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AFFINELY INVARIANT MATCHING METHODS WITH
DISCRIMINANT MIXTURES OF PROPORTIONAL
ELLIPSOIDALLY SYMMETRIC DISTRIBUTIONS
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In observational studies designed to estimate the effects of interventions
or exposures, such as cigarette smoking, it is desirable to try to control back-
ground differences between the treated group (e.g., current smokers) and
the control group (e.g., never smokers) on covariates X (e.g., age, educa-
tion). Matched sampling attempts to effect this control by selecting subsets
of the treated and control groups with similar distributions of such covariates.
This paper examines the consequences of matching using affinely invariant
methods when the covariate distributions are “discriminant mixtures of pro-
portional ellipsoidally symmetric” (DMPES) distributions, a class herein de-
fined, which generalizes the ellipsoidal symmetry class of Rubin and Thomas
[Ann. Statist. 20 (1992) 1079–1093]. The resulting generalized results help
indicate why earlier results hold quite well even when the simple assump-
tion of ellipsoidal symmetry is not met [e.g., Biometrics 52 (1996) 249–264].
Extensions to conditionally affinely invariant matching with conditionally
DMPES distributions are also discussed.

1. Background. The goal in many applied projects is to estimate the causal
effect of a treatment (e.g., cigarette smoking) from nonrandomized data by com-
paring outcomes (e.g., lung cancer rates) in treated (e.g., current smokers) and
control (e.g., never smokers) groups, after adjusting for covariate differences (e.g.,
age, education) between the groups. A common method is to form matched sub-
samples of the treated and control groups such that the distributions of covariates
X are more similar in the matched samples than in the original groups. The use of
matched sampling has been receiving more and more attention in fields such as sta-
tistics (e.g., [11, 15]), economics (e.g., [4, 7, 10, 21]), political science (e.g., [9]),
sociology (e.g., [20]) and medicine (e.g., [1]) as a class of methods for controlling
bias in such observational studies. Here we provide theoretical guidance for choos-
ing matching methods that reduce bias in the matched groups, as well as guidance
on the amount of bias reduction that can be achieved with fixed distributions and
fixed sample sizes.
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We begin with random samples from the treated and control groups of fixed
sizes Nt and Nc, respectively, with X measured in both samples. Matching chooses
subsamples of fixed sizes Nmt and Nmc from the original groups on which to
measure the outcome variables, as well as possibly measure additional covariates.
Throughout, we use the subscripts t and c to indicate quantities in the original ran-
dom samples from the treated and control groups, and the subscripts mt and mc to
indicate the corresponding quantities in the matched treated and control groups.

We restrict attention to a particular but general class of matching methods, those
that are affinely invariant. In practice, many matching methods are affinely invari-
ant in the sense that the same matched samples will be obtained after any full-rank
affine transformation of X. For example, the same matches will be obtained if
people’s heights are measured in inches or centimeters, or if their temperatures are
measured in degrees Fahrenheit or degrees Kelvin. Formally, let Xt and Xc be data
matrices (units by variables). A matching method is a mapping from (Xt ,Xc) to a
pair of sets of indices (T ,C) representing the units chosen in the matched samples.
An affinely invariant matching method results in the same output (T ,C) after any
(full-rank) affine transformation A of the X:

(Xt ,Xc) → (T ,C) implies
(
A(Xt ),A(Xc)

) → (T ,C).

Affinely invariant matching methods include Mahalanobis metric, discriminant or
propensity score matching. Non-affinely invariant methods include methods where
one coordinate of X is treated differently from the others or where nonlinear esti-
mators of the discriminant (or other metric) are used, as discussed by Rubin and
Thomas [16].

Theoretical results in papers by Rubin and Thomas [16, 17] describe the ef-
fects of affinely invariant matching on bias reduction, as well as on variance, in the
matched treated and matched control groups, when X has ellipsoidally symmetric
distributions (e.g., the normal distribution or the multivariate t) in the treated and
control groups, with proportional covariances. Rubin and Thomas [18] used these
theoretical results to obtain a series of approximations for the bias and variance re-
duction possible in a particular matching setting using true and estimated propen-
sity scores, with no subsampling of the treated sample and normal distributions.
They then examined the performance of these approximations by simulation with
ellipsoidal nonnormal distributions and found that the approximations based on the
normal distribution held remarkably well, even for a t-distribution with 5 degrees
of freedom. They also explored the performance of the approximations with real
data from a study of prenatal hormone exposure, with 15 ordinal or dichotomous
covariates. Again, the approximations based on the normal distribution were found
to hold well, despite the clear deviations from the underlying assumptions.

