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The use of principal component methods to analyze functional data is ap-
propriate in a wide range of different settings. In studies of “functional data
analysis,” it has often been assumed that a sample of random functions is
observed precisely, in the continuum and without noise. While this has been
the traditional setting for functional data analysis, in the context of longitudi-
nal data analysis a random function typically represents a patient, or subject,
who is observed at only a small number of randomly distributed points, with
nonnegligible measurement error. Nevertheless, essentially the same methods
can be used in both these cases, as well as in the vast number of settings that
lie between them. How is performance affected by the sampling plan? In this
paper we answer that question. We show that if there is a sample of n func-
tions, or subjects, then estimation of eigenvalues is a semiparametric problem,
with root-n consistent estimators, even if only a few observations are made
of each function, and if each observation is encumbered by noise. However,
estimation of eigenfunctions becomes a nonparametric problem when obser-
vations are sparse. The optimal convergence rates in this case are those which
pertain to more familiar function-estimation settings. We also describe the
effects of sampling at regularly spaced points, as opposed to random points.
In particular, it is shown that there are often advantages in sampling ran-
domly. However, even in the case of noisy data there is a threshold sampling
rate (depending on the number of functions treated) above which the rate of
sampling (either randomly or regularly) has negligible impact on estimator
performance, no matter whether eigenfunctions or eigenvectors are being es-
timated.

1. Introduction.

1.1. Connections between FDA and LDA. Advances in modern technology,
including computing environments, have facilitated the collection and analysis of
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high-dimensional data, or data that are repeated measurements of the same sub-
ject. If the repeated measurements are taken over a period of time, say on an inter-
val I , there are generally two different approaches to treating them, depending on
whether the measurements are available on a dense grid of time points, or whether
they are recorded relatively sparsely.

When the data are recorded densely over time, often by machine, they are typ-
ically termed functional or curve data, with one observed curve (or function) per
subject. This is often the case even when the data are observed with experimen-
tal error, since the operation of smoothing data recorded at closely spaced time
points can greatly reduce the effects of noise. In such cases we may regard the
entire curve for the ith subject, represented by the graph of the function Xi(t) say,
as being observed in the continuum, even though in reality the recording times
are discrete. The statistical analysis of a sample of n such graphs is commonly
termed functional data analysis, or FDA, and can be explored as suggested in the
monographs by Ramsay and Silverman [28, 27].

Biomedical longitudinal studies are similar to FDA in important respects, ex-
cept that it is rare to observe the entire curve. Measurements are often taken only
at a few scattered time points, which vary among subjects. If we represent the
observation times for subject i by random variables Tij , for j = 1, . . . ,mi , then
the resulting data are (Xi(Ti1), . . . ,Xi(Timi

)), generally observed with noise. The
study of information in this form is often referred to as longitudinal data analysis,
or LDA. See, for example, [12] or [20].

Despite the intrinsic similarities between sampling plans for functional and lon-
gitudinal data, statistical approaches to analyzing them are generally distinct. Para-
metric technologies, such as generalized estimating equations or generalized linear
mixed effects models, have been the dominant methods for longitudinal data, while
nonparametric approaches are typically employed for functional data. These and
related issues are discussed by Rice [31].

A significant, intrinsic difference between the two settings lies in the percep-
tion that functional data are observed in the continuum, without noise, whereas
longitudinal data are observed at sparsely distributed time points and are often
subject to experimental error. However, functional data are sometimes computed
after smoothing noisy observations that are made at a relatively small number of
time points, perhaps only a dozen points if, for example, full-year data curves are
calculated from monthly figures (see, e.g., [26]). Such instances indicate that the
differences between the two data types relate to the way in which a problem is
perceived and are arguably more conceptual than actual—for example, in the case
of FDA, as one where discretely recorded data are more readily understood as
observations of a continuous process.

As this discussion suggests, in view of these close connections, there is a need
to understand the interface between FDA and LDA views of data that might rea-
sonably be thought of as having a functional origin. This is one of the goals of the
present paper. In the context of principal component analysis, we explain the effect
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that observation at discrete time points, rather than observation in the continuum,
has on statistical estimators. In particular, and as we shall show, estimators of the
eigenvalues θj of principal components can be root-n consistent even when as few
as two observations are made of each of the n subjects, and even if experimen-
tal error is present. However, in such cases, estimation of eigenfunctions ψj is at
slower rates, but nevertheless at rates that would be optimal for function estimators
if data on those functions were observed in conventional form. On the other hand,
when the n random functions are fully observed in the continuum, the convergence
rates of both eigenvalue and eigenfunction estimators are n−1/2.

These results can be summarized by stating that estimation of θj or of ψj is
a semiparametric problem when the random functions are fully observed in the
continuum, but that estimation of ψj is a nonparametric problem, whereas esti-
mation of θj remains semiparametric, when data are observed sparsely with noise.
Indeed, if the number of observations per subject is at least two but is bounded, and
if the covariance function of subjects has r bounded derivatives, then the minimax-
optimal, mean square convergence rate of eigenfunction estimators is n−2r/(2r+1).
This rate is achieved by estimators based on empirical spectral decomposition. We
shall treat in detail only the case r = 2, since that setting corresponds to estimation
of covariance using popular local smoothing methods. However, straightforward
arguments give the extension to general r .

We also identify and discuss the important differences between sampling at reg-
ularly spaced, and at random time points. Additionally we address the case where
the number of sampled points per subject increases with sample size. Here we
show that there is a threshold value rate of increase which ensures that estimators
of θj and of ψj are first-order equivalent to their counterparts in the case where
subjects are fully observed, without noise. By drawing connections between FDA,
where nonparametric methods are well developed and popular, and LDA, where
parametric techniques play a dominant role, we are able to point to ways in which
nonparametric methodology may be introduced to LDA. There is a range of set-
tings in LDA where parametric models are difficult to postulate. This is especially
true when the longitudinal data do not have similar “shapes,” or are so sparse that
the individual data profiles cannot be discerned. Measurement errors can also mask
the shapes of the underlying subject profiles. Thus, more flexible models based on
nonparametric approaches are called for, at least at the early stage of data analy-
sis. This motivates the application of functional data approaches, and in particular,
functional principal component analysis, to longitudinal data.

It might be thought that our analysis of the infinite-dimensional problem of
FDA should reveal the same phenomena that are apparent in “large p, small n”
theory for finite-dimensional problems. For example, estimators of the maxi-
mum eigenvalue might be expected to be asymptotically biased. See, for example,
Johnstone [18]. However, these features are not present in theoretical studies of
conventional FDA methodology (see, e.g., [4, 11]), where complete functions are
observed, and it is arguably unsurprising that they are not present. One reason is
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that, although FDA is infinite-dimensional, an essential ingredient distinguishing
it from the multivariate vector case is smoothness. The problem of estimating any
number of eigenvalues and eigenfunctions does not become successively more dif-
ficult as sample size increases, since this problem in some sense may be reduced to
that of estimating fixed smooth mean and covariance functions from the available
functional data. In contrast, in typical “large p, small n” asymptotics, the dimen-
sion of covariance matrices is assumed to increase with sample size which gives
rise to specific properties.

