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ADAPTIVE GOODNESS-OF-FIT TESTS IN
A DENSITY MODEL

BY MAGALIE FROMONT AND BÉATRICE LAURENT

Université Rennes II and INSA de Toulouse

Given an i.i.d. sample drawn from a density f , we propose to test that f

equals some prescribed density f0 or that f belongs to some translation/scale
family. We introduce a multiple testing procedure based on an estimation of
the L2-distance between f and f0 or between f and the parametric fam-
ily that we consider. For each sample size n, our test has level of signifi-
cance α. In the case of simple hypotheses, we prove that our test is adaptive:
it achieves the optimal rates of testing established by Ingster [J. Math. Sci. 99
(2000) 1110–1119] over various classes of smooth functions simultaneously.
As for composite hypotheses, we obtain similar results up to a logarithmic
factor. We carry out a simulation study to compare our procedures with the
Kolmogorov–Smirnov tests, or with goodness-of-fit tests proposed by Bickel
and Ritov [in Nonparametric Statistics and Related Topics (1992) 51–57] and
by Kallenberg and Ledwina [Ann. Statist. 23 (1995) 1594–1608].

1. Introduction. Suppose that we observe n independent and identically dis-
tributed (i.i.d.) real random variables X1, . . . ,Xn with common unknown den-
sity f . Let f0 be some specified density. In this paper we consider the problem
of testing the null hypothesis “f ∈ F ” against “f /∈ F ” where F equals either the
singleton {f0} or the parametric family

F =
{

1

σ
f0

( · − µ

σ

)
, (µ,σ ) ∈ K

}
,(1.1)

for some subset K of R×]0,+∞[.
This problem has been widely studied since the famous Kolmogorov–Smirnov

and Cramér–von Mises tests based on the empirical distribution function.
Assuming that f belongs to L2(R), it is quite natural to construct a test based

on the estimation of the squared L2-distance between f and F . In order to test the
simple hypothesis “f = f0,” we actually consider a suitable collection of estima-
tors of

∫
R(f −f0)

2 and decide to reject the null hypothesis if some estimator in the
collection is larger than its (1 − uα) quantile under the null hypothesis, uα being
calibrated so that the final test has level of significance α. We then generalize this
procedure to test that f belongs to the translation/scale family given by (1.1).
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From a theoretical point of view, we evaluate the performances of our tests in
terms of uniform separation rates with respect to the L2-distance over classes of
smooth functions. Given β in ]0,1[ and a class of functions B ⊂ L2(R), we define
the uniform separation rate ρ(�α,B, β) of a level α test �α of the null hypothesis
“f ∈ F ” over the class B as the smallest number ρ such that the test guarantees a
power at least equal to (1 − β) for all alternatives f in B at a distance ρ from F .
More precisely, denoting by d2(f,F ) the L2-distance between f and F and by
Pf the distribution of the observation (X1, . . . ,Xn),

ρ(�α,B, β)

= inf{ρ > 0, ∀f ∈ B, d2(f,F ) ≥ ρ ⇒ Pf (�α rejects) ≥ 1 − β}.
Assuming that f belongs to B, the uniform separation rate ρ(�α,B, β) is asymp-
totically related to the minimax rate of testing ρn introduced by Ingster [14] and
referred to as the critical radius. Indeed, by definition, ρn → 0 as n → +∞ and
satisfies:

(a) For any sequence ρ′
n such that ρ′

n/ρn = on(1),

inf
�n

{
sup
f ∈F

Pf (�n = 1) + sup
f ∈B,d2(f,F )≥ρ′

n

Pf (�n = 0)

}
= 1 − on(1),

where the infimum is taken over all tests �n with values in {0,1} rejecting the null
hypothesis “f ∈ F ” when �n = 1.

(b) For any α, β > 0, there exist some constant C > 0 and some test �∗
n such

that the two following inequalities hold:

sup
f ∈F

Pf (�∗
n = 1) ≤ α + on(1),(1.2)

sup
f ∈B,d2(f,F )≥Cρn

Pf (�∗
n = 0) ≤ β + on(1).(1.3)

Since the goodness-of-fit test to some specified density f0 can be reduced to
a test of uniformity on [0,1] for the variables F0(Xi) (where F0 is the distrib-
ution function associated with the density f0), many papers are devoted to the
problem of testing uniformity on [0,1]. The main reference for the computa-
tion of minimax rates of testing for this problem is the series of papers due to
Ingster [14]. In particular, under the prior assumption that f belongs to some
Hölder class with smoothness parameter s > 0, Ingster establishes the minimax
rate of testing ρn = n−2s/(4s+1). But the tests proposed to ensure the achievement
of this rate [namely the inequalities given in (1.2) and (1.3)] are structurally based
on the prior assumption; this is a crucial problem for their practical application
since the smoothness parameter s is typically unknown. Following the work of
Spokoiny [23] in the Gaussian white noise model, Ingster [15] focuses on the prob-
lem of finding an adaptive (assumption-free) test of uniformity on [0,1]. He proves
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that adaptation is not possible without some loss of efficiency of the order of an
extra log logn factor and he presents an adaptive test which is based on chi-square
statistics.

Other methods having Neyman’s test as starting point are proposed in order
to avoid using any prior assumption on the smoothness of f . To test uniformity
on [0,1], Neyman [20] suggests considering some orthonormal basis {φl, l ≥ 0}
of L2([0,1]) with φ0 = I[0,1] and rejecting the null hypothesis “f = I[0,1]” if
the estimator

∑D
l=1(

∑n
i=1 φl(Xi)/n)2 of θD = ∑D

l=1(
∫
[0,1] f φl)

2 is large enough,
where D is some given integer. Bickel and Ritov [4], Ledwina [19] and Kallenberg
and Ledwina [17] introduce data-driven versions of Neyman’s test where the para-
meter D is chosen via some penalized criterion. Inglot and Ledwina [13] establish
theoretical results for the test described in Kallenberg and Ledwina [17]. These re-
sults which essentially deal with the asymptotic efficiency of the test with respect
to the Neyman–Pearson test do not, however, lead to any optimality of the uniform
separation rates. Fan [8] also proposes a new version of Neyman’s test based on
wavelet thresholding to test that the mean of a Gaussian vector equals 0 with ap-
plications to goodness-of-fit tests in a density model. When we test uniformity on
[0,1], our method amounts to considering, for all integer D in some set Dn, the
unbiased estimator of θD defined by

θ̂D = 1

n(n − 1)

D∑
l=1

n∑
i �=j=1

φl(Xi)φl(Xj )

and to penalizing this estimator by its (1 − uα) quantile under the null hypoth-
esis. The main difference between our method and the testing procedures pro-
posed by previous authors lies in the order of magnitude of the penalty term. While
Ledwina [19] and Kallenberg and Ledwina [17] choose the parameter D by using
Schwarz’s Bayesian information criterion (BIC), Kallenberg [16] gives a discus-
sion of the choice of the penalties for data-driven Neyman’s tests. But the criteria
considered in these papers have been introduced to estimate the density f itself,
whereas our penalties correspond to the ones used to build adaptive estimators of∫
R f 2 by model selection in [18]. This choice allows us to obtain optimal uniform

separation rates with respect to the L2-distance.
As for testing a composite null hypothesis, Pouet [22] proves that provided that

f belongs to L2([0,1]) and some Hölder class, the minimax rate of testing is
comparable to the rate for the simple hypothesis “f = I[0,1].” However, the test
proposed by Pouet depends on the smoothness assumption on f , which is not sat-
isfactory from an experimental point of view. Inglot, Kallenberg and Ledwina [12]
introduce a procedure using no prior information about the smoothness of f to
test composite hypotheses like “f ∈ {f (x,β), β ∈ B}” with B ⊂ Rq . This proce-
dure, generalizing Kallenberg and Ledwina’s one [17], also consists of a combi-
nation of Neyman’s smooth test and Schwarz’s selection rule. Its construction is
based on the consideration of a sequence of exponential families with increasing
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dimensions to describe departures from the null model. The “right” dimension is
selected by an extended Schwarz’s rule, which is obtained by inserting the maxi-
mum likelihood estimator β̂ of β under the null hypothesis in the original defini-
tion of Schwarz’s BIC. The next step is the application of Neyman’s smooth test
using a quadratic score statistic in the selected dimension. Inglot, Kallenberg and
Ledwina [12] prove the consistency of the test at essentially any alternative.

The approach considered in the present paper has been initiated by Baraud, Huet
and Laurent [1–3] for the problem of testing linear or qualitative hypotheses in the
Gaussian regression model. The properties of the testing procedures proposed here
are nonasymptotic. For each n, the tests have the desired level of significance and
we characterize some sets of alternatives over which they have a prescribed power.
For the problem of testing goodness-of-fit of some specified density, we state in
Section 2 that our procedure is adaptive over some collection of classes of smooth
functions in the sense that it achieves the optimal “adaptive” rate of testing estab-
lished by Ingster [15] over all the classes of the collection simultaneously. We also
investigate in Section 4 the test from a practical point of view by Monte Carlo ex-
periments. The results show that our procedure is competitive with the ones due to
Bickel and Ritov [4] or Kallenberg and Ledwina [17]. For the problem of testing
the hypothesis “f ∈ F ,” where F is the translation/scale family defined by (1.1),
we get in Section 3 uniform separation rates over classes of smooth alternatives
of the same order (up to a logarithmic factor) as the rates obtained when testing
the simple hypothesis “f = f0.” We finally implement the procedure to test ex-
ponentiality in Section 4; we can notice that it gives particularly good results in
comparison with the Kolmogorov–Smirnov test under oscillating alternatives. The
proofs of the results stated in the paper are detailed in Section 5.

2. A goodness-of-fit test. Let X1, . . . ,Xn be i.i.d. random variables with
common density f with respect to the Lebesgue measure on R. Let f0 be some
given density in L2(R) and let α be in ]0,1[. Assuming that f belongs to L2(R),
we construct a level α test of the null hypothesis “f = f0” against the alternative
“f �= f0” from the observation (X1, . . . ,Xn).

In the following, ‖ · ‖2 and 〈·, ·〉, respectively, denote the usual norm and scalar
product in L2(R). For any bounded function g, ‖g‖∞ = supx∈R |g(x)|.

2.1. Description of the test. Our test is based on an estimation of the quantity
‖f − f0‖2

2 that is ‖f ‖2
2 + ‖f0‖2

2 − 2〈f,f0〉. Since 〈f,f0〉 is usually estimated by
the empirical estimator

∑n
i=1 f0(Xi)/n, the key point is the estimation of ‖f ‖2

2.
As in [18], we introduce an at most countable collection {Sm, m ∈ M} of linear
subspaces of L2(R). For all m in M, let {pl, l ∈ Lm} be some orthonormal basis
of Sm. The variable

θ̂m = 1

n(n − 1)

∑
l∈Lm

n∑
i �=j=1

pl(Xi)pl(Xj )(2.1)
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is an unbiased estimator of ‖�Sm(f )‖2
2, where �Sm denotes the orthogonal pro-

jection onto Sm. Then ‖f − f0‖2
2 can be estimated by

T̂m = θ̂m + ‖f0‖2
2 − 2

n

n∑
i=1

f0(Xi),

for any m in M. Denoting by tm(u) the (1 −u) quantile of the law of T̂m under the
hypothesis “f = f0” and considering

uα = sup
{
u ∈]0,1[, Pf0

(
sup
m∈M

(
T̂m − tm(u)

)
> 0

)
≤ α

}
,(2.2)

we introduce the test statistic Tα defined by

Tα = sup
m∈M

(
T̂m − tm(uα)

)
.

Our test consists of rejecting the null hypothesis if Tα is positive.
In practice, the values of uα and the quantiles {tm(uα),m ∈ M} are estimated

by Monte Carlo experiments under f0 as explained in Section 4.
This method amounts to a multiple testing procedure. Indeed, for each m in M,

we construct a level uα test of the null hypothesis “f = f0” by rejecting this hy-
pothesis if T̂m is larger than its (1 − uα) quantile under the hypothesis “f = f0.”
We thus obtain a collection of tests and we decide to reject the null hypothesis if
for some of the tests of the collection this hypothesis is rejected.

2.2. The power of the test. Let us now describe the collection of linear sub-
spaces {Sm,m ∈ M} that we use to define our testing procedure here. This col-
lection is obtained by mixing spaces generated by constant piecewise functions,
scaling functions and, in the case of compactly supported densities, trigonometric
polynomials.

