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DISCUSSION OF “EQUI-ENERGY SAMPLER” BY KOU,
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We congratulate Samuel Kou, Qing Zhou and Wing Wong (referred to
subsequently as KZW) for this beautifully written paper, which opens a new
direction in Monte Carlo computation. This discussion has two parts. First,
we describe a very closely related method, multicanonical sampling (MCS),
and report a simulation example that compares the equi-energy (EE) sampler
with MCS. Overall, we found the two algorithms to be of comparable effi-
ciency for the simulation problem considered. In the second part, we develop
some additional convergence results for the EE sampler.

1. A multicanonical sampling algorithm. Here, we take on KZW’s discus-
sion about the comparison of the EE sampler and MCS. We compare the EE sam-
pler with a general state-space extension of MCS proposed by Atchadé and Liu [1].
We compare the two algorithms on the multimodal distribution discussed by KZW
in Section 3.4.

Let (X,B, λ) be the state space equipped with its σ -algebra and appropri-
ate measure, and let π(x) ∝ e−h(x) be the density of interest. Following the no-
tation of KZW, we let H0 < H1 < · · · < HKe < HKe+1 = ∞ be a sequence of
energy levels and let Dj = {x ∈ X :h(x) ∈ [Hj,Hj+1)}, 0 ≤ j ≤ Ke, be the en-
ergy rings. For x ∈ X, define I (x) = j if x ∈ Dj . Let 1 = T0 < T1 < · · · < TKt

be a sequence of “temperatures.” We use the notation k(i)(x) = e−h(x)/Ti , so that
π(i)(x) = k(i)(x)/

∫
k(i)(x)λ(dx). Clearly, π(0) = π . We find it more convenient

to use the notation π(i) instead of πi as in KZW. Also note that we did not flatten
π(i) as KZW did.

The goal of our MCS method is to generate a Markov chain on the space X ×
{0,1, . . . ,Kt } with invariant distribution

π(x, i) ∝
Ke∑
j=0

k(i)(x)

Zi,j

1Dj
(x)λ(dx),

where Zi,j = ∫
k(i)(x)1Dj

(x)λ(dx). With a well-chosen temperature sequence
(Ti) and energy levels (Hj ), such a Markov chain would move very easily from any
temperature level X × {i} to another. And inside each temperature level X × {i},
the algorithm would move very easily from any energy ring Dj to another. Un-
fortunately, the normalizing constants Zi,j are not known. They are estimated as
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part of the algorithm using the Wang–Landau recursion that we describe below.
To give the details, we need a proposal kernel Qi(x, dy) = qi(x, dy)λ(dy) on X,
a proposal kernel �(i, j) on {0, . . . ,Kt } and (γn), a sequence of positive numbers.
We discuss the choice of these parameters later.

ALGORITHM 1.1 (Multicanonical sampling).

Initialization. Start the algorithm with some arbitrary (X0, t0) ∈ X × {0,1,

. . . ,Kt }. For i = 0, . . . ,Kt , j = 0, . . . ,Ke we set all the weights to φ
(i)
0 (j) = 1.

Recursion. Given (Xn, tn) = (x, i) and (φ
(i)
n (j)), flip a θ -coin.

If Tail. Sample Y ∼ Qi(x, ·). Set Xn+1 = Y with probability α(i)(x, Y ); oth-
erwise set Xn+1 = x, where

α(i)(x, y) = min
[
1,

k(i)(y)

k(i)(x)

φ
(i)
n (I (x))

φ
(i)
n (I (y))

qi(y, x)

qi(x, y)

]
.(1.1)

Set tn+1 = i.

If Head. Sample j ∼ �(i, ·). Set tn+1 = j with probability βx(i, j); otherwise
set tn+1 = i, where

βx(i, j) = min
[
1,

k(j)(x)

k(i)(x)

φ
(i)
n (I (x))

φ
(j)
n (I (x))

�(j, i)

�(i, j)

]
.(1.2)

Set Xn+1 = x.

Update the weights. Write (tn+1, I (Xn+1)) = (i0, j0). Set

φ
(i0)
n+1(j0) = φ(i0)

n (j0)(1 + γn),(1.3)

leaving the other weights unchanged.