The results in the present paper represent the first attempt at developing concise
asymptotic theory and optimal rates of convergence describing functional PCA
for sparse data. Upper bounds for rates of convergence of estimated eigenfunc-
tions in the sparse-data case, but not attaining the concise convergence rates given
in the present paper, were developed by Yao, Müller and Wang [38] under more
restrictive assumptions. Other available theoretical results for functional PCA are
for the ideal situation when entire random functions are observed, including Daux-
ois, Pousse and Romain [11], Bosq [3], Pezzulli and Silverman [25], Boente and
Fraiman [2], Cardot [7], Girard [14] and Hall and Hosseini-Nasab [15]. There is
an extensive literature on the general statistical analysis of functional data when
the full functions are assumed known. It includes work of Besse and Ramsay [1],
Castro, Lawton and Sylvestre [10], Rice and Silverman [32], Brumback and Rice
[5] and Cardot, Ferraty and Sarda [8, 9], as well as many articles discussed and
cited by Ramsay and Silverman [28, 27]. Kneip and Utikal [21] used methods
of functional data analysis to assess the variability of densities for data sets from
different populations. Contributions to various aspects of the analysis of sparse
functional data, including longitudinal data observed with measurement error, in-
clude those of Shi, Weiss and Taylor [34], Staniswalis and Lee [35], James, Hastie
and Sugar [17], Rice and Wu [33] and Müller [24]. For practical issues of imple-
menting and applying functional PCA, we refer to [6, 19, 29, 32, 37, 38].

2. Functional PCA for discretely observed random functions.

2.1. Functional principal component analysis. Let X1, . . . ,Xn denote inde-
pendent and identically distributed random functions on a compact interval I ,
satisfying

∫
I E(X2) < ∞. The mean function is µ = E(X), and the covariance

function is ψ(u, v) = cov{X(u),X(v)}. Functional PCA is based on interpreting
ψ as the kernel of a linear mapping on the space L2(I ) of square-integrable func-
tions on I , taking α to ψα defined by (ψα)(u) = ∫

I α(v)ψ(u, v) dv. For econ-
omy we use the same notation for an operator and its kernel. Mercer’s theorem
(e.g., [16], Chapter 4) now implies a spectral decomposition of the function ψ ,

ψ(u, v) =
∞∑

j=1

θjψj (u)ψj (v),(2.1)
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where θ1 ≥ θ2 ≥ · · · ≥ 0 are ordered values of the eigenvalues of the operator ψ ,
and the ψj ’s are the corresponding eigenfunctions.

The eigenfunctions form a complete orthonormal sequence on L2(I ), and so
we may represent each function Xi − µ in terms of its generalized Fourier expan-
sion in the ψj ’s,

Xi(t) = µ(t) +
∞∑

j=1

ζijψj (t),(2.2)

where ζij = ∫
I (Xi−µ)ψj is referred to as the j th functional principal compo-

nent score, or random effect, of the ith subject, whose (observed as in FDA or
hidden as in LDA) random trajectory is Xi . The expansion (2.2) is referred to as
the Karhunen–Loève or functional principal component expansion of the stochas-
tic process Xi . The fact that ψj and ψk are orthogonal for j �= k implies that the
random variables ζij , for 1 ≤ j < ∞, are uncorrelated.

Although the convergence in (2.2) is in L2, not pointwise in t , the only purpose
of that result, from the viewpoint of this paper, is to define the principal compo-
nents, or individual effects, ζij . The values of those random variables are defined
by (2.2), with probability 1.

The difficulty of representing distributions of random functions means that prin-
cipal component analysis assumes even greater importance in the setting of FDA
than it does in more conventional, finite-dimensional statistical problems. Espe-
cially if j is small, the shape of the function ψj conveys interpretable information
about the shapes one would be likely to find among the curves in the data set
X1, . . . ,Xn, if the curves were observable. In particular, if ψ1 has a pronounced
turning point in a part of I where the other functions, with relatively low orders,
are mostly flat, then the turning point is likely to appear with high probability in a
random function Xi . The “strength” with which this, or another, feature is likely
to arise is proportional to the standard deviation of ζij , that is, to the value of θ

1/2
j .

Conversely, if all eigenfunctions are close to zero in a given region, we may con-
clude that the underlying random process is constrained to be close to its mean in
this region with relatively little random variation. These considerations and others,
including the fact that (2.1) can be used to represent a variety of characteristics of
the random function X, motivate the development of methods for estimating each
θj and each ψj .

2.2. Estimation. Let X1, . . . ,Xn be as in Section 1.1, and assume that for
each i we observe pairs (Tij , Yij ) for 1 ≤ j ≤ mi , where

Yij = Xi(Tij ) + εij ,(2.3)

the “observation times” Tij all lie in the compact interval I , the errors εij have
zero mean and each mj ≥ 2. For simplicity, when developing theoretical proper-
ties it will be assumed that the Tij ’s are identically distributed random variables,
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that the errors εij are also identically distributed, with finite variance E(ε2) = σ 2,
and that the Xi’s, Tij ’s and εij ’s are totally independent. However, similar results
may be obtained with a degree of weak dependence, and in cases of nonidentical
distributions.

Using the data set D = {(Tij , Yij ), 1 ≤ j ≤ mi , 1 ≤ i ≤ n}, we wish to con-
struct estimators θ̂j and ψ̂j of θj and ψj , respectively. We start with estimators
µ̂ of µ = E(X), and ψ̂ of the autocovariance, ψ ; definitions of µ̂ and ψ̂ will be
given shortly. The function ψ̂ , being symmetric, enjoys an empirical version of the
expansion at (2.1),

ψ̂(u, v) =
∞∑

j=1

θ̂j ψ̂j (u)ψ̂j (v).(2.4)

Here, θ̂1, θ̂2, . . . are eigenvalues of the operator ψ̂ , given by (ψ̂α)(u) = ∫
I α(v)×

ψ̂(u, v) dv for α ∈ L2(I ), and ψ̂j is the eigenfunction corresponding to θ̂j . In
Section 3 we shall develop properties of θ̂j and ψ̂j . Given j0 ≥ 1, the θ̂j ’s are
ordered so that θ̂1 ≥ · · · ≥ θ̂j0 ≥ θ̂j , the last inequality holding for all j > j0.

The signs of ψj and ψ̂j can be switched without altering either (2.1) or (2.4).
This does not cause any difficulty, except that, when discussing the closeness of
ψj and ψ̂j , we clearly want them to have the same parity. That is, we would like
these eigenvectors to “point in the same general direction” when they are close. We
ensure this by allowing the sign of ψj to be chosen arbitrarily, but asking that the
sign of ψ̂j be chosen to minimize ‖ψ̂j − ψj‖ over both possible choices, where
here and in the following ‖ · ‖ denotes the L2-norm, ‖ψ‖ = (

∫
ψ2)1/2.

We construct first µ̂(u), and then ψ̂(u, v), by least-squares fitting of a local
linear model, as follows. Given u ∈ I , let hµ and hφ denote bandwidths and
select (â, b̂) = (a, b) to minimize

n∑
i=1

mi∑
j=1

{Yij − a − b(u − Tij )}2K

(
Tij − u

hµ

)
,

and take µ̂(u) = â. Then, given u, v ∈ I , choose (â0, b̂1, b̂2) = (a0, b1, b2) to
minimize

n∑
i=1

∑
j,k : 1≤j �=k≤mi

{YijYik − a0 − b1(u − Tij ) − b2(v − Tik)}2

× K

(
Tij − u

hφ

)
K

(
Tik − v

hφ

)
.

The quantity â0 estimates φ(u, v) = E{X(u)X(v)}, and so we denote it by φ̂(u, v).
Put

ψ̂(u, v) = φ̂(u, v) − µ̂(u)µ̂(v).
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These estimates are the same as those proposed in [38], where practical features
regarding the implementation are discussed in detail. The emphasis in [38] is on
estimating the random effects ζij , for which Gaussian assumptions are made on
processes and errors. We extend the consistency results for eigenvalues and eigen-
vectors of [38] in four significant ways: First, we establish concise first-order prop-
erties. Second, the first-order results in the present paper imply bounds that are an
order of magnitude smaller than the upper bounds provided by Yao, Müller and
Wang [38]. Third, we derive the asymptotic distribution of estimated eigenval-
ues. Fourth, we characterize a transition where the asymptotics of “longitudinal
behavior” with sparse and noisy measurements per subject transform into those
of “functional behavior” where random trajectories are completely observed. This
transition occurs as the number of measurements per subject is allowed to increase
at a certain rate.

