{
L1

w(X1, ξ1)

w(x0, s0)

}

= sup
x0,s0

E(x0,s0)

{
sup

h1 
=h2

d(P(ξ1)h1,P(ξ1)h2)

d(h1, h2)

w(X1, ξ1)

w(x0, s0)

}

< sup
x0,s0

E(x0,s0)

{
sup
x0∈X

∫
pθ(x0, x1)f (ξ1; θ |x1, s0)m(dx1)

w(X1, ξ1)

w(x0, s0)

}
< ∞.

The last inequality follows from (5.3) in condition C1.
Note that C5 implies the exponential moment condition of g. Hence, the proof

is complete. �

In the proof of Lemma 4 we omit θ for simplicity.

PROOF OF LEMMA 4. We first prove that {Zn,n ≥ 0} is Harris recurrent. Note
that the transition probability kernel of the Markov chain {(Xn, ξn), n ≥ 0}, defined
in (2.1) and (2.2), has a probability density with respect to m×Q. And the iterated
random functions system, defined in (2.4)–(2.7), also has a probability density with
respect to Q. By making use the definition (3.2), there exists a measurable function
g : (X × Rd × M) × (X × Rd × M) → [0,∞) such that

P(z, dz′) = g(z, z′)(m × Q × Q)(dz′),(7.4)

where
∫
(X×Rd )×M g(z, z′)(m × Q × Q)(dz′) = 1 for all z ∈ (X × Rd) × M. For

simplicity of notation, we let �(·) := (m × Q × Q)(·) in the proof. For given
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n > 1, let Pn(z, ·) := Pz(Zn ∈ ·) for z ∈ (X × Rd) × M. For A ∈ B(X × Rd) and
B ∈ B(M), define

�n(A × B) :=
∫
(X×Rd )×M

Pz′ {Zn ∈ A × B}�(dz′).

Then for all A ∈ B(X × Rd) and B ∈ B(M),

Pn+1(z,A × B) =
∫
(X×Rd )×M

Pn(z′,A × B)g(z, z′)�(dz′)

=
∫
(X×Rd )×M

Pz′ {Zn ∈ A × B}g(z, z′)�(dz′).

It is easy to see that, for given any n > 1, the family (Pn+1(z, ·))z∈(X×Rd )×M
is absolutely continuous with respect to �n. Therefore, by the Radon–Nikodym
theorem, Pn has a probability density with respect to �n for all n ≥ 1. Let gn be
such that

Pn+1(z, dz′) = gn(z, z
′)�n(dz′), z ∈ (X × Rd) × M,(7.5)

where
∫
(X×Rd )×M gn(z, z

′)�n(dz′) = 1 for all z ∈ (X × Rd) × M. Note that
g1 = g. It is easy to check that all �n are absolutely continuous with respect to �.

Denote Bc as the complement of B . Since �(((X × Rd) × M)c) = 0, also
�(((X × Rd) × M)c) = 0. Recall g is defined in (7.4). It is obvious from the
previous considerations that we can choose δ > 0 sufficiently small such that∫

(X×Rd )×M

∫
(X×Rd )×M

∫
(X×Rd )×M

1{g2≥δ}(z1, z2)

× 1{g≥δ}(z2, z3)�(dz3)�
2(dz2)�(dz1) > 0.

Hence, by Lemma 4.3 of [48], there exist a �-positive set �1 ⊂ (X × Rd) × M
and a �-positive set �2 ⊂ (X × Rd) × M such that

α := inf
z1∈�1,z3∈�2

�2{z2 ∈ (X × Rd) × M :g2(z1, z2) ≥ δ, g(z2, z3) ≥ δ} > 0.

A combination of the above result with (7.4) and (7.5) implies

P3(z1,A × B) =
∫
(X×Rd )×M

P(z2,A × B)P2(z1, dz2)

≥
∫
(X×Rd )×M

g2(z1, z2)

∫
(A×B)∩�2

g(z2, z3)�(dz3)�
2(dz2)(7.6)

≥ αδ2�
(
(A × B) ∩ �2

)
for all z1 ∈ �1 and A×B ∈ B((X × Rd) × M). Therefore, we obtain an absorbing
set such that �1 is a regeneration set for {Zn,n ≥ 0} on (X × Rd) × M, that is,
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�1 is recurrent and satisfies a minorization condition, namely, (7.6). This proves
the Harris recurrence of {Zn,n ≥ 0} on (X×Rd)×M. Since {Zn,n ≥ 0} possesses
a stationary distribution, it is clearly positive Harris recurrent.