(i) For all D in N∗ and k in Z, let

ID,k = √
DI[k/D,(k+1)/D[.

For all D in N∗, we define S(1,D) as the space generated by the functions
{ID,k, k ∈ Z} and

θ̂(1,D) = 1

n(n − 1)

∑
k∈Z

n∑
i �=j=1

ID,k(Xi)ID,k(Xj ).

(ii) Let us consider a pair of compactly supported orthonormal wavelets (ϕ,ψ)

such that for all J in N, {ϕJ,k = 2J/2ϕ(2J · − k), k ∈ Z} ∪ {ψj,k = 2j/2ψ(2j · −
k), j ∈ N, j ≥ J, k ∈ Z} is an orthonormal basis of L2(R). For all J in N and D =
2J , we define S(2,D) as the space generated by the scaling functions {ϕJ,k, k ∈ Z}
and

θ̂(2,D) = 1

n(n − 1)

∑
k∈Z

n∑
i �=j=1

ϕJ,k(Xi)ϕJ,k(Xj ).
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(iii) Let us consider the Fourier basis of L2([0,1]) given by

g0(x) = I[0,1](x),

g2p−1(x) = √
2 cos(2πpx)I[0,1](x) for all p ≥ 1,

g2p(x) = √
2 sin(2πpx)I[0,1](x) for all p ≥ 1.

For all D in N∗, we define S(3,D) as the space generated by the functions {gl, l =
0, . . . ,D} and

θ̂(3,D) = 1

n(n − 1)

D∑
l=0

n∑
i �=j=1

gl(Xi)gl(Xj ).

We want here to notice that the constants involved in the following may depend on
the chosen scaling function ϕ, but we will not always specify it.

Introduce D1 = D3 = N∗ and D2 = {2J , J ∈ N}. For l in {1,2,3}, D in Dl ,
�S(l,D)

denotes the orthogonal projection onto S(l,D) in L2(R).
For all l in {1,2,3}, we take Dl ⊂ Dl with

⋃
l∈{1,2,3} Dl �= ∅ and D3 = ∅ if the

Xi’s are not included in [0,1]. Let

M = {
(l,D), l ∈ {1,2,3},D ∈ Dl

}
.

For all m in M, we set

T̂m = θ̂m + ‖f0‖2
2 − 2

n

n∑
i=1

f0(Xi).

The test statistic that we consider is

Tα = sup
m∈M

(
T̂m − tm(uα)

)
,(2.3)

where tm(uα) is defined in Section 2.1.
The aim of the following theorem is to describe classes of alternatives over

which the corresponding test has a prescribed power.

THEOREM 1. Let X1, . . . ,Xn be i.i.d. real random variables with common
density f and let f0 be some given density. Let Tα be the test statistic defined
by (2.3). Assume that f0 and f belong to L∞(R) and fix some β in ]0,1[. For any
ε in ]0,2[, there exist some positive constants C1(β) and C2(β, ε,‖f ‖∞,‖f0‖∞)

such that, setting for all m = (l,D) in M,

Vm(β) = C1(β)

n

((√‖f ‖∞ + ‖f ‖∞
)√

D + D

n

)
+ C2(β, ε,‖f ‖∞,‖f0‖∞)

n
,

if f satisfies

‖f − f0‖2
2 > (1 + ε) inf

m∈M

{∥∥f − �Sm(f )
∥∥2

2 + tm(uα) + Vm(β)
}
,
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then

Pf (Tα ≤ 0) ≤ β.

COMMENTS. (i) Let us see what is the advantage of considering a multiple
testing procedure. We deduce from Theorem 1 that if we fix some element m in
M and if we focus on the test that rejects the null hypothesis when T̂m is larger
than its (1 −α) quantile under the hypothesis “f = f0” denoted by tm(α), then the
error probability of the second kind of the test is smaller than β for all f such that

‖f − f0‖2
2 > (1 + ε)

{∥∥f − �Sm(f )
∥∥2

2 + tm(α) + Vm(β)
}
.

For the multiple testing procedure, the right-hand side of the above inequality is
replaced by its infimum over all m in M, at the price that tm(α) is replaced by
tm(uα). When we evaluate the uniform separation rates, we show that for the col-
lections {Sm, m ∈ M} that we have chosen, the quantities tm(α) and tm(uα) just
differ by a logarithmic factor. Therefore, the multiple testing procedure behaves
almost as well as the best test among the considered collection of tests.

(ii) The key point of the proof of Theorem 1 is an exponential inequality for
U -statistics of order 2 due to Houdré and Reynaud-Bouret [11]. The same result
could also be obtained with an inequality due to Giné, Latala and Zinn [10].

(iii) We prove in Section 5 that if M is finite, then for all m = (l,D) in M,
tm(uα) is precisely of order

√
D log(|M|/α)/n, where |M| denotes the cardinality

of M. This allows us to establish optimal uniform separation rates over various
classes of alternatives. Furthermore, considering the problem of testing uniformity
on [0,1], if we take a collection {Sm,m ∈ M} which only contains a finite number
of spaces generated by constant piecewise functions, we can thus see that our pro-
cedure is very close to the one proposed by Ingster [15]. This would therefore be
satisfactory enough from a theoretical point of view. Our choice to use a collection
of mixing spaces generated by constant piecewise functions, scaling functions and
possibly trigonometric polynomials is in fact explained by the experimental results.
We indeed noticed in the simulation study that such a choice mostly increases the
power of the test.

2.3. Uniform separation rates. Our purpose in this section is to evaluate the
uniform separation rates of the test proposed above over several classes of alterna-
tives. For s > 0, R > 0, M > 0 and l ∈ {1,2,3}, we introduce

B(l)
s (R,M)

= {
f ∈ L2(R),∀D ∈ Dl ,

∥∥f − �S(l,D)
(f )

∥∥2
2 ≤ R2D−2s,‖f ‖∞ ≤ M

}
.

These sets of functions include some Hölder balls or Besov bodies. To be more
precise, we consider, for all s > 0 and R > 0, the class of functions Hs(R) defined
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by

Hs(R) = {
f : [0,1] → R,∀x, y ∈ [0,1],

(2.4) ∣∣f (s1)(x) − f (s1)(y)
∣∣ ≤ R|x − y|s2

}
,

where s = s1 + s2, s1 ∈ N and s2 ∈]0,1].
Let for j in N, k in Z, βj,k(f ) = 〈f,ψj,k〉. For all s > 0 and R > 0, we define

the Besov body Bs,2,∞(R) as

Bs,2,∞(R) =
{
f ∈ L2(R), ∀ j ∈ N,

∑
k∈Z

β2
j,k(f ) ≤ R22−2js

}
.

Then, one can see by straightforward computations that for s ∈]0,1], R > 0,
M > 0,

Hs(R) ∩ {f, ‖f ‖∞ ≤ M} ⊂ B(1)
s (R,M) ∩ B(3)

s

(
R/

√
2(4s − 1),M

)
,

and for s > 0, R > 0, M > 0,

Bs,2,∞(R) ∩ {f, ‖f ‖∞ ≤ M} ⊂ B(2)
s

(
R/

√
1 − 4−s,M

)
.

The following corollary gives upper bounds for the uniform separation rates of
our testing procedure over the classes B(l)

s (R,M).

COROLLARY 1. Let Tα be the test statistic defined by (2.3). Assume that
n ≥ 16 and that for l in {1,2,3}, Dl is {2J ,0 ≤ J ≤ log2(n

2/(log logn)3)} or ∅.
Fix some β in ]0,1[. For all s > 0, M > 0, R > 0 and l ∈ {1,2,3} such that
Dl �= ∅, there exists some positive constant C = C(s,α,β,M,‖f0‖∞) such that
if f belongs to the set B(l)

s (R,M) and satisfies

‖f − f0‖2
2 > C

(
R2/(4s+1)

(√
log logn

n

)4s/(4s+1)

+ R2
(

(log logn)3

n2

)2s

+ (log logn) logn

n

)
,

then

Pf (Tα ≤ 0) ≤ β.

In particular, if

(log logn)s+1/2(logn)2s+1/2/
√

n ≤ R ≤ n2s/(log logn)3s+1/2,(2.5)

there exists some positive constant C′(s, α,β,M,‖f0‖∞) such that the uniform
separation rate of the test ITα>0 over B(l)

s (R,M) satisfies

ρ
(
ITα>0,B

(l)
s (R,M),β

)
≤ C′(s, α,β,M,‖f0‖∞)R1/(4s+1)

(√
log logn

n

)2s/(4s+1)

.
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COMMENTS. (i) For the problem of testing the null hypothesis “f = I[0,1]”
against the alternative “f = I[0,1] + g with g �= 0 and g ∈ Bs(R)” where Bs(R) is
a class of smooth functions (like some Hölder, Sobolev or Besov ball in L2([0,1]))
with unknown smoothness parameter s, Ingster [15] establishes that the adaptive
minimax rate of testing is of order (

√
log logn/n)2s/(4s+1). From Corollary 1, we

thus deduce that the procedure that we propose is adaptive in the sense that it is
rate optimal over all the classes B(l)

s (R,M) such that R belongs to the range given
by (2.5) simultaneously.

(ii) Ingster [15] considers in fact the minimax rates of testing with respect to
general Lp-distances. In particular, for 1 ≤ p ≤ 2, he obtains the same adaptive
minimax rate of testing (

√
log logn/n)2s/(4s+1). Our results can clearly be ex-

tended to Lp-distances with 1 ≤ p ≤ 2 when f and f0 have bounded support. In
this case, one actually has that ‖f − f0‖p ≤ C(p)‖f − f0‖2.

We focus here on classes of alternatives that are well approximated by their pro-
jections onto the spaces {Sm,m ∈ M} under consideration. In the particular case
where f0 = I[0,1], one can see that the test may be powerful even for alternatives
that do not have such approximation properties. This is the purpose of Corollary 2.

COROLLARY 2. Let f0 = I[0,1]. Assume that n is larger than 16 and that M =
{(1,D),D ∈ D1} with D1 = {2J ,0 ≤ J ≤ log2(n

2/(log logn)3)}. Let Tα be the
test statistic defined by (2.3). For all s > 0 and R > 0, consider Hs(R) given
by (2.4). Fix some β in ]0,1[. For all s > 0, M > 0, R > 0, there exists some
positive constant C(R, s,α,β,M) such that if f belongs to the set Hs(R) with
‖f ‖∞ ≤ M , and if f satisfies

‖f − f0‖2
2 > C(R, s,α,β,M)

(√
log logn

n

)4s/(4s+1)

,

then

Pf (Tα ≤ 0) ≤ β.

COMMENT. The key point of the proof is an inequality due to Ingster ([14],
part III, inequality (5.16)). This inequality allows in fact to avoid evaluating the
approximation terms ‖f − �Sm(f )‖2. Although the functions f in Hs(R) are not
well approximated by their projections onto the spaces {S(1,D),D ∈ D1} when
s > 1, we thus prove that the corresponding testing procedure still achieves the
adaptive minimax rate of testing over Hs(R) for any s > 0.

3. Testing a parametric family. Let X1, . . . ,Xn be i.i.d. real random vari-
ables with common density f . In this section we consider the problem of testing
that f belongs to some translation/scale family of the form

F =
{

1

σ
f0

( · − µ

σ

)
, (µ,σ ) ∈ K

}
,
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where f0 is some given density and K is some subset of R×]0,+∞[. The families
of Gaussian, uniform or exponential densities and translation models are typical
examples of such translation/scale families.

3.1. Description of the test. The testing procedure introduced below is essen-
tially based on the idea that if f belongs to F , there exists (µ,σ ) in K such that
the density of the variables (Xi − µ)/σ is f0. As in Section 2.1, we take an at
most countable collection {Sm,m ∈ M} of linear subspaces of L2(R). For all m

in M, we consider an orthonormal basis {pl, l ∈ Lm} of Sm composed of right-
continuous functions and we set

T̃m(X1, . . . ,Xn)

= inf
(µ,σ )∈K

{
1

n(n − 1)

∑
l∈Lm

n∑
i �=j=1

pl

(
Xi − µ

σ

)
pl

(
Xj − µ

σ

)
(3.1)

+ ‖f0‖2
2 − 2

n

n∑
i=1

f0

(
Xi − µ

σ

)}
.