The operator defined by ψ̂ is not, in general, positive semidefinite, and so the
eigenvalues θ̂j at (2.4) may not all be negative. Nevertheless, ψ̂ is symmetric, and
so (2.4) is assured.

Define Uij = u − Tij , Vik = v − Tik , Zijk = YijYik ,

Wij = K

(
Tij − u

hµ

)
, Wijk = K

(
Tij − u

hφ

)
K

(
Tik − v

hφ

)
.

Using this notation we may write

µ̂(u) = S2R0 − S1R1

S0S2 − S2
1

, φ̂(u, v) = (A1R00 − A2R10 − A3R01)B
−1,(2.5)

where

A1 = S20S02 − S2
11, A2 = S10S02 − S01S11, A3 = S01S20 − S10S11,

Sr =
n∑

i=1

mi∑
j=1

Ur
ijWij , Rr =

n∑
i=1

mi∑
j=1

Ur
ijYijWij ,

Srs = ∑∑∑
i,j,k : j<k

Ur
ijV

s
ikWijk, Rrs = ∑∑∑

i,j,k : j<k

Ur
ijV

s
ikZijkWijk,

B = A1S00 − A2S10 − A3S01

=
{∑∑∑

i,j,k : j<k

(Uij − Ū )2Wijk

}{∑∑∑
i,j,k : j<k

(Vij − V̄ )2Wijk

}

−
{∑∑∑

i,j,k : j<k

(Uij − Ū )(Vij − V̄ )Wijk

}2

≥ 0,

Q̄ =
(∑∑∑

i,j,k : j<k

QijWijk

)/(∑∑∑
i,j,k : j<k

Wijk

)
,
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for Q = U,V . Here we have suppressed the dependence of Sr , Rr and Wij on u,
and of Ar , B , Srs , Rrs and Wijk on (u, v).

3. Theoretical properties.

3.1. Main theorems. Our estimators µ̂ and ψ̂ have been constructed by local
linear smoothing, and so it is natural to make second derivative assumptions below,
as a prerequisite to stating both upper and lower bounds to convergence rates. If
µ̂ and ψ̂ were defined by r th-degree local polynomial smoothing, then we would
instead assume r derivatives, and in particular the optimal L2 convergence rate of
ψ̂j would be n−r/(2r+1) rather than the rate n−2/5 discussed below.

Assume that the random functions Xi are independent and identically distrib-
uted as X and are independent of the errors εij ; that the latter are independent and
identically distributed as ε, with E(ε) = 0 and E(ε2) = σ 2; that

for each C > 0 max
j=0,1,2

E

{
sup
u∈I

∣∣X(j)(u)
∣∣C}

+ E(|ε|C) < ∞;

that the kernel function K is compactly supported, symmetric and Hölder con-
tinuous; that for an integer j0 > 1 there are no ties among the j0 + 1 largest
eigenvalues of φ [although we allow the (j0 + 1)st largest eigenvalue to be tied
with the (j0 + 2)nd]; that the data pairs (Tij , Yij ) are observed for 1 ≤ j ≤ mi

and 1 ≤ i ≤ n, where each mi ≥ 2 and maxi≤n mi is bounded as n → ∞; that
the Tij ’s have a common distribution, the density, f , of which is bounded away
from zero on I ; and that nη−(1/2) ≤ hµ = o(1), for some η > 0. In addition, for
parts (a) and (b) of Theorem 1 we assume, respectively, that (a) nη−(1/3) ≤ hφ for

some η > 0, max(n−1/3h
2/3
φ , n−1h

−8/3
φ ) = o(hµ), hµ = o(hφ) and hφ = o(1); and

(b) nη−(3/8) ≤ hφ and hφ + hµ = o(n−1/4). Call these conditions (C).
In conditions (C) above we suppose the mi ’s to be deterministic, but with minor

modifications they can be taken to be random variables. Should some of the mi ’s
be equal to 1, these values may be used to estimate the mean function, µ, even
though they cannot contribute to estimates of the covariance. For simplicity we
shall not address this case, however.

Put x = X − µ, and define κ = ∫
K2, κ2 = ∫

u2K(u)du,

c(r, s) =
∫
I

f (t)−1ψr(t)ψs(t) dt,

β(u, v,w, z) = E{x(u)x(v)x(w)x(z)} − ψ(u, v)ψ(w, z),(3.1)

χ(u, v) = 1
2κ2{ψ20(u, v) + ψ02(u, v) + µ′′(u)µ(v) + µ(u)µ′′(v)},

where ψrs(u, v) = (∂r+s/∂ur ∂vs)ψ(u, v). Let

N = 1
2

∑
i≤n

mi(mi − 1)
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and

ν(r, s) =
n∑

i=1

∑∑
j1<k1

∑∑
j2<k2

E
[{

f
(
Tij1

)
f

(
Tik1

)
f

(
Tij2

)
f

(
Tik2

)}−1

× β
(
Tij1, Tik1, Tij2, Tik2

)
× ψr

(
Tij1

)
ψr

(
Tik1

)
ψs

(
Tij2

)
ψs

(
Tik2

)]
.

This formula has a conceptually simpler, although longer to write, version, ob-
tained by noting that the Tij ’s are independent with density f . Asymptotic bias
and variance properties of estimators are determined by the quantities

C1 = C1(j) = κ

∫ ∫
I 2

E{x(t1)
2x(t2)

2} + σ 2

f (t1)f (t2)
ψj (t1)

2 dt1 dt2,

C2 = C2(j) = ∑
k:k �=j

(θj − θk)
−2

(∫
χψjψk

)2

,(3.2)

(�)rs = N−2{ν(r, s) + Nσ 2c(r, s)2}.
Let � denote the j0 × j0 matrix with (r, s)th component equal to (�)rs . Note

that (�)rs = O(n−1) for each pair (r, s). Write 	a, 	θ and 	̂
θ for the vectors

(a1, . . . , aj0)
T, (θ1, . . . , θj0)

T and (θ̂1, . . . , θ̂j0)
T, respectively.

Our next result describes large-sample properties of eigenvalue and eigenfunc-
tion estimators. It is proved in Section 4.

THEOREM 1. Assume conditions (C). Then, (a) for 1 ≤ j ≤ j0,

‖ψ̂j − ψj‖2 = C1

Nhφ

+ C2h
4
φ + op{(nhφ)−1 + h4

φ},(3.3)

and (b) for any vector 	a, 	aT(
	̂
θ − 	θ) is asymptotically normally distributed with

mean zero and variance 	aT�	a.

The representation in part (b) of the theorem is borrowed from [13]. Bounds on
ψ̂j − ψj and on θ̂j − θj , which hold uniformly in increasingly large numbers of
indices j , and in particular for 1 ≤ j ≤ j0 = j0(n) where j0(n) diverges with n, can
also be derived. Results of this nature, where the whole functions Xi are observed
without error, rather than noisy observations being made at scattered times Tij

as in (2.3), are given by Hall and Hosseini-Nasab [15]. The methods there can
be extended to the present setting. However, in practice there is arguably not a
great deal of interest in moderate- to large-indexed eigenfunctions. As Ramsay
and Silverman [28] note, it can be difficult to interpret all but relatively low-order
principal component functions.
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The order of magnitude of the right-hand side of (3.3) is minimized by taking
h 
 n−1/5; the relation an 
 bn, for positive numbers an and bn, means that an/bn

is bounded away from zero and infinity as n → ∞. Moreover, it may be proved
that if h 
 n−1/5, then the relation ‖ψ̂j − ψj‖ = Op(n−2/5), implied by (3.3),
holds uniformly over a class of distributions of processes X that satisfy a version
of conditions (C). The main interest, of course, lies in establishing the reverse
inequality, uniformly over all candidates ψ̃j for estimators of ψj , thereby showing
that the convergence rate achieved by ψ̂j is minimax-optimal.

