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INFERENCE FOR COVARIATE ADJUSTED REGRESSION VIA
VARYING COEFFICIENT MODELS!

BY DAMLA SENTURK AND HANS-GEORG MULLER
Pennsylvania State University and University of California, Davis

We consider covariate adjusted regression (CAR), a regression method
for situations where predictors and response are observed after being distorted
by a multiplicative factor. The distorting factors are unknown functions of
an observable covariate, where one specific distorting function is associated
with each predictor or response. The dependence of both response and pre-
dictors on the same confounding covariate may alter the underlying regres-
sion relation between undistorted but unobserved predictors and response.
We consider a class of highly flexible adjustment methods for parameter es-
timation in the underlying regression model, which is the model of interest.
Asymptotic normality of the estimates is obtained by establishing a connec-
tion to varying coefficient models. These distribution results combined with
proposed consistent estimates of the asymptotic variance are used for the con-
struction of asymptotic confidence intervals for the regression coefficients.
The proposed approach is illustrated with data on serum creatinine, and fi-
nite sample properties of the proposed procedures are investigated through a
simulation study.

1. Introduction. For many statistical applications, a multiple linear regres-
sion model is a standard tool,

p
(D Yni:V0+ZVanri+eniv
r=1
for data (X4, Yni), i =1,...,n,r=1,..., p, where yy and y, are unknown pa-

rameters, Y,; is the response, X,,; is the rth predictor and e,; is the error term
for the ith subject in the sample. An implicit assumption is that predictors and
response are directly observable. However, in some situations both response and
predictor variables may be distorted under the influence of a confounding variable.
In this paper we consider a variant of (1), where one observes contaminated ver-
sions of predictors and response. Contamination of the variables in the regression
model occurs through a multiplicative factor that is determined by the value of
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an unknown function of an observable covariate U. That is, instead of observing
X,ri and Yy,;, one actually observes distorted variables X,,;; and Y,;,

(2) ani = ¢, (Uni) Xris r=1,...,p, ?ni =Y (Upni) Y.

Here ¢ (-) and ¢, (-) are unknown smooth functions of the contaminating covari-
ate U, and the available observations are (U,,;, 5(,,”-, 17,,,-).

An example where a model of this type is relevant are the creatinine data that
are explored further in Section 5. Here serum creatinine levels are regressed on
cholesterol level and serum albumin. The observed response and the two predic-
tors are known to depend on body mass index, defined as Kg/m?, which thus has
a confounding effect on the regression relation. Therefore, we investigate the ap-
plication of a multiplicative confounding via model (2), where the confounding
variable U is taken to be body mass index. “Normalization” by weight or body
mass index is common in the analysis of medical data, and this refers to sim-
ply dividing the measured quantities by these confounding variables. This type of
normalization implicitly assumes that the confounding is of a multiplicative na-
ture. The adjustment considered in this paper applies to a class of more general
multiplicative confounding where the effects of the confounder are modeled by
unknown distorting functions () and ¢, (-). This leads to flexible models that
include a large class of confounding mechanisms. Reasonable identifiability con-
ditions for these functions are

3) E{yU)}=1, E{¢-(U)} =1, r=1,....p,

corresponding to the assumption that the mean distorting effect vanishes. Ad-
ditional basic assumptions are that the (X,, U, ¢) are mutually independent for
r=1,..., p, and that observations made on different subjects are independent,
with E(e,;) = 0, and var(e,;) = o2. The assumption that the underlying predic-
tors, X,, and response, Y, are independent of the contaminating variable U is an
assumption defining the proposed contamination setting through defining these un-
observed, underlying variables; and for that matter it is not one that can be checked
in practice. Thus, the question to be answered in practice is whether or not these
independence conditions help define interpretable latent variables of interest from
their observable counterparts. In our creatinine example, the latent variables are
defined to be body mass index adjusted serum protein levels and cholesterol level,
which are commonly used in medical studies.

The contamination of the predictor and response in a multiplicative fashion as
given in (2) can alter the regression relation between the original response and
predictors completely. It has also been shown for the case of simple linear regres-
sion that standard adjustment methods such as nonparametric partial regression or
partial regression cannot adjust for the multiplicative contamination [11]. There-
fore, a modified parameter estimation procedure is necessary, one which accounts
for the multiplicative confounding effect of U. Such a procedure was proposed
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in [11], where consistent parameter estimation in the model (1)—(3) was estab-
lished. This estimation procedure relies on the fact that regressing YonXy,...,X »
gives rise to a varying coefficient model. Furthermore, a main attraction of this es-
timation procedure is that under the identifiability conditions of vanishing mean
distorting effects, it also works for the case of additive contamination, that is,
Xpri = &r(Uni) + Xpris Yni = ¥ (Upi) + Yyi, and for no contamination, that is,
&r(Upni) = ¥ (Upi)) =1 for r =1,..., p. Thus, the proposed estimation proce-
dure provides a flexible and general tool for adjustment, where the specific na-
ture of the contamination of the variables or even its mere existence need not be
known.

