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ADAPTIVE GOODNESS-OF-FIT TESTS IN
A DENSITY MODEL

BY MAGALIE FROMONT AND BEATRICE LAURENT

Université Rennes Il and INSA de Toulouse

Given an i.i.d. sample drawn from a density f, we propose to test that f
equals some prescribed density f or that f belongs to some translation/scale
family. We introduce a multiple testing procedure based on an estimation of
the L,-distance between f and f{y or between f and the parametric fam-
ily that we consider. For each sample size n, our test has level of signifi-
cance «. In the case of simple hypotheses, we prove that our test is adaptive:
it achieves the optimal rates of testing established by Ingster [J. Math. Sci. 99
(2000) 1110-1119] over various classes of smooth functions simultaneously.
As for composite hypotheses, we obtain similar results up to a logarithmic
factor. We carry out a simulation study to compare our procedures with the
Kolmogorov—Smirnov tests, or with goodness-of-fit tests proposed by Bickel
and Ritov [in Nonparametric Statistics and Related Topics (1992) 51-57] and
by Kallenberg and Ledwina [Ann. Statist. 23 (1995) 1594-1608].

1. Introduction. Suppose that we observe n independent and identically dis-
tributed (i.i.d.) real random variables X1, ..., X,, with common unknown den-
sity f. Let fo be some specified density. In this paper we consider the problem
of testing the null hypothesis “ f € ¥ against “ f ¢ ¥ where ¥ equals either the
singleton { fo} or the parametric family

(L1) $={§fo(%),w,o>el<},

for some subset K of R x ]0, +o0[.

This problem has been widely studied since the famous Kolmogorov—Smirnov
and Cramér—von Mises tests based on the empirical distribution function.

Assuming that f belongs to L, (R), it is quite natural to construct a test based
on the estimation of the squared [L,-distance between f and ¥ . In order to test the
simple hypothesis “f = fp,” we actually consider a suitable collection of estima-
tors of [R(f — fo)? and decide to reject the null hypothesis if some estimator in the
collection is larger than its (1 — uy) quantile under the null hypothesis, u, being
calibrated so that the final test has level of significance «. We then generalize this
procedure to test that f belongs to the translation/scale family given by (1.1).
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From a theoretical point of view, we evaluate the performances of our tests in
terms of uniform separation rates with respect to the IL,-distance over classes of
smooth functions. Given S in |0, 1[ and a class of functions 8 C L, (R), we define
the uniform separation rate p(®,, B, B) of alevel a test ,, of the null hypothesis
“f € 7 over the class B as the smallest number p such that the test guarantees a
power at least equal to (1 — §) for all alternatives f in 8B at a distance p from ¥ .
More precisely, denoting by d>( f, ¥) the LL,-distance between f and ¥ and by
[P the distribution of the observation (X1, ..., X,),

p(cDO(’ £7 18)
=inf{p >0, VfeB, da(f,F)>p=Ps(d, rejects) > 1 — ).

Assuming that f belongs to 8, the uniform separation rate p (®,,, 8B, 8) is asymp-
totically related to the minimax rate of testing p, introduced by Ingster [14] and
referred to as the critical radius. Indeed, by definition, p, — 0 as n — 400 and
satisfies:

(a) For any sequence p;, such that p),/p, = 0,(1),

inf{ sup Pr(®,=1) + sup IP’f(an:O)}:l—on(l),
nlfeF FeB.(f.F)zp,
where the infimum is taken over all tests ®,, with values in {0, 1} rejecting the null
hypothesis “ f € £ when &, = 1.

(b) For any «, B > 0, there exist some constant C > 0 and some test ¢ such
that the two following inequalities hold:

(1.2) sup Pf(¢Z=1)§a+0n(l),
feF

(1.3) sup Ps (@) =0) < B +on(1).
fe8.dx(f.F)=Cpu

Since the goodness-of-fit test to some specified density fp can be reduced to
a test of uniformity on [0, 1] for the variables Fy(X;) (where Fy is the distrib-
ution function associated with the density fp), many papers are devoted to the
problem of testing uniformity on [0, 1]. The main reference for the computa-
tion of minimax rates of testing for this problem is the series of papers due to
Ingster [14]. In particular, under the prior assumption that f belongs to some
Holder class with smoothness parameter s > 0, Ingster establishes the minimax
rate of testing p, = n~>/#+1) But the tests proposed to ensure the achievement
of this rate [namely the inequalities given in (1.2) and (1.3)] are structurally based
on the prior assumption; this is a crucial problem for their practical application
since the smoothness parameter s is typically unknown. Following the work of
Spokoiny [23] in the Gaussian white noise model, Ingster [15] focuses on the prob-
lem of finding an adaptive (assumption-free) test of uniformity on [0, 1]. He proves
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that adaptation is not possible without some loss of efficiency of the order of an
extra loglogn factor and he presents an adaptive test which is based on chi-square
statistics.

Other methods having Neyman’s test as starting point are proposed in order
to avoid using any prior assumption on the smoothness of f. To test uniformity
on [0, 1], Neyman [20] suggests considering some orthonormal basis {¢;, [ > 0}
of Lo ([0, 1]) with ¢o = I[o,1] and rejecting the null hypothesis “f = I 1;” if
the estimator ZIDZI(Z?ZI #1(Xi)/n)? of 6p = ZlDzl(f[o,l] fép)? is large enough,
where D is some given integer. Bickel and Ritov [4], Ledwina [19] and Kallenberg
and Ledwina [17] introduce data-driven versions of Neyman’s test where the para-
meter D is chosen via some penalized criterion. Inglot and Ledwina [13] establish
theoretical results for the test described in Kallenberg and Ledwina [17]. These re-
sults which essentially deal with the asymptotic efficiency of the test with respect
to the Neyman—Pearson test do not, however, lead to any optimality of the uniform
separation rates. Fan [8] also proposes a new version of Neyman’s test based on
wavelet thresholding to test that the mean of a Gaussian vector equals O with ap-
plications to goodness-of-fit tests in a density model. When we test uniformity on
[0, 1], our method amounts to considering, for all integer D in some set D, the
unbiased estimator of 6p defined by

R 1 D n
O0p=—— X)X
D n(n_l)gig;l(bz( )¢1(Xj)

and to penalizing this estimator by its (1 — uy) quantile under the null hypoth-
esis. The main difference between our method and the testing procedures pro-
posed by previous authors lies in the order of magnitude of the penalty term. While
Ledwina [19] and Kallenberg and Ledwina [17] choose the parameter D by using
Schwarz’s Bayesian information criterion (BIC), Kallenberg [16] gives a discus-
sion of the choice of the penalties for data-driven Neyman’s tests. But the criteria
considered in these papers have been introduced to estimate the density f itself,
whereas our penalties correspond to the ones used to build adaptive estimators of
R f 2 by model selection in [18]. This choice allows us to obtain optimal uniform
separation rates with respect to the ILp-distance.

As for testing a composite null hypothesis, Pouet [22] proves that provided that
f belongs to > ([0, 1]) and some Holder class, the minimax rate of testing is
comparable to the rate for the simple hypothesis “f = I|o 1}.” However, the test
proposed by Pouet depends on the smoothness assumption on f, which is not sat-
isfactory from an experimental point of view. Inglot, Kallenberg and Ledwina [12]
introduce a procedure using no prior information about the smoothness of f to
test composite hypotheses like “ f € { f(x, 8), B € B}’ with B C RY. This proce-
dure, generalizing Kallenberg and Ledwina’s one [17], also consists of a combi-
nation of Neyman’s smooth test and Schwarz’s selection rule. Its construction is
based on the consideration of a sequence of exponential families with increasing
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dimensions to describe departures from the null model. The “right” dimension is
selected by an extended Schwarz’s rule, which is obtained by inserting the maxi-
mum likelihood estimator ,é of B under the null hypothesis in the original defini-
tion of Schwarz’s BIC. The next step is the application of Neyman’s smooth test
using a quadratic score statistic in the selected dimension. Inglot, Kallenberg and
Ledwina [12] prove the consistency of the test at essentially any alternative.

The approach considered in the present paper has been initiated by Baraud, Huet
and Laurent [1-3] for the problem of testing linear or qualitative hypotheses in the
Gaussian regression model. The properties of the testing procedures proposed here
are nonasymptotic. For each n, the tests have the desired level of significance and
we characterize some sets of alternatives over which they have a prescribed power.
For the problem of testing goodness-of-fit of some specified density, we state in
Section 2 that our procedure is adaptive over some collection of classes of smooth
functions in the sense that it achieves the optimal “adaptive” rate of testing estab-
lished by Ingster [15] over all the classes of the collection simultaneously. We also
investigate in Section 4 the test from a practical point of view by Monte Carlo ex-
periments. The results show that our procedure is competitive with the ones due to
Bickel and Ritov [4] or Kallenberg and Ledwina [17]. For the problem of testing
the hypothesis “f € F,” where ¥ is the translation/scale family defined by (1.1),
we get in Section 3 uniform separation rates over classes of smooth alternatives
of the same order (up to a logarithmic factor) as the rates obtained when testing
the simple hypothesis “f = fp.” We finally implement the procedure to test ex-
ponentiality in Section 4; we can notice that it gives particularly good results in
comparison with the Kolmogorov—Smirnov test under oscillating alternatives. The
proofs of the results stated in the paper are detailed in Section 5.

2. A goodness-of-fit test. Let X,..., X, be ii.d. random variables with
common density f with respect to the Lebesgue measure on R. Let fo be some
given density in Lo (R) and let « be in ]0, 1[. Assuming that f belongs to L, (R),
we construct a level « test of the null hypothesis “f = fo” against the alternative
“f #£ fo” from the observation (X1, ..., X;).

In the following, || - ||2 and (-, -}, respectively, denote the usual norm and scalar
product in L (R). For any bounded function g, ||glloc = SUp,cR |8 (x)].