Later work by Hill, Rubin and Thomas [8] also showed that the Rubin and
Thomas [18] approximations held quite well with real data in the context of an
evaluation of the New York School Choice Scholarship Program, which utilized
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randomization to award scholarships to eligible participants. Out of the large pool
of possible controls, a matched sample was chosen for follow-up, where the match-
ing was done using an affinely invariant matching method based on 21 ordinal or
dichotomous covariates. Hill, Rubin and Thomas compared the bias and variance
benefits of choosing matched controls rather than a random sample of controls.
The Rubin and Thomas [18] results predict a gain of efficiency for differences in
covariate means by a factor of approximately two, and Hill et al. showed that this
predicted gain in efficiency was achieved, despite the markedly nonnormal distri-
butions of some of the covariates.

In this paper we generalize the results of Rubin and Thomas [16–18] to the set-
ting where the treated and control groups’ covariate distributions are “discriminant
mixtures of proportional ellipsoidally symmetric” (DMPES) distributions. We see
that most, but not all, of the basic results in fact hold under these more general
conditions, which support the broader applicability of these results, as suggested
by the empirical evidence referenced above. We use as a running example the esti-
mation of the effects of smoking on lung cancer, where the results here were used
to motivate diagnostics for the results of matching [15].

2. Discriminant mixtures of ellipsoidally symmetric distributions. An el-
lipsoidal distribution for p-component X is a distribution such that a linear trans-
formation of X leads to a spherically symmetric distribution, which is defined by
the distribution on the radii of concentric hyperspheres on which there is a uniform
probability density. Thus, an ellipsoidal distribution is specified by its center, inner
product and distribution on the radius [5].

DEFINITION. The distribution on X, F(X), is a “discriminant mixture of pro-
portional ellipsoidally symmetric” (DMPES) distribution if it possesses the fol-
lowing properties:

(i) F(X) is a mixture of K ellipsoidally symmetric distributions {Fk;k =
1, . . . ,K},

F(X) =
K∑

k=1

αkFk(X),(1)

where αk ≥ 0 for all k = 1, . . . ,K , and
∑K

k=1 αk = 1, where Fk has center µk and
inner product �k . Hence, the “mixture” (M) and “ellipsoidally symmetric” (ES)
parts of DMPES.

(ii) The K inner products are proportional:

�i ∝ �j for all i, j = 1, . . . ,K.(2)

Hence, the “proportional” (P) part of DMPES.
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(iii) The K centers are such that all best linear discriminants between any two
components are proportional:

(µi − µj)�
−1
k ∝ (µi′ − µj ′)�−1

k′ for all i, j, k, i′, j ′, k′ = 1, . . . ,K.(3)

Hence, the “discriminant” (D) in DMPES, because all mixture component centers
lie along the common best linear discriminant.

In [16–18], K = 2, corresponding to the treated and control groups, and (2) is
assumed; (3) is superfluous in the case with K = 2.

With DMPES distributions, there exists an affine transformation to a special
canonical form, which is a simple extension of results in [3, 6] and [14]. This
canonical form has, for each mixture component, the property that the distribution
of X is spherical, so that all inner products can be written as σ 2

k I , where I is the
p×p identity matrix and σ 2

k is a positive scalar constant, k = 1, . . . ,K . Moreover,
the canonical form has the component centers lying along the unit vector (unless
all µi = µj ) so that the centers are δkU , where U = (1, . . . ,1)′, the p-component
unit vector, and the δk are scalar constants, k = 1, . . . ,K ; if all µi = µj , then all
δk = 0. Therefore, in their canonical form, the distribution of each component of X

is the same, and thus, the distribution of X is exchangeable, not only within each
of the K mixture components, but also for any collection of mixture components
defined by a subset of the indices {1, . . . ,K}.