Next, we give the proof of aperiodicity. If {Zn,n ≥ 0} were q-periodic with
cyclic classes �1, . . . ,�q , say, then the q-skeleton (Znq)n≥0 would have station-
ary distributions �(·∩�k)

�(�k)
for k = 1, . . . , q . On the other hand, Zqn is aperiodic by

definition, and Mnq is also a Markovian iterated random functions system of Lip-
schitz maps, satisfying condition C1, and thus possesses only one stationary distri-
bution. Consequently, q = 1 and {Zn,n ≥ 0} is aperiodic. Since the Markov chain
{((Xn, ξn),Mn), n ≥ 0} has a probability density with respect to �, it is obviously
�-irreducible. The proof is complete. �

PROOF OF LEMMA 5. In order to define the Fisher information (5.9), we need
to verify that there exists a δ > 0, such that ∂ log‖Pθ (ξ1) ◦ Pθ (ξ0)π‖/∂θ ∈ L2(Pθ

�)

for θ ∈ Nδ(θ0), a δ-neighborhood of θ0. That is, we need to show

Eθ
�

(
∂ log‖Pθ (ξ1) ◦ Pθ (ξ0)π‖

∂θ

)2

< ∞,(7.7)

for θ ∈ Nδ(θ0).

It is easy to see that C5 implies that

sup
x∈X

Eθ
x

(
∂ log

∫
y∈X π(x)p(x, y)f (ξ0; θ |x)f (ξ1; θ |y, ξ0)m(dy)

∂θ

)2

< ∞

for θ ∈ Nδ(θ0). And this leads to

sup
x∈X

Eθ
x

(
∂ log

∫
y∈X π(x)p(x, y)f (ξ0; θ |x)f (ξ1; θ |y, ξ0)m(dy)

∂θ

)2

< ∞(7.8)

for θ ∈ Nδ(θ0), where Eθ
x is the expectation under Pθ (·, ·).

Finally, (7.8) implies (7.7) and we have the proof. �

PROOF OF LEMMA 6. For each j = 1, . . . , q ,

1√
n
l′j (θ0) = 1√

n

∂

∂θj

log‖Pθ (ξn) ◦ · · · ◦ Pθ (ξ1) ◦ Pθ (ξ0)π‖
∣∣∣∣
θ=θ0

= 1√
n

n∑
k=1

(
∂

∂θj

log
‖Pθ (ξk) ◦ · · · ◦ Pθ (ξ1) ◦ Pθ (ξ0)π‖

‖Pθ (ξk−1) ◦ · · · ◦ Pθ (ξ1) ◦ Pθ (ξ0)π‖
∣∣∣∣
θ=θ0

)

= 1√
n

n∑
k=1

∂

∂θj

g(Mk−1,Mk)

∣∣∣∣
θ=θ0

.
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Now, for each h ∈ M, α = (α1, . . . , αq) ∈ Cq , and a (X × Rd) × M measurable
function ϕ with ‖ϕ‖wh < ∞, define

(T1(α)ϕ)
(
(x, s), h

)
= Eθ0

(x,s)

{
exp

(
(α1, . . . , αq)

′
(

∂

∂θ1
log‖Pθ (ξ1) ◦ Pθ (ξ0)h‖

∣∣∣∣
θ=θ0

, . . . ,

(7.9)
∂

∂θq

log‖Pθ (ξ1) ◦ Pθ (ξ0)h‖
∣∣∣∣
θ=θ0

))

× ϕ
(
(X1, ξ1),Pθ (ξ1) ◦ Pθ (ξ0)h(x)

)}
.