2.1. Description of the test. Our test is based on an estimation of the quantity
ILf — foll3 thatis || £115 + |l foll3 — 2(f, fo). Since (f, fo) is usually estimated by
the empirical estimator ) *_, fo(X;)/n, the key point is the estimation of || f ||%.
As in [18], we introduce an at most countable collection {S,,, m € M} of linear
subspaces of Ly (R). For all m in M, let {p;,[ € L,,} be some orthonormal basis
of S,,. The variable

. 1 -
@.1) on= oy 2 2 PEDPIX)

leLy ij=1
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is an unbiased estimator of ||ITg, (f) ||%, where Ilg, denotes the orthogonal pro-
jection onto Sy,. Then || f — f0||% can be estimated by
n

R ~ 2
T =6 + 1 foll3 — - > folXo),

i=1

for any m in M. Denoting by t,, (1) the (1 — u) quantile of the law of fm under the
hypothesis “ f = fy” and considering

(2.2) Uy = sup{u €10, 11, IP’fo( sup (f"m —tm(u)) > 0) < a},
meM

we introduce the test statistic 7, defined by

Ty = sup (T — tm(uq)).
meM
Our test consists of rejecting the null hypothesis if 7, is positive.

In practice, the values of u, and the quantiles {t,,(uy), m € M} are estimated
by Monte Carlo experiments under fp as explained in Section 4.

This method amounts to a multiple testing procedure. Indeed, for each m in M,
we construct a level u, test of the null hypothesis “f = fo” by rejecting this hy-
pothesis if T;, is larger than its (1 — u,) quantile under the hypothesis “ f = f.”
We thus obtain a collection of tests and we decide to reject the null hypothesis if
for some of the tests of the collection this hypothesis is rejected.

2.2. The power of the test. Let us now describe the collection of linear sub-
spaces {S,;,, m € M} that we use to define our testing procedure here. This col-
lection is obtained by mixing spaces generated by constant piecewise functions,
scaling functions and, in the case of compactly supported densities, trigonometric
polynomials.

(1) Forall D in N* and k in Z, let
Ip k= \/Bﬂ[k/D,(H-l)/D[-

For all D in N*, we define S(1 py as the space generated by the functions
{Ip k, k €Z} and

A 1 "

01,p) = PSSR Z Z Ip (Xi)Ipx(X;).

nn—1) ;27,72
(i) Letus consider a pair of compactly supported orthonormal wavelets (¢, )

such that for all J in N, {g,x =2720Q27 - —k), k€ Z} U{yj =2/ 2y 2/ - —
k), j €N, j > J, k € Z} is an orthonormal basis of L., (R). For all J in Nand D =
27, we define S, p) as the space generated by the scaling functions {¢; , k € Z}
and

R 1 n
bopy=——"=>_ > erxX)psr(X)).
nn—1) =, =,
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(iii) Let us consider the Fourier basis of L ([0, 1]) given by
go(x) = Ijo,11(x),
g2p—1(x) = v2cosQrpx)p 1y(x)  forall p>1,
82p(x) = V2sinQrpx)ljo 1j(x)  forall p> 1.

For all D in N*, we define S(3 p) as the space generated by the functions {g;,] =
0,...,D}and

. D n
o =——> D aXnaX)).

1
(n—1 1=0ij=1

We want here to notice that the constants involved in the following may depend on
the chosen scaling function ¢, but we will not always specify it.

Introduce D = D3 = N* and D, = {21, J eN}. For [ in {1,2,3}, D in Dy,
I1s, ,, denotes the orthogonal projection onto S¢, p) in La(R).

Forall / in {1, 2, 3}, we take &y C Iy with ;¢ 2,3y D1 # & and D3 = & if the
X;’s are not included in [0, 1]. Let

M={(,D),1€{1,2,3}, D € D}.

For all m in M, we set
~ ~ 270
T = O+ 1foll3 = = 3 o(Xo).
i=1

The test statistic that we consider is
(2.3) Ty = sup (T — tm (ua)),
meM

where 1, (1y) is defined in Section 2.1.
The aim of the following theorem is to describe classes of alternatives over
which the corresponding test has a prescribed power.

THEOREM 1. Let X1,..., X, be i.id. real random variables with common
density f and let fo be some given density. Let T, be the test statistic defined
by (2.3). Assume that fy and f belong to Lo (R) and fix some B in 10, 1[. For any
g in 10, 2[, there exist some positive constants C1(8) and C2(B, &, || f oo, | folloo)
such that, setting for allm = (I, D) in M,

C D C » = [, oX] o0
Vin(B) = 1(/”(( T + 1 Flloc) ﬁD+_)+ 2.1 flloe. L folloo)
n n n
if f satisfies

If = foll3 > (1) inf {[[f = Tls, (£ + tm () + Vin(B)).
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then

Py(Ty =0) < B.

COMMENTS. (i) Let us see what is the advantage of considering a multiple
testing procedure. We deduce from Theorem 1 that if we fix some element m in
M and if we focus on the test that rejects the null hypothesis when T, is larger
than its (1 — «) quantile under the hypothesis “ f = fi”” denoted by ¢, (), then the
error probability of the second kind of the test is smaller than 8 for all f such that

If = fol3 > (L + )] f = s, (N5 + tm(@) + Vu(B)}.

For the multiple testing procedure, the right-hand side of the above inequality is
replaced by its infimum over all m in M, at the price that 7, («) is replaced by
tm(uy). When we evaluate the uniform separation rates, we show that for the col-
lections {S,,, m € M} that we have chosen, the quantities #,, (o) and f,,(uy) just
differ by a logarithmic factor. Therefore, the multiple testing procedure behaves
almost as well as the best test among the considered collection of tests.

(i) The key point of the proof of Theorem 1 is an exponential inequality for
U -statistics of order 2 due to Houdré and Reynaud-Bouret [11]. The same result
could also be obtained with an inequality due to Giné, Latala and Zinn [10].

(iii)) We prove in Section 5 that if M is finite, then for all m = (I, D) in M,
tm(uy) is precisely of order </ D log(|-M|/a)/n, where | M| denotes the cardinality
of M. This allows us to establish optimal uniform separation rates over various
classes of alternatives. Furthermore, considering the problem of testing uniformity
on [0, 1], if we take a collection {S,,, m € M} which only contains a finite number
of spaces generated by constant piecewise functions, we can thus see that our pro-
cedure is very close to the one proposed by Ingster [15]. This would therefore be
satisfactory enough from a theoretical point of view. Our choice to use a collection
of mixing spaces generated by constant piecewise functions, scaling functions and
possibly trigonometric polynomials is in fact explained by the experimental results.
We indeed noticed in the simulation study that such a choice mostly increases the
power of the test.

2.3. Uniform separation rates. Our purpose in this section is to evaluate the
uniform separation rates of the test proposed above over several classes of alterna-
tives. Fors >0, R >0, M > 0and [ € {1, 2, 3}, we introduce

BD(R, M)
={f eLa(R).VDeDy,

f =Ty (D)5 < R2D72, || flloo < M).

These sets of functions include some Holder balls or Besov bodies. To be more
precise, we consider, for all s > 0 and R > 0, the class of functions #;(R) defined
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by
Hs(R)={f:[0,1] > R,Vx,y €0, 1],

| O = £ < Rlx — yI%2),

where s =51 + 57, 51 € Nand s, €]0, 1].
Let for jin N, kin Z, B; «(f) = (f, ¥ k). Forall s > 0 and R > 0, we define
the Besov body Bs 2,00(R) as

2.4)

Byaoo(R) =1\ f€la(R), VjeN, Y 2 .(f) <R?27¥ L.
keZ

Then, one can see by straightforward computations that for s €]0,1], R > 0,
M >0,
Hy(R)N{f. (| flloo <M} C BM(R, M) N B8P (R/V2(4 — 1), M),
and fors >0, R >0, M >0,
By 200 (R) N {f. I flloc <M} C BP(R/V1 475, M).

The following corollary gives upper bounds for the uniform separation rates of
our testing procedure over the classes CBS(I) (R, M).

COROLLARY 1. Let Ty be the test statistic defined by (2.3). Assume that
n > 16 and that for 1 in {1,2,3}, Dy is {27,0 < J <log,(n*/(loglogn)*)} or @.
Fix some B in 10,1[. For all s >0, M >0, R > 0 and | € {1, 2,3} such that
Dy # O, there exists some positive constant C = C(s,a, B, M, || folloo) such that

if f belongs to the set JBS(I) (R, M) and satisfies

‘ TogTogn \ 4/ ¢s+D)
If = foll? > C(RZ/“““) (7)

n

4 Rz((log:)zgn)3 >2S . (loglognn) logn)’
then
Pr(Ty =0) < B.
In particular, if
(2.5)  (loglogn)*™"/*(logm)**1/2/\/n < R < n* /(loglogn)**'/2,

there exists some positive constant C'(s,a, B, M, || folloo) such that the uniform
separation rate of the test It~ over i)’s(l) (R, M) satisfies

IO(HTO(>09 £§l)(R7 M)! ﬂ)
IOg logn)Zs/(45+l)

<C'(s,a, B, M, ||fo||oo>R1/<4s+”<
n
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COMMENTS. (i) For the problem of testing the null hypothesis “f = Ijo.1}”
against the alternative “ f = I[o,1] + g with g # 0 and g € B;(R)” where B;(R) is
a class of smooth functions (like some Holder, Sobolev or Besov ball in I, ([0, 1]))
with unknown smoothness parameter s, Ingster [15] establishes that the adaptive
minimax rate of testing is of order (y/Toglogn/n)>/**D_ From Corollary 1, we
thus deduce that the procedure that we propose is adaptive in the sense that it is
rate optimal over all the classes JBS(I) (R, M) such that R belongs to the range given
by (2.5) simultaneously.