Since the functions pl are right-continuous, the infimum over (µ,σ ) in K can be
replaced by the infimum over (µ,σ ) in K ∩Q2 so that T̃m(X1, . . . ,Xn) is a random
variable.

We reject the null hypothesis “f ∈ F ” if

T̃α = sup
m∈M

(
T̃m(X1, . . . ,Xn) − q̃m,α

)
is positive, where {q̃m,α, m ∈ M} is a family of positive numbers such that

sup
f ∈F

Pf (T̃α > 0) ≤ α.(3.2)

Let us explain how we choose {q̃m,α, m ∈ M}. We distinguish two cases.
(i) The first one corresponds to the case where for all m in M, the variable

T̃m(X1, . . . ,Xn) defined by (3.1) satisfies

∀ (µ,σ ) ∈ K T̃m(X1, . . . ,Xn) = T̃m

(
X1 − µ

σ
, . . . ,

Xn − µ

σ

)
.(3.3)

This equality holds if, for instance, K = R×]0,+∞[, K = {0}× ]0,+∞[ or K =
R × {1}. In this case, we take q̃m,α = t̃m(ũα), where t̃m(u) is the (1 − u) quantile
of T̃m(X1, . . . ,Xn) under the hypothesis “f = f0,” and ũα is taken as

ũα = sup
{
u ∈]0,1[, Pf0

(
sup
m∈M

(
T̃m(X1, . . . ,Xn) − t̃m(u)

)
> 0

)
≤ α

}
.

The quantities ũα and {t̃m(ũα),m ∈ M} can be estimated by Monte Carlo experi-
ments. Let us see how this choice leads to inequality (3.2). Under the null hypoth-
esis, there exists (µ,σ ) in K such that the density of the variables (Xi − µ)/σ
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is f0. From (3.3), one can then deduce

Pf

(
sup
m∈M

(
T̃m(X1, . . . ,Xn) − t̃m(ũα)

)
> 0

)

= Pf

(
sup
m∈M

(
T̃m

(
X1 − µ

σ
, . . . ,

Xn − µ

σ

)
− t̃m(ũα)

)
> 0

)

= Pf0

(
sup
m∈M

(
T̃m(X1, . . . ,Xn) − t̃m(ũα)

)
> 0

)
,

and according to the definition of t̃m(ũα), this probability is at most α.
(ii) The second one corresponds to the case where (3.3) is not satisfied. This

occurs, for instance, if K is a compact set of R×]0,+∞[. Here, we take q̃m,α =
tm(uα) where, as in Section 2.1, tm(u) is the (1 − u) quantile of the variable

T̂m(X1, . . . ,Xn) = 1

n(n − 1)

∑
l∈Lm

n∑
i �=j=1

pl(Xi)pl(Xj ) + ‖f0‖2
2 − 2

n

n∑
i=1

f0(Xi)

under the assumption that the variables X1, . . . ,Xn are i.i.d. with common density
f0, and uα is defined as

uα = sup
{
u ∈]0,1[, Pf0

(
sup
m∈M

(
T̂m(X1, . . . ,Xn) − tm(u)

)
> 0

)
≤ α

}
.

Inequality (3.2) also holds in this case: if f belongs to F , there exists (µ,σ ) in
K such that f = f0((· − µ)/σ)/σ . By definition of T̃m(X1, . . . ,Xn), one has the
inequality

T̃m(X1, . . . ,Xn) ≤ T̂m

(
X1 − µ

σ
, . . . ,

Xn − µ

σ

)
.

Hence,

Pf (T̃α > 0) ≤ Pf

(
sup
m∈M

(
T̂m

(
X1 − µ

σ
, . . . ,

Xn − µ

σ

)
− tm(uα)

)
> 0

)
.

Since the variables (Xi − µ)/σ have f0 as common density, it follows from the
definition of uα that the above quantity is smaller than α.

We shall remark that the choice of {q̃m,α,m ∈ M} proposed in (ii) may lead to
a conservative procedure. It is therefore preferable to use the procedure proposed
in (i) whenever condition (3.3) holds.

3.2. The power of the test. In the following, we use the same notation as in
Section 2.2.

(i) For all D in D1 = N∗ and m = (1,D), we define

T̂m(X1, . . . ,Xn) = 1

n(n − 1)

∑
k∈Z

n∑
i �=j=1

ID,k(Xi)ID,k(Xj ) + ‖f0‖2
2 − 2

n

n∑
i=1

f0(Xi).
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(ii) Choose the scaling function ϕ such that it satisfies the Lipschitz condition

∀x, y ∈ R |ϕ(x) − ϕ(y)| ≤ Cϕ|x − y|.
For all D = 2J in D2 = {2J , J ∈ N} and m = (2,D), we define

T̂m(X1, . . . ,Xn) = 1

n(n − 1)

∑
k∈Z

n∑
i �=j=1

ϕJ,k(Xi)ϕJ,k(Xj ) + ‖f0‖2
2 − 2

n

n∑
i=1

f0(Xi).

We recall that we do not specify the dependence on ϕ in the involved constants.
Let D1 ⊂ D1 and D2 ⊂ D2 such that D1 ∪ D2 �= ∅ and let

M = {
(l,D), l ∈ {1,2},D ∈ Dl

}
.

For all m in M, we set

T̃m(X1, . . . ,Xn) = inf
(µ,σ )∈K

T̂m

(
X1 − µ

σ
, . . . ,

Xn − µ

σ

)
.

We consider the test statistic

T̃α = sup
m∈M

(
T̃m(X1, . . . ,Xn) − q̃m,α

)
,(3.4)

where {q̃m,α, m ∈ M} is a family of positive numbers satisfying (3.2).

THEOREM 2. Let X1, . . . ,Xn be i.i.d. real random variables with common
density f ∈ L∞(R). Let

F =
{

1

σ
f0

( · − µ

σ

)
, (µ,σ ) ∈ K

}
,

where f0 is some given bounded density and K = [µ,µ]×[σ,σ ], µ,µ,σ ,σ being
real numbers such that σ > 0. Suppose that the following hypotheses hold:

(h1) There exists some constant Cf0 > 0 such that for all x, y in the support
of f , (µ,σ ) in K , (µ′, σ ′) in K ,∣∣∣∣f0

(
x − µ

σ

)
− f0

(
y − µ′

σ ′
)∣∣∣∣ ≤ Cf0

∣∣∣∣x − µ

σ
− y − µ′

σ ′
∣∣∣∣.

(h2) There exist ν > 0 and c > 0 such that for all k ≥ 2,

E(|Xi |k) ≤ k!
2

νck−2.

Let T̃α be the test statistic defined by (3.4). Assume that D2 �= ∅ and that n is large
enough so that n ≥ 3 and n2(µ − µ) ∧ (σ − σ) ≥ 2. Fix some β in ]0,1[. For all ε

in ]0,2[, there exists some positive constant C = C(µ,µ,σ ,σ ,‖f0‖∞,Cf0,‖f ‖∞, ν, c, β, ε) such that, setting

ṼD(β) = C

(√
D

n

√
log(n2D) + D

n2 log2(n2D) + log(n2D)

n

)
,
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if f satisfies

inf
(µ,σ )∈K

σ

∥∥∥∥f − 1

σ
f0

( · − µ

σ

)∥∥∥∥2

2

≥ (1 + ε) inf
D∈D2

{
sup

(µ,σ )∈K

∥∥σf (σ· + µ) − �S(2,D)

(
σf (σ· + µ

))∥∥2
2

+ ṼD(β) + q̃(2,D),α

}
,

then

Pf (T̃α ≤ 0) ≤ β.

COMMENTS. (i) In Theorem 2, we only consider the case where K is com-
pact. This is due to technical reasons: we have to evaluate the supremum over
(µ,σ ) in K of U -statistics of order 2 depending on (µ,σ ). By considering a finite
grid on the compact set K , we reduce the problem to control of a finite number
of these U -statistics and we can use the inequality due to Houdré and Reynaud-
Bouret [11] again to control each of them.

(ii) The condition (h1) is satisfied by families of Gaussian densities (when
f0(x) = e−x2/2/

√
2π ) whatever the support of f and also by families of exponen-

tial densities (when f0(x) = e−xIx≥0 and K ⊂ {0}× ]0,+∞[) when the support of
f is included in [0,+∞[. As for families of uniform densities (when f0 = I[0,1]),
the condition (h1) is not satisfied but the result still holds; to see this, we refer to
a theorem stated in [9], where this condition is replaced by some L2-entropy with
bracketing condition on F .

(iii) As pointed out by a referee, the condition (h2) can be slightly weakened.
Bernstein’s inequality used in the proof of Theorem 2 actually still holds when
E[etXi ] ≤ ec′t2/2 for 0 ≤ t ≤ T (see [21], Section 2.2).

3.3. Uniform separation rates. As in Section 2.3, Theorem 2 allows us to eval-
uate the uniform separation rates of our test over classes of smooth functions. For
all s > 0, R > 0, M > 0, we consider the set

B̃s(R,M) = {
f ∈ L2(R),‖f ‖∞ ≤ M, ∀D ∈ D2, ∀ (µ,σ ) ∈ K,∥∥σf (σ· + µ) − �S(2,D)

(
σf (σ· + µ)

)∥∥2
2 ≤ R2σ 1+2sD−2s}.

Such a set contains, among others, the functions f belonging to some Besov ball
and satisfying the inequality ‖f ‖∞ ≤ M . To see this, in the notation of DeVore
and Lorentz [7], we introduce, for all h > 0 and r ∈ N∗,

�r
h(f, x) =

r∑
k=0

(
r

k

)
(−1)r−kf (x + kh).
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The r th modulus of smoothness of f in L2(R) is defined by

ωr(f, t)2 = sup
0≤h≤t

‖�r
h(f, ·)‖2.

Then f belongs to the Besov ball Bs,2,∞(R) if for r = [s] + 1,

sup
t>0

t−sωr(f, t)2 ≤ R.

One can easily see that

ωr

(
σf (σ· + µ), t

)
2 = σ 1/2ωr(f,σ t)2.

Let us now recall an inequality due to DeVore, Jawerth and Popov [6]: if the
wavelet ψ satisfies that for all j < r ,

∫
xjψ(x)dx = 0, then, for every function

g in L2(R), for all j ≥ 0, ∑
k∈Z

β2
j,k(g) ≤ Cω2

r (g,2−j )2,

where C is an absolute constant. Hence, if f belongs to the Besov ball Bs,2,∞(R),
for all J ≥ 0, for all (µ,σ ) ∈ K ,∥∥σf (σ· + µ) − �S

(2,2J )

(
σf (σ· + µ)

)∥∥2
2 = ∑

j≥J

∑
k∈Z

β2
j,k

(
σf (σ· + µ)

)

≤ C(1 − 4−s)−1R2σ 1+2s2−2J s.

If, in addition, ‖f ‖∞ ≤ M , then f ∈ B̃s(C
1/2(1 − 4−s)−1/2R,M).

The following corollary gives upper bounds for the uniform separation rates of
the testing procedure over the classes B̃s(R,M).

COROLLARY 3. Assume that the conditions of Theorem 2 are satisfied. Let
T̃α be the test statistic defined by (3.4) with q̃m,α = tm(uα) as explained in Sec-
tion 3.1 [case (ii)]. Choose D1 ⊂ {2J ,0 ≤ J ≤ log2(n

2)} and D2 = {2J ,0 ≤ J ≤
log2(n

2/ log3 n)}. Let β ∈]0,1[. For all s > 0, M > 0, R > 0, there exists a pos-
itive constant C = C(µ,µ,σ ,σ ,‖f0‖∞,Cf0,M,ν, c,α,β, s) such that, if f be-

longs to the set B̃s(R,M) and satisfies

inf
(µ,σ )∈K

∥∥∥∥f − 1

σ
f0

( · − µ

σ

)∥∥∥∥2

2

> C

(
R2/(4s+1)

(√
logn

n

)4s/(4s+1)

+ R2
(

(logn)3

n2

)2s

+ logn

n

)
,

then

Pf (T̃α ≤ 0) ≤ β.
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COMMENTS. (i) When R satisfies (logn)s+1/2/
√

n ≤ R ≤ n2s/(logn)3s+1/2,
the uniform separation rate over the class of functions belonging to B̃s(R,M) and
satisfying (h1) and (h2) is bounded from above by

C′(µ,µ,σ ,σ ,‖f0‖∞,Cf0M,ν, c,α,β, s
)
R1/(4s+1)

(√
logn

n

)2s/(1+4s)

.