Moreover, further symmetry results can be stated for a DMPES distribution by
decomposing X into its projection along the best linear discriminant, Z, and its
projection orthogonal to Z. Specifically, the standardized best linear discriminant
can be written as

Z = U ′X/p1/2,(4)

unless all δk = 0, in which case Z is defined to be 0, the zero vector. Also, let W be
a standardized one-dimensional linear combination of X orthogonal to Z,

W = γ ′X, γ ′Z = 0, γ ′γ = 1.(5)

All such W have the identical distribution in each mixture component, and the
identical distribution for any collection of mixture components defined by a subset
of the indices {1, . . . ,K}. Thus, the distribution of X orthogonal to Z has rota-
tional symmetry, that is, is spherically symmetric.

Now suppose Kt of the K mixture components comprise the treatment group,
and Kc components comprise the control group, Kt +Kc = K ; Kt,Kc ≥ 1. Denote
the set of treatment group component indices by T and the set of control group
component indices by C, T ∪ C = {1, . . . ,K}. For example, T identifies current
smokers and C identifies never smokers. The previous discussion implies that the
distribution of X is exchangeable in the treated group and in the control group,
and moreover, the distribution of X orthogonal to the discriminant Z is spherically
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symmetric in the treated group and in the control group. This is the theoretical
distributional setting for our results. In the more restrictive setting of [16] with
proportional ellipsoidally symmetric distributions, X is spherically symmetric in
both groups.

3. Results of matching with affinely invariant methods. When affinely in-
variant matching methods are used with DMPES distributions, the canonical form
given in Section 2 can be assumed without loss of generality. The following re-
sults, stated in canonical form, closely parallel results from [16]. The main sym-
metry arguments do not change with the use of mixtures of distributions. Although
most of our results can be written without assuming finite first two moments in
each mixture component and without restricting K to be finite, the extra generality
complicates notation and appears to be of little practical importance.

THEOREM 3.1. Suppose an affinely invariant matching method is applied to
random treated and control samples with DMPES distributions. Then

E(�Xmt) ∝ E(�Xmc) ∝ U

and

var(�Xmt − �Xmc) ∝ I + cUU ′, c ≥ −1/p,

where �Xmt and �Xmc are the mean vectors in the matched treated and control sam-
ples, and E(·) and var(·) are the expectation and variance over repeated random
draws from the initial treated and control populations. Also,

E(νmt (X)) ∝ I + ctUU ′, ct ≥ −1/p,

E(νmc(X)) ∝ I + ccUU ′, cc ≥ −1/p,

where νmt (X) and νmc(X) are the sample covariance matrices of X in the matched
treated and control groups, respectively. Corresponding formulas also hold within
each of the mixture components. When Z = 0, E(�Xmt) = E(�Xmc) = 0, the zero
vector, and c = ct = cc = 0.

PROOF. The proof follows directly from symmetry arguments and is essen-
tially the same as that of Theorem 3.1 in [16]. Briefly, with affinely invariant
matching methods, the matching treats each coordinate of X the same and, hence,
the exchangeability of the DMPES distributions of X in matched treated and con-
trol samples is not affected. Thus, the expectations of the matched sample means
of all coordinates of X must be the same and, hence, the expectation of X must
be proportional to U in each matched group. Analogously, the covariance matrices
of X must be exchangeable in each matched group. The general form for the co-
variance matrix of exchangeable variables is proportional to I + cUU ′, c ≥ −1/p.
When Z = 0, the direction U is no different from any other, that is, there is com-
plete rotational symmetry and, hence, the simplification. �
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COROLLARY 3.1. The quantities var( �Wmt − �Wmc), E(νmt (W)) and
E(νmc(W)) take the same three values for all standardized W orthogonal to Z. In
addition, for each mixture component, E(νmk(W)) takes the same value for all W ,
where νmk(W) is the sample variance of W in the matched mixture component
k ∈ T or C.