(i1) Ingster [15] considers in fact the minimax rates of testing with respect to
general IL,-distances. In particular, for 1 < p < 2, he obtains the same adaptive
minimax rate of testing (v/Toglogn/n)*/®*+1  Our results can clearly be ex-
tended to L ,-distances with 1 < p <2 when f and f have bounded support. In
this case, one actually has that || f — foll, < C(p)II f — foll2-

We focus here on classes of alternatives that are well approximated by their pro-
jections onto the spaces {S,,, m € M} under consideration. In the particular case
where fo = I[|o,1], one can see that the test may be powerful even for alternatives
that do not have such approximation properties. This is the purpose of Corollary 2.

COROLLARY 2. Let fo=Ijo,1]. Assume that n is larger than 16 and that M =
{(1, D), D € D1} with D1 = (27,0 < J < log,(n*/(loglogn)®)}. Let T, be the
test statistic defined by (2.3). For all s > 0 and R > 0, consider #s(R) given
by (2.4). Fix some B in 10, 1[. For all s > 0, M > 0, R > 0, there exists some
positive constant C(R, s, o, B, M) such that if f belongs to the set Hs(R) with
| flloo <M, and if f satisfies

’

Toglogn \*/(4s+D
If — foll3 > C(R. s, B, M)(@)

then
Ps(Ty <0) <B.

COMMENT. The key point of the proof is an inequality due to Ingster ([14],
part III, inequality (5.16)). This inequality allows in fact to avoid evaluating the
approximation terms || f — ITg, (f)|2. Although the functions f in #;(R) are not
well approximated by their projections onto the spaces {S(1 p), D € D1} when
s > 1, we thus prove that the corresponding testing procedure still achieves the
adaptive minimax rate of testing over #;(R) for any s > 0.

3. Testing a parametric family. Let X{,..., X, be i.i.d. real random vari-
ables with common density f. In this section we consider the problem of testing
that f belongs to some translation/scale family of the form

?’={§f0(%),w,a>el<},
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where fj is some given density and K is some subset of R x ]0, +-oo[. The families
of Gaussian, uniform or exponential densities and translation models are typical
examples of such translation/scale families.

3.1. Description of the test. The testing procedure introduced below is essen-
tially based on the idea that if f belongs to £, there exists (i, o) in K such that
the density of the variables (X; — u)/o is fp. As in Section 2.1, we take an at
most countable collection {S,,, m € M} of linear subspaces of Ly (R). For all m
in M, we consider an orthonormal basis {p;,[ € L,,} of S, composed of right-
continuous functions and we set

T (X1,..., Xn)

3.1 = inf n(n_l) >y Pl( - )pl(x,-a—u>

leLly, i#j=1

2y P —
+||fo||%—;2fo<xo ”)}
i=1

Since the functions p; are right-continuous, the infimum over (i, o) in K can be
replaced by the infimum over (i, o) in K N Q2 so that Ty (X1,...,X,)isarandom
variable.

We reject the null hypothesis “f € ¥ if

To = sup (Tu(X1, ..., Xn) — Gm.a)
meM

is positive, where {G, o, m € M} is a family of positive numbers such that
(3.2) sup Py (Ty > 0) <a.
feF

Let us explain how we choose {Gn.o, m € M}. We distinguish two cases.
_ (1) The first one corresponds to the case where for all m in M, the variable
Tn(X1,...,X,) defined by (3.1) satisfies

. X - X, —
(33) V(. o)eK Tm(xl,...,xn)sz( ‘J o - “)

This equality holds if, for instance, K =R x ]0, 4+o0[, K = {0} x ]0, +oo[ or K =
R x {1}. In this case, we take Gm.o = I (ila), Where 7, (u) is the (1 — u) quantile
of T,,,(X1, ..., X;,) under the hypothesis “ f = fp,” and i, is taken as

g = sup{u €10, 11, IF’fO( sup (Tm(Xl, vy Xn) — I (u)) > O) < a}.
T \meM

The quantities i, and {f,, (ils), m € M} can be estimated by Monte Carlo experi-

ments. Let us see how this choice leads to inequality (3.2). Under the null hypoth-

esis, there exists (i, o) in K such that the density of the variables (X; — w)/o
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is fo. From (3.3), one can then deduce

Pf<r:2§4(fm(xl,...,xn) — T (i) > 0)

- (X1 — Xy — ~
meM o o

:]P’fo( sugl(fm(Xl,...,Xn) — I (lla)) >()),
me

and according to the definition of #,, (it ), this probability is at most .

(i1) The second one corresponds to the case where (3.3) is not satisfied. This
occurs, for instance, if K is a compact set of R x ]0, +-o0o[. Here, we take g, o =
tm(uy) where, as in Section 2.1, ¢, () is the (1 — u) quantile of the variable

Tn(X1, ..., Xn) = 5 Z Pi(Xi)pi(X; )+||fo||2——2fo<X>
n(n_ )lecﬁml;ﬁ] 1
under the assumption that the variables X1, ..., X, are i.i.d. with common density

fo, and u, is defined as
Uy = sup{u €10, 1], Pfo( sup (fm(xl,...,X,,) —tn(u)) > 0) 50(}.
meM

Inequality (3.2) also holds in this case: if f belongs to ¥, there exists (u, o) in
K such that f = fo((- — n)/o)/o. By definition of 7,,(X1, ..., X,), one has the
inequality

X1—u Xn_M)
o o '

Tm(Xla»Xn)ffm< LA}

Hence,

. . (Xi— X, —
IF’f(Ta>O)§Pf<sup<Tm( Sl “)—tm(uo,))>o>.
o

meM o

Since the variables (X; — n)/o have fp as common density, it follows from the
definition of u, that the above quantity is smaller than «.

We shall remark that the choice of {G,, o, m € M} proposed in (ii) may lead to
a conservative procedure. It is therefore preferable to use the procedure proposed
in (i) whenever condition (3.3) holds.

3.2. The power of the test. In the following, we use the same notation as in
Section 2.2.
(i) For all D in Dy = N* and m = (1, D), we define

Tn(X1. ..., Xn) = > Z Ip k(X)) Ip (X )+||fo||2——Zf0(X)

”(”_1) keZi#j=1 i=1
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(i1) Choose the scaling function ¢ such that it satisfies the Lipschitz condition
Vi,yeR o) =9 = Cylx —yl.
Forall D=2’ inD, = {2J J € N} and m = (2, D), we define
Tn(X1, ..., Xn) = 52 Z 0sk(XDs k(X)) + 1l foll3 — —Zfo<x ).
n(n_)keZ;«éjl L

We recall that we do not specify the dependence on ¢ in the involved constants.
Let D1 C D; and D, C D7 such that Dy U D» £ & and let

={(, D),1€{1,2}, D € Dy}.

For all m in M, we set

. ~ X —
7 (Xi.....X,) = inf Tm( 1=8
O

Xn — u)
(n,0)ekK '

o

We consider the test statistic

(3.4) Ty = sup (Tru(X1, ..., X0) — Gm.a)»
memMm

where {Gn .o, m € M} is a family of positive numbers satisfying (3.2).

THEOREM 2. Let X1,..., X, be i.i.d. real random variables with common
density f € Loo(R). Let
F={2a(=8) worek,
where [ is some given bounded density and K = [, Z] X [0, 7], 14, X, 0, T being

real numbers such that o > 0. Suppose that the following hypotheses hald

(h1) There exists some constant C g, > 0 such that for all x,y in the support
of fo(m,0)in K, (u',o")inK,

w(55) = w75 <en

(hy) There exist v > 0 and c > 0 such that for all k > 2,

/

X— Y-
-E

k!
E(X; %) < EvcH.

Let Ty be the test statistic defined by (3.4). Assume that D, # & and that n is large
enough so that n > 3 and nz(ﬁ — ) A (@ —0o)=>2. Fixsome Bin 10, 1[. Forall ¢
in 10,2[, there exists some posi_tive constant C = C(u, 1, 0,0, || folloo: C fy»
| flloco, v, c, B, €) such that, setting -

2
Vo(p)=C (fM+ o)+ ED)),
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if f satisfies
1=\ |?
el =5 a(50)l,
>(1+e) inf{ sup o f (0. +w) — sy p (0 0.+ )3
ey | (y.oyek
+ Vp(B) + é(z,m,a}v
then

P/ (Ty <0) <B.

COMMENTS. (i) In Theorem 2, we only consider the case where K is com-
pact. This is due to technical reasons: we have to evaluate the supremum over
(u,0) in K of U-statistics of order 2 depending on (i, o). By considering a finite
grid on the compact set K, we reduce the problem to control of a finite number
of these U -statistics and we can use the inequality due to Houdré and Reynaud-
Bouret [11] again to control each of them.

(i) The condition (k1) is satisfied by families of Gaussian densities (when
Jolx) = e¥/2 /~/27 ) whatever the support of f and also by families of exponen-
tial densities (when fo(x) = e *I;>0 and K C {0} x ]O, +00[) when the support of
f is included in [0, 4-00[. As for families of uniform densities (when fy = ILjo,1}),
the condition (/1) is not satisfied but the result still holds; to see this, we refer to
a theorem stated in [9], where this condition is replaced by some L,-entropy with
bracketing condition on ¥ .

(iii) As pointed out by a referee, the condition (%7) can be slightly weakened.
Bernstein’s inequality used in the proof of Theorem 2 actually still holds when

Ele'Xi] < e*/2 for 0 <t < T (see [21], Section 2.2).

3.3. Uniform separation rates. As in Section 2.3, Theorem 2 allows us to eval-
uate the uniform separation rates of our test over classes of smooth functions. For
alls >0, R >0, M > 0, we consider the set

Bo(R. M) = {f €La(R). || flloo <M, YD €Dy, V¥ (n,0) € K,
lof 0.+ w) = My (0 f (0. + w) |5 < R +2 D).