This corresponds, up to a logarithmic factor, to the rate over the classes B(l)
s (R,M)

for the test of simple hypotheses obtained in Corollary 1. We do not know if this
logarithmic factor can be avoided.

(ii) As in Corollary 1, the result can be extended to Lp-distances with p in [1,2]
when f and f0 have bounded support.

4. Simulation study.

4.1. Test of uniformity on [0,1]. We first present simulation results for the
problem of testing that the distribution of some i.i.d. random variables X1, . . . ,Xn

with values in [0,1] is uniform on [0,1]. In order to implement our procedure, we
have to choose the set M = {(l,D), l ∈ {1,2,3},D ∈ Dl} that occurs in the defini-
tion (2.3) of the test statistic Tα . We present two cases. In the first case, we consider
only trigonometric polynomials. We take D1 = D2 = ∅ and D3 = {1,2, . . . ,Dtr}.
Setting g0 = I[0,1] and for all p ≥ 1, g2p−1(x) = √

2 cos(2pπx)I[0,1](x), and
g2p(x) = √

2 sin(2pπx)I[0,1](x), the test statistic is based on orthogonal projec-
tions onto the spaces spanned by the functions {gl, l = 0, . . . ,D} for D in D3.
The second case consists in mixing trigonometric polynomials and constant piece-
wise functions: we take D1 = {2,3, . . . ,Dct} and D3 = {1, . . . ,Dtr}. The tests
corresponding to these two cases are, respectively, denoted by Ttr and Ttr/ct. We
compare their powers with the powers of the tests proposed by Kallenberg and
Ledwina [17] (denoted by TKL), Bickel and Ritov [4] (denoted by TBR) and Kol-
mogorov and Smirnov (denoted by TKS). As explained in the Introduction, Kallen-
berg and Ledwina propose a test of uniformity on [0,1] which is a data-driven
version of Neyman’s test [20]. They consider the orthonormal system {φl, l ≥ 0}
of L2([0,1]), where φ0 = I[0,1] and the φl’s for l ≥ 1 are the orthonormal Legen-
dre polynomials on [0,1]. They decide to reject the null hypothesis if the sta-
tistic TD = ∑D

l=1(n
−1/2 ∑n

i=1 φl(Xi))
2 is large, D being chosen in {1, . . . , d(n)}

via Schwarz’s Bayesian Information Criterion. The critical value is estimated
by simulations. The test proposed by Bickel and Ritov is based on the statis-
tic

Tn = max
1≤D≤d(n)

(Tn,D − D)/
√

2D,

where Tn,D = 1
n

∑D
l=1

∑n
i,j=1 2 cos(lπXi) cos(lπXj ).
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We focus on the alternatives studied in the paper by Kallenberg and
Ledwina [17], for which the power of Bickel and Ritov’s test is also given. These
alternatives are

f(ρ,j)(x) = 1 + ρ cos(jπx),

g(p,q,ε)(x) = 1 − ε + εβp,q(x),

h(ρ,j)(x) = 1 + ρφj (x),

where βp,q is the Beta density with parameter (p, q) and {φj , j ≥ 1} is the family
of orthonormal Legendre polynomials on [0,1].

We have chosen a level α = 5%.
The value of uα and the quantiles {tm(uα), m ∈ M} are estimated by 40,000

simulations. We use 20,000 simulations for the estimation of the (1 − u) quantiles
tm(u) of the variables T̂m = θ̂m +‖f0‖2

2 − 2n−1 ∑n
i=1 f0(Xi) under the hypothesis

“f = f0” for u varying on a regular grid of ]0, α[ and 20,000 simulations for the
estimation of the probabilities Pf0(supm∈M(T̂m − tm(u)) > 0).

Tables 1 and 2 present the estimated powers for the tests Ttr, Ttr/ct, TKL, TBR and

TABLE 1
Estimated powers of the test of uniformity on [0,1] for n = 50 with Dtr = 6 and Dct = 6

Alternatives f(ρ,j)

(ρ,j) T tr T tr/ct T KL T BR T KS

(0.5,2) 0.61 0.56 0.56 0.48 0.29
(0.7,4) 0.80 0.77 0.50 0.71 0.16
(0.7,6) 0.69 0.62 0.23 0.60 0.10

Alternatives g(p,q,ε)

(p,q,ε) T tr T tr/ct T KL T BR T KS

(3,3,1/2) 0.55 0.49 0.53 0.40 0.14
(10,20,0.25) 0.46 0.49 0.36 0.41 0.33
(2,2,0.8) 0.62 0.55 0.63 0.44 0.15
(2,4,0.5) 0.57 0.60 0.55 0.58 0.64

Alternatives h(ρ,j)

(ρ,j) T tr T tr/ct T KL T BR T KS

(0.4,2) 0.69 0.65 0.70 0.59 0.32
(0.3,5) 0.16 0.16 0.13 0.14 0.07

Estimated levels

T tr T tr/ct T KL T BR T KS

0.051 0.055 0.061 0.031 0.050
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TABLE 2
Estimated powers of the test of uniformity on [0,1] for n = 100 with Dtr = 12 and Dct = 10

Alternatives f(ρ,j)

(ρ,j) Ttr T tr/ct T KL T BR T KS

(0.5,2) 0.87 0.85 0.87 0.84 0.53
(0.7,4) 0.98 0.98 0.83 0.98 0.29
(0.7,6) 0.97 0.96 0.46 0.95 0.19

Alternatives g(p,q,ε)

(p,q,ε) Ttr T tr/ct T KL T BR T KS

(3,3,1/2) 0.83 0.77 0.88 0.76 0.35
(10,20,0.25) 0.77 0.78 0.62 0.75 0.60
(2,2,0.8) 0.90 0.86 0.95 0.82 0.36
(2,4,0.5) 0.87 0.89 0.88 0.90 0.91

Alternatives h(ρ,j)

(ρ,j) Ttr T tr/ct T KL T BR T KS

(0.4,2) 0.93 0.91 0.95 0.90 0.60
(0.3,5) 0.33 0.31 0.23 0.33 0.09

Estimated levels

Ttr Ttr/ct TKL TBR TKS

0.050 0.048 0.056 0.031 0.054

TKS under various alternatives for a number of observations equal to 50 or 100. The
powers of the tests Ttr, Ttr/ct and TKS are estimated by 5000 experiments and the
levels by 20,000 experiments. Hence, with confidence 95%, the estimation error is
less than 0.3% for the levels and less than 1.3% for the powers.

For a number of observations equal to 50, Kallenberg and Ledwina take
d(50) = 10. We choose Dtr = 6, Dct = 6, and we obtain the results in Table 1.

For a number of observations equal to 100, Kallenberg and Ledwina take
d(100) = 12. We choose Dtr = 12, Dct = 10, and we obtain the results in Table 2.

COMMENTS. In this simulation study, the alternatives that we consider are
of three kinds. The alternatives f(ρ,j) correspond to the uniform density contami-
nated by a cosine function. They are favorable to our tests and Bickel and Ritov’s
test since these tests are based on trigonometric polynomials. It is therefore nat-
ural to compare our power results with the results of TBR. The main difference
between the two procedures lies in the fact that θ̂(3,D) is an unbiased estimator
of the squared L2-norm of the orthogonal projection of f onto S(3,D), whereas
(Tn,D − D)/(n − 1) is an unbiased estimator of

∑D
l=1(

∫
f (x)

√
2 cos(lπx) dx)2
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only under the null hypothesis. The consequent bias term under some alternative
f may be of order D/n, which does not allow us to establish optimal uniform
separation rates for the test proposed by Bickel and Ritov. This explains why the
power of Ttr improves the power of TBR in all cases.

The alternatives h(ρ,j) are more favorable to the test due to Kallenberg and
Ledwina since this test is based on Legendre polynomials. However, under the
alternative h(0.3,5), the test Ttr improves the results of TKL and under the alternative
h(0.4,2), the estimated power of Ttr is comparable to that of TKL.

Since the functions g(p,q,ε) correspond to some “neutral” alternatives, we can
focus on them. When the number of observations is equal to 100, the powers of
our tests Ttr and Ttr/ct are at least equivalent to the powers of TKL and TBR for half
of the considered cases. As for the other cases, the procedures Ttr and Ttr/ct are still
more powerful than TBR. For small sample sizes (n = 50), our test Ttr is always at
least as powerful as the tests TKL and TBR.

4.2. Other goodness-of-fit tests. We are now interested in testing that the den-
sity f of the random variables X1, . . . ,Xn is a given density f0, with f0 �= I[0,1].
To test such a hypothesis, we have two possible procedures: the first one con-
sists in testing directly from the sample X1, . . . ,Xn the null hypothesis “f = f0”
as explained in Section 2.1. The second one consists in testing that the com-
mon distribution of the variables F0(X1), . . . ,F0(Xn), where F0 is the distri-
bution function associated with the density f0, is uniform on [0,1]. This ap-
proach is the one which is proposed in most papers. Whereas the two procedures
are equivalent for the Kolmogorov–Smirnov test, they are not for our method
based on the estimation of an L2-distance. Indeed, in our case, the first test is
based on the estimation of ‖f − f0‖2

2. Since the density of F0(X1) is given by
h(x) = f (F−1

0 (x))/f0(F
−1
0 (x)) when F0 is one to one, the second test is based on

the estimation of ∫
[0,1]

(
h(x) − 1

)2
dx = ∥∥(f − f0)/

√
f0

∥∥2
2.

To compare in practice these two procedures, we have chosen to test that the den-
sity f is Gaussian with mean 0 and with variance 1 first, with variance 0.01 second.

The choices we have made in order to implement our procedures are the
following ones: for the direct test from X1, . . . ,Xn denoted by Td, the set
M = {(l,D), l ∈ {1,2,3},D ∈ Dl} is taken such that D2 = D3 = ∅ and D1 =
{1, . . . ,10}, and for the second test from F0(X1), . . . ,F0(Xn), we apply the test
Ttr/ct described in Section 4.1 with Dct = 10 and Dtr = 12. We also present the
estimated powers of the Kolmogorov–Smirnov test that we still denote by TKS.

We have taken a number of observations n = 100 and a level α = 5%. The
quantiles are estimated as above with 40,000 simulations, the powers of the tests
with 5000 simulations and the levels with 20,000 simulations. The alternatives that
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TABLE 3
Estimated powers for n = 100

Test of normality N (0,1) Test of normality N (0,0.01)

Alternatives fm

m T d T tr/ct T KS m T d T tr/ct T KS

2 0.96 0.92 0.62 0.17 0.93 0.64 0.24
1.8 0.66 0.66 0.36 0.16 0.87 0.71 0.14√

π/2 0.71 1 0.07 0.12 0.99 1 0.14

Alternatives g(m,σ 2)

(m,σ 2) Td Ttr/ct TKS (m,σ 2) Td Ttr/ct TKS

(1,1) 0.80 0.98 0.77 (0.1,0.01) 1 0.98 0.77
(0.5,2) 0.66 0.98 0.70 (0.05,0.015) 0.91 0.77 0.35
(1,2) 0.97 1 0.97 (0.05,0.02) 1 0.97 0.68

Alternatives hp

p Td Ttr/ct TKS p Td Ttr/ct TKS

2/
√

2π 0.24 0.95 0.42 20/
√

2π 0.96 0.95 0.41
3/2

√
2π 0.85 1 0.96 15/

√
2π 1 1 0.96

Estimated levels

Td Ttr/ct TKS Td Ttr/ct TKS

0.052 0.051 0.053 0.053 0.055 0.053

we have considered are the following ones (see Table 3):

fm(x) = 1

2m
I[−m,m],

g(m,σ 2)(x) = 1

2
√

2πσ

(
e−(x−m)2/(2σ 2) + e−(x+m)2/(2σ 2)),

hp(x) = p

2
epxIx<0 + p

2
e−pxIx≥0.

COMMENTS. The first objective of this simulation study is to compare our
tests with the Kolmogorov–Smirnov test. The estimated power of the most power-
ful of our tests is larger than that of TKS for most of the considered alternatives. In
these cases, the difference in power is really significant as we can see, for example,
for the alternatives fm.