PROOF. The corollary follows from the fact that, due to the rotational sym-
metry in matched samples implied by Theorem 3.1 orthogonal to the discriminant,
any W will have the same distribution. �

4. The effects on a linear combination of X of affinely invariant matching
relative to random sampling. As in [16–19], it is natural to describe the results
of matching by its effects on a linear combination of X, Y = β ′X, where, for
convenience, we assume Y is standardized, β ′β = 1. Any such Y can be expressed
as the sum of projections along and orthogonal to the best linear discriminant,

Y = ρZ + (1 − ρ2)1/2W,(6)

where ρ is the correlation between Y and Z. When Z = 0, Y = W and ρ ≡ 0.
It is also natural, as in [16–19], to compare the results of the matching to random

sampling done in an affinely invariant way, such as randomly sampling from the
original treated and control groups, thereby sampling from each component in pro-
portion to its fraction in the population [the α’s in (1)], or randomly sampling from
each component with fixed proportions, where the same fixed proportions would
be used in matching. We will refer to the treated and control samples generated by
any such random sampling by indices rt and rc, respectively, where Nrt = Nmt

and Nrc = Nmc, but generally, of course, Nt ≥ Nrt and Nc ≥ Nrc.
The following corollaries decompose the effects on Y of affinely invariant

matching on X into the effects of the matching on Z and on W , relative to ran-
dom sampling. Assuming the formulation from Section 2, we have the following
results.

COROLLARY 4.1. (a) When E(�Zrt − �Zrc) 	= 0, the matching is equal percent
bias reducing (EPBR), as defined by [14],

E(�Ymt − �Ymc)

E(�Yrt − �Yrc)
= E(�Zmt − �Zmc)

E(�Zrt − �Zrc)
.(7)

Because the right-hand side of the above equation takes the same value for all Y ,
the percent bias reduction is the same for all Y .

(b) When Z = 0, the numerator and denominator of both ratios in equation (7)
are 0.

(c) When E(�Zrt −�Zrc) = 0 but Z 	= 0, the denominators of both ratios in equa-
tion (7) are 0, and then E(�Ymt − �Ymc) = ρE(�Zmt − �Zmc).
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PROOF. The proof of result (a) parallels the proof of Corollary 3.2 in [16];
however, here, rather than simple averages of Z, W and Y , the averages are
weighted averages of the mixture components, weighted, for example, by the α’s
in (1). Using the definition of Y ,

E(�Ymt − �Ymc) = ρE(�Zmt − �Zmc) + (√
1 − ρ2 )

E( �Wmt − �Wmc),

where, by the definition of W , E( �Wmt − �Wmc) = γ ′E(�Xmt − �Xmc). From Theo-
rem 3.1, E(�Xmt − �Xmc) ∝ U and again from the definition of W in equation (5),
γ ′Z = 0. Thus,

E(�Ymt − �Ymc) = ρE(�Zmt − �Zmc).

Similarly, E(�Yrt − �Yrc) = ρE(�Zrt − �Zrc) because E( �Wrt − �Wrc) = 0 and result
(a) of Corollary 4.1 follows.

Results (b) and (c) follow by analogous arguments. Situation (c) cannot arise
when K = 2 because, with only one treated and one control component, E(�Zrt −
�Zrc) = 0 implies that Z = 0. However, with multiple components in the treated
and control groups, the difference in weighted averages (E(�Zrt −�Zrc)) can equal 0
without all of the mixture component centers ({µk}) being 0. �

This corollary implies that affinely invariant matching that reduces bias in one
direction cannot create bias in some other direction. If bias reduction is obtained
along Z, it is also obtained for all Y .

COROLLARY 4.2. The matching is ρ2 proportionate modifying of the vari-
ance of the difference in matched sample means,

var(�Ymt − �Ymc)

var(�Yrt − �Yrc)
= ρ2 var(�Zmt − �Zmc)

var(�Zrt − �Zrc)
+ (1 − ρ2)

var( �Wmt − �Wmc)

var( �Wrt − �Wrc)
,(8)

where the ratios

var(�Zmt − �Zmc)

var(�Zrt − �Zrc)
and

var( �Wmt − �Wmc)

var( �Wrt − �Wrc)

take the same two values for all Y .