Such a set contains, among others, the functions f belonging to some Besov ball
and satisfying the inequality || f]lcoc < M. To see this, in the notation of DeVore
and Lorentz [7], we introduce, for all 4 > 0 and r € N*,

ph0 =3 () G0t k.

k=0
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The rth modulus of smoothness of f in L, (R) is defined by

wr(f.02=sup AL, )2

0<h<t
Then f belongs to the Besov ball By 2 o (R) if forr =[s] 41,

supt o, (f,1)2 < R.
t>0

One can easily see that

wr(of(o.+p), 1), = o 2w, (f,01)).

Let us now recall an inequality due to DeVore, Jawerth and Popov [6]: if the
wavelet v satisfies that for all j <r, [x/¢¥(x)dx = 0, then, for every function
g in Lo (R), for all j > 0,

Y Bii(e) <Cwi(g. 27,
keZ

where C is an absolute constant. Hence, if f belongs to the Besov ball By 2 o (R),
for all J >0, for all (u,0) € K,

lofe.+w) =T, ,, (@fe+w)lz= D> Bi(of(o.+mw)

j=J kel
< C(l _ 47S)71R20,1+252*2]S'

If, in addition, || f|lec < M, then f € B;(CY/2(1 —4=5)"12R, M).
The following corollary gives upper bounds for the uniform separation rates of
the testing procedure over the classes B;(R, M).

COROLLARY 3. Assume that the conditions of Theorem 2 are satisfied. Let
Ta be the test statistic defined by (3.4) with Gm o = tm(Uy) as explained in Sec-
tion 3.1 [case (ii)]. Choose Dy C {27,0<J < logz(nz)} and D, ={27,0<J <
logz(nz/log3 n)}. Let B €10, 1[. Forall s > 0, M > 0, R > 0, there exists a pos-
itive constant C = C(u, [, 0,0, | folloos Cfy, M, v, c,a, B,s) such that, if f be-
longs to the set Bs(R, M) and satisfies

1 A
nf L TTH
(M,lan)eKHf Ufo( o ) 2

4s/(4s+1 3\2
- C(Rz/(4s+1)<«/logn> s/ (4s >+R2<(logn) ) s L logn)’

n I’l2 n

then

Py (T, <0) < B.



694 M. FROMONT AND B. LAURENT

COMMENTS. (i) When R satisfies (logn)**'/2//n < R <n* /(logn)*+1/2,
the uniform separation rate over the class of functions belonging to B5(R, M) and
satisfying (h1) and (h3) is bounded from above by

Mosn 2s/(144s)
C/(lu’v Ea g, E’ “fO”OOa Cf()Mv v, C,Q, 187 S)Rl/(4s+1) (i> .
- ’ n

This corresponds, up to a logarithmic factor, to the rate over the classes 8 s(l) (R, M)
for the test of simple hypotheses obtained in Corollary 1. We do not know if this
logarithmic factor can be avoided.

(i) As in Corollary 1, the result can be extended to L., -distances with p in [1, 2]
when f and fy have bounded support.

4. Simulation study.

4.1. Test of uniformity on [0,1]. We first present simulation results for the
problem of testing that the distribution of some i.i.d. random variables X1, ..., X,
with values in [0, 1] is uniform on [0, 1]. In order to implement our procedure, we
have to choose the set M = {(/, D),l € {1, 2, 3}, D € £} that occurs in the defini-
tion (2.3) of the test statistic 7. We present two cases. In the first case, we consider
only trigonometric polynomials. We take D1 = Dy = and D3 ={1,2, ..., Dy}.
Setting go = Ijo,1) and for all p > 1, g2,_1(x) = «/icos(2p71x)]1[o,1](x), and
g2p(x) = \/Esin(Zprrx)]I[o,]](x), the test statistic is based on orthogonal projec-
tions onto the spaces spanned by the functions {g;,/ =0, ..., D} for D in Ds.
The second case consists in mixing trigonometric polynomials and constant piece-
wise functions: we take D = {2,3,..., D} and D3 = {1, ..., Dy}. The tests
corresponding to these two cases are, respectively, denoted by 7y and Tyr/c. We
compare their powers with the powers of the tests proposed by Kallenberg and
Ledwina [17] (denoted by Jxr ), Bickel and Ritov [4] (denoted by Tgr) and Kol-
mogorov and Smirnov (denoted by Jks). As explained in the Introduction, Kallen-
berg and Ledwina propose a test of uniformity on [0, 1] which is a data-driven
version of Neyman’s test [20]. They consider the orthonormal system {¢;, [ > 0}
of Ly ([0, 11), where ¢o = I[o,1] and the ¢;’s for [ > 1 are the orthonormal Legen-
dre polynomials on [0, 1]. They decide to reject the null hypothesis if the sta-
tistic Tp = ZlDzl(n_l/2 e ¢>1(Xi))2 is large, D being chosen in {1,...,d(n)}
via Schwarz’s Bayesian Information Criterion. The critical value is estimated
by simulations. The test proposed by Bickel and Ritov is based on the statis-
tic

T,= max (T, p— D)/v2D,
1<D<d(n)

where T, p = %ZIDZI Z?,j:l 2cos(Im X;) cos(Im X ;).
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We focus on the alternatives studied in the paper by Kallenberg and
Ledwina [17], for which the power of Bickel and Ritov’s test is also given. These
alternatives are

fo.p(x) =1+ pcos(jmx),
hip, jy(x) =1+ pepj(x),

where B 4 is the Beta density with parameter (p, ¢) and {¢;, j > 1} is the family
of orthonormal Legendre polynomials on [0, 1].

We have chosen a level o = 5%.

The value of u, and the quantiles {#,, (uy), m € M} are estimated by 40,000
simulations. We use 20,000 simulations for the estimation of the (1 — u) quantiles
tm (1) of the variables fm =0 + I f()II% —2n~! > fo(X;) under the hypothesis
“f = fo” for u varying on a regular grid of ]0, o[ and 20,000 simulations for the
estimation of the probabilities IP ¢, (sup,,, M(fm — tyn(u)) > 0).

Tables 1 and 2 present the estimated powers for the tests T, Tir/ct,» TKL, TBR and

TABLE 1
Estimated powers of the test of uniformity on [0, 1] for n = 50 with Dy = 6 and D¢t = 6

Alternatives f,, )

0, ) Tt Ttr/ct TKL TBR Tks
0.5,2) 0.61 0.56 0.56 0.48 0.29
0.7,4) 0.80 0.77 0.50 0.71 0.16
0.7,6) 0.69 0.62 0.23 0.60 0.10

Alternatives g( 4 ¢)

(p,q,¢) T T tr/ct TKL TBR Tks
3,3,1/2) 0.55 0.49 0.53 0.40 0.14
(10, 20, 0.25) 0.46 0.49 0.36 0.41 0.33
2,2,0.8) 0.62 0.55 0.63 0.44 0.15
2,4,0.5) 0.57 0.60 0.55 0.58 0.64

Alternatives i 0s7)

0, J) T Ttr/ct TKL TBR Tks

0.4,2) 0.69 0.65 0.70 0.59 0.32

0.3,5) 0.16 0.16 0.13 0.14 0.07
Estimated levels

T tr T tr/ct TKL TBR TKks

0.051 0.055 0.061 0.031 0.050
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TABLE 2
Estimated powers of the test of uniformity on [0, 1] for n = 100 with Dy = 12 and D¢y = 10

Alternatives f 0,J)

(0, J) Ttr T tr/ct TKL TBR TKs
0.5,2) 0.87 0.85 0.87 0.84 0.53
0.7,4) 0.98 0.98 0.83 0.98 0.29
0.7,6) 0.97 0.96 0.46 0.95 0.19

Alternatives g(p 4.¢)

(p,q,¢) Ttr T tr/ct TKL TBR TKS
(3,3,1/2) 0.83 0.77 0.88 0.76 0.35
(10, 20, 0.25) 0.77 0.78 0.62 0.75 0.60
(2,2,0.8) 0.90 0.86 0.95 0.82 0.36
(2,4,0.5) 0.87 0.89 0.88 0.90 091

Alternatives h( 0,7)

(0, J) Ttr T tr/et TKL TBR TKks
0.4,2) 0.93 0.91 0.95 0.90 0.60
0.3,5) 0.33 0.31 0.23 0.33 0.09
Estimated levels
Ttr Ttrct TKL TBR TKS
0.050 0.048 0.056 0.031 0.054

Tks under various alternatives for a number of observations equal to 50 or 100. The
powers of the tests Ty, T/ct and Txs are estimated by 5000 experiments and the
levels by 20,000 experiments. Hence, with confidence 95%, the estimation error is
less than 0.3% for the levels and less than 1.3% for the powers.

For a number of observations equal to 50, Kallenberg and Ledwina take
d(50) = 10. We choose Dy =6, D = 6, and we obtain the results in Table 1.

For a number of observations equal to 100, Kallenberg and Ledwina take
d(100) = 12. We choose Dy = 12, D = 10, and we obtain the results in Table 2.

COMMENTS. In this simulation study, the alternatives that we consider are
of three kinds. The alternatives f(,, ;) correspond to the uniform density contami-
nated by a cosine function. They are favorable to our tests and Bickel and Ritov’s
test since these tests are based on trigonometric polynomials. It is therefore nat-
ural to compare our power results with the results of Tgr. The main difference
between the two procedures lies in the fact that 5(3, p) 1s an unbiased estimator
of the squared L>-norm of the orthogonal projection of f onto S(3 p), whereas

(T,,p — D)/(n — 1) is an unbiased estimator of ZID:1(f f(x)«/icos(lnx)dx)2
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only under the null hypothesis. The consequent bias term under some alternative
f may be of order D/n, which does not allow us to establish optimal uniform
separation rates for the test proposed by Bickel and Ritov. This explains why the
power of i improves the power of JgR in all cases.