The second objective is to compare the tests Td and Ttr/ct. We can notice that we
reject the null hypothesis more often with the test of uniformity from the F0(Xi)’s
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when we test that the density is Gaussian with variance 1, whereas the direct test
performs better when we test that the density is Gaussian with variance 0.01. As
explained above, this is due to the fact that ‖(f − f0)/

√
f0‖2

2 is larger than ‖f −
f0‖2

2 when f0 is the standard Gaussian density but smaller when f0 is the Gaussian
density with variance 0.01.

4.3. Testing a parametric family. We now implement the testing procedure
described in Section 3 in order to test that the density f of the observations
X1, . . . ,Xn is an exponential density or, in other words, that f belongs to the
set of densities

F = {f, f (x) = σ−1e−x/σ Ix≥0, σ > 0}.

To simplify the implementation, we base our test statistic on constant piecewise
functions instead of scaling functions. For all D in {2, . . . ,10}, we define

T̃(1,D)(X1, . . . ,Xn)

= inf
σ>0

{
D

n(n − 1)

∑
k≥0

n∑
i �=j=1

I{Xi/σ∈[k/D,(k+1)/D[}I{Xj/σ∈[k/D,(k+1)/D[}

+ ‖f0‖2
2 − 2

n

n∑
i=1

f0

(
Xi

σ

)}
,

where f0 is given by f0(x) = e−xIx≥0. It is easy to see that for all σ > 0,
T̃(1,D)(X1/σ, . . . ,Xn/σ) = T̃(1,D)(X1, . . . ,Xn).

Let M = {(1,D),D = 2, . . . ,10}. As explained in Section 3, we obtain a level
α test as follows: denoting by t̃m(u) the (1 − u) quantile of T̃m(X1, . . . ,Xn) under
the hypothesis “f = f0,” and setting

ũα = sup
{
u ∈]0,1[,Pf0

(
sup
m∈M

(
T̃m(X1, . . . ,Xn) − t̃m(u)

)
> 0

)
≤ α

}
,

we reject the null hypothesis if

sup
m∈M

(
T̃m(X1, . . . ,Xn) − t̃m(ũα)

)
> 0.

The quantities ũα and {t̃m(ũα),m ∈ M} are estimated by Monte Carlo experi-
ments: 20,000 simulations are used to estimate the values of {t̃m(u), m ∈ M} for u

varying on a regular grid of ]0, α[, and 20,000 simulations are used to estimate the
value of ũα .
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We compare the performance of our test with that of the Kolmogorov–Smirnov
test described below. Let

X̄n = n−1
n∑

i=1

Xi

and let F̂n be the empirical distribution function defined for all t in R by

F̂n(t) = n−1
n∑

i=1

IXi≤t .

Let Fσ be the distribution function associated with the exponential density with
parameter σ−1 :Fσ (t) = (1 − e−t/σ )It≥0. Under the hypothesis that the distri-
bution of the Xi’s is exponential with parameter σ−1, the law of the statistic
Dn = supt∈R |F̂n(t) − FX̄n

(t)| is free of the parameter σ . Let dn,1−α denote the
(1 − α) quantile of Dn under the assumption that the Xi’s have f0 as common
density. The Kolmogorov–Smirnov test of exponentiality consists in rejecting the
null hypothesis “f ∈ F ” if Dn > dn,1−α . We consider the alternatives defined for
x > 0 by

gp(x) = (
e−x + (

1 + sin(pπx)
)
I0<x<1

)
/2 (p even),

hp(x) = (
e−x + (

1 + cos(pπx)
)
I0<x<1

)
/2,

k(p,q,ε)(x) = (1 − ε)e−x + εβp,q(x),

l(p,q,ε)(x) = (1 − ε)e−x + εγp,q(x),

t (x) = e−(logx)2/2/
(
x
√

2π
)
,

v(x) = √
xe−x/2/(23/2�(3/2)),

w(x) = 1.5x0.5e−x1.5
,

where βp,q and γp,q , respectively, denote the Beta density and the Gamma density
with parameters (p, q).

For each alternative, the power of the test is still estimated by 5000 simulations.
The levels are estimated by 20,000 simulations. We choose n = 100 and α = 5%.

Table 4 presents the estimated power of our test denoted by T ′
α and of the

Kolmogorov–Smirnov test denoted by T ′
KS.

COMMENT. We can see in Table 4 that our test is not always much more pow-
erful than the Kolmogorov–Smirnov test under very smooth alternatives like v and
w which respectively correspond to the chi-square with three degrees of freedom
and the Weibull with parameter 1.5. However, under oscillating alternatives like
gp , hp , k(p,q,ε) and l(p,q,ε), for which the Kolmogorov–Smirnov test is known to
fail, our test performs much better. We could furthermore expect better results for
our procedure with regular scaling functions instead of constant piecewise func-
tions that we have chosen to make the implementation easier.
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TABLE 4
Estimated power of the test of exponentiality for n = 100

Alternatives gp Alternative t

p T
′
α T

′
KS T

′
α T

′
KS

4 0.89 0.74 0.75 0.45

Alternatives hp Alternative v

p T
′
α T

′
KS T

′
α T

′
KS

4 0.71 0.60 0.67 0.65
1 1 0.90

Alternatives k(p,q,ε) Alternative w

(p,q,ε) T
′
α T

′
KS T

′
α T

′
KS

(10, 20, 0.25) 0.91 0.65 0.97 0.98

Alternatives l(p,q,ε) Estimated levels

(p,q,ε) T
′
α T

′
KS T

′
α T

′
KS

(2, 5, 0.5) 0.53 0.28 0.053 0.051
(2, 5, 0.75) 0.89 0.60

5. Proofs.

5.1. Proof of Theorem 1. The main tool of the proof is the canonical decom-
position of the U -statistics θ̂m defined in Section 2.2. We introduce the processes
Un and Pn defined by

Un(h) = 1

n(n − 1)

n∑
i �=j=1

h(Xi,Xj ), Pn(h) = 1

n

n∑
i=1

h(Xi).

We also define P(h) = 〈h,f 〉. Using the same notation as in Section 2.2, let for D

in N∗, J in N,

(i) L(1,D) = {D} × Z and
{
pl, l ∈ L(1,D)

} = {ID,k, k ∈ Z},
(ii) L(2,2J ) = {J } × Z and

{
pl, l ∈ L(2,2J )

} = {ϕJ,k, k ∈ Z},
(iii) L(3,D) = {0,1, . . . ,D} and

{
pl, l ∈ L(3,D)

} = {gl, l = 0, . . . ,D}.
(5.1)

By setting, for all m ∈ M,

Hm(x, y) = ∑
l∈Lm

(
pl(x) − al

)(
pl(y) − al

)
,
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with al = 〈f,pl〉, we obtain the decomposition

θ̂m = Un(Hm) + (Pn − P)
(
2�Sm(f )

) + ∥∥�Sm(f )
∥∥2

2.

Let us fix some β in ]0,1[. Recalling that

Pf (Tα ≤ 0) = Pf

(
sup
m∈M

(
θ̂m + ‖f0‖2

2 − 2

n

n∑
i=1

f0(Xi) − tm(uα)

)
≤ 0

)
,

we have

Pf (Tα ≤ 0) ≤ inf
m∈M

Pf

(
θ̂m + ‖f0‖2

2 − 2

n

n∑
i=1

f0(Xi) − tm(uα) ≤ 0

)
.(5.2)

Since ‖f − �Sm(f )‖2
2 = ‖f ‖2

2 − ‖�Sm(f )‖2
2,

Pf (Tα ≤ 0) ≤ inf
m∈M

Pf

(
Un(Hm) + (Pn − P)

(
2�Sm(f ) − 2f

)
+ (Pn − P)(2f − 2f0)(5.3)

+ ‖f − f0‖2
2 ≤ ∥∥f − �Sm(f )

∥∥2
2 + tm(uα)

)
.

We then need to control Un(Hm), (Pn −P)(2�Sm(f )− 2f ), (Pn −P)(2f − 2f0)

for every m in M.
(a) Control of Un(Hm). We use the following lemma, which derives from an

exponential inequality for U -statistics of order 2 due to Houdré and Reynaud-
Bouret [11].

LEMMA 1. Let X1, . . . ,Xn be i.i.d. real random variables with common den-
sity f ∈ L∞(R). Let D1 = D3 = N∗ and D2 = {2J , J ∈ N}. For all m = (l,D) with
l ∈ {1,2,3} and D ∈ Dl , introduce {pl, l ∈ Lm} defined as in (5.1) and

Zm = 1

n(n − 1)

n∑
i �=j=1

Hm(Xi,Xj ),

with

Hm(x, y) = ∑
l∈Lm

(
pl(x) − 〈f,pl〉)(pl(y) − 〈f,pl〉).

There exists some positive constant C (depending only on ϕ) such that, for all
l ∈ {1,2,3}, D ∈ Dl , x > 0,

P

(∣∣Z(l,D)

∣∣ >
C

n

(√
Dx

(‖f ‖∞ + √‖f ‖∞
) + ‖f ‖∞x + Dx2

n

))
≤ 5.6e−x.(5.4)
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The proof of this lemma is detailed in [9].
By setting λ = log(3/β) and λ̃ = λ + log(5.6), Lemma 1 gives that there exists

some constant C > 0 such that, for all m = (l,D) in M,

Pf

(
Un(Hm) < −C

n

((‖f ‖∞ + √‖f ‖∞
)√

Dλ̃ + ‖f ‖∞λ̃ + Dλ̃2

n

))
≤ β

3
.(5.5)

We deduce from (5.3) and (5.5) that

Pf (Tα ≤ 0)

≤ β

3
+ inf

(l,D)∈M

{
Pf

(
(Pn − P)

(
2�S(l,D)

(f ) − 2f
) + (Pn − P)(2f − 2f0)

(5.6)
+ ‖f − f0‖2

2 ≤ ∥∥f − �S(l,D)
(f )

∥∥2
2 + t(l,D)(uα)

+ C

n

((‖f ‖∞ + √‖f ‖∞
)√

Dλ̃ + ‖f ‖∞λ̃ + Dλ̃2

n

))}
.

(b) Control of (Pn − P)(2�Sm(f ) − 2f ) and (Pn − P)(2f − 2f0). We now
use the following lemma due to Birgé and Massart [5], which provides a special
version of Bernstein’s inequality.

LEMMA 2. Let X1, . . . ,Xn be independent random variables satisfying the
moment condition

1

n

n∑
i=1

E(|Xi |k) ≤ k!
2

νck−2 for all k ≥ 2,

for some positive constants ν and c. Then, for any positive x,

P

(
1

n

n∑
i=1

(
Xi − E(Xi)

) ≥
√

2νx√
n

+ cx

n

)
≤ e−x.

In particular, if for all i in {1, . . . , n}, |Xi | ≤ b and E(X2
i ) ≤ ν, the above inequal-

ity is satisfied with c = b/3.

It is easy to check that there exists some constant C′ > 0 such that for all l in
{1,2}, D in Dl , ∣∣2�S(l,D)

(f )(Xi) − 2f (Xi)
∣∣ ≤ C′‖f ‖∞.

Moreover, it is proved in [7], page 269, that one can take C′ such that for all D

in D3, ∣∣2�S(3,D)
(f )(Xi) − 2f (Xi)

∣∣ ≤ C′‖f ‖∞ log(D + 1).

Since

E
(
2�Sm(f )(Xi) − 2f (Xi)

)2 ≤ 4‖f ‖∞
∥∥�Sm(f ) − f

∥∥2
2,
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we can deduce from Lemma 2 that for all m = (l,D) ∈ M,

Pf

(
(Pn − P)

(
2�Sm(f ) − 2f

)
< −2

√‖f ‖∞
∥∥�Sm(f ) − f

∥∥
2

√
2λ

n

− C′λ‖f ‖∞ log(D + 1)

3n

)
≤ β

3
.

By using the elementary inequality 2ab ≤ 4a2/ε + εb2/4, we obtain that for m =
(l,D) ∈ M,

Pf

(
(Pn − P)

(
2�Sm(f ) − 2f

) + ε

4

∥∥�Sm(f ) − f
∥∥2

2

(5.7)

< −
(

8

ε
+ C′ log(D + 1)

3

)‖f ‖∞λ

n

)
≤ β

3
.

The control of (Pn − P)(2f − 2f0) is computed in the same way and we get

Pf

(
(Pn − P)(2f − 2f0) + ε

4
‖f − f0‖2

2

(5.8)

< −
(

2
(

4

ε
+ 1

3

)
‖f ‖∞ + 2

3
‖f0‖∞

)
λ

n

)
≤ β

3
.