If we choose Kt = 0 in the algorithm above we obtain the MCS of [9] (the first
MCS algorithm is due to [4]) and Ke = 0 gives the simulated tempering algorithm
of [6]. The recursion (1.3) is where the weights Zi,j are being estimated. Note that
the resulting algorithm is no longer Markovian. Under some general assumptions,

it is shown in [1] that θ
(i)
n (j) := φ

(i)
n (j)∑Kt

i=0
∑Ke

l=0 φ
(i)
n (l)

→ ∫
Dj

π(i)(x)λ(dx) as n → ∞.

The MCS can be seen as a random-scan-Gibbs sampler on the two variables
(x, i) ∈ X × {0, . . . ,Kt }, so the choice θ = 1/2 for coin flipping works well.
The proposal kernels Qi can be chosen as in a standard Metropolis–Hastings
algorithm. But one should allow Qi to make larger proposal moves for larger i

(i.e., hotter distributions). The proposal kernel � can be chosen as a random
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walk on {0, . . . ,Kt } (with reflection on 0 and Kt ). In our simulations, we use
�(0,1) = �(Kt,Kt − 1) = 1, �(i, i − 1) = �(i, i + 1) = 1/2 for i /∈ {0,Kt }.

It can be shown that the sequence (θn) defined above follows a stochastic ap-
proximation with step size (γn). So choosing (γn) is the same problem as choos-
ing a step-size sequence in a stochastic approximation algorithm. We follow the
new method proposed by Wang and Landau [9] where (γn) is selected adaptively.
Wang and Landau’s idea is to monitor the convergence of the algorithm and adapt
the step size accordingly. We start with some initial value γ0 and (γn) is defined by
γn = (1 + γ0)

1/(k+1) − 1 for τk < n ≤ τk+1, where 0 = τ0 < τ1 < · · · is a sequence
of stopping times. Assuming τi finite, τi+1 is the next time k > τi where the oc-
cupation measures (obtained from time τi + 1 on) of all the energy rings in all
the temperature levels are approximately equal. Various rules can be used to check
that the occupation measures are approximately equal. Following [9], we check
that the smallest occupation measure obtained is greater than c times the mean oc-
cupation, where c is some constant (e.g., c = 0.2) that depends on the complexity
of the sampling problem.

It is an interesting question to know whether this method of choosing the step-
size sequence can be extended to more general stochastic approximation algo-
rithms. A theoretical justification of the efficiency of the method is also an open
question.

2. Comparison of EE sampler and MCS. To use MCS to estimate inte-
grals of interest such as Eπ0(g(X)), one can proceed as KZW did by writing
Eπ0(g(X)) = ∑Ke

j=0 pjEπ0(g(X)|X ∈ Dj). Samples from the high-temperature
chains can be used to estimate the integrals Eπ0(g(X)|X ∈ Dj) by importance
reweighting in the same way as KZW did. In the case of MCS, the probabilities

pj = Prπ0(X ∈ Dj) are estimated by p̂j = φ
(0)
n (j)∑Ke

l=0 φ
(0)
n (l)

.

We compared the performances of the EE sampler and the MCS described above
for the multimodal example in Section 3.4 of KZW. To make the two samplers
comparable, each chain in the EE sampler was run for N iterations. We did the
simulations for N = 104, N = 5 × 104 and N = 10 × 104. For the MC sampler,
we used Kt = Ke = K and the algorithm was run for (K + 1) × N total itera-
tions. We repeated each sampler for n = 100 iterations in order to estimate the
finite sample standard deviations of the estimates they provided. Table 1 gives the
improvements (in percentage) of MCS over EE sampling. Prπ(X ∈ B) is the prob-
ability under π of the union of all the discs with centers µi (the means of the
mixture) and radius σ/2. As we can see, when estimating global functions such as
moments of the distribution, the two samplers have about the same accuracy with a
slight advantage for MCS. But the EE sampler outperformed MCS when estimat-
ing Prπ(X ∈ B). The MCS is an importance sampling algorithm with a stationary
distribution that is more widespread than π . This may account for the better per-
formance obtained by the EE sampler on Prπ(X ∈ B). More thorough empirical
and theoretical analyses are apparently required to reach any firmer conclusions.
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TABLE 1
Improvement of MCS over EE as given by (σ̂EE(g) − σ̂MC(g))/σ̂MC(g) × 100

E(X1) E(X2) E(X2
2) Prπ (X ∈ B)

N = 104 13.77 12.53 8.98 −63.49
N = 5 × 104 6.99 −7.31 −10.15 −51.22
N = 105 1.92 5.79 4.99 −55.31

∗The comparisons are based on 100 replications of the samplers for each N .