The alternatives h(, ;) are more favorable to the test due to Kallenberg and
Ledwina since this test is based on Legendre polynomials. However, under the
alternative h (o 3 5), the test 7 improves the results of Tk, and under the alternative
h(0.4,2), the estimated power of 7y is comparable to that of Tki..

Since the functions g, 4.¢) correspond to some “neutral” alternatives, we can
focus on them. When the number of observations is equal to 100, the powers of
our tests 7y and Ty ¢ are at least equivalent to the powers of Txp, and Tgg for half
of the considered cases. As for the other cases, the procedures Ty and 7y /¢ are still
more powerful than JgRr. For small sample sizes (n = 50), our test 75, is always at
least as powerful as the tests Tk, and TgR.

4.2. Other goodness-of-fit tests. We are now interested in testing that the den-
sity f of the random variables X1, ..., X, is a given density fo, with fo # [jo, 1.
To test such a hypothesis, we have two possible procedures: the first one con-
sists in testing directly from the sample X1, ..., X;, the null hypothesis “f = f”
as explained in Section 2.1. The second one consists in testing that the com-
mon distribution of the variables Fy(X1), ..., Fo(X,), where Fy is the distri-
bution function associated with the density fp, is uniform on [0, 1]. This ap-
proach is the one which is proposed in most papers. Whereas the two procedures
are equivalent for the Kolmogorov—Smirnov test, they are not for our method
based on the estimation of an ILp-distance. Indeed, in our case, the first test is
based on the estimation of || f — f0||%- Since the density of Fo(X) is given by
h(x)= f(FO_1 (x))/fo(FO_1 (x)) when Fj is one to one, the second test is based on
the estimation of

/[O (@ =1 dx =] = Tl
To compare in practice these two procedures, we have chosen to test that the den-
sity f is Gaussian with mean 0 and with variance 1 first, with variance 0.01 second.
The choices we have made in order to implement our procedures are the
following ones: for the direct test from Xi,..., X, denoted by 7y, the set
M={(,D),l e{l,2,3}, D € Oy} is taken such that D, = D3 = T and D =
{1,...,10}, and for the second test from Fyp(X1y),..., Fo(X,), we apply the test
T/t described in Section 4.1 with D¢ = 10 and Dy = 12. We also present the
estimated powers of the Kolmogorov—Smirnov test that we still denote by Jks.
We have taken a number of observations n = 100 and a level @ = 5%. The
quantiles are estimated as above with 40,000 simulations, the powers of the tests
with 5000 simulations and the levels with 20,000 simulations. The alternatives that
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TABLE 3
Estimated powers for n = 100

Test of normality -V (0, 1) Test of normality vV (0, 0.01)

Alternatives f;,

m Tq T tr/ct TKs m Ta T tr/ct Tks
2 0.96 0.92 0.62 0.17 0.93 0.64 0.24
1.8 0.66 0.66 0.36 0.16 0.87 0.71 0.14
V)2 0.71 1 0.07 0.12 0.99 1 0.14

Alternatives g, 2,

m,6%)  Ta  Tuja TKs (m,0?) Ta Tefet TKS

(1,1) 0.80 0.98 0.77 (0.1,0.01) 1 0.98 0.77

0.5,2) 0.66 0.98 0.70 (0.05,0.015) 091 0.77 0.35

(1,2) 0.97 1 0.97 (0.05,0.02) 1 0.97 0.68
Alternatives h

p Ta Ttr/ ct TKs p Ta 7'tr/ ct Tks

2/ 21 0.24 0.95 0.42 20/ 2w 0.96 0.95 0.41

3/2/27 0.85 1 0.96 15//2m 1 1 0.96
Estimated levels

Ta Ttr/ct TKs Ta Ttr/et TKs

0.052 0.051 0.053 0.053 0.055 0.053

we have considered are the following ones (see Table 3):
1
fm (x) = %H[—m,m],

1 2092 2092

_ —(x—m)°/(207) —(x+m)°/(207)
7 (x) = e +e ,
g(m,a ) > /—2 ( )

hp(x) = gepx]lxd) + ge_px]lxzo.

COMMENTS. The first objective of this simulation study is to compare our
tests with the Kolmogorov—Smirnov test. The estimated power of the most power-
ful of our tests is larger than that of Tkg for most of the considered alternatives. In
these cases, the difference in power is really significant as we can see, for example,
for the alternatives f,,.

The second objective is to compare the tests g and T /cc. We can notice that we
reject the null hypothesis more often with the test of uniformity from the Fo(X;)’s
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when we test that the density is Gaussian with variance 1, whereas the direct test
performs better when we test that the density is Gaussian with variance 0.01. As
explained above, this is due to the fact that ||(f — fo)//fo ||% is larger than || f —
fo ||% when fj is the standard Gaussian density but smaller when fj is the Gaussian
density with variance 0.01.

4.3. Testing a parametric family. We now implement the testing procedure
described in Section 3 in order to test that the density f of the observations
X1,..., X, is an exponential density or, in other words, that f belongs to the
set of densities

F={f, f@&)=0le /20, 0 > 0}.

To simplify the implementation, we base our test statistic on constant piecewise
functions instead of scaling functions. For all D in {2, ..., 10}, we define

Ta.py(X1, ..., X»)

n
>0 > Iixijoetk/n. k1) D0NX, /o elk/D.(+1)/DD)
=0isj=1

) D
=inf{ ——
o>0|n(n—1)

+||fo||%—%:Zlfo(§)],

where fp is given by fo(x) = e *I;>¢. It is easy to see that for all o > O,
Ta,py(X1/o,..., Xu/0) =Ta,p)(X1, ..., Xn).

Let M ={(1,D), D =2,...,10}. As explained in Section 3, we obtain a level
a test as follows: denoting by 7,, (1) the (1 — u) quantile of fm(X 1, ..., X,) under
the hypothesis “f = fp,” and setting

Ho = sup{u e]0, 1], Pfo( sup (Tm(Xl,...,Xn) — fm(u)) > O) §a},
meM

we reject the null hypothesis if

sup (Tm(X1, coes Xn) —tm(llg)) > 0.
meM

The quantities ity and {7, (iiy), m € M} are estimated by Monte Carlo experi-
ments: 20,000 simulations are used to estimate the values of {,, (1), m € M} for u
varying on a regular grid of 0, «[, and 20,000 simulations are used to estimate the
value of 1.
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We compare the performance of our test with that of the Kolmogorov—Smirnov
test described below. Let

n
)_(n = n_l Z Xi
i=1
and let F,, be the empirical distribution function defined for all ¢ in R by

n
ﬁn(t) =n"! ZHXift-

i=1
Let F,; be the distribution function associated with the exponential density with
parameter oV F,(0) =0 —et/ 9)I;>0. Under the hypothesis that the distri-
bution of the X;’s is exponential with parameter o~ !, the law of the statistic
D, = sup,cp | Fn(t) — F)-(n ()] is free of the parameter o. Let d,, 1—o denote the
(1 — o) quantile of D, under the assumption that the X;’s have fy as common
density. The Kolmogorov—Smirnov test of exponentiality consists in rejecting the
null hypothesis “ f € ¥ if D, > dj, 1—,. We consider the alternatives defined for
x > 0by

gp(0) = (e + (1 +sin(prx))locy<1)/2  (p even),
hp(x)=(e ™ + (1 +cos(pmx))lo<x<1)/2,
k(p.g.e)(x) = (1 —&)e™ +eBp 4(x),
lipg.e)(x) =0 —28)e " +eypqx),
t(x) = e_(Ing)z/z/(x«/E),
v(x) = Vxe /(27T (3/2)),
w(x) = 1.5x0%e "7,

where 8, , and y,, 4, respectively, denote the Beta density and the Gamma density
with parameters (p, g).
For each alternative, the power of the test is still estimated by 5000 simulations.
The levels are estimated by 20,000 simulations. We choose n = 100 and o = 5%.
Table 4 presents the estimated power of our test denoted by 7, and of the
Kolmogorov—Smirnov test denoted by 7.

COMMENT. We can see in Table 4 that our test is not always much more pow-
erful than the Kolmogorov—Smirnov test under very smooth alternatives like v and
w which respectively correspond to the chi-square with three degrees of freedom
and the Weibull with parameter 1.5. However, under oscillating alternatives like
&ps» Nps k(p.q.e) and L 4 ¢, for which the Kolmogorov—Smirnov test is known to
fail, our test performs much better. We could furthermore expect better results for
our procedure with regular scaling functions instead of constant piecewise func-
tions that we have chosen to make the implementation easier.
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TABLE 4
Estimated power of the test of exponentiality for n = 100

Alternatives g p Alternative ¢
)4 Ty Tks Ty T ks
4 0.89 0.74 0.75 0.45
Alternatives h p Alternative v
)4 T Tks T T ks
4 0.71 0.60 0.67 0.65
1 1 0.90
Alternatives k(p 4 ¢) Alternative w
(Pa q, €) T(x TKS T“ ?KS
(10, 20, 0.25) 0.91 0.65 0.97 0.98
Alternatives I(, 4 o) Estimated levels
(P.q,€) To Tks Ta Txs
(2,5,0.5) 0.53 0.28 0.053 0.051
(2,5,0.75) 0.89 0.60

5. Proofs.

5.1. Proof of Theorem 1. The main tool of the proof is the canonical decom-
position of the U -statistics 6,, defined in Section 2.2. We introduce the processes
U, and P, defined by

1 " 1 &
U,(hy= —— h(Xi, X), P,(h)=-)> h(X;).
(h) n<n—1>,-¢12-:1( ) () n;< )

We also define P(h) = (h, f). Using the same notation as in Section 2.2, let for D
in N*, J in N,

() L1,py ={D}xZ and {p;le Ly p}={Ipxr kel}
(51) (ll) 06(2’21):{]} x 7Z and {pl,lEeC(z’zJ)}={§0‘]’k,k€Z},
(ii1) L3,p) = {0,1,..., D} and {pl,l S £(3,D)} ={g,[=0,...,D}.