Finally, we deduce from (5.6)–(5.8) that if there exists some m = (l,D) in M
such that(

1 − ε

4

)
‖f − f0‖2

2 >

(
1 + ε

4

)∥∥f − �Sm(f )
∥∥2

2

+ C

n

((‖f ‖∞ + √‖f ‖∞
)√

Dλ̃ + ‖f ‖∞λ̃ + Dλ̃2

n

)

+
((

16

ε
+ C′ log(D + 1) + 2

3

)
‖f ‖∞ + 2

3
‖f0‖∞

)
λ

n

+ tm(uα),

then

Pf (Tα ≤ 0) ≤ β.

This concludes the proof of Theorem 1.

5.2. Proof of Corollary 1. Assume that for all l in {1,2,3}, Dl = ∅ or
{2J ,0 ≤ J ≤ log2(n

2/(log logn)3)}.

5.2.1. An upper bound for tm(uα), m ∈ M.

PROPOSITION 1. There exists some positive constant C(α) such that, for all
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m = (l,D) in M,

tm(uα) ≤ Wm(α),

where

Wm(α) = C(α)

n

((‖f0‖∞ + √‖f0‖∞
)√

D log logn + D(log logn)2

n

+ ‖f0‖∞(log logn) logn

)
.

PROOF. Recall that tm(u) denotes the (1 − u) quantile of the distribution of
T̂m under the hypothesis “f = f0.” We first notice that for n ≥ 16, |M| ≤ 3(1 +
log2 n2). So, setting αn = α/(3(1 + log2 n2)),

Pf0

(
sup
m∈M

(
T̂m − tm(αn)

)
> 0

)
≤ ∑

m∈M

Pf0

(
T̂m − tm(αn) > 0

)

≤ ∑
m∈M

α

3(1 + log2 n2)
≤ α.

By definition of uα , this implies that αn ≤ uα and for all m in M,

tm(uα) ≤ tm(αn).

It thus remains to give an upper bound for tm(αn). Let m = (l,D) ∈ M. We use
the same notation as in the proof of Theorem 1 to obtain the decomposition

T̂m = Un(Hm) + (Pn − P)
(
2�Sm(f )

) − 2Pn(f0) + ‖f0‖2
2 + ∥∥�Sm(f )

∥∥2
2.

Under the null hypothesis “f = f0,”

T̂m = Un(Hm) + (Pn − P)
(
2�Sm(f0) − 2f0

) − ‖f0‖2
2 + ∥∥�Sm(f0)

∥∥2
2.

Since ‖�Sm(f0) − f0‖2
2 = ‖f0‖2

2 − ‖�Sm(f0)‖2
2, we obtain that, under “f = f0,”

T̂m = Un(Hm) + (Pn − P)
(
2�Sm(f0) − 2f0

) − ∥∥�Sm(f0) − f0
∥∥2

2.(5.9)

As in the proof of Theorem 1, we control Un(Hm) from Lemma 1 and (Pn −
P)(2�Sm(f0) − 2f0) from Lemma 2. We set λn = log(2/αn) and λ̃n = λn +
log(5.6).

On one hand, Lemma 1 leads to

Pf0

(
Un(Hm) >

C

n

(√
Dλ̃n

(‖f0‖∞ + √‖f0‖∞
)

(5.10)

+ ‖f0‖∞λ̃n + Dλ̃2
n

n

))
≤ αn

2
.

On the other hand, since∣∣2(
�Sm(f0) − f0

)
(Xi)

∣∣ ≤ C′‖f0‖∞ log(D + 1)(5.11)
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and

Ef0

(
2
(
�Sm(f0) − f0

)
(Xi)

)2 ≤ 4‖f0‖∞
∥∥�Sm(f0) − f0

∥∥2
2,

it follows from Lemma 2 that

Pf0

(
(Pn − P)

(
2�Sm(f0) − 2f0

)
> 2

√‖f0‖∞
∥∥�Sm(f0) − f0

∥∥
2

√
2λn

n

+ C′‖f0‖∞λn log(D + 1)

3n

)
≤ αn

2
.

Using the inequality 2ab ≤ a2 + b2, and the fact that for n ≥ 16, log(D + 1) ≤
log(n2 + 1), we obtain that there exists C′′ > 0 such that

Pf0

(
(Pn − P)

(
2�Sm(f0) − 2f0

) − ∥∥�Sm(f0) − f0
∥∥2

2

(5.12)

>
C′′‖f0‖∞λn logn

n

)
≤ αn

2
.

We derive from (5.9), (5.10) and (5.12) that

Pf0

(
T̂m >

C

n

(√
Dλ̃n

(‖f0‖∞ + √‖f0‖∞
) + ‖f0‖∞λ̃n + Dλ̃2

n

n

)

+ C′′‖f0‖∞λn logn

n

)
≤ αn.

Finally, we notice that there exist some positive constants c(α) and c′(α) such that
for n ≥ 3, λn ≤ c(α) log logn and λ̃n ≤ c′(α) log logn, which completes the proof
of Proposition 1. �

5.2.2. Uniform separation rates. Let us fix β in ]0,1[ and l in {1,2,3} such
that Dl = {2J ,0 ≤ J ≤ log2(n

2/(log logn)3)}. From Theorem 1 and Proposi-
tion 1, we deduce that if f satisfies

‖f − f0‖2
2 > (1 + ε) inf

D∈Dl

{∥∥f − �S(l,D)
(f )

∥∥2
2 + W(l,D)(α) + V(l,D)(β)

}
,

then

Pf (Tα ≤ 0) ≤ β.

It is thus a matter of giving an upper bound for

inf
D∈Dl

{∥∥f − �S(l,D)
(f )

∥∥2
2 + W(l,D)(α) + V(l,D)(β)

}
,

when f belongs to some specified classes of functions. Recall that

B(l)
s (R,M)

= {
f ∈ L2(R), ∀D ∈ Dl ,

∥∥f − �S(l,D)
(f )

∥∥2
2 ≤ R2D−2s, ‖f ‖∞ ≤ M

}
.
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We now assume that f belongs to B(l)
s (R,M). Since ‖f −�S(l,D)

(f )‖2
2 ≤ R2D−2s

and since the constant C2(β, ε,‖f ‖∞,‖f0‖∞) in Theorem 1 can be taken such that
C2(β, ε,‖f ‖∞,‖f0‖∞) ≤ C2(β, ε,M,‖f0‖∞), we only need an upper bound for

inf
D∈Dl

{
R2D−2s + C1(β)

(√
M + M

)√D

n

+ C1(β)
D

n2 + C(α)
D(log logn)2

n2

+ C(α)
(‖f0‖∞ + √‖f0‖∞

)√D log logn

n

+ C(α)‖f0‖∞
(log logn) logn

n
+ C2(β, ε,M,‖f0‖∞)

n

}
.

Assuming that n ≥ 16, this quantity is bounded from above by

inf
D∈Dl

{
R2D−2s + (

C1(β) + C(α)
)D(log logn)2

n2

+ (
C1(β)

(√
M + M

) + C(α)
(‖f0‖∞ + √‖f0‖∞

))√D log logn

n

}

+ (
C(α)‖f0‖∞ + C2(β, ε,M,‖f0‖∞)

)(log logn) logn

n
.

Since every D in Dl is smaller than n2/(log logn)3,

inf
D∈Dl

{
R2D−2s +

√
D log logn

n
+ D(log logn)2

n2

}

≤ 2 inf
D∈Dl

{
R2D−2s +

√
D log logn

n

}
.

We have R2D−2s <
√

D log logn/n if and only if D > (R4n2/log logn)1/(1+4s),
so we define D∗ by

log2(D∗) = [
log2

((
R4n2/(log logn)

)1/(1+4s))] + 1,

and we consider three cases.
The first one is the case where 1 ≤ D∗ ≤ 2[log2(n

2/(log logn)3)], which means that
D∗ ∈ Dl . In this case, we have that

inf
D∈Dl

{
R2D−2s +

√
D log logn

n

}
≤ R2D−2s∗ +

√
D∗ log logn

n
.

Since

R2D−2s∗ ≤ R2/(4s+1)

(√
log logn

n

)4s/(4s+1)
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and
√

D∗ log logn

n
≤ √

2
(

nR2
√

log logn

)1/(4s+1)
√

log logn

n

≤ √
2R2/(4s+1)

(√
log logn

n

)4s/(4s+1)

,

we obtain that

inf
D∈Dl

{
R2D−2s +

√
D log logn

n

}
≤ (

1 + √
2

)
R2/(4s+1)

(√
log logn

n

)4s/(4s+1)

.

The second one is the case where D∗ > 2[log2(n
2/(log logn)3)]. In this case, for all

D in Dl , √
D log logn

n
≤ R2D−2s .

By taking D0 = 2[log2(n
2/(log logn)3)], we obtain that

inf
D∈Dl

{
R2D−2s +

√
D log logn

n

}
≤ 2R2D−2s

0 ≤ 22s+1R2
(

(log logn)3

n2

)2s

.

The third one is the case where D∗ < 1. In this case, for all D in Dl , R2D−2s ≤√
D log logn/n, so by taking D = 1, we obtain that

inf
D∈Dl

{
R2D−2s +

√
D log logn

n

}
≤

√
log logn

n
.

This completes the proof of the corollary.

5.3. Proof of Corollary 2. We use the same notation as in Theorem 1. We
assume that f0 = I[0,1] and M = {(1,D),D ∈ D1}, which means that we only
consider spaces generated by constant piecewise functions. We first prove that if
there exists m in M such that∥∥�Sm(f ) − f0

∥∥2
2 ≥ (1 + ε)

(
tm(uα) + Vm(β)

)
,(5.13)

then

Pf (Tα ≤ 0) ≤ β.

Using inequality (5.2) and the definition of θ̂m, we derive that

Pf (Tα ≤ 0) ≤ inf
m∈M

Pf

(
Un(Hm) + (Pn − P)

(
2�Sm(f ) − 2f0

)

+ ∥∥�Sm(f ) − f0
∥∥2

2 + 2
∫ 1

0
f0

(
f − �Sm(f )

) ≤ tm(uα)

)
.
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Since f0 = I[0,1] and since, for all m in M, Sm is generated by constant piecewise
functions, we have ∫ 1

0
f0

(
f − �Sm(f )

) = 0.

We then obtain that

Pf (Tα ≤ 0) ≤ inf
m∈M

Pf

(
Un(Hm) + (Pn − P)

(
2�Sm(f ) − 2f0

)
+ ∥∥�Sm(f ) − f0

∥∥2
2 ≤ tm(uα)

)
,

and we conclude as in the proof of Theorem 1.
Let for all s > 0 and R > 0, Hs(R) be defined by (2.4). Ingster [14] proved that

for all functions g in Hs(R), for all D in N∗,∥∥�S(1,D)
(g)

∥∥2
2 ≥ C1‖g‖2

2 − C2D
−2s,

where C1 ∈]0,1[ and C2 > 0 (see [14], part III, inequality (5.16)).
Assume that f ∈ Hs(R). Since f0 = I[0,1], f − f0 ∈ Hs(R). We then derive

from Ingster’s inequality that for all D in D1,∥∥�S(1,D)
(f − f0)

∥∥2
2 ≥ C1‖f − f0‖2

2 − C2D
−2s .

Moreover, �S(1,D)
(f − f0) = �S(1,D)

(f ) − f0. As a consequence, if there exists
m = (1,D) in M such that

C1‖f − f0‖2
2 ≥ C2D

−2s + (1 + ε)
(
tm(uα) + Vm(β)

)
,

then (5.13) holds. The end of the proof is similar to the proof of Corollary 1.