By using an argument similar to that of Lemma 2, we have, for sufficiently
small |α|, T1(α) is a bounded and analytic operator. Let λ

θ0
T1

(α) be the eigen-
value of T1(α) corresponding to a one-dimensional eigenspace. Define γj as that
in Lemma 2(v). By conditions C1–C5 and Lemma 4, it is easy to see that

γj = ∂

∂αj

λ
θ0
T1

(α)

∣∣∣∣
α=0

= Eθ0
�

(
∂

∂θj

log‖Pθ (ξ1) ◦ Pθ (ξ0)π‖
∣∣∣∣
θ=θ0

)
= 0.(7.10)

By Corollary 1, we have

1√
n
(l′j (θ0))j=1,...,q −→ N

(
0,�(θ0)

)
in distribution,(7.11)

where the variance–covariance matrix

�(θ0) = (�ij (θ0)) =
(∂2λ

θ0
T1

(α)

∂αi ∂αj

∣∣∣∣
α=0

)
i,j=1,...,q

.(7.12)

In the following, we will verify that the variance–covariance matrix �(θ0) de-
fined as (7.12) is the Fisher information matrix I(θ0). By Lemma 2 and Corollary 1,
we have

Eθ0
�

((
∂

∂θj

log‖Mnπ‖
∣∣∣∣
θ=θ0

)(
∂

∂θk

log‖Mnπ‖
∣∣∣∣
θ=θ0

))
− n

∂2

∂αj ∂αk

λ
θ0
T1

(α)

∣∣∣∣
α=0

−→ 0

as n → ∞. Therefore,

�jk(θ0) = ∂2

∂αj ∂αk

λ
θ0
T1

(α)

∣∣∣∣
α=0

= lim
n→∞

1

n
Eθ0

�

(
∂

∂θj

log‖Mnπ‖
∣∣∣∣
θ=θ0

)(
∂

∂θk

log‖Mnπ‖
∣∣∣∣
θ=θ0

)

= lim
n→∞−1

n
Eθ0

�

(
∂2

∂θj ∂θk

log‖Mnπ‖
∣∣∣∣
θ=θ0

)
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= −Eθ0
�

(
∂2

∂θj ∂θk

log‖Pθ (ξ1) ◦ Pθ (ξ0)π‖
∣∣∣∣
θ=θ0

)

= Eθ0
�

(
∂

∂θj

log‖Pθ (ξ1) ◦ Pθ (ξ0)π‖
∣∣∣∣
θ=θ0

)

×
(

∂

∂θk

log‖Pθ (ξ1) ◦ Pθ (ξ0)π‖
∣∣∣∣
θ=θ0

)

= Ijk(θ0). �

APPENDIX

Proofs of Lemma 1 and Theorem 2. In the following proofs we will use the
same notation as in Sections 3 and 4 unless specified. Without loss of general-
ity, in this section we consider the case M0 = Id, the identity, and the transition
probability P of the Markov chain {(Yn,Mn), n ≥ 0} depends on the initial state
Y0 = y only. Denote it as Py , and let Ey be the corresponding expectation. To
prove Lemma 1, we need the following lemma first.

LEMMA A.1. Let {(Yn,Mn), n ≥ 0} be the MIRFS of Lipschitz functions de-
fined in (2.1) satisfying Assumption K. There exists 0 < δ0 < 1 such that, for all
0 < δ ≤ δ0, there exist K > 0, and 0 < η < 1, so that

sup
y

Ey

{(
d(Mu

n ,Mv
n)

d(u, v)

w(Yn)

w(y)

)δ}
≤ Kηn, for n ∈ N and u, v ∈ M.

PROOF. For given 0 < δ < 1, and y ∈ Y, denote

cn(y) = sup
{

Ey

[(
d(Mu

n ,Mv
n)

d(u, v)

w(Yn)

w(y)

)δ]
:u, v ∈ M

}
,

and let ηn = sup{cn(y), y ∈ Y}. Denote um = Mu
m and vm = Mv

m. Let Fm be the
σ -algebra generated by {(Yk,Mk),0 ≤ k ≤ m}. Then

Ey

{(
d(Mu

n+m,Mv
n+m)

d(u, v)

w(Yn+m)

w(y)

)δ∣∣∣Fm

}

= Ey

{(
d(Fn:m(Mu

m),Fn:m(Mv
m))

d(u, v)

w(Yn+m)

w(y)

)δ∣∣∣Fm

}

=
(

d(Mu
m,Mv

m)

d(u, v)

w(Ym)

w(y)