By setting, for all m € M,
Hu(x,y)= > (p(x) —ar)(pi(y) — ap),

leL,
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with @; = (f, p1), we obtain the decomposition

Om = Un(Hy) + (P, — P)(2T1s,, () + | TIs, ()]5.

Let us fix some 8 in ]0, 1[. Recalling that

A 2
Pr(Toy =0) =Pf<SUP (9m +I1.foll5 - ;ZfO(Xi) - tm(ua)> < 0),

meM i=1

we have

~ 2
(5.2) meso>smigdfwwf<9m+||fo||%—;Zfo<Xi>—rm<ua)so).

i=1
Since || f — T, (N3 = 11f113 — [ITs, ()13,
Pp(Ty <0) < inf Pr(Un(Hp)+ (P — P)(2Ms, (f) = 2f)
(5.3) + (Py— P)2f —2f0)
1 = fol3 < [ f = M, ()3 + tm (1))

We then need to control U, (H,,), (P, — P)2I1s, (f)—=2f), (P, —P)2f —2fo)
for every m in M.

(a) Control of U, (H,,). We use the following lemma, which derives from an
exponential inequality for U-statistics of order 2 due to Houdré and Reynaud-
Bouret [11].

LEMMA 1. Let Xy, ..., X, be i.id. real random variables with common den-
sity f € Loo(R). Let D1 =D3 =N*and D, = {27, ] eN}. Forallm = (I, D) with
[ €{1,2,3} and D € Dy, introduce {p;, ! € L,,} defined as in (5.1) and

1
T ntn—1)

m

n
Y. Hu(Xi, X)),
i#j=1

with

Hy(x,y)= > (p1(x) = (£, p0)) (P1(3) — (£, p1)).

leLy,

There exists some positive constant C (depending only on @) such that, for all
[e{l1,2,3},DeD;, x>0,

C Dx?
(5.4) IP(|Z(1,D)| o ;(M(nfnoo +VTFTo) + 1 flloox + TX)) <5607,
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The proof of this lemma is deEailed in [9].
By setting A =1log(3/8) and A = X +1og(5.6), Lemma 1 gives that there exists
some constant C > 0 such that, for all m = (I, D) in M,

(5.5) Pf(un(Hm < —9((||f||oo VT WD+ 11 lood + DTAZ)) < g

n
We deduce from (5.3) and (5.5) that

Pr(Te <0)

< g + inf {Pf ((P,, — P)@2Msy ) () = 2f) + (Ps = PY2S = 2f0)
(5.6) Lo

FIUf = foll3 < | f = Ty py (D5 + 10,0 ()

+ %<(Ilf||oo VTV DI+ 71k + DTF»}

(b) Control of (P, — P)(2I1s, (f) —2f) and (P, — P)(2f —2fo). Wenow
use the following lemma due to Birgé and Massart [5], which provides a special
version of Bernstein’s inequality.

LEMMA 2. Let Xy, ..., X, be independent random variables satisfying the
moment condition

I ¢ Kk
- Y E(Xi1Y) < z vt forallk >2,
i 2

for some positive constants v and c. Then, for any positive x,

10 J2vx  cx x
P(;g(xi—mxo)z = +7>5e :

In particular, if forall i in {1, ...,n}, | X;| <band E(Xiz) <, the above inequal-
ity is satisfied with c = b/3.

It is easy to check that there exists some constant C’ > 0 such that for all / in
{1,2}, D in Dy,

|2HS(11D)(f)(Xi) - 2f(Xl)| =< C/“f”OO

Moreover, it is proved in [7], page 269, that one can take C’ such that for all D
in D3,

12T 1, (/)(Xi) = 2f (X)) = C'|| flloo log(D + 1).

Since

E(2I0s, (f)(Xi) — 2£ (X))? < 4] flloo| s, (F) — ]2
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we can deduce from Lemma 2 that for all m = (I, D) € M,

2
Pr( (P, — P)(2Ms, (f) —2f) < =2V fllsc | Ts,, () — £, 2
n

~ O flloo log(D + 1)) _B
3n

By using the elementary inequality 2ab < 4a* /e + eb? /4, we obtain that for m =
(I,D)e M,

Py ((Py = P)CIs, (£) = 27) + 515, () = £13
(5.7)

The control of (P, — P)(2f — 2 fo) is computed in the same way and we get

<
3 n

< _(§ | Cllog(D + 1)) ||f||oox> B
&

Pf((Pn ~ P)Y2S = 2fo) + S~ foll

<—(2(2+43) 11+ S100e) 5) <.

Finally, we deduce from (5.6)—(5.8) that if there exists some m = (I, D) in M
such that

(1 — 2>||f — foll3 > (1 + 2>Hf— Hsm(f)H%

(5.8)

72
+ %((nfnoo T+ VT WD+ 1 f oo + D_k>

n
16 C'log(D+1)+2
+<<_+ = 3 )

)||f||oo+§||fo||oo)%

+ (1),
then
Pr(Ty <0) <B.

This concludes the proof of Theorem 1.

5.2. Proof of Corollary 1. Assume that for all / in {1,2,3}, &D; = & or
27,0 < J <log,(n?/(loglogn)?)}.

5.2.1. An upper bound for t,,(uy), m € M.

PROPOSITION 1. There exists some positive constant C(a) such that, for all
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m=(, D) in M,
tm(ug) < Wp(a),

where

C
Wi (@) = %((ufonoo + V7ol )/ Dloglogn +

+ | follos (loglog n) logn).

D(loglogn)?
n

_ PROOF. Recall that 7, (#) denotes the (1 — u) quantile of the distribution of
T, under the hypothesis “f = fy.” We first notice that for n > 16, |M]| < 3(1 +
log, n2). So, setting o, = o/ (3(1 + log, n?)),

Py, ( sup (T — tm(an)) > 0) Z Pfo — tm(an) > 0)
meM mem
Z <a.
= 3 +10g2n )
By definition of uy, this implies that «;, < u, and for all m in M,

tm(Ug) < tm(oty).

It thus remains to give an upper bound for #,(«e,). Let m = (I, D) € M. We use
the same notation as in the proof of Theorem 1 to obtain the decomposition

Ty = Un(Hy) + (Py — P)(2TT5, () = 2Pu(fo) + I foll3 + [ TTs, () |2
Under the null hypothesis “ f = fy,”
Ty = Un(Hy) + (P, — P)(2TLs, (fo) — 2f0) — Il foll3 + | s, (fo) | 5-
Since || TLs,, (fo) — foll3 = Il foll3 — IITLs,, (fo) I3, we obtain that, under “f = fp."
(5.9) Ty = Us(Hp) + (P, — P)(2T0s, (fo) — 20) — | s, (fo) — foll3-

As in the proof of Theorem 1, we control U, (H,) from Lemma 1 and (P, —
P)(2Is,, (fo) — 2 fo) from Lemma 2. We set A, = log(2/a,) and dn = Ay +
log(5.6).

On one hand, Lemma 1 leads to

Pfo(Un<Hm> > g(\/ﬁ(ufonoo + VI ollss)

T2
o))<
n -2
On the other hand, since

(5.11) 12(Is,, (fo) — fo) (XD)| < C'll folloo log(D + 1)

(5.10)
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and
E 1, (2(Ts, (fo) — fo)(X))* < 41l folloo | TLs,, (f0) — fol3,

it follows from Lemma 2 that

2 n
P\ (Pn — P)(2T0s,, (fo) = 2f0) > 2V |l folloo|| T, (f0) = follpy/ ——
n

o C'llfollooalog(D + 1)) o
3n -2
Using the inequality 2ab < a? + b2, and the fact that for n > 16, log(D +1) <
log(n? 4 1), we obtain that there exists C” > 0 such that

Pf()((Pn — P)(2Ms, (fo) — 2f0) — | s, (fo) — foll3

_ Ml ollschn oz
n

(5.12)

(04
<

_2'

We derive from (5.9), (5.10) and (5.12) that

. C - . D2
Pfo(Tm>;(\/Dxn(nfonoo+\/||fo||oo)+||fo||ooxn+ )

n

+

C" |l follooAn logn)
<.
n

Finally, we notice that there exist some positive constants c¢(«) and ¢’(«) such that
forn >3, A, < c(a)loglogn and A, < c’(«)loglogn, which completes the proof
of Proposition 1. [J

5.2.2. Uniform separation rates. Let us fix 8 in ]0, 1] and [ in {1, 2, 3} such
that O, = {27,0< J < logz(nz/(loglogn)Z’)}. From Theorem 1 and Proposi-
tion 1, we deduce that if f satisfies

I = foll3 > 1+ &) inf {1f = L5, p, (D] + Wit.oy (@) + Viepy (B)).

then
Pr(Ty <0) <B.

It is thus a matter of giving an upper bound for

. 2
Dlg),{ | f = sy p, (O3 + Wa,py(@) + Vi.py(B)}
when f belongs to some specified classes of functions. Recall that

BD (R, M)
= {f €La@), VD €Dy, |[f =5, (N5 < RED™, [ fllec < M}.
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We now assume that f belongs to ;BS(I)(R, M). Since || f — HS(Z,D)(f)H% <R’D™%

and since the constant C>(8, &, || f oo, |l folloo) in Theorem 1 can be taken such that

C2(B, &, | flloos 1 folloo) = C2(B, &, M, || folloo), we only need an upper bound for
VD

inf {RZD_ZS +C1(B) (VM + M)~—
DeDy n

D D(loglogn)?
-Hmm;+cwri%§@l

v/ Dlogl
+C@(follos +VTFolleo) L2t

(loglogn)logn . Cr(B. e, M, “fO”oo)}
n

+ C(@) | follo "

Assuming that n > 16, this quantity is bounded from above by
D(loglogn)?