3. Ergodicity of the equi-energy sampler. In this section we take a more
technical look at the EE algorithm and derive some ergodicity results. First, we
would like to mention that in the proof of Theorem 2, it is not clear to us how
KZW derive the convergence in (5). Equation (5) implicitly uses some form of
convergence of the distribution of X

(i+1)
n to π(i+1) as n → ∞ and it is not clear

to us how that follows from the assumption that Pr(X(i+1)
n+1 ∈ A|X(i+1)

n = x) →
S(i+1)(x,A) as n → ∞ for all x, all A.

In the analysis below we fix that problem, but under a more stringent assump-
tion. To state our result, let (X,B) be the state space of each of the equi-energy
chains. If P1 and P2 are two transition kernels on X, the product P1P2 is also
a transition kernel defined as P1P2(x,A) = ∫

P1(x, dy)P2(y,A). Recursively, we
define P n

1 as P 1
1 = P1 and P n

1 = P n−1
1 P1. If f is a measurable real-valued func-

tion on X and µ is a measure on X, we denote Pf (x) := ∫
P(x, dy)f (y) and

µ(f ) := ∫
µ(dx)f (x). Also, for c ∈ (0,∞) we write |f | ≤ c to mean |f (x)| ≤ c

for all x ∈ X. We define the following distance between P1 and P2:

|||P1 − P2||| := sup
x∈X

sup
|f |≤1

|P1f (x) − P2f (x)|,(3.1)

where the supremum is taken over all x ∈ X and over all measurable functions
f :X → R with |f | ≤ 1. We say that the transition kernel P is uniformly geomet-
rically ergodic if there exists ρ ∈ (0,1) such that

|||P n − π ||| = O(ρn).(3.2)

It is well known that (3.2) holds if and only if there exist ε > 0, a nontrivial proba-
bility measure ν and an integer m ≥ 1 such that the so-called M(m,ε, ν) minoriza-
tion condition holds, that is, P m(x,A) ≥ εν(A) for all x ∈ X and A ∈ B (see, e.g.,
[8], Proposition 2). We recall that T

(i)
MH denotes the Metropolis–Hastings kernel in

the EE sampler. The following result is true for the EE sampler.

THEOREM 3.1. Assume that ∀ i ∈ {0, . . . ,K}, T
(i)

MH satisfies a M(1, εi, π
(i))

minorization condition and that condition (iii) of Theorem 2 of the paper holds.
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Then for any bounded measurable function f , as n → ∞,

E
[
f

(
X(i)

n

)] −→ π(i)(f ) and
1

n

n∑
k=1

f
(
X

(i)
k

) a.s.−→ π(i)(f ).(3.3)

For example, if X is a compact space and e−h(x) remains bounded away from 0
and ∞, then (3.3) holds. Note that the ith chain in the EE sampler is actually
a nonhomogeneous Markov chain with transition kernels K

(i)
0 ,K

(i)
1 , . . . , where

K
(i)
n (x,A) := Pr[X(i)

n+1 ∈ A|X(i)
n = x]. As pointed out by KZW, for any x ∈ X

and A ∈ B, K
(i)
n (x,A) → S(i)(x,A) as n → ∞, where S(i) is the limit transition

kernel in the EE sampler. This setup brings to mind the following convergence
result for nonhomogeneous Markov chains (see [5], Theorem V.4.5):

THEOREM 3.2. Let P,P0,P1, . . . be a sequence of transition kernels on
(X,B) such that |||Pn − P ||| → 0 and P is uniformly geometrically ergodic with
invariant distribution π . Then the Markov chain with transition kernels (Pi) is
strongly ergodic; that is, for any initial distribution µ,

|||µP0P1 · · ·Pn − π ||| → 0 as n → ∞.(3.4)

The difficulty in applying this theorem to the EE sampler is that we do not have
|||K(i)

n − S(i)||| → 0 but only a setwise convergence |K(i)
n (x,A) − S(i)(x,A)| → 0

for each x ∈ X, A ∈ B. The solution we propose is to extend Theorem 3.2 as
follows.