)δ

Ey

{(
d(Fn:m(um),Fn:m(vm))

d(um, vm)

w(Yn+m)

w(Ym)

)δ∣∣∣Fm

}

=
(

d(Mu
m,Mv

m)

d(u, v)

w(Ym)

w(y)

)δ

EYm

{(
d(M

um
n ,M

vm
n )

d(um, vm)

w(Yn+m)

w(Ym)

)δ}

≤
(

d(Mu
m,Mv

m)

d(u, v)

w(Ym)

w(y)

)δ

cn(Ym) ≤ ηn

(
d(Mu

m,Mv
m)

d(u, v)

w(Ym)

w(y)

)δ

.
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This implies that

Ey

{(
d(Mu

n+m,Mv
n+m)

d(u, v)

w(Yn+m)

w(y)

)δ}

≤ ηnEy

{(
d(Mu

m,Mv
m)

d(u, v)

w(Ym)

w(y)

)δ}
,

or ηn+m ≤ ηnηm. Therefore,

lim
n→∞η1/n

n = inf{η1/n
n , n ∈ N}.(A.1)

It is known by Assumption K2 that there exist p ≥ 1 and d > 0 such

that supy Ey{log(
d(Mu

p,Mv
p)

d(u,v)

w(Yp)

w(y)
)} < −d < 0. Along with supy Ey{w(Yp)

w(y)
} < ∞

by (4.2) and supy Ey{ l(F1)w(Y1)
w(y)

} < ∞ by Assumption K3, we have

ηp ≤ sup
y∈Y

Ey

{(
l(F1)

p w(Yp)

w(y)

)δ}
:= sup

y∈Y
Ey

{
exp

(
δGp + δ log

w(Yp)

w(y)

)}
< ∞,

where Gp = p log l(F1).
Since ey ≤ 1 + y + y2e|y|/2, we have, for y ∈ Y, u, v ∈ M,

Ey

{(
d(Mu

p,Mv
p)

d(u, v)

w(Yp)

w(y)

)δ}

≤ 1 + δEy

{
log

(
d(Mu

p,Mv
p)

d(u, v)

w(Yp)

w(y)

)}

+ δ2Ey

{(
Gp + log

w(Yp)

w(y)

)2

exp
(
δGp + δ log

w(Yp)

w(y)

)}
.

For u, v ∈ M, we have

ηp ≤ 1 − dδ + δ2 sup
y∈Y

Ey

{(
Gp + log

w(Yp)

w(y)

)2

exp
(
δGp + δ log

w(Yp)

w(y)

)}
.

Therefore, we can choose δ0 > 0 small enough so that ηp < 1. Along with (A.1),
we obtain the proof. �

PROOF OF LEMMA 1. For given ϕ ∈ H , y ∈ Y, and u, v ∈ M, if m ≤ n, we
have, for 0 < δ ≤ δ0 < 1,∣∣Tnϕ(y,u) − Eyϕ

(
Yn,Fn:m(v)

)∣∣/w(y)

= ∣∣Eyϕ(Yn,M
u
n ) − Eyϕ

(
Yn,Fn:m(v)

)∣∣/w(y)

≤ ‖ϕ‖hEy

{
d
(
Mu

n ,Fn:m(v)
)δ

w(Yn)
δ}/w(y)
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≤ ‖ϕ‖hEy

{
Ey

[(
d
(
Fn:m(Mu

n−m),Fn:m(v)
) w(Yn)

w(Yn−m)

)δ∣∣∣Fn−m

]
w(Yn−m)δ

w(y)

}

≤ ‖ϕ‖hEy

{
sup

u,v∈M
EYn−m

[(
d(Mu

m,Mv
m)

w(Yn)

w(Yn−m)

)δ]w(Yn−m)δ

w(y)

}

≤ ‖ϕ‖hEy

{
sup

u,v∈M
EYn−m

[(
d(Mu

m,Mv
m)

d(u, v)

w(Yn)

w(Yn−m)

)δ]w(Yn−m)

w(y)

}
.