5.4. Proof of Theorem 2. Let T̃α be the test statistic defined by (3.4). We have
that

Pf (T̃α ≤ 0) ≤ inf
m∈M

Pf

(
T̃m(X1, . . . ,Xn) ≤ q̃m,α

)
,

and since D2 �= ∅, setting M′ = {(2,D), D ∈ D2},
Pf (T̃α ≤ 0) ≤ inf

m∈M′ Pf

(
T̃m(X1, . . . ,Xn) ≤ q̃m,α

)
.(5.14)

Let us introduce some notation. Using the definitions given in (5.1), for m in M′,
we recall that

T̂m

(
X1 − µ

σ
, . . . ,

Xn − µ

σ

)
= 1

n(n − 1)

∑
l∈Lm

n∑
i �=j=1

pl

(
Xi − µ

σ

)
pl

(
Xj − µ

σ

)

+ ‖f0‖2
2 − 2

n

n∑
i=1

f0

(
Xi − µ

σ

)
,
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and we set

al(µ,σ ) =
∫

pl

(
x − µ

σ

)
f (x) dx,

b(µ,σ ) =
∫

f0

(
x − µ

σ

)
f (x) dx,

Zm(µ,σ) = 1

n(n − 1)

∑
l∈Lm

n∑
i �=j=1

[
pl

(
Xi − µ

σ

)
− al(µ,σ )

]

×
[
pl

(
Xj − µ

σ

)
− al(µ,σ )

]
,

Lm(µ,σ) = (Pn − P)

(
2

∑
l∈Lm

al(µ,σ )pl

( · − µ

σ

)
− 2f0

( · − µ

σ

))
.

The following identity holds:

T̂m

(
X1 − µ

σ
, . . . ,

Xn − µ

σ

)
= Zm(µ,σ) + Lm(µ,σ) + ‖f0‖2

2

+ ∑
l∈Lm

a2
l (µ,σ ) − 2b(µ,σ ).

Recall that Sm is the linear subspace of L2(R) spanned by the functions {pl, l ∈
Lm} and that �Sm denotes the orthogonal projection onto Sm in L2(R). Then∑

l∈Lm

a2
l (µ,σ ) = ∥∥�Sm

(
σf (σ· + µ)

)∥∥2
2.(5.15)

After some easy computations, one can prove that

‖f0‖2
2 + ∑

l∈Lm

a2
l (µ,σ ) − 2b(µ,σ )

= σ

∥∥∥∥ 1

σ
f0

( · − µ

σ

)
− f

∥∥∥∥
2

2

− ∥∥σf (σ· + µ) − �Sm

(
σf (σ· + µ)

)∥∥2
2.

This implies that

Pf

(
T̃m(X1, . . . ,Xn) ≤ q̃m,α

)
= Pf

(
inf

(µ,σ )∈K

{
Zm(µ,σ) + Lm(µ,σ)

+ σ

∥∥∥∥ 1

σ
f0

( · − µ

σ

)
− f

∥∥∥∥
2

2

− ∥∥σf (σ· + µ) − �Sm

(
σf (σ· + µ)

)∥∥2
2

}
≤ q̃m,α

)
,
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or

Pf

(
T̃m(X1, . . . ,Xn) ≤ q̃m,α

)
= Pf

(
inf

(µ,σ )∈K

{
Zm(µ,σ) + Lm(µ,σ) + ε

4
σ

∥∥∥∥ 1

σ
f0

( · − µ

σ

)
− f

∥∥∥∥
2

2

+ ε

4

∥∥σf (σ· + µ) − �Sm

(
σf (σ· + µ)

)∥∥2
2

+
(

1 − ε

4

)
σ

∥∥∥∥ 1

σ
f0

( · − µ

σ

)
− f

∥∥∥∥
2

2

−
(

1 + ε

4

)∥∥σf (σ· + µ) − �Sm

(
σf (σ· + µ)

)∥∥2
2

}
≤ q̃m,α

)
.

Therefore,

Pf (T̃m ≤ q̃m,α)

≤ Pf

(
sup

(µ,σ )∈K

{
−Zm(µ,σ) − Lm(µ,σ)

− ε

4
σ

∥∥∥∥ 1

σ
f0

( · − µ

σ

)
− f

∥∥∥∥
2

2

− ε

4

∥∥σf (σ· + µ) − �Sm

(
σf (σ· + µ)

)∥∥2
2

}

≥
(

1 − ε

4

)
inf

(µ,σ )∈K
σ

∥∥∥∥ 1

σ
f0

( · − µ

σ

)
− f

∥∥∥∥
2

2

−
(

1 + ε

4

)
sup

(µ,σ )∈K

∥∥σf (σ· + µ) − �Sm

(
σf (σ· + µ)

)∥∥2
2 − q̃m,α

)
.

Let τm(β) denote the (1 − β) quantile of sup(µ,σ )∈K �m(µ,σ), where

�m(µ,σ) = −Zm(µ,σ) − Lm(µ,σ) − ε

4
σ

∥∥∥∥ 1

σ
f0

( · − µ

σ

)
− f

∥∥∥∥
2

2

− ε

4

∥∥σf (σ· + µ) − �Sm

(
σf (σ· + µ)

)∥∥2
2.

It follows from the above inequality and from (5.14) that if(
1 − ε

4

)
inf

(µ,σ )∈K
σ

∥∥∥∥ 1

σ
f0

( · − µ

σ

)
− f

∥∥∥∥
2

2

> inf
m∈M′

((
1 + ε

4

)
sup

(µ,σ )∈K

∥∥σf (σ· + µ) − �Sm

(
σf (σ· + µ)

)∥∥2
2

+ τm(β) + q̃m,α

)
,
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then

Pf (T̃α ≤ 0) ≤ β.

Let m = (2,2J ) ∈ M′. We now need to compute an upper bound for τm(β).
To compute this upper bound, we introduce a finite grid on K = [µ,µ]×[σ ,σ ].
Let µ0 < µ1 < · · · < µN and σ0 < σ1 < · · · < σN such that µ0 = µ, µN = µ,

σ0 = σ , σN = σ , for all δ in {0, . . . ,N − 2}, |µδ+1 − µδ| = �µ, |σδ+1 − σδ| = �σ

and |µN − µN−1| ≤ �µ, |σN − σN−1| ≤ �σ . �µ and �σ will be chosen later. Let
for (δ, δ′) in {0, . . . ,N − 1}2,

Aδ,δ′ = [µδ,µδ+1] × [σδ′, σδ′+1].
The following inequality holds:

sup
(µ,σ )∈K

�m(µ,σ) ≤ sup
(δ,δ′)∈{0,...,N−1}2

�m(µδ, σδ′)

+ sup
(δ,δ′)∈{0,...,N−1}2

sup
(µ,σ )∈Aδ,δ′

(
�m(µ,σ) − �m(µδ, σδ′)

)
.

5.4.1. Control of sup(δ,δ′)∈{0,...,N−1}2 �m(µδ, σδ′). Introduce

L(1)
m (µ,σ ) = (Pn − P)

(
2σf − 2

(
�Sm

(
σf (σ· + µ)

))( · − µ

σ

))

− ε

4

∥∥σf (σ· + µ) − �Sm

(
σf (σ· + µ)

)∥∥2
2

and

L(2)
m (µ,σ ) = (Pn − P)

(
2f0

( · − µ

σ

)
− 2σf

)
− ε

4
σ

∥∥∥∥ 1

σ
f0

( · − µ

σ

)
− f

∥∥∥∥
2

2
.

Since

−Lm(µ,σ) = (Pn − P)

(
2σf − 2

(
�Sm

(
σf (σ· + µ)

))( · − µ

σ

))

+ (Pn − P)

(
2f0

( · − µ

σ

)
− 2σf

)
,

we have that

sup
(δ,δ′)∈{0,...,N−1}2

�m(µδ, σδ′)

≤ sup
(δ,δ′)∈{0,...,N−1}2

|Zm(µδ, σδ′)|

+ sup
(δ,δ′)∈{0,...,N−1}2

L(1)
m (µδ, σδ′) + sup

(δ,δ′)∈{0,...,N−1}2
L(2)

m (µδ, σδ′).
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(a) Control of sup(δ,δ′)∈{0,...,N−1}2 |Zm(µδ, σδ′)|. We apply Lemma 1 by re-
placing the Xi’s by the variables (Xi − µ)/σ and the density f by the density
of the (Xi − µ)/σ ’s that is σf (σ· + µ). With m = (2,2J ) and {pl, l ∈ Lm} =
{ϕJ,k, k ∈ Z}, we obtain that there exists some constant C > 0 such that for any
(µ,σ ) in K , for any x > 0,

Pf

(
|Zm(µ,σ)| > C

n

(
2J/2√x

(
σ‖f ‖∞ + √

σ‖f ‖∞
) + σ‖f ‖∞x + 2J

n
x2

))

≤ 5.6e−x.

Hence,

Pf

(
sup

(δ,δ′)∈{0,...,N−1}2
|Zm(µδ, σδ′)|

>
C

n

(
2J/2√x

(
σ‖f ‖∞ + √

σ‖f ‖∞
) + σ‖f ‖∞x + 2J

n
x2

))
(5.16)

≤ 5.6N2e−x.

(b) Control of sup(δ,δ′)∈{0,...,N−1}2 L
(1)
m (µδ, σδ′). To get an upper bound for

this supremum, we use Lemma 2. We recall that for m = (2,2J ), {pl, l ∈ Lm} =
{ϕJ,k, k ∈ Z}, where ϕJ,k = 2J/2ϕ(2J · −k) and ϕ is a compactly supported scaling
function. Then, for all l in Lm,

‖pl‖∞ ≤ 2J/2‖ϕ‖∞.

Assume that the support of the function ϕ is included in [−�,�], with � > 0.
This implies that for any x in R, the cardinality of the set {l ∈ Lm,pl(x) �= 0} is
smaller than 2� and that for all (µ,σ ) in K , l in Lm,

|al(µ,σ )| ≤ 2�σ2−J/2‖f ‖∞‖ϕ‖∞.

Hence, for all x in R,∣∣∣∣(�Sm

(
σf (σ· + µ)

))(x − µ

σ

)∣∣∣∣ =
∣∣∣∣∣
∑

l∈Lm

al(µ,σ )pl

(
x − µ

σ

)∣∣∣∣∣
≤ 2�σ2−J/2‖f ‖∞‖ϕ‖∞

∑
l∈Lm

∣∣∣∣pl

(
x − µ

σ

)∣∣∣∣
≤ 4�2σ‖f ‖∞‖ϕ‖2∞.

Therefore, there exists some constant C′ > 0 such that∥∥∥∥2σf − 2
(
�Sm

(
σf (σ· + µ)

))( · − µ

σ

)∥∥∥∥∞
≤ C′σ‖f ‖∞.
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Furthermore, we have∫ (
2σf − 2

(
�Sm

(
σf (σ· + µ)

))( · − µ

σ

))2

f

≤ 4σ‖f ‖∞
∥∥σf (σ· + µ) − �Sm

(
σf (σ· + µ)

)∥∥2
2.

Then, for all (µ,σ ) in K , Lemma 2 gives the following exponential inequality: for
all x > 0,

Pf

(
(Pn − P)

(
2σf − 2

(
�Sm

(
σf (σ· + µ)

))( · − µ

σ

))

>
C′σ‖f ‖∞

3

x

n

+ 2
√

2σ‖f ‖∞
∥∥σf (σ· + µ) − �Sm

(
σf (σ· + µ)

)∥∥
2

√
x

n

)
≤ e−x.

By using the elementary inequality 2ab ≤ 4a2/ε + εb2/4, we obtain that

Pf

(
sup

(δ,δ′)∈{0,...,N−1}2
L(1)

m (µδ, σδ′) >

(
8

ε
+ C′

3

)
σ‖f ‖∞

x

n

)
≤ N2e−x.(5.17)

(c) Control of sup(δ,δ′)∈{0,...,N−1}2 L
(2)
m (µδ, σδ′). We control

sup(δ,δ′)∈{0,...,N−1}2 L
(2)
m (µδ, σδ′) in the same way, noticing that for any (µ,σ )

in K , ∥∥∥∥2f0

( · − µ

σ

)
− 2σf

∥∥∥∥∞
≤ 2(‖f0‖∞ + σ‖f ‖∞)

and ∫ (
2f0

( · − µ

σ

)
− 2σf

)2

f ≤ 4σ 2‖f ‖∞
∥∥∥∥ 1

σ
f0

( · − µ

σ

)
− f

∥∥∥∥
2

2
.

We get

Pf

(
sup

(δ,δ′)∈{0,...,N−1}2
L(2)

m (µδ, σδ′)

(5.18)

> 2
(

4

ε
σ‖f ‖∞ + ‖f0‖∞ + σ‖f ‖∞

3

)
x

n

)
≤ N2e−x.