THEOREM 3.3. Let P,P0,P1, . . . be a sequence of transition kernels on
(X,B) such that:

(i) For any x ∈ X and A ∈ B, Pn(x,A) → P(x,A) as n → ∞.
(ii) P has invariant distribution π and Pn has invariant distribution πn. There

exists ρ ∈ (0,1) such that |||P k − π ||| = O(ρk) and |||P k
n − πn||| = O(ρk).

(iii) |||Pn − Pn−1||| ≤ O(n−λ) for some λ > 0.

Then, if (Xn) is an X-valued Markov chain with initial distribution µ and transi-
tion kernels (Pn), for any bounded measurable function f we have

E[f (Xn)] −→ π(f ) and
1

n

n∑
k=1

f (Xk)
a.s.−→ π(f ) as n → ∞.(3.5)

We believe that this result can be extended to the more general class of
V -geometrically ergodic transition kernels and then one could weaken the uniform
minorization assumption on T

(i)
MH in Theorem 3.1. But the proof will certainly be

more technical. We now proceed to the proofs of the theorems. We first prove
Theorem 3.3 and use it to prove Theorem 3.1.
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PROOF OF THEOREM 3.3. It can be easily shown from (ii) that |||πn −
πn−1||| ≤ 1

1−ρ
|||Pn − Pn−1|||. Therefore, Theorems 3.1 and 3.2 of [2] apply and

assert that for any bounded measurable function f , E[f (Xn) − πn(f )] → 0
and 1

n

∑n
k=1[f (Xk) − πk(f )] a.s.→ 0 as n → ∞. To finish, we need to prove that

πn(f ) → π(f ) as n → ∞. To this end, we need the following technical lemma
proved in [7], Chapter 11, Proposition 18.

LEMMA 3.1. Let (fn) be a sequence of measurable functions and let
µ,µ1, . . . be a sequence of probability measures such that |fn| ≤ 1 and fn → f

pointwise [fn(x) → f (x) for all x ∈ X] and µn → µ setwise [µn(A) → µ(A) for
all A ∈ B]. Then

∫
fn(x)µn(dx) → ∫

f (x)µ(dx).

Here is how to prove that πn(f ) → π(f ) as n → ∞. By (i), we have Pnf (x) →
Pf (x) for all x ∈ X. Then, by (i) and Lemma 3.1, P 2

n f (x) = Pn(Pnf )(x) →
P 2f (x) as n → ∞. By recursion, for any x ∈ X and k ≥ 1, P k

n f (x) → P kf (x)

as n → ∞. Now, write

|πn(f ) − π(f )| ≤ |πn(f ) − P k
n f (x)| + |P k

n f (x) − P kf (x)|
+ |P kf (x) − π(f )|(3.6)

≤ 2ρk sup
x∈X

|f (x)| + |P k
n f (x) − P kf (x)| [by (ii)].

Since |P k
n f (x) − P kf (x)| → 0, we see that |πn(f ) − π(f )| → 0. �

PROOF OF THEOREM 3.1. Let (�,F ,P) be the probability triplet on which
the equi-energy process is defined and let E be its expectation operator. The result
is clearly true by assumption for i = K . Assuming that it is true for the (i + 1)st
chain, we will prove it for the ith chain.

The random process (X
(i)
n ) is a nonhomogeneous Markov chain with transition

kernel K
(i)
n (x,A) := Pr[X(i)

n+1 ∈ A|X(i)
n = x]. For any bounded measurable func-

tion f , K
(i)
n operates on f as follows:

K(i)
n f (x) = (1 − pee)T

(i)
MHf (x) + peeE

[
R(i)

n f (x)
]
,

where R
(i)
n f (x) is a ratio of empirical sums of the (i + 1)st chain of the form

R(i)
n f (x) =

∑n
k=−N 1DI(x)

(X
(i+1)
k )α(i)(x,X

(i+1)
k )f (X

(i+1)
k )∑n

k=−N 1DI(x)
(X

(i+1)
k )

(3.7)

+ f (x)

∑n
k=−N 1DI(x)

(X
(i+1)
k )(1 − α(i)(x,X

(i+1)
k ))∑n

k=−N 1DI(x)
(X

(i+1)
k )
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[take R
(i)
n f (x) = 0 and pee = 0 when

∑n
k=−N 1DI(x)

(X
(i+1)
k ) = 0], where α(i)(x, y)

is the acceptance probability min[1,
π(i)(y)π(i+1)(x)

π(i)(x)π(i+1)(y)
]. N is how long the (i + 1)st

chain has been running before the ith chain started. Because (3.3) is assumed true
for the (i + 1)st chain and condition (iii) of Theorem 2 of the paper holds, we can
assume in the sequel that

∑n
k=−N 1DI(x)

(X
(i+1)
k ) ≥ 1 for all n ≥ 1. We prove the

theorem through a series of lemmas.