We shall do this in the case where only the first r eigenvalues θ1, . . . , θr are
nonzero, with fixed values, where the joint distribution of the Karhunen–Loève
coefficients ζi1, . . . , ζir [see (2.2)] is also fixed, and where the observation times
Tij are uniformly distributed. These restrictions actually strengthen the lower
bound result, since they ensure that the “max” part of the minimax bound is taken
over a relatively small number of options.

The class of eigenfunctions ψj will be taken to be reasonably rich, however;
we shall focus next on that aspect. Given c1 > 0, let S(c1) denote the L∞ Sobolev
space of functions φ on I for which maxs=0,1,2 supt∈I |φ(s)(t)| ≤ c1. We pass

from this space to a class � = �(c1) of vectors 	ψ = (ψ1, . . . ,ψr) of orthonor-
mal functions, as follows. Let ψ11, . . . ,ψ1r denote any fixed functions that are
orthonormal on I and have two bounded, continuous derivatives there. For each
sequence φ1, . . . , φr of functions in S(c1), let ψ1, . . . ,ψr be the functions con-
structed by applying Gram–Schmidt orthonormalization to ψ11 +φ1, . . . ,ψ1r +φr ,
working through this sequence in any order but nevertheless taking ψj to be the
new function obtained on adjoining ψ1j + φj to the orthonormal sequence, for
1 ≤ j ≤ r . If c1 is sufficiently small, then, for some c2 > 0,

sup
	ψ∈�

max
1≤j≤r

max
s=0,1,2

sup
t∈I

∣∣ψ(s)
j (t)

∣∣ ≤ c2.

Moreover, defining Aj to be the class of functions ψ2j = ψ1j + φj for which
φj ∈ S(c1) and

∫
ψ2

2j = 1, we have

Aj (c1) ⊆ {ψj : (ψ1, . . . ,ψr) ∈ �}(3.4)

for 1 ≤ j ≤ r . In the discussion below we shall assume that these properties hold.
Let θ1 > · · · > θr > 0 be fixed, and take 0 = θr+1 = θr+2 = · · · . Let ζ1, . . . , ζr

be independent random variables with continuous distributions, all moments fi-
nite, zero means, and E(ζ 2

j ) = θj for 1 ≤ j ≤ r . Assume we observe data Yij =
Xi(Tij ) + εij , where 1 ≤ i ≤ n, 1 ≤ j ≤ m, m ≥ 2 is fixed, Xi = ∑

1≤k≤r ζikψj ,
(ψ1, . . . ,ψr) ∈ � , each 	ζi = (ζi1, . . . , ζir ) is distributed as (ζ1, . . . , ζr), each Tij

is uniformly distributed on I = [0,1], the εij ’s are identically normally distrib-
uted with zero mean and nonzero variance, and the 	ζi’s, Tij ’s and εij ’s are totally
independent. Let �̃j denote the class of all measurable functionals ψ̃j of the data
D = {(Tij , Yij ), 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Theorem 2 below asserts the minimax
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optimality in this setting of the L2 convergence rate n−2/5 for ψ̂j given by Theo-
rem 1.

THEOREM 2. For the above prescription of the data D , and assuming h 

n−1/5,

lim
C→∞ lim sup

n→∞
max

1≤j≤r
sup
	ψ∈�

P (‖ψ̂j − ψj‖ > Cn−2/5) = 0;(3.5)

and for some C > 0,

lim inf
n→∞ min

1≤j≤r
inf

ψ̃j∈�̃j

sup
	ψ∈�

P {‖ψ̃j (D) − ψj‖ > Cn−2/5} > 0.(3.6)

It is possible to formulate a version of (3.5) where, although the maximum over
j continues to be in the finite range 1 ≤ j ≤ r , the supremum over 	ψ ∈ � is re-
placed by a supremum over a class of infinite-dimensional models. There one fixes
θ1 > · · · > θr > θr+1 ≥ θr+2 ≥ · · · ≥ 0, and chooses ψr+1,ψr+2, . . . by extension
of the process used to select ψ1, . . . ,ψr .

3.2. Discussion. Part (b) of Theorem 1 gives the asymptotic joint distribution
of the components θ̂j , and from part (a) we may deduce that the asymptotically
optimal choice of hφ for estimating ψj is hφ ∼ (C1/4C2N)1/5 
 n−1/5. More
generally, if hφ 
 n−1/5, then by Theorem 1 ‖ψ̂j − ψj‖ = Op(n−2/5). By Theo-
rem 2 this convergence rate is asymptotically optimal under the assumption that ψ

has two derivatives. For hφ of size n−1/5, the conditions on hµ imposed for part (a)
of Theorem 1 reduce to n−7/15 = o(hµ) and hµ = o(n−1/5).

In particular, Theorem 1 argues that a degree of undersmoothing is necessary for
estimating ψj and θj . Even when estimating ψj , the choice of hφ can be viewed
as undersmoothed, since the value const. n−1/5, suggested by (3.3), is an order of
magnitude smaller than the value that would be optimal for estimating φ; there
the appropriate size of hφ is n−1/6. The suggested choice of hµ is also an under-
smoothing choice, for estimating both ψj and θj .

Undersmoothing, in connection with nonparametric nuisance components, is
known to be necessary in situations where a parametric component of a semipara-
metric model is to be estimated relatively accurately. Examples include the partial-
spline model studied by Rice [30], and extensions to longitudinal data discussed by
Lin and Carroll [22]. In our functional PCA problem, where the eigenvalues and
eigenfunctions are the primary targets, the mean and covariance functions are nui-
sance components. The fact that they should be undersmoothed reflects the cases
mentioned just above, although the fact that one of the targets is semiparametric,
and the other nonparametric, is a point of departure.

The assumptions made about the mi ’s and Tij ’s in Theorems 1 and 2 are re-
alistic for sparsely sampled subjects, such as those encountered in longitudinal
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data analysis. There, the time points Tij typically represent the dates of biomed-
ical follow-up studies, where only a few follow-up visits are scheduled for each
patient, and at time points that are convenient for that person. The result is a small
total number of measurements per subject, made at irregularly spaced points.

On the other hand, for machine-recorded functional data the mi ’s are usually
larger and the observation times are often regularly spaced. Neither of the two the-
orems is valid if the observation times Tij are of this type, rather than (as in the
theorems) located at random points. For example, if each mi = m and we observe
each Xi only at the points Tij = j/m, for 1 ≤ j ≤ m, then we cannot consistently
estimate either θj or ψj from the resulting data, even if no noise is present. There
exist infinitely many distinct distributions of random functions X, in particular of
Gaussian processes, for which the joint distribution of X(j/m), for 1 ≤ j ≤ m,
is common. The stochastic nature of the Tij ’s, which allows them to take values
arbitrarily close to any given point in I , is critical to Theorems 1 and 2. Never-
theless, if the mi ’s increase sufficiently quickly with n, then regular spacing is not
a problem. We shall discuss this point in detail shortly.

Next we consider how the results reported in Theorem 1 alter when each mi ≥ m

and m increases. However, we continue to take the Tij ’s to be random variables,
considered to be uniform on I for simplicity. In this setting, N ≥ 1

2m(m − 1)n

and ν(r, s) = 1
4m4nd(r, s) + O(m3n), where

d(r, s) =
∫

β(u, v,w, z)ψr(u)ψr(v)ψs(w)ψs(z) dudv dw dz.