PROOF. Using the definitions of Z and W in (4) and (5),

cov(�Zmt − �Zmc, �Wmt − �Wmc) = 1√
p

U ′ var(�Xmt − �Xmc)γ,

which from Theorem 3.1 is proportional to

U ′(I + cUU ′)γ = U ′γ + cpU ′γ = 0,

again using the definition of W in (5). Then, from the definition of Y in (6),

var(�Ymt − �Ymc) = ρ2 var(�Zmt − �Zmc) + (1 − ρ2)var( �Wmt − �Wmc).
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Equation (8) follows because, in random subsamples, the samples from each
treated and control mixture component are independent with

var(�Yrt − �Yrc) = var(�Zrt − �Zrc) = var( �Wrt − �Wrc).

Also, var(�Yrt ) = var(�Zrt ) and var(�Ymc) = var(�Zmc), and each is a weighted lin-
ear combination of the variances in each of the treated and control mixture com-
ponents, respectively. The final statement of Corollary 4.2 follows from Corol-
lary 3.1. �

COROLLARY 4.3. Within each of the mixture components, the matching is ρ2

proportionate modifying of the expectation of the sample variances,

E(νmk(Y ))

E(νrk(Y ))
= ρ2 E(νmk(Z))

E(νrk(Z))
+ (1 − ρ2)

E(νmk(W))

E(νrk(W))
,(9)

where νrk(·) is the sample variance of nk randomly chosen units from component k,
and νmk(·) is the sample variance of nk matched units from component k (k ∈ T
or C), and the ratio

E(νmk(W))

E(νrk(W))

takes the same value for all Y . The same is true for E(νmk(Z))/E(νrk(Z)).

PROOF. In the matched sample from component k ∈ T or C, the expected
covariance of Z and W is

E
(
covmk(Z,W)

) = 1√
p

E(U ′νmk(X)γ ) ∝ U ′(I + ckpUU ′)γ = 0,

from Theorem 3.1 and the definition of W in (5), and νmk(X) ∝ I +ckUU ′, where
the constants ck ≥ −1/p. Then, from (6),

E(νmk(Y )) = ρ2E(νmk(Z)) + (1 − ρ2)E(νmk(W)).

Equation (9) follows because E(νrk(Y )) = E(νrk(Z)) = E(νrk(W)). The final
statement follows from Corollary 3.1. �

Note that the version of Corollary 4.3 stated for the full treated and control
groups does not hold. In the special case considered in [16], there is only one
component in each group.

5. Conditionally affinely invariant matching with conditionally DMPES
distributions. We now extend the results of the previous sections to a set-
ting where a subset of the covariates is treated differently from the remainder
of the covariates, for example, exact matching on gender followed by discrim-
inant matching, or Mahalanobis matching on key covariates within propensity
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score calipers [13]. Such matching was done, for example, in [15] when creating
matched samples of current smokers and never smokers.

We define X(s) to be the s “special covariates” spanning an s-dimensional sub-
space (e.g., gender, race in the smoking example) and X(r) to be the r = p − s

remaining covariates spanning an r-dimensional subspace (e.g., education, age).
The methods considered are “conditionally affinely invariant matching methods”
[16], which have the property that the result of the matching is the same following
any (full-rank) affine transformation of the “remainder” covariates X(r):((

X(s)
t ,X(r)

t

)
,
(
X(s)

c ,X(r)
c

)) → (T ,C)

implies((
X(s)

t ,A
(
X(r)

t

))
,
(
X(s)

c ,A
(
X(r)

c

))) → (T ,C).

In parallel with Section 2, we consider the case where each mixture compo-
nent of the full covariate distribution has mean vectors µ

(s)
k and µ

(r)
k , covariance

matrices �
(s)
k and �

(r)
k , and conditional means and covariance matrices given by

µ
(r|s)
k and �

(r|s)
k . The full distribution of X = (X(r),X(s)) across both groups

is a conditional DMPES distribution if (i) the conditional distribution X(r)|X(s)

is ellipsoidal in each mixture component, (ii) it has proportional conditional co-
variance matrices, �

(r|s)
k ∝ �

(r|s)
k′ for all k and k′, and (iii) it has centers such

that (µ
(r|s)
i − µ

(r|s)
j )�

(r|s)−1

k ∝ (µ
(r|s)
i′ − µ

(r|s)
j ′ )�

(r|s)−1

k′ for all i, j, k, i′, j ′, k′ =
1, . . . ,K . Notice that condition (ii) implies a common (across all mixture compo-
nents) linear regression of the r covariates in X(r) on the s covariates in X(s), with
coefficients B . As noted by [16], the special case with X(s) binomial or multino-
mial and X(r) multivariate normal relates to the logistic regression model for pre-
dicting treated or control status given the covariates, thus relating it to the methods
of propensity score estimation developed by Rosenbaum and Rubin [12, 13].