LEMMA 3.2. For the EE sampler, assumption (i) of Theorem 3.3 holds true.

PROOF. Because (3.3) is assumed true for the (i + 1)st chain, the strong
law of large numbers and Lebesgue’s dominated convergence theorem apply to
R

(i)
n f (x) and assert that for all x ∈ X and A ∈ B, K

(i)
n (x,A) → S(i)(x,A) as

n → ∞, where S(i)(x,A) = (1 − pee)T
(i)

MH(x,A) + pee
∑K

j=0 T
(i,j)

EE (x,A)1Dj
(x),

where T
(i,j)

EE is the transition kernel of the Metropolis–Hastings with proposal dis-
tribution

π(i+1)(y)1Dj
(y)/p

(i+1)
j

and invariant distribution

π(i)(x)1Dj
(x)/p

(i)
j . �

LEMMA 3.3. For the EE sampler, assumption (ii) of Theorem 3.3 holds.

PROOF. Clearly, the minorization condition on T
(i)
MH transfers to K

(i)
n . It then

follows that each K
(i)
n admits an invariant distribution π

(i)
n and is uniformly geo-

metrically ergodic toward π
(i)
n with a rate ρi = 1− (1−pee)εi . The limit transition

kernel S(i) in the EE sampler as detailed above has invariant distribution π(i) and
also inherits the minorization condition on T

(i)
MH. �

LEMMA 3.4. For the EE sampler, assumption (iii) of Theorem 3.3 holds true
with λ = 1.

PROOF. Any sequence (xn) of the form xn =
∑n

k=1 αnun∑n
k=1 αn

can always be written

recursively as xn = xn−1 + αn∑n
k=1 αk

(un − xn−1). Using this, we easily have the

bound ∣∣K(i)
n f (x) − K

(i)
n−1f (x)

∣∣ ≤ 2E

[
1∑n

k=−N 1DI(x)
(X

(i+1)
k )

]

for all x ∈ X and |f | ≤ 1. Therefore, the lemma will be proved if we can show
that

sup
0≤j≤K

E

[
n∑n

k=−N 1Dj
(X

(i+1)
k )

]
= O(1).(3.8)
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To do so, we fix j ∈ {0, . . . ,K} and take ε ∈ (0, δ), where δ = (1 − pee)εi+1 ×
π(i+1)(Dj ) > 0. We have

E

[
n∑n

k=−N 1Dj
(X

(i+1)
k )

]

= E

[
n∑n

k=−N 1Dj
(X

(i+1)
k )

1{∑n
k=−N 1Dj

(X
(i+1)
k )>n(δ−ε)}

]
(3.9)

+ E

[
n∑n

k=−N 1Dj
(X

(i+1)
k )

1{∑n
k=−N 1Dj

(X
(i+1)
k )≤n(δ−ε)}

]
.

The first term on the right-hand side of (3.9) is bounded by 1/(δ − ε).
The second term is bounded by

nPr

[ 0∑
k=−N

1Dj

(
X

(i+1)
k

) +
n∑

k=1

(
1Dj

(
X

(i+1)
k

) − δ
) ≤ −nε

]

(3.10) ≤ nPr
[
M(i+1)

n ≥ nε
]
,

where M
(i+1)
n = ∑n

k=1 K
(i+1)
k−1 (X

(i+1)
k−1 ,Dj ) − 1Dj

(X
(i+1)
k ). For the inequality

in (3.10), we use the minorization condition K
(i+1)
k−1 (x,Dj ) ≥ δ. Now, the se-

quence (M
(i+1)
n ) is a martingale with increments bounded by 1. By Azuma’s in-

equality ([3], Lemma 1), we have nPr[M(i+1)
n ≥ nε] ≤ n exp(−nε2/2) → 0 as

n → ∞. �

Theorem 3.1 now follows from Theorem 3.3. �
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