If we assume each mi = m, then it follows that (�)rs = n−1d(r, s) + O{(mn)−1},
as m,n → ∞. The leading term here, that is, n−1d(r, s), equals the (r, s)th
component of the limiting covariance matrix of the conventional estimator of
(θ1, . . . , θj0)

T when the full curves Xi are observed without noise. [It may be
shown that the proof leading to part (b) of Theorem 1 remains valid in this set-
ting, where each mi = m and m = m(n) → ∞ as n increases.] This reflects the
fact that the noisy sparse-data, or LDA, estimators of eigenvalues converge to their
no-noise and full-function, or FDA, counterparts as the number of observations per
subject increases, no matter how slow the rate of increase.

The effect on ψ̂j of increasing m is not quite as clear from part (a) of Theorem 1.
That result implies only that ‖ψ̂j − ψj‖2 = C2h

4
φ + op{(nhφ)−1}. Therefore the

order of magnitude of the variance component is reduced, and a faster L2 conver-
gence rate of ψ̂j to ψj can be achieved by choosing hφ somewhat smaller than
before. However, additional detail is absent.

To obtain further information it is instructive to consider specifically the “FDA
approach” when full curves are not observed. There, a smooth function estima-
tor X̂i of Xi would be constructed by passing a statistical smoother through the
sparse data set Di = {(Tij , Yij ), 1 ≤ j ≤ mi}, with Yij given by (2.3). Functional
data analysis would then proceed as though X̂i were the true curve, observed in
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its entirety. The step of constructing X̂i is of course a function estimation one, and
should take account of the likely smoothness of Xi . For example, if each Xi had
r derivatives, then a local polynomial smoother of degree r − 1 might be passed
through Di . (Kneip and Utikal [21] also employed a conventional smoother, this
time derived from kernel density estimation, in their exploration of the use of
functional-data methods for assessing different population densities.)

Let us take r = 2 for definiteness, in keeping with the assumptions lead-
ing to Theorems 1 and 2, and construct X̂i by running a local-linear smoother
through Di . Assume that each mi ≥ m. Then the following informally stated prop-
erty may be proved: The smoothed function estimators X̂i are as good as the true
functions Xi , in the sense that the resulting estimators of both θj and ψj are first-
order equivalent to the root-n consistent estimators that arise on applying conven-
tional principal component analysis to the true curves Xi , provided m is of larger
order than n1/4. Moreover, this result holds true for both randomly distributed ob-
servation times Tij and regularly spaced times. A formal statement and outline
proof of this result are given in Section 3.4.

These results clarify issues that are sometimes raised in FDA and LDA, about
whether effects of “the curse of dimensionality” have an impact through the num-
ber of observations per subject. It can be seen from our results that having mi large
is a blessing rather than a curse; even in the presence of noise, statistical smooth-
ing successfully exploits the high-dimensional character of the data and fills in the
gaps between adjacent observation times.

Theorem 1 provides advice on how the bandwidth hφ might be varied for differ-
ent eigenfunctions ψj . It suggests that, while the order of magnitude of hφ need not
depend on j , the constant multiplier could, in many instances, be increased with j .
The latter suggestion is indicated by the fact that, while the constant C1 in (3.3)
will generally not increase quickly with j , C2 will often tend to increase relatively
quickly, owing to the spacings between neighboring eigenvalues decreasing with
increasing j . The connection to spacings is mathematically clear from (3.2), where
it is seen that by decreasing the values of θj − θk we increase C2. Operationally,
it is observed that higher-order empirical eigenfunctions are typically increasingly
oscillatory, and hence require more smoothing for effective estimation.

3.3. Proof of Theorem 2. The upper bound (3.5) may be derived using the
argument in Section 4. To obtain (3.6) it is sufficient to show that if j ∈ [1, r]
is fixed and the orthonormal sequence {ψ1, . . . ,ψr} is constructed starting from
ψj ∈ Aj (c1); and if, in addition to the data D , the values of each ζik , for 1 ≤ i ≤ n

and 1 ≤ k ≤ m, and of each ψk(Ti�), for 1 ≤ i ≤ n, k �= j and 1 ≤ � ≤ m, are
known; then for some Cj > 0,

lim inf
n→∞ inf

ψ̃j∈�̃j

sup
ψj∈Aj (c1)

P {‖ψ̃j (D) − ψj‖ > Cjn
−2/5} > 0.
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[To obtain this equivalence we have used (3.4).] That is, if we are given only the
data D ′ = {(Tij , ζij ,ψj (Tij ) + εij ζ

−1
ij ), 1 ≤ i ≤ n, 1 ≤ j ≤ m}, and if �̄j denotes

the class of measurable functions ψ̄j of D ′, then it suffices to show that for some
Cj > 0,

lim inf
n→∞ inf

ψ̄j∈�̄j

sup
ψj∈Aj (c1)

P {‖ψ̄j (D
′) − ψj‖ > Cjn

−2/5} > 0.

Except for the fact that the errors here are εij ζ
−1
ij rather than simply εij , this result

is standard; see, for example, [36]. The factor ζ−1
ij is readily dealt with by using a

subsidiary argument.

3.4. Random function approximation. In Section 3.2 we discussed an ap-
proach to functional PCA that was based on running a local-linear smoother
through increasingly dense, but noisy, data on the true function Xi , producing an
empirical approximation X̂i . Here we give a formal statement and outline proof of
the result discussed there.

THEOREM 3. Suppose each mi ≥ m, and assume conditions (C) from Sec-
tion 3.1, except that the observation times Tij might be regularly spaced on
I rather than being randomly distributed there. Estimate θj and ψj using con-
ventional PCA for functional data, as though each smoothed function estimator X̂i

really were the function Xi . Then the resulting estimators of θj and ψj are root-n
consistent, and first-order equivalent to the conventional estimators that we would
construct if the Xi ’s were directly observed, provided m = m(n) diverges with n

and the bandwidth, h, used for the local-linear smoother satisfies h = o(n−1/4),
mhn−δ1 → ∞ and m1−δ2h → ∞, for some δ1, δ2 > 0.

We close with a proof. Observe that the estimator of ψ(u, v) that results from
operating as though each X̂i is the true function Xi , is

ψ̌(u, v) = 1

n

n∑
i=1

{X̂i(u) − ¯̂X(u)}{X̂i(v) − ¯̂X(v)},

where ¯̂X = n−1 ∑
i X̂i . The linear operator that is defined in terms of ψ̌ is posi-

tive semidefinite. The FDA-type estimators θ̌j and ψ̌j of θj and ψj , respectively,
would be constructed by simply identifying terms in the corresponding spectral
expansion,

ψ̌(u, v) =
∞∑

j=1

θ̌j ψ̌j (u)ψ̌j (v),
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where θ̌1 ≥ θ̌2 ≥ · · · ≥ 0. Of course, if we were able to observe the process Xi

directly, without noise, we would estimate ψ using

ψ̄(u, v) = 1

n

n∑
i=1

{Xi(u) − X̄(u)}{Xi(v) − X̄(v)},

where X̄ = n−1 ∑
i Xi , and take as our estimators of θj and ψj the corresponding

terms θ̄j and ψ̄j in the expansion,

ψ̄(u, v) =
∞∑

j=1

θ̄j ψ̄j (u)ψ̄j (v),

with θ̄1 ≥ θ̄2 ≥ · · · ≥ 0.
Methods used to derive limit theory for the estimators θ̄j and ψ̄j (see, e.g., [15])

may be used to show that the estimator pairs (θ̌j , ψ̌j ) and (θ̄j , ψ̄j ) are asymptot-
ically equivalent to first order if ψ̌ − ψ̂ = op(n−1/2), but generally not first-order
equivalent if ψ̌ and ψ̂ differ in terms of size n−1/2 or larger. Here, distances are
measured in terms of the conventional L2 metric for functions. Since we have
used a local-linear smoother to construct the functions X̂i from the data D , then
the bias contribution to ψ̌ − ψ̂ is of size h2, where h denotes the bandwidth for
the local-linear method. The contribution from the error about the mean is of size
(mnh)−1/2 at each fixed point. The “penalty” to be paid for extending uniformly to
all points is smaller than any polynomial in n. Indeed, using an approximation on
a lattice that is of polynomial fineness, the order of magnitude of the uniform error
about the mean can be seen to be of order nδ(mnh)−1/2 for each δ > 0. Theorem 3
follows.