Assume that N ≥ 2. Collecting the inequalities (5.16), (5.17) and (5.18) and
choosing x such that 7.6N2e−x = β/2, we obtain that there exists some positive
constant C = C(σ , ε,‖f ‖∞,‖f0‖∞, β) such that

Pf

(
sup

(δ,δ′)∈{0,...,N−1}2
�m(µδ, σδ′)

(5.19)

> C

(
2J/2

√
logN

n
+ logN

n
+ 2J log2 N

n2

))
≤ β

2
.
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5.4.2. Control of sup(δ,δ′)∈{0,...,N−1}2,(µ,σ )∈Aδ,δ′ (�m(µ,σ)−�m(µδ, σδ′)). We
have

�m(µ,σ) = − 1

n(n − 1)

∑
l∈Lm

n∑
i �=j=1

pl

(
Xi − µ

σ

)
pl

(
Xj − µ

σ

)

+ ∑
l∈Lm

a2
l (µ,σ ) − ε

4

∥∥σf (σ· + µ) − �Sm

(
σf (σ· + µ)

)∥∥2
2

− ε

4
σ

∥∥∥∥ 1

σ
f0

( · − µ

σ

)
− f

∥∥∥∥
2

2
+ (Pn − P)

(
2f0

( · − µ

σ

))
.

Using (5.15), this implies that

�m(µ,σ) = − 1

n(n − 1)

∑
l∈Lm

n∑
i �=j=1

pl

(
Xi − µ

σ

)
pl

(
Xj − µ

σ

)

− ε

2
σ‖f ‖2

2 − ε

4
‖f0‖2

2 +
(

1 + ε

4

) ∑
l∈Lm

a2
l (µ,σ ) + ε

2
b(µ,σ )

+ (Pn − P)

(
2f0

( · − µ

σ

))
.

Let

�(1)
m (µ,σ, δ, δ′) = − 1

n(n − 1)

× ∑
l∈Lm

n∑
i �=j=1

(
pl

(
Xi − µ

σ

)
pl

(
Xj − µ

σ

)

− pl

(
Xi − µδ

σδ′

)
pl

(
Xj − µδ

σδ′

))
,

�(2)
m (µ,σ, δ, δ′) = ∑

l∈Lm

a2
l (µ,σ ) − ∑

l∈Lm

a2
l (µδ, σδ′),

�(3)
m (µ,σ, δ, δ′) = b(µ,σ ) − b(µδ, σδ′),

�(4)
m (µ,σ, δ, δ′) = (Pn − P)

(
2f0

( · − µ

σ

)
− 2f0

( · − µδ

σδ′

))
.

Then

sup
(δ,δ′)∈{0,...,N−1}2

sup
(µ,σ )∈Aδ,δ′

(
�m(µ,σ) − �m(µδ, σδ′)

)

≤ sup
(δ,δ′)

sup
(µ,σ )∈Aδ,δ′

∣∣�(1)
m (µ,σ, δ, δ′)

∣∣
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+
(

1 + ε

4

)
sup
(δ,δ′)

sup
(µ,σ )∈Aδ,δ′

∣∣�(2)
m (µ,σ, δ, δ′)

∣∣
+ ε

2
sup
(δ,δ′)

sup
(µ,σ )∈Aδ,δ′

∣∣�(3)
m (µ,σ, δ, δ′)

∣∣ + sup
(δ,δ′)

sup
(µ,σ )∈Aδ,δ′

∣∣�(4)
m (µ,σ, δ, δ′)

∣∣
+ ε

2
�σ‖f ‖∞.

(a) Control of sup(δ,δ′)∈{0,...,N−1}2 sup(µ,σ )∈Aδ,δ′ |�
(1)
m (µ,σ, δ, δ′)|. One can

easily see that

�(1)
m (µ,σ, δ, δ′)

= − 1

n(n − 1)

× ∑
l∈Lm

n∑
i �=j=1

[(
pl

(
Xi − µ

σ

)
− pl

(
Xi − µδ

σδ′

))
pl

(
Xj − µ

σ

)

+
(
pl

(
Xj − µ

σ

)
− pl

(
Xj − µδ

σδ′

))
pl

(
Xi − µδ

σδ′

)]
.

We recall that for all x, y in R, the cardinality of the set {l ∈ Lm,pl(x) �= pl(y)}
is not larger than 4� and that for l in Lm,

‖pl‖∞ ≤ 2J/2‖ϕ‖∞.

Since ϕ is a Lipschitz function with Lipschitz constant Cϕ , we also have that for
all x, y in R, ∑

l∈Lm

|pl(x) − pl(y)| ≤ 4�23J/2Cϕ|x − y|.(5.20)

This implies that

∣∣�(1)
m (µ,σ, δ, δ′)

∣∣ ≤ 8�Cϕ‖ϕ‖∞
22J

n

n∑
i=1

∣∣∣∣Xi − µ

σ
− Xi − µδ

σδ′

∣∣∣∣
and

sup
(µ,σ )∈Aδ,δ′

∣∣�(1)
m (µ,σ, δ, δ′)

∣∣

≤ 8�Cϕ‖ϕ‖∞22J

{
1

n

n∑
i=1

|Xi |
(

�σ

σ 2

)
+ 1

σ 2

(
σ�µ + (|µ| ∨ |µ|)�σ

)}
.

Assuming that (h2) holds, we derive from Lemma 2 that for all x > 0,

Pf

(
n∑

i=1

(|Xi | − E(|Xi |)) ≥ √
2νnx + cx

)
≤ e−x.(5.21)
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Since E(|Xi |) ≤ √
ν and N ≥ 2, by taking x = log(4N2/β), we obtain that there

exists some constant C(µ,µ,σ ,σ , ν, c,β) > 0 such that

Pf

(
sup

(δ,δ′)∈{0,...,N−1}2
sup

(µ,σ )∈Aδ,δ′

∣∣�(1)
m (µ,σ, δ, δ′)

∣∣
(5.22)

≥ C(µ,µ,σ ,σ , ν, c,β)22J (�µ ∨ �σ) logN

)
≤ β

4
.

(b) Control of sup(δ,δ′)∈{0,...,N−1}2 sup(µ,σ )∈Aδ,δ′ |�
(2)
m (µ,σ, δ, δ′)|. Since

�(2)
m (µ,σ, δ, δ′) = ∑

l∈Lm

(
al(µ,σ ) − al(µδ, σδ′)

)(
al(µ,σ ) + al(µδ, σδ′)

)

and |al(µ,σ ) + al(µδ, σδ′)| ≤ 2.2J/2‖ϕ‖∞,∣∣�(2)
m (µ,σ, δ, δ′)

∣∣ ≤ 2.2J/2‖ϕ‖∞
∫ ∑

l∈Lm

∣∣∣∣pl

(
x − µ

σ

)
− pl

(
x − µδ

σδ′

)∣∣∣∣f (x) dx.

By (5.20), we obtain∣∣�(2)
m (µ,σ, δ, δ′)

∣∣
≤ 8�‖ϕ‖∞Cϕ22J

∫ ∣∣∣∣x − µ

σ
− x − µδ

σδ′

∣∣∣∣f (x) dx,

≤ 8�‖ϕ‖∞Cϕ22J
∫ (

|x|�σ

σ 2 + 1

σ 2

(
σ�µ + (|µ| ∨ |µ|)�σ

))
f (x) dx.

We deduce from (h2) that there exists some constant C(µ,µ,σ ,σ , ν) > 0 such
that

sup
(δ,δ′)∈{0,...,N−1}2

sup
(µ,σ )∈Aδ,δ′

∣∣�(2)
m (µ,σ, δ, δ′)

∣∣
(5.23)

≤ C(µ,µ,σ ,σ , ν)22J (�µ ∨ �σ).

(c) Control of sup(δ,δ′)∈{0,...,N−1}2 sup(µ,σ )∈Aδ,δ′ |�
(3)
m (µ,σ, δ, δ′)|. Assuming

that (h1) holds, we have that for any (µ,σ ) in Aδ,δ′ , x in the support of f ,∣∣∣∣f0

(
x − µ

σ

)
− f0

(
x − µδ

σδ′

)∣∣∣∣
(5.24)

≤ Cf0

[
|x|

(
�σ

σ 2

)
+ 1

σ 2

(
σ�µ + (|µ| ∨ |µ|)�σ

)]
.

Hence, we derive from (h2) that there exists some positive constant C(µ,µ,σ ,σ ,

Cf0, ν) such that

sup
(δ,δ′)∈{0,...,N−1}2

sup
(µ,σ )∈Aδ,δ′

∣∣�(3)
m (µ,σ, δ, δ′)

∣∣
(5.25)

≤ C
(
µ,µ,σ ,σ ,Cf0, ν

)
(�µ ∨ �σ).



718 M. FROMONT AND B. LAURENT

(d) Control of sup(δ,δ′)∈{0,...,N−1}2 sup(µ,σ )∈Aδ,δ′ |�
(4)
m (µ,σ, δ, δ′)|. It follows

from (5.24) that there exists C(µ,µ,σ ,σ ,Cf0) > 0 such that

sup
(µ,σ )∈Aδ,δ′

∣∣�(4)
m (µ,σ, δ, δ′)

∣∣

≤ C
(
µ,µ,σ ,σ ,Cf0

)[1

n

n∑
i=1

(|Xi | + E(|Xi |) + 1
)
(�µ ∨ �σ)

]
.

Using again (5.21), we prove that there exists some positive constant C(µ,µ,σ ,σ ,

ν, c,β,Cf0) such that

Pf

(
sup

(δ,δ′)∈{0,...,N−1}2
sup

(µ,σ )∈Aδ,δ′

∣∣�(4)
m (µ,σ, δ, δ′)

∣∣
(5.26)

> C
(
µ,µ,σ ,σ , ν, c,β,Cf0

)
(�µ ∨ �σ) logN

)
≤ β

4
.

Collecting (5.22), (5.23), (5.25) and (5.26), we get

Pf

(
sup

(δ,δ′)∈{0,...,N−1}2
sup

(µ,σ )∈Aδ,δ′

(
�m(µ,σ) − �m(µδ, σδ′)

)
(5.27)

> C22J (�µ ∨ �σ) logN

)
≤ β

2
,

for some constant C = C(µ,µ,σ ,σ ,Cf0,‖f ‖∞, ν, c, β, ε) > 0. Finally, by set-
ting �µ = �σ = n−22−J , we have that

n22J (µ − µ) ∧ (σ − σ ) ≤ N ≤ n22J (µ − µ) ∨ (σ − σ ) + 1.

Hence, we deduce from (5.19) and (5.27) that if n2(µ − µ) ∧ (σ − σ ) ≥ 2 and
n ≥ 2, there exists a constant C = C(µ,µ,σ ,σ ,‖f0‖∞,Cf0,‖f ‖∞, ν, c, β, ε)

such that

τm(β) ≤ C

(
2J/2

n

√
log(n22J ) + 2J

n2 log2(n22J ) + log(n22J )

n

)
.

This concludes the proof of Theorem 2.

5.5. Proof of Corollary 3. Since q̃(2,D),α = t(2,D)(uα) with the same notation
as in Section 2, we have that

q̃(2,D),α ≤ W̃D(α),

where

W̃D(α) = C(α)

n

( (‖f0‖∞ + √‖f0‖∞
)√

D log logn

+ D(log logn)2

n
+ ‖f0‖∞(log logn)

)
,
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C(α) being a positive constant. This upper bound is obtained by replacing in
the proof of Proposition 1 αn by α/2(1 + log2 n2) and C′‖f0‖∞ log(D + 1) by
C′‖f0‖∞ in (5.11).

Let f belong to B̃s(R,M) and satisfy (h1) and (h2).
From Theorem 2 and the above upper bound, we deduce that there exists some

positive constant C = C(µ,µ,σ ,σ ,Cf0,‖f0‖∞,M,ν, c,α,β, s) such that if f

satisfies

inf
(µ,σ )∈K

∥∥∥∥f − 1

σ
f0

( · − µ

σ

)∥∥∥∥
2

2
≥ C inf

D∈D2

{
R2D−2s +

√
D log(n2D)

n

+ D log2(n2D)

n2 + log(n2D)

n

}
,

then

Pf (T̃α ≤ 0) ≤ β.

Since D2 = {2J ,0 ≤ J ≤ 2[log2(n
2/ log3 n)]} and n ≥ 3, there exists c > 0 such that

inf
D∈D2

{
R2D−2s +

√
D log(n2D)

n
+ D log2(n2D)

n2 + log(n2D)

n

}

≤ c

(
inf

D∈D2

{
R2D−2s +

√
D logn

n

}
+ logn

n

)
,

and Corollary 3 can be proved in the same way as Corollary 1.
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