Note that in the last inequality we use d(u, v) ≤ 1 and w(y) ≥ 1 for all y ∈ Y.
By making use of Lemma A.1, and supy∈Y Ey[w(Y1)/w(y)] < ∞ in (4.2), there

exist K > 0 and 0 < η < 1 such that∣∣Tnϕ(y,u) − Eyϕ
(
Yn,Fn:m(v)

)∣∣/w(y) ≤ ‖ϕ‖hKηm ≤ ‖ϕ‖whKηm.(A.2)

Denote h(y) = Eyϕ(Ym,Fm(v)). Then by assumption (4.1), there exist γ > 0
and 0 < ρ < 1 such that∣∣Eyϕ

(
Yn,Fn:m(v)

) − E�ϕ
(
Ym,Fm(v)

)∣∣/w(y)

≤ ∣∣Ey

{
EYn−mϕ

(
Ym,Fm(v)

)} − E�ϕ
(
Ym,Fm(v)

)∣∣/w(y)
(A.3)

≤
∣∣∣∣Eyh(Yn−m) −

∫
h(y)�(dy)

∣∣∣∣/w(y)

≤ ‖ϕ‖whγρn−m.

For given m,k ∈ N , by using Lemma A.1 again we have∣∣E�ϕ
(
Ym,Fm(v)

) − E�ϕ
(
Ym+k,Fm+k(v)

)∣∣/w(y)

≤ E�

{∣∣ϕ(
Ym+k,Fm+k:k(v)

) − ϕ
(
Ym+k,Fm+k:k(Mv

k )
)∣∣}/w(y)

≤ ‖ϕ‖hE�

{
d
(
Fm+k:k(v),Fm+k:k(Mv

k )
)δ w(Ym+k)

δ

w(y)

}

≤ ‖ϕ‖hE�

{
sup

u,v∈M
EYm

[(
d(Mu

m,Mv
m)

d(u, v)

w(Ym+k)

w(Ym)

)δ]w(Ym)

w(y)

}

≤ ‖ϕ‖whKηm.

By making use of (A.2), (A.3) and the above inequality, we have that for any
given n ≥ m, k ≥ 0, and for all u, v ∈ M,∣∣Tnϕ(y,u) − E�ϕ

(
Ym+k,Fm+k(v)

)∣∣/w(y) ≤ ‖ϕ‖wh(2Kηm + γρn−m).

By setting m = n/2, we have that there exist A > 0 and 0 < r < 1 such that

‖Tnϕ(y,u) − Qϕ(y,u)‖w ≤ ‖ϕ‖whArn.(A.4)
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On the other hand, for u, v ∈ M,

|(Tn − Q)ϕ(y,u) − (Tn − Q)ϕ(y, v)|
(w(y) d(u, v))δ

=
∣∣∣∣Eyϕ(Yn,M

u
n ) −

∫
ϕ(y,u)�(dy × du)

− Eyϕ(Yn,M
v
n) +

∫
ϕ(y, v)�(dy × dv)

∣∣∣∣
× [(

w(y)d(u, v)
)−δ]−1(A.5)

≤ Ey{|ϕ(Yn,M
u
n ) − ϕ(Yn,M

v
n)|}

(w(y) d(u, v))δ

≤ ‖ϕ‖h sup
y

Ey

{(
d(Mu

n ,Mv
n)

d(u, v)

w(Yn)

w(y)

)δ}

≤ ‖ϕ‖whKηn by Lemma A.1.

Denote ρ∗ = min{η, r} and γ∗ = A + K . Combine (A.4) and (A.5) to get

‖Tn − Q‖wh = sup
ϕ∈H ,‖ϕ‖wh≤1

‖Tnϕ − Qϕ‖wh ≤ sup
ϕ∈H ,‖ϕ‖wh≤1

‖ϕ‖whγ∗ρn∗ ≤ γ∗ρn∗ .

Then we have (4.11) and this completes the proof. �

PROOF OF THEOREM 2. By using Lemma 2, standard arguments involving
smoothing inequalities and Fourier inversion (cf. Chapter 4 of [5]) reduce the proof
to that of showing for every δ > 0, a > 0 and b > 1,

sup
δ≤|α|≤na

∣∣Eπ

(
eiα′Sn

)∣∣ = o(n−b).(A.6)

To prove (A.6), we follow the same idea as (3.43) of [31], letting ζt =
St − St−1 (t = 1,2, . . .), ζ0 = S0 and ϕ̃((y, u), (y′, v)) = E{eiα′ζ1 |(Y0 = y,M0 =
u), (Y1 = y′,M1 = v)}.