4. Proof of Theorem 1.

Step (i): Approximation lemmas. Let ψ denote a symmetric, strictly positive-
definite linear operator on the class L2(I ) of square-integrable functions from
the compact interval I to the real line, with a kernel, also denoted by ψ , hav-
ing spectral decomposition given by (2.1). Denote by ψ̄ another symmetric, lin-
ear operator on L2(I ). Write the spectral decomposition of ψ̄ as ψ̄(u, v) =∑

j≥1 θ̄j ψ̄j (u)ψ̄j (v). Since ψ is nonsingular, then its eigenfunctions ψj , appear-
ing at (2.1), comprise a complete orthonormal sequence, and so we may write
ψ̄j = ∑

k≥1 ājkψk , for constants ājk satisfying
∑

k≥1 ā2
jk = 1. We may choose ājj

to be either positive or negative, since altering the sign of an eigenfunction does
not change the spectral decomposition. Below, we adopt the convention that each
ājj ≥ 0.

Given a function α on I 2, define ‖α‖ = (
∫∫

I 2 α2)1/2, ‖α‖∞ = sup |α| and

‖α‖2
(j) =

∫
I

{∫
I

α(u, v)ψj (v) dv

}2

du.
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If α1 and α2 are functions on I , write
∫

αα1α2 to denote∫ ∫
I 2

α(u, v)α1(u)α2(v) dudv.

For example,
∫
(ψ̄ − ψ)ψjψj in (4.2), below, is to be interpreted in this way. Let∫

αα1 denote the function of which the value at u is
∫
I α(u, v)α1(v) dv, and write

|I | for the length of I .

LEMMA 1. For each j ≥ 1,

‖ψ̄j − ψj‖2 = 2(1 − ājj ),(4.1)

∣∣∣∣θ̄j − θj −
{∫

(ψ̄ − ψ)ψjψj + (1 − ā2
jj )

(
1 −

∫
ψ̄ψjψj

)}∣∣∣∣
≤ |I |‖ψ̄j − ψj‖2‖ψ̄ − ψ‖∞(4.2)

+ (1 − ā2
jj )‖ψ̄ − ψ‖ + 2‖ψ̄j − ψj‖‖ψ̄ − ψ‖(j).

Lemma 1 implies that knowing bounds for 1 − ājj and for several norms of
ψ̄ − ψ gives us information about the sizes of ‖ψ̄j − ψj‖ and θ̄j − θj . We shall
take ψ̄ = ψ̂ , in which case we have an explicit formula for ‖ψ̄ − ψ‖. Therefore
our immediate need is for an approximation to ājj , denoted below by âjj when
ψ̄ = ψ̂ . This requirement will be filled by the next lemma. Define � = ψ̂ − ψ ,
and let âjk denote the generalized Fourier coefficients for expressing ψ̂j in terms
of the ψk’s: ψ̂j = ∑

k≥1 âjkψk , where we take âjj ≥ 0.

LEMMA 2. Under the conditions of Theorem 1,

1 − â2
jj = Op

(‖�‖2
(j)

)
,(4.3) ∣∣∣∣∣â2

jj − 1 + ∑
k:k �=j

(θj − θk)
−2

(∫
�ψjψk

)2∣∣∣∣ = Op

(‖�‖‖�‖2
(j)

)
.(4.4)

Lemma 1 is derived by using basic manipulations in operator theory. The proof
of Lemma 2 involves more tedious arguments, which can be considered to be
sparse-data versions of methods employed by Bosq [4] to derive his Theorem 4.7
and Corollaries 4.7 and 4.8; see also [23].

Step (ii): Implications of approximation lemmas. Since 2(1− âjj ) = 1− â2
jj +

Op(|1 − â2
jj |2) and ‖�‖(j) ≤ ‖�‖, then Lemma 2 implies that

2(1 − âjj ) = Dj1 + Op

(‖�‖‖�‖2
(j)

)
,(4.5)
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where

Dj1 = ∑
k : k �=j

(θj − θk)
−2

(∫
�ψjψk

)2

≤ const.‖�‖2
(j).

Note too that

Dj1 = Dj2 + θ−2
j ‖�‖2

(j) − θ−2
j

(∫
�ψjψj

)2

,(4.6)

where

Dj2 = ∑
k:k �=j

{(θj − θk)
−2 − θ−2

j }
(∫

�ψjψk

)2

.(4.7)

Standard arguments on uniform convergence of nonparametric function estimators
can be used to show that, under the conditions of Theorem 1, ‖µ̂ − µ‖∞ = op(1)

and ‖φ̂ − φ‖∞ = op(1), from which it follows that ‖ψ̂ − ψ‖∞ = op(1). Combin-
ing (4.5) and (4.6) with (4.1)–(4.4) we deduce that

‖ψ̂j − ψj‖2 = Dj2 + θ−2
j ‖�‖2

(j) − θ−2
j

(∫
�ψjψj

)2

(4.8)
+ Op

(‖�‖‖�‖2
(j)

)
,

θ̂j − θj =
∫

�ψjψj + Op

(‖�‖2
(j)

)
.(4.9)

Let E′ denote expectation conditional on the observation times Tij , for 1 ≤
j ≤ mi and 1 ≤ i ≤ n. Standard methods may be used to prove that, under the
bandwidth conditions imposed in either part of Theorem 1, and for each η > 0,

E′‖�‖2 = Op{(nh2
φ)−1 + (nhµ)−1 + h4},

and E′‖�‖2
(j) = Op{(nh)−1 + h4}, where h = hφ + hµ. Therefore, under the

bandwidth assumptions made, respectively, for parts (a) and (b) of Theorem 1,
the “Op” remainder term on the right-hand side of (4.8) equals op{(nhφ)−1 +
h4

φ} + Op{(nhµ)−3/2 + h6
µ}, while the remainder on the right-hand side of (4.9)

equals op(n−1/2). Hence,

‖ψ̂j − ψj‖2 = Dj2 + θ−2
j ‖�‖2

(j) − θ−2
j

(∫
�ψjψj

)2

(4.10)
+ op{(nhφ)−1 + h4

φ} + Op{(nhµ)−3/2 + h6
µ},

θ̂j − θj =
∫

�ψjψj + op(n−1/2).(4.11)
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Step (iii): Approximations to �. We may Taylor-expand Xi(Tij ) about Xi(u),
obtaining

Xi(Tij ) = Xi(u) − UijX
′
i (u) + 1

2U2
ijX

′′(uij ),(4.12)

where Uij = u − Tij and the random variable uij lies between u and Tij and

is of course independent of the errors εrs . For given u, v ∈ I , define Z
[1]
ijk =

{Xi(u)+εij }{Xi(v)+εik}, Vik = v−Tik , Z[2]
ijk = UijX

′
i(u)Xi(v)+VikXi(u)X′

i (v)

and Z
[3]
ijk = UijX

′
i (u)εjk + VikX

′
i (v)εjk . Let φ̂[�] denote the version of φ̂ obtained

on replacing Zijk by Z
[�]
ijk . In the following calculations, we may set µ ≡ 0, without

loss of generality. Using (4.12), and its analogue for expansion about Xi(v) rather
than Xi(u), we may write

YijYik = {
Xi(u) − UijX

′
i (u) + 1

2U2
ijX

′′
i (uij ) + εij

}
× {

Xi(v) − VikX
′
i (vij ) + 1

2V 2
ijX

′′
i (v) + εik

}
(4.13)

= Z
[1]
ijk − Z

[2]
ijk − Z

[3]
ijk + Z

[4]
ijk ,

where Z
[4]
ijk is defined by (4.13). Using standard arguments for deriving uniform

convergence rates it may be proved that for some η > 0, and under the bandwidth
conditions for either part of Theorem 1,

sup
(u,v)∈I 2

∣∣φ̂[4](u, v) − E′{φ̂[4](u, v)
}∣∣ = Op

(
n−(1/2)−η)

.