We again can use a canonical form when a conditionally affinely invariant
matching method is used with a conditionally DMPES distribution. The co-
variates X(r) are redefined as the components of X(r) uncorrelated with X(s):
X(r) − B ′X(s). The following notation is then used for the moments of the dis-
tribution of X(r) [and the conditional moments of X(r) given X(s)]:

µ
(r)
k = δ

(r)
k U, �

(r)
k = σ 2

k I,

k = 1, . . . ,K , where δ
(r)
k and σ 2

k are scalar constants, U is now the r-dimensional
unit vector, and I is now the r × r identity matrix. Thus, the distributions of
(X(s),X(r)) and X(r) given X(s) are exchangeable under permutations of com-
ponents of X(r) conditional on X(s) in each of the mixture components.

THEOREM 5.1. Suppose a conditionally affinely invariant matching method
is applied to random treated and control samples with conditional DMPES distri-
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butions. Then, in canonical form,

E
(�X(r)

mt

) ∝ U, E
(�X(r)

mc

) ∝ U

and

var(�Xmt − �Xmc) =
[

var
(�X(s)

mt − �X(s)
mc

)
CU ′

UC′ k(I + c0UU ′)

]
,

where k ≥ 0, c0 ≥ −1/r and C′ = (c1, . . . , cs). Also,

E(νmt (X)) =
[

E
(
νmt

(
X(s)

))
CtU

′
UC′

t kt (I + ct0UU ′)

]
,

where kt ≥ 0, ct0 ≥ −1/r , C′
t = (ct1, ct2, . . . , cts), with an analogous result and

notation for the matched control group. When Z = 0, E(�X(r)
mt ) = E(�X(r)

mc) = 0,
C = Ct = Cc = 0, the zero vector, and c0 = ct0 = cc0 = 0.

PROOF. The proof of this theorem parallels that of Theorem 3.1, with the ex-
ception of the existence of the covariances between components in X(s) and X(r).
Due to the symmetry, these covariances are also exchangeable in the coordinates
of X(r). �

6. Effect on Y of matching with special covariates. In parallel with the ear-
lier formulation, we express an arbitrary linear combination of X as

Y = ρZ + (1 − ρ2)1/2W ,

where Z and W are the standardized projections of Y along and orthogonal to
the subspace spanned by (X(s),Z), respectively, and ρ is the correlation between
Y and Z. In this framework, Z is the standardized discriminant of the covariates
uncorrelated with X(s), again expressed in canonical form as Z = U ′X(r)/r1/2.
When µ

(r)
k = 0 for all k, Z is defined to be the zero vector, and then Z is defined

to be the projection of Y in the subspace spanned by X(s).
We write Z and W as

Z = ψ ′X = (
ψ(s)′,ψ(r)′)(

X(s)

X(r)

)
,(10)

W = γ ′X = (
γ (s)′, γ (r)′)(

X(s)

X(r)

)
.(11)

LEMMA 6.1. The coefficients γ and ψ satisfy

γ (s) = (0, . . . ,0)′, γ (r)′ψ(r) = Zγ (r) = 0 and ψ(r) ∝ U.(12)
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PROOF. Equation (12) follows because W is a linear combination of X un-
correlated with {X(s),Z}, and thus uncorrelated with {X(s)}, and because Z is
uncorrelated with W . The other results follow from these and the definition of Z
in canonical form. �

Because the symmetry results of Theorem 5.1 for X orthogonal to Z imply
that all W orthogonal to Z have the same distribution, we immediately have the
following corollary to Theorem 5.1.