Digg)l{RzD_zs + (C1(B) + C()) —

TogT
+(C1(B (VM + M) + C@)(Il follo + ||f0||w))@}

logl 1
+ (C@l folloo + C2(B, &, M, ||f0||oo))m_

Since every D in D is smaller than n?/(loglogn)3,

Dlogl D(logl 2
{R2D—2S+“/ oglogn (loglogn) }
n

inf 5
DedDy n

N/Dloglogn}

<2 inf {RZD_ZS +
n

Ded;
We have R?D~% < /Dloglogn/n if and only if D > (R*n?/loglogn)!/(1+45),
so we define D, by
1/(1+4
log, (D) = [log, ((R*n?/(loglogn))/IT¥N] + 1,

and we consider three cases. , \
The first one is the case where 1 < D, < 20l0g("/(oglogm)))] \which means that
D, € ;. In this case, we have that

. B Dloglogn _ ' D.loglogn
o {0 S st R

Since

n

4s/(4s+1
RD;> < R2/<4s+1>(v1°g10g”> B
* =
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and

/Dy loglogn 2 1/(4s+1)
D, loglogn < \/§< nR ) J/loglogn
n

loglogn n
< \/ERZ/(“S“)(M)‘“/(““)
< : |

we obtain that

DedDy n n

4s/(4s+1)
inf {RZD—ZS + M} <(1 +ﬁ)Rz/<4s+1)<v10g10gn> e

The second one is the case where D, > pllogs (n*/(oglogm)] 1y this case, for all
D in Oy,
+/Dloglogn

n

By taking Do = 2llogs (n?/(loglog ”)3)], we obtain that

3\ 28
«/Dloglogn} < 2R2D0_2S < 22S+1R2<(loglogn) ) .

n n?

<R*D™%,

inf {RZD_ZS +
DedD;

The third one is the case where D, < 1. In this case, for all D in Dy, R’D™% <
/' Dloglogn/n, so by taking D = 1, we obtain that

inf {RZD_ZS n «/Dloglogn} - Jloglogn
DeD; n - n '

This completes the proof of the corollary.

5.3. Proof of Corollary 2. We use the same notation as in Theorem 1. We
assume that fo = [jo,1j and M = {(1, D), D € D}, which means that we only
consider spaces generated by constant piecewise functions. We first prove that if
there exists m in M such that

(5.13) 1T, (£) = fol2 = (1 + &) (tm (ita) + Vi (B)).
then
P/ (Ty <0) < .

Using inequality (5.2) and the definition of 6,n, we derive that

Pﬂngms;gﬁyﬁmmw+uz—m@nhqrﬂh)

1
+Whﬁf%ﬂhﬁ+2ﬁ‘EU—ThAﬂ)S%ww)
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Since fy = I|o,1) and since, for all m in M, S,, is generated by constant piecewise
functions, we have

1
[ a(r = ng,0) =0
We then obtain that
Pr(Ty <0) < milelilpf(Un(Hm) + (P, — P)(2I1s,,(f) — 2 fo)

+ | Ts,, () = fol3 < tm(ua)),

and we conclude as in the proof of Theorem 1.
Let for all s > 0 and R > 0, #(R) be defined by (2.4). Ingster [14] proved that
for all functions g in #(R), for all D in N*,

||HS(1_D) (g)Hi > C1||g||% _ CZD—ZS’

where C1 €]0, 1] and C, > 0 (see [14], part III, inequality (5.16)).
Assume that f € #Hs(R). Since fo =1Ijo,17, f — fo € Hs(R). We then derive
from Ingster’s inequality that for all D in Dy,

Mg, (f = f0) 5= Cill f = fol3 — C2D7%.

Moreover, Is,. D)( f—fo)=1 Sa. D)( f) — fo. As a consequence, if there exists
m = (1, D) in M such that

Cillf = foll3 = C2D™ + (1 + ) (tm () + Vi (B))
then (5.13) holds. The end of the proof is similar to the proof of Corollary 1.

5.4. Proof of Theorem 2. Let T, be the test statistic defined by (3.4). We have
that

Pf(Ty <0) < inf Pr(Tu(X1, ..., Xn) < dma),
meM
and since D # @, setting M’ = {(2, D), D € D»},
(5.14) Pr(la<0) < inf Pr(Tn(X1,. ., Xn) < Gima)-

Let us introduce some notation. Using the definitions given in (5.1), for m in M,
we recall that

(M Ky Ly (R (X

o el i#j=1

2 Xi— 1
2__ 1
+ 1l foll n;:]fo( . )
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and we set

az(u,0)=/pz(

b, ) =/fo<x; )#edx,

Zn11,0) = s _1) D3 [pz(

lely, i#j=1

=
=

)f(X)dx,

Q

=

)—azw,a)]
X. _
X [pz< JG M) —az(u,a)},

L(u.o) = (P, _p)<22a1(u,0)191( . ) 2fo( M))

leLy,

The following identity holds:

A (X1 —p Xn—
Tm( L )=zm<u,o)+Lm<u,a>+||fo||%

+ ) aj(u,0) = 2b(u, 0).
leLly,

Recall that S, is the linear subspace of L, (RR) spanned by the functions {p;,! €
£} and that ITg, denotes the orthogonal projection onto S, in L, (R). Then

(5.15) > af(u,0) =T, (0 (0. + )5
ledly

After some easy computations, one can prove that

Lfollz + Y af(u.0) = 2b(u. o)

leLy

=o| ()1,

— o f 0.+ w) — s, (of (. + w) |2
This implies that

Pr(Tn(X1,s- .., Xn) < Gm.a)

:IP’f((Mvian)feK{Zm(/L,G) + Lin(p, 0)
reloa( ) -1,

oS (o4 ) — s, (o f (0. + u»ui} < qm)

2
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or
Py (Tn(X1, ...\ Xn) < Gm.a)
2

=2y(int JZuteo) + Latuo) + o]~ () - s

2
+ leof(o. +u) =T, (o f (0. 4+ )5

w13 n(55) 1],

- (1 + Z)Hof(o. + ) — T, (0 f (o +u>>||§} < qm)

2

Therefore,
Pt (T < Gm.ot)

SPf(( sup {_Zm(ﬂva) — Lin(n,0)

n,0)eK
“ielea(50) -1,

- ZIIO’J’(U. +pn) — g, (of (0. + u))||§}

> (1-2) it o (22) -],

—<1+2) sup ||of(0.+u)—Hsm(Uf(U-‘i‘M))”g_‘?m,a)'

(n,0)eK
Let 7,,(B) denote the (1 — B) quantile of SUP(,,.0)ek I'm (u,0), where

2

L, 0) =—=Zp(h,0) — Ly (1, 0)——GH fo( M) f2

€ 2
—glof o +w =T, (0 f @+ W)
It follows from the above inequality and from (5.14) that if

2
e\ . I
1—2) inf -
( 4) (u,trrl)eKGHGfo( ) U

> inf (<1+5> sup [0 f (0. + ) — s, (o f (0. + w) |3
meM’ 4) (u,0)ek

2

+ i (B) + ém,a)a
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then
Ps(Ty <0) <B.

Let m = (2,2”) € M’. We now need to compute an upper bound for ,,(8).

To compute this upper bound, we introduce a finite grid on K = [u, ] X [0, T ].

Let uyp<puy1 <---<unyandog<oy; <--- <oy suchthatpao_=pa, TR
op=0,0y =0, forall§in{0,..., N =2}, |us+1 — Us| = AM’ |(73+1_—0‘3| = Ay
and |uy — un—1l = Ay, lon —on—1| < As. Ay and A, will be chosen later. Let

for (8,8')in{0,..., N —1}2,
As s = [ms, ws+1] X [0y, 05411

The following inequality holds:

Sup Fm (,LL, G) S Sup Fm (I’L57 05’)
(u,0)eK (8,8")€{0,...,N—1)2

+ sup sup (T (p, 0) = D1, 05)).
(8,8)€{0,....N—1}2 (1,0)€A;

5.4.1. Control of sups sne(o,....N—112 T'm (15, 057).  Introduce

.....

Ly (. 0) = (P, — P)(Zo'f —2(s, (o f o +M)))(TM>>

- ZHaf(o. + ) =T, (o f (0. 4+ )5

and
@ s e 11, (- —u 2
L o) =B - P (200(2) ~ 200 ) = So) 2 (SE) - 1)
o 4 o o 2
Since
el V2
~Ln(u.0) = (s = P)(20f =25, (o 0.+ ) ()
ey %
(P - P)(2f0(7> - 20f),
we have that
sup U (s, os)
(8,8"€{0,..,.N—1)2
< sup | Zm (s, 0s)]
(6,8)€{0,...N—1}2
L , L@ ,
+ sup m (s, 05) + sup m (s, 05).

6,8"€{0,...,N—1}2 6,8)€f0,...,N—1}2
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(a) Control of sups s1yeqo,... n—1y2 | Zm (15, 05)|.  We apply Lemma 1 by re-
placing the X;’s by the variables (X; — u)/o and the density f by the density
of the (X; — n)/o’s that is o f (0. + n). With m = (2, 27y and {p;,l € L} =
{01k, k € Z}, we obtain that there exists some constant C > 0 such that for any
(u,0) in K, for any x > 0,

Clri2 == = _ 27,
Py (1200001 > (2 PVR@ 1 oo+ VET o) 41 oot + 2% )
<5.6e".

Hence,

Pf( sup | Zn (s, 057)|
(5,8)€(0, ..., N—1)2

C 2/
5.16) > ;(2”2ﬁ(6||f||oo + VaTTo0) + 31 flloox + 7xz))
<5.6N2%e*,

.....