[Note that the data Z
[4]
ijk , from which φ̂[4] is computed, contain only quadratic

terms in (Uij ,Vik). When the kernel weights are applied for constructing φ̂[4],
only triples (i, j, k) for which |Uij |, |Vij | ≤ const. hφ make a nonvanishing contri-
bution to the estimator. This fact ensures the relatively fast rate of convergence.]
Therefore, uniformly on I 2, and under either set of bandwidth conditions,

φ̂ − E′φ̂ = φ̂[1] − E′φ̂[1] − (
φ̂[2] − E′φ̂[2]) − (

φ̂[3] − E′φ̂[3])
(4.14)

+ op(n−1/2).

Put Y
[1]
ij (u) = Xi(u) + εij , and let µ̂[1] denote the version of µ̂ obtained on

replacing Yij by Y
[1]
ij . Define µ̂[2] by µ̂ = µ̂[1] + µ̂[2]. Conventional arguments for

deriving uniform convergence rates may be employed to show that for some η > 0,
and under either set of bandwidth conditions,

sup
u∈I

∣∣µ̂[1](u) − E′{µ̂[1](u)
}∣∣ = Op

(
n−(1/4)−η)

,(4.15)

sup
u∈I

∣∣µ̂[2](u) − E′{µ̂[2](u)
}∣∣ = Op

(
n−(1/4)−η)

,(4.16)
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where (4.15) makes use of the property that hµ ≥ nη−(1/2) for some η > 0. Com-
bining (4.14)–(4.16) we deduce that, for either set of bandwidth conditions,

� = �0 + �1 − �2 − �3 − �4 − �5 + �6,(4.17)

where �k = φ̂[k] − E′φ̂[k] for k = 1,2,3,

�0(u, v) = E′{φ̂(u, v)} − {E′µ̂(u)}{E′µ̂(v)} − ψ(u, v),

�4(u, v) = E′{µ̂(u)}{µ̂[1](v) − E′µ̂[1](v)
}
,

�5(u, v) = �4(v, u) and sup(u,v)∈I 2 |�6(u, v)| = op(n−1/2). Direct calculation
may be used to show that for each r0, s0 ≥ 1, and for either set of bandwidth con-
ditions,

max
1≤k≤3

max
1≤r,s≤r0

E′
{∫ ∫

I 2
�k(u, v)ψr(u)ψs(v) dudv

}2

= Op(n−1),

max
k=2,3

max
1≤r,s≤r0

E′
{∫ ∫

I 2
�k(u, v)ψr(u)ψs(v) dudv

}2

= op(n−1),

max
1≤k≤3

sup
s≥1

E′
{∫ ∫

I 2
�k(u, v)ψr(u)ψs(v) dudv

}2

= Op(n−1),

E′(‖�1‖2
(j)

) = Op{(nhφ)−1},
max
k=2,3

E′(‖�k‖2
(j)

) = Op(n−1),

max
k=1,2

max
r≥1,1≤s≤s0

E′
[∫ ∫

I 2
E′{µ̂(u)}{µ̂[k](v) − E′µ̂[k](v)

}
× ψr(u)ψs(v) dudv

]2

= Op(n−1),

max
k=1,2

sup
1≤r≤r0,s≥1

E′
[∫ ∫

I 2
E′{µ̂(u)}{µ̂[k](v) − E′µ̂[k](v)

}
× ψr(u)ψs(v) dudv

]2

= Op{(nhµ)−1}.
Standard arguments show that

sup
(u,v)∈I 2

|�0(u, v) − ψ(u, v)| = Op(h2).

Combining results from (4.17) down, and defining

Dj3 = ∑
k:k �=j

{(θj − θk)
−2 − θ−2

j }
(∫

�0ψjψj

)2

(4.18)
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[cf. (4.7)], we deduce from (4.10) and (4.11) that, for the bandwidth conditions in
(a) and (b), respectively,

‖ψ̂j − ψj‖2 = Dj3 + θ−2
j ‖�0 + �1‖2

(j) − θ−2
j

(∫
�0ψjψj

)2

(4.19)
+ op{(nhφ)−1 + h4

φ} + Op{(nhµ)−3/2},
θ̂j − θj =

∫
(�0 + �1 − �4 − �5)ψjψj + op(n−1/2).(4.20)

Step (iv): Elucidation of bias contributions. Let the function χ be as defined
at (3.1). It may be proved that E′{φ̂(u, v)} = φ(u, v) + h2

φχ(u, v) + op(h2
φ), uni-

formly in u, v ∈ I with |u−v| > δ for any δ > 0, and that E′{φ̂(u, v)} = Op(h2
φ),

uniformly in u, v ∈ I . Here one uses the fact that E{X(s)X(t)} = ψ(s, t) +
x(s)x(t); subsequent calculations involve replacing (s, t) by (Tij , Tik) on the right-
hand side.

Furthermore, E′{µ̂(u)} = µ(u)+Op(h2
µ), uniformly in u ∈ I . In view of these

properties and results given in the previous paragraph, and noting that we assume
hµ = o(hφ) in the context of (4.19), and hφ = o(n−1/4) for (4.20), we may replace
�0 by h2

φχ in the definition of Dj3 at (4.18), and in (4.19) and (4.20), without
affecting the correctness of (4.19) and (4.20). Let Dj4 denote the version of Dj3

where �0 is replaced by h2
φχ .

Moment methods may be used to prove that

‖h2
φχ + �1‖2

(j) = E′‖h2
φχ + �1‖2

(j) + op{(nhφ)−1 + h4
φ}

(4.21)
= h4

φ‖χ‖2
(j) + E′‖�1‖2

(j) + op{(nhφ)−1 + h4
φ}.

Furthermore,

Dj4 + θ−2
j h4

φ‖χ‖2
(j) − θ−2

j h4
φ

(∫
χψjψj

)2

(4.22)

= h4
φ

∑
k : k �=j

(θj − θk)
−2

(∫
χψjψk

)2

;

compare (4.6). Combining (4.21) and (4.22) with the results noted in the previ-
ous paragraph, we deduce that, under the bandwidth conditions assumed for parts
(a) and (b), respectively, of Theorem 1,

‖ψ̂j − ψj‖2 = θ−2
j E′‖�1‖2

(j) + h4
φ

∑
k:k �=j

(θj − θk)
−2

(∫
χψjψk

)2

(4.23)
+ op{(nhφ)−1 + h4

φ} + Op{(nhµ)−3/2},
θ̂j − θj =

∫
(�1 − 2�4)ψjψj + op(n−1/2).(4.24)
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Step (v): Calculation of E′‖�1‖2
(j). Since E′‖�1‖2

(j) = ∫
I ξ1(u) du, where

ξ1(u) =
∫ ∫

I 2
ξ2(u, v1, v2)ψj (v1)ψj (v2) dv1 dv2

and ξ2(u, v1, v2) = E′{�1(u, v1)�1(u, v2)}, then we shall compute ξ2(u, v1, v2).
Recall the definition of φ̂ at (2.5). An expression for �1 is the same, except

that we replace Rrs in the formula for φ̂ by Qrs , say, which is defined by replac-
ing Zijk, in the definition of Rrs in Section 2, by Z

[1]
ijk − E′(Z[1]

ijk ). It can then be
seen that if, in the formulae in the previous paragraph, we replace ξ2(u, v1, v2) by
ξ3(u, v1, v2) = E′{�∗(u, v1)�

∗(u, v2)}, where �∗(u, v) = A1Q00/B and A1 and
B are as in Section 2, then we commit an error of smaller order than (nhφ)−1 +h4

φ

in the expression for E′‖�1‖2
(j).