COROLLARY 6.1. The quantities var(Wmt − Wmc), E(νmt (W)), and
E(νmc(W)) take the same three values for all standardized Y . Analogous re-
sults hold for statistics in random subsamples indexed by rt and rc. In addition,
E(νmk(W)) takes the same value for all W within each of the mixture compo-
nents, k ∈ T or C. However, the corresponding expressions involving Z generally
do depend on the choice of Y .

COROLLARY 6.2. (a) When E(�Zrt − �Zrc) 	= 0, the percent bias reduction in
Y equals the percent bias reduction of Y in the subspace {X(s),Z},

E(�Ymt − �Ymc)

E(�Yrt − �Yrc)
= E(�Zmt − �Zmc)

E(�Zrt − �Zrc)
.

(b) When E(�Zrt − �Zrc) = 0, the denominators of both ratios in (a) equal 0,
and E(�Ymt − �Ymc) = ρE(�Zmt − �Zmc).

PROOF. The proof parallels that of Corollary 4.1 because W = γ ′(r)X(r) from
the definition of W in (11) and Lemma 6.1, and from Theorem 5.1 and Lemma 6.1,
γ ′(r)E(�X(r)

mt − �X(r)
mc) = 0. Thus, E( �Wmt − �Wmc) = 0. �

COROLLARY 6.3. The matching is ρ2 proportionate modifying of the vari-
ance of the difference in matched sample means,

var(�Ymt − �Ymc)

var(�Yrt − �Yrc)
= ρ2 var(�Zmt − �Zmc)

var(�Zrt − �Zrc)
+ (1 − ρ2)

var( �Wmt − �Wmc)

var( �Wrt − �Wrc)
,

where the ratio var( �Wmt − �Wmc)/var( �Wrt − �Wrc) takes the same value for all Y .

PROOF. The proof is analogous to that of Corollary 4.2 using Theorem 5.1 and
Lemma 6.1, and parallels the proof of Corollary 4.3 in [16], where, in that proof,
there is a typographical error: �Zmt − �Zmc and �Wmt − �Wmc should be replaced by
�Zmt − �Zmc and �Wmt − �Wmc, respectively. �



MATCHING WITH DMPES DISTRIBUTIONS 1825

COROLLARY 6.4. Within each mixture component, the matching is ρ2 pro-
portionate modifying of the expectation of the sample variances,

E(νmk(Y ))

E(νrk(Y ))
= ρ2 E(νmk(Z))

E(νrk(Z))
+ (1 − ρ2)

E(νmk(W))

E(νrk(W))

for all k ∈ T or C, where the ratio E(νmk(W))/E(νrk(W)) takes the same value
for all Y within each mixture component.

PROOF. The proof of this corollary parallels that of Corollary 4.3, with modi-
fications similar to those in the proof of Corollary 6.3. Again, as in Corollary 4.2,
this result generally holds only in each of the individual treated and control group
components, and the analogous result in the overall samples does not hold. �

7. Discussion. Here we have shown that most of the results proven by Rubin
and Thomas [16] can be extended to discriminant mixtures of proportional ellip-
soidally symmetric (DMPES) distributions, as defined in Section 2, and provides
some theoretical rationale for why the earlier Rubin and Thomas [16–18] results
hold well even when the assumption of ellipsoidally symmetric distributions is not
met. These results show that even with the more complicated setting of DMPES
distributions, the effects of matching on an arbitrary linear combination of the co-
variates can be summarized by its effects along and orthogonal to the discriminant.

Although the class of DMPES distributions is still restrictive, previous expe-
rience has indicated that mathematically convenient conditions for matching can
provide guidance in real-world examples. A classic example is in [2] on the bias re-
duction possible from stratified matching. Although Cochran’s results were proved
assuming infinite samples sizes and a linear relationship between a single covari-
ate and the outcome, the approximations and their implied guidance have found
applicability and use for a much wider range of situations. For a specific exam-
ple here, the implications of our results were the basis for the applied diagnostics
in [15] used to assess the quality of the matched samples of smokers and never
smokers in the National Medical Expenditure Survey, based on decomposing the
comparisons of the distributions in the matched samples into components along
and orthogonal to the discriminant.
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