(b) Control of SUP(s.5)e(0.....N—1)2 L,(,P(Mg, os). To get an upper bound for
this supremum, we use Lemma 2. We recall that for m = (2, 27, { pi.le Ly} =
{01k, k € Z}, where ¢ = 272927 . —k) and ¢ is a compactly supported scaling
function. Then, for all / in £,,,,

I21ll00 < 2772119l o

Assume that the support of the function ¢ is included in [—®, ®], with & > 0.
This implies that for any x in R, the cardinality of the set {/ € .£,,,, p;(x) # 0} is
smaller than 2® and that for all (i, o) in K, [ in &£,

la (i, )] < 20027772 fllooll @l o-

Hence, for all x in R,

(s, (o f (0. + m))(%)‘ _

Y au, G)pz<x ; M)‘

leLy,

<2002 flll@llos Y
ledLy,

pl
o

Therefore, there exists some constant C’ > 0 such that

o — 2015, (o7 0.+ ) (1) HOO <CT fll.
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Furthermore, we have

/<2of —2(s, (o f (0. + u)))(%))zf

<45 flsollof (0. + 1) — T, (o f (0. + )| 3.

Then, for all (i, o) in K, Lemma 2 gives the following exponential inequality: for
all x > 0,

Py ((pu— P (207 =205, (0 @+ ) ()
L GOl oo x
3 n

+2/25 1 el 04 1) = T, (0 0.+ ) |y = )=e

By using the elementary inequality 2ab < 4a?/e + £b* /4, we obtain that

/

8 C
(5.17) IP’f( sup Li,p(,us,da’) > (— + _>E||f||oo{) < N2
(5.6)€(0,.... N—112 e 3 n

(c)  Control  of  supg 50, N—1)2 L;,%) (1s, 087). We  control

SUP(5.8)e0,.... N—1)2 Lﬁ,%)(,ug,ay) in the same way, noticing that for any (u, o)
in K,

(1) - 2ofHoo <2 folloo + 711 Fllso)

and
2 2
- o—_ M 1 - —_ M
/(2f0<—> - 2of) f < 402||f||ooH—fo<—) —7]-
o g o 2
We get
IPf( sup LP (s, o)
(6,8)€{0,...,N—1}2
(5.18)

4 +o x _
>2<55”f”00+ Il folloo a ||f||oo>;> < N2,

Assume that N > 2. Collecting the inequalities (5.16), (5.17) and (5.18) and
choosing x such that 7.6N?e™* = /2, we obtain that there exists some positive
constant C = C (0, &, || flloos [l folloo> B) such that

HJ)f( sup Ly (s, o)
(8,8")€f
(5.19)
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542 COI’IZTOZ Ofsup(g’s/)e{o"..’N_I}Z’('u’o-)eAayy (Fm (,Uva G) - Fm (I'L(S’ 05,))' We
have

O, o) == _1) > Z Pl( - )pz(XjU—M)

leLy i#j=1

+ Y @t o) = Zlof @+ w — s, (0f 0.+ w) 3

ledly,
z+ (P, - P)(zfo(%)).

a5
T, 0) = — n—IME: }: m( - >m<Xi:M>

Using (5.15), this implies that
i#j=1

€ , € ) € ) €
— ol B Sl + (”Z) > a(.0)+ b, )

leLy,
+ (P — P)(zfo(%)).

Let
r'Do, o, s 5’):-*
" T nn—1)
" X; — X;—
XZ Z DI iR pi ik
o o
ledyitj=1
Xi — s Xj — s
— oy Di - ,
P (0,88 =Y aj(u,0)— Y aj (s, 03),
leLy, ledL,,
I (. 0,8,8") = b(w, o) — b(ws, 05),
r'u,0,8,8)=(P, —P)(2fo< . ) 2f< ;sm))
Then

sup sup (Fm (n,0) =TIy (us, 08’))
(8,8))€{0,....N—1}2 (1, 0)€A; 5

<sup sup [TV, 0,8,8))
(8,5/)(,u,a)eA5,5/
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€ @) /
+(1+=)sup sup |7 (u, 0,88
47 (6,8 (n.0)eA; g

&

+—sup  sup |F,$’)(/L,o,5,5/)| + sup  sup |F$)(u,0,8,8’)|
2 (8,6 (n,0)€A; 5 (8,8) (11,0)€A g
€

+ —-A .
> ol flleo

.....

easily see that
r'Vu,o,8,8)
1
)

y lg'liil[(pl()(i;ﬂ) _ pl<Xia_8,M8>>pl<Xja_ M)
#(n(Z55) - (F52))n (557}

We recall that for all x, y in R, the cardinality of the set {I € L, pi1(x) # p1(¥)}
is not larger than 4® and that for [ in £,,,
1Pilloo <277 [1@llo-

Since ¢ is a Lipschitz function with Lipschitz constant Cy, we also have that for
all x, yin R,

(5.20) Y pix) = p()] <423 2C,1x — yl.
ledLy,

This implies that

2
M Nl <8 2§
| m (/.L,O’,(S,(S)if C(p||§0”oo n Z

i=1

Xi—pn  Xi—ps
o ag/

and

sup TP, 0,8,8)]
(/J,,O')GA(;,(;/

2J 1 . A‘T
<80Cyllgll2™ 1= D IXil( 3 ) +
i=1 -

Assuming that (/,) holds, we derive from Lemma 2 that for all x > 0,

1

@A+ (mlv Igl)Aa)}-

(5.21) Pf(Z(|X,~| —E(X;])) = V2vnx + cx) <e .

i=l
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Since E(|X;|) <+/v and N > 2, by taking x = 10g(4N2/,B), we obtain that there
exists some constant C(u, it, 0,7, v, ¢, B) > 0 such that

Pf( sup sup [T (u,0,8,8)
(6.8")€{0,....,N—1}2 (n,0)€A; g
(5.22)

NI

> Cu 0., v e )2 (A v Ag>1ogN) <

.....

PP (u,0,8,8) =Y (a(u,0) — ar(us, 05)) (@i (1, o) + ar(us, os))
leLy,

and |a;(w, 0) + ar(us, 05)| < 2.272(|¢]| oo,
X — X — L5
r o880 =22 Polls [ 3 |p(F52) = (S5 |

ledly,
By (5.20), we obtain
TP (0.8,
< 80]lpllosC,2 [T - L ‘f(x)dx,
o ag/

I
<8000 Cy2 [ (16155 + 5@+ (v luhAd) ) F0) d.

We deduce from (4,) that there exists some constant C(u, &, 0,o,v) > 0 such
that
sup sup [T P(u,0,8,8)
(8,8"€{0,....N—1)2 (n,0)€As 5
(5.23)
E C(M? ﬁ’ g, E’ V)22J(A/L \% AO’)

.....

that (1) holds, we have that for any (i, o) in As 5, x in the support of f,

(") =)
< cfo[|x|(%) " é(mu + IV 1D B) |

Hence, we derive from (/4,) that there exists some positive constant C (E’ w,o,0,
C,, v) such that

(5.24)

sup sup [T (u,0,8,8)
(8,8)€{0,...,N—1)2 (1,0)€As &
(5.25)
5 C(&a ﬁ’ gv Ea Cf()7 V)(A/L \% AO‘)
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,,,,,

from (5.24) that there exists C(u, it, 0,7, Cg) > 0 such that

sup |F,5f)(,u, 0,8,8)]
(,u,a)eAM/

_ 1 &
<C(p.m a,7,Cy) [; Z(|Xi| +E(X;)+1)(Ay vV Aa)]-
i=1
Using again (5.21), we prove that there exists some positive constant C (E’ uw,o,0,
v, ¢, B, Cy,) such that

Pf( sup sup |10 (. 0,8.8)]

(8,8")€(0,....N—1)2 (1,0)€A; 5

(5.26) B
> C(w 2.5 voc. . Cpp)(Au v AaﬂogN) =7

Collecting (5.22), (5.23), (5.25) and (5.26), we get

P s sup  (T(12, 0) — T (15, o)
(8,6)€{0,...,N—1}2 (n,0)€A; 5
(5.27) P

> 2% (A, v Aa)logN> =7
for some constant C = C(u, it, 0,7, Cg, || flloo, Vs ¢, B, €) > 0. Finally, by set-
ting Ay = Ay = n—22=7 we have that
2! (@—WA@—0)<N<n2!@-—pwv@E-—o)+1.

Hence, we deduce from (5.19) and (5.27) that if n?( — MA@ —0a)=2and
n > 2, there exists a constant C = C(u, it, 0,7, || follco» Cfy» | f locs v, €, B, &)

such that
27 log(n?2’
Jlogn227) + = log?(n?2”) + %).
n n

27/2
tn(B) < C<
This concludes the proof of Theorem 2.

n

5.5. Proof of Corollary 3. Since ¢(2, p),« = t2,p)(uq) With the same notation
as in Section 2, we have that

do.py.« < Wp(a),

where
~ C
W (@) = %)( (I folloe + v/ 7ol )/ D loglogn

D(loglogn)?
e ||fo||oo(loglogn>),
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C(a) being a positive constant. This upper bound is obtained by replacing in
the proof of Proposition 1 «;, by «a/2(1 4 log, n?) and C’|| folloo log(D + 1) by
C'll folloo in (5.11). _

Let f belong to Bs(R, M) and satisfy (k1) and (h3).

From Theorem 2 and the above upper bound, we deduce that there exists some
positive constant C = C(E’ n,0,0,Cr, l folloo, M, v, c,a, B,s) such that if f

satisfies
1 - 2 J/Dlog(n?D)
inf || f— —f0<—“) >C inf {R2D2S I i

(n,0)eK o o 2 DeD» n
Dlog>(n®D) log(n’D
" g § )Jr g( )}’
n n
then

P/ (T, <0) < B.

Since D> ={27,0<J < pllogy (n?/log® M) and n > 3, there exists ¢ > 0 such that

~ Dlog(n’D)  Dlog?(n2D) log(n®D
inf {RZD‘2‘+ g n og-(n )+ og(n )}

DeDy n I/L2 n
< c( - {RZD_ZS n v/ Dlogn } n logn)’
DeDy n n

and Corollary 3 can be proved in the same way as Corollary 1.
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