Define x = X − µ and β(s1, t1, s2, t2) = E{x(s1)x(t1)x(s2)x(t2)}. In this nota-
tion,

B(u, v1)B(u, v1)ξ3(u, v1, v2)/A1(u, v1)A1(u, v2)

=
n∑

i=1

∑∑
j1<k1

∑∑
j2<k2

β
(
Tij1, Tik1, Tij2, Tik2

)
× K

(
Tij1 − u

hφ

)
K

(
Tik1 − v1

hφ

)
(4.25)

× K

(
Tij2 − u

hφ

)
K

(
Tik2 − v2

hφ

)

+ σ 2
n∑

i=1

∑∑
j<k

K

(
Tij − u

hφ

)2

K

(
Tik − v1

hφ

)
K

(
Tik − v2

hφ

)
.

Contributions to the fivefold series above, other than those for which (j1, k1) =
(j2, j2), make an asymptotically negligible contribution. Omitting such terms, the
right-hand side of (4.25) becomes

n∑
i=1

∑∑
j<k

{β(Tij , Tik, Tij , Tik) + σ 2}K
(

Tij − u

hφ

)2

K

(
Tik − v1

hφ

)
K

(
Tik − v2

hφ

)
.

Multiplying by ψj(v1)ψj (v2)A1(u, v1)A1(u, v2){B(u, v1)B(u, v2)}−1, integrat-
ing over u, v1, v2, and recalling that N = ∑

i mi(mi − 1), we deduce that

E′‖�1‖2
(j) ∼ (Nh4

φ)−1
∫
I

f (u)−2 du

×
∫ ∫ ∫ ∫

I 4
{β(t1, t2, t1, t2) + σ 2}

× K

(
t1 − u

hφ

)2

K

(
t2 − v1

hφ

)
K

(
t2 − v2

hφ

)
ψj(v1)ψj (v2)
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× {f (v1)f (v2)}−1f (t1)f (t2) dt1 dt2 dv1 dv2

∼ (Nhφ)−1
∫

· · ·
∫

{f (t1)f (t2)}−1{β(t1, t2, t1, t2) + σ 2}
× K(s)2K(s1)K(s2)ψj (t2)

2 dt1 dt2 ds1 ds2 ds

= (Nhφ)−1C1.

Result (3.3) follows from this property and (4.23).

Step (vi): Limit distribution of Zj ≡ ∫
(�1 − 2�4)ψjψj . It is straightforward

to prove that the vector Z, of which the j th component is Zj , is asymptotically
normally distributed with zero mean. We conclude our proof of part (b) of Theo-
rem 1 by finding its asymptotic covariance matrix, which is the same as the limit
of the covariance conditional on the set of observation times Tij . In this calculation
we may, without loss of generality, take µ ≡ 0.

Observe that

cov′(Zr,Zs) = c11(r, s) − 2c14(r, s) − 2c14(s, r) + 4c44(r, s),(4.26)

where the dash in cov′ denotes conditioning on observation times, and

cab(r, s) =
∫ ∫ ∫ ∫

I 4
E′{�a(u1, v1)�b(u2, v2)}

× ψr(u1)ψr(v1)ψs(u2)ψs(v2) du1 dv1 du2 dv2.

We shall compute asymptotic formulae for c11, c14 and c44.
Pursuing the argument in step (iv) we may show that E′(�1�1) is asymptotic to

A1(u1, v1)A1(u2, v2)

B(u1, v1)B(u2, v1)

×
{

n∑
i=1

∑∑
j1<k1

∑∑
j2<k2

β
(
Tij1, Tik1, Tij2, Tik2

)
× K

(
Tij1 − u1

hφ

)
K

(
Tik1 − v1

hφ

)

× K

(
Tij2 − u2

hφ

)
K

(
Tik2 − v2

hφ

)

+ σ 2
n∑

i=1

∑∑
j<k

K

(
Tij − u1

hφ

)
K

(
Tij − u2

hφ

)

× K

(
Tik − v1

hφ

)
K

(
Tik − v2

hφ

)}
.
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The ratio A1A1/BB to the left is asymptotic to {S00(u1, v1)S00(u2, v2)}−1, and so
to {N2h4

φf (u1)f (u2)f (v1)f (v2)}−1. Therefore,

c11(r, s)
p∼ N−2

[
n∑

i=1

∑∑
j1<k1

∑∑
j2<k2

{
f

(
Tij1

)
f

(
Tik1

)
f

(
Tij2

)
f

(
Tik2

)}−1

× β
(
Tij1, Tik1, Tij2, Tik2

)
× ψr

(
Tij1

)
ψr

(
Tik1

)
ψs

(
Tij2

)
ψs

(
Tik2

)
×

∫ ∫ ∫ ∫
I 4

K(w1)K(w2)K(w3)K(w4) dw1 · · · dw4(4.27)

+ σ 2
n∑

i=1

∑∑
j<k

{f (Tij )f (Tik)}−2ψr(Tij )ψr(Tik)ψs(Tij )ψs(Tik)

×
∫ ∫ ∫ ∫

I 4
K(w1)K(w2)K(w3)K(w4) dw1 · · · dw4

]
p∼ N−2{ν(r, s) + Nσ 2c(r, s)2}.

Observe next that, defining γ (u, v,w) = E{X(u)X(v)X(w)}−φ(u, v)µ(w), it
may be shown that S0(v2)S00(u1, v1)E

′{�1(u1, v1)�4(u2, v2)}/µ(u2) is asymp-
totic to

n∑
i=1

∑∑
j1<k1

mi∑
j2=1

Wij1k1(u1, v1)Wij2(v2)

× E′([{Xi(u1) + εij1

}{
Xi(v1) + εik1

} − φ(u1, v1)
]

× {
Xi(v2) + εij2 − µ(v2)

})
=

n∑
i=1

∑∑
j1<k1

mi∑
j2=1

Wij1k1(u1, v1)Wij2(v2)

× {
γ (u1, v1, v2) + σ 2δj1j2µ(v1) + σ 2δj2k1µ(u1)

}
.

The terms in σ 2 can be shown to make asymptotically negligible contributions
to c14; the first of them vanishes unless u1 is within O(hφ) of v2, and the second
unless v1 is within O(hφ) of v2. Furthermore, defining N1 = N1(n) = ∑

i≤n mi ,
we have S0(v2) ∼p N1hµf (v2) and S00(u1, v1) ∼p Nh2

φf (u1)f (v1). From these
properties, and the fact that we are assuming (without loss of generality) that
µ ≡ 0, it may be proved that

|c14(r, s)| + |c44(r, s)| = op(n−1).(4.28)

Results (4.24) and (4.26)–(4.28) imply that the covariance matrix in the central
limit theorem for the vector of values of θ̂j − θj has the form stated in part (b) of
Theorem 1.
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