Let J = {1, . . . , n}, and fix m > 1 to be determined later. Divide J into blocks
A1,B1, . . . ,Al,Bl as follows. Define j1, . . . , jl by j1 = 1, and jk+1 = inf{j ≥
jk + 7m : j ∈ J }, and let l be the smallest integer for which the inf is undefined.
Write

Ak = ∏{
en−1/2iα′ζj : |j − jk| ≤ m

}
, k = 1, . . . , l,

Bk = ∏{
en−1/2iα′ζj : jk + m + 1 ≤ j ≤ jk+1 − m − 1

}
, k = 1, . . . , l − 1,

Bl = ∏{
en−1/2iα′ζj : j > jl + m + 1

}
.
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Then eiα′Sn = ∏l
k=1 AkBk. Given y ∈ Y, we have∣∣∣∣∣Ey

l∏
1

AkBk − Ey

l∏
1

BkE(Ak|ζj : j 
= jk)

∣∣∣∣∣
(A.7)

≤
l∑

q=1

∣∣∣∣∣Ey

q−1∏
1

AkBk

(
Aq − E(Ak|ζj : j 
= jq)

) l∏
q+1

BkE(Ak|ζj : j 
= jk)

∣∣∣∣∣.
By using Lemma 2(iv), there exists δ > 0 such that E|E(Ak|ζj : j 
= jq) −
E(Ak|ζj : 0 < |j − jk| ≤ 3m)| ≤ e−δm. Therefore, (A.7) ≤

l∑
q=1

∣∣∣∣∣Ey

q−1∏
1

AkBk

(
Aq − E(Ak|ζj : j 
= jq)

)

×
l∏

q+1

BkE(Ak|ζj : 0 < |j − jk| ≤ 3m)

∣∣∣∣∣(A.8)

+
l∑

q=1

e−δm.

The first summation term in (A.8) vanishes since
∏q−1

1 AkBk and
∏l

q+1 Bk ×
E(Ak|ζj : 0 < |j − jk| ≤ 3m) are both measurable with respect to the σ -field gen-
erated by ζj : j 
= jq .

Recall that the functions E(Ak|ζj : 0 < |j − jk| ≤ 3m), for k = 1, . . . , l, are
weakly dependent since jk+1 − jk ≥ 7m,k = 1, . . . , l − 1. Using Assumption K1,
(4.14) and (4.15), we obtain∣∣∣∣∣Ey

l∏
1

BkE(Ak|ζj : 0 < |j − jk| ≤ 3m)

∣∣∣∣∣
≤ Ey

∣∣∣∣∣
l∏
1

E(Ak|ζj : 0 < |j − jk| ≤ 3m)

∣∣∣∣∣
≤

l∏
1

Ey

∣∣E(Ak|ζj : 0 < |j − jk| ≤ 3m)
∣∣ + le−δm.

With the strong nonlattice condition (4.16), and conditional strong nonlattice con-
dition (4.17), we find an upper bound for Ey |E(Ak|ζj : 0 < |j − jk| ≤ 3m)|.

We have for |α| ≥ δ the relation Ey |E(Ak|ζj : j 
= jq)| ≤ e−δ and, hence,
by (4.17) for all α ∈ Rp, |α| ≤ δ, Ey |E(Ak|ζj : j 
= jq)| ≤ exp(−δ|α|2/n). There-
fore, for all α ∈ Rp ,

Ey

∣∣E(Ak|ζj : 0 < |j − jk| ≤ 3m)
∣∣

≤ e−δm + Ey

∣∣E(Ak|ζj : j 
= jq)
∣∣ ≤ e−δm + max

(
exp(−δ|α|2/n), e−δ).
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If we choose K appropriately and let m be the integral part of K logn,
then the assertion of the lemma follows from exp(−δ|α|2/n)n/m ≤ exp(−δ|α|2/
(K logn)) ≤ exp(−δ

′
nε/2) for |α| ≥ cnε and some δ

′
> 0. �
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