The aim of this paper is to derive the asymptotic distribution of these parame-
ter estimates, and to discuss applications to confidence intervals. We show that
our proposed parameter estimates are asymptotically normal, and combining this
result with consistent estimation of the asymptotic variance leads to asymptotic
inference.

The paper is organized as follows. In Section 2 we describe the model in detail.
In Section 3 issues of estimation are discussed and the results on asymptotic infer-
ence are presented. Consistent estimates for the asymptotic variance are derived in
Section 4. Applications of the proposed method to creatinine data and simulation
studies are in Section 5. The proofs of the main results are assembled in Section 6,
followed by the Appendix with some additional technical conditions and auxiliary
results.

2. Covariate adjustment via varying coefficient regression. Consider the
model (1)—~(3). Writing X,;; = (Xp1;, ..., Xppi), the regression of the observed re-
sponse on the observed predictors leads to

EYil X 3> Uni)
= E{Yniy (Uni)|91 (Uni) Xn1is - - - ¢p(Um')ani’ Uni}
= 1/f(Um')E[VO + Z Vr Xnri + enil 1 (Uni) Xn1is - - -, d’p(Uni)ania Uni}-

Assuming that E(e,;) = 0 and that (e, U, X,) are mutually independent for r =
1,..., p, the model reduces to

” v r Uni ani
EGulXT, Un) = ¥ Uaid o + ¥ (Un) Y m%
(4) i r\Uhni
= Bo(Uni) + Z,Br(Uni)ani-
Defining the functions
5) fow) = vy, B =y L

or(u) ’
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we obtain

Yoi = Bo(Uni) + Y Br(Uni) Xuri + £ (Uni),

where (1) = ¥ (u)e.

We find that this is a multiple varying coefficient model, that is, an extension of
regression and generalized regression models where the coefficients are allowed to
vary as a smooth function of a third variable [5]. A unique feature is that both the
response and predictors depend on the covariate U'.

For varying coefficient models, Hoover, Rice, Wu and Yang [6] have proposed
smoothing methods based on local least squares and smoothing splines, and re-
cent approaches include a componentwise kernel method [13], a componentwise
spline method [2] and a method based on local maximum likelihood estimates [1].
Wu and Yu [14] provide a review of recent developments. We derive asymptotic
distributions for an estimation method that is tailored to this special model.

3. Estimation and asymptotic distributions. The estimates of the regres-
sion coefficients y, will be obtained by targeting weighted averages of the smooth
varying coefficient functions. Even though various smoothing methods have been
proposed in the literature for the estimation of these smooth varying coefficient
functions, we propose a smoothing method based on binning. The main reason for
the use of the binning approach is its simplicity in targeting the desired weighted
averages, rather than its performance on estimating the varying coefficient func-
tions themselves. Nevertheless, the proposed binning approach has similarities
with earlier developments for longitudinal data in Fan and Zhang [3], who use
the data collected at each fixed time point to fit a linear regression, obtaining the
raw estimators for the smooth varying coefficient functions.

Generalizing this idea to our independent and identically distributed data
scheme, we assume that the covariate U is bounded below and above, —oco < a <
U < b < oo for real numbers a < b, and divide the interval [a, b] into m equidis-
tant intervals denoted by By, ..., Buy, referred to as bins. Given m, the By,
J =1,...,m, are fixed, but the number of U,;’s falling into B,; is random and
is denoted by L. For every Uy, falhng in the jth bin, that is, U,; € B,,J, the corre-
sponding observed predictors are X nlis .- X npi and the response is Y,,,

After binning the data, we fit a linear regression of Ym on X,“,, ..., Xppi fusing
the data falling within each bin By,;, j = 1,..., m. The least squares estimates
of the resulting multlple regression for the data in the jth bin are denoted by
ﬂ (ﬂn()], .. ,Bnpj) . The estimators of y;,9 and y,,, forr =1, ..., p, are then

obtamed as weighted averages of the Enj’s, weighted according to the number of
data L; in the jth bin,

(6) Z 7’
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and

2 |

(N Vnr ==

m
=3 iy

where X, =n~! > X, and X

- is the average of the )?,m falling in B,

that is, L;jl pIy X,,r,-l{Umean} [11]. These estimates are motivated by

E{Bo(U)} = yo and E{, (U)X} = y» E(X;) [see (5) and (3)].

We present the asymptotic distribution of estimates 7,0 in (6), 7, in (7) for
Y0, ¥r in model (1), when the number of subjects n tends to infinity. As in
typical smoothing applications, the number of bins m = m(n) is required to
satisfy m — oo, n/(mlogn) — oo and m/ /n — oo as n — oo. We denote

convergence in distribution by — and convergence in probability by X,

THEOREM 1. Under the technical conditions (C1)—(C7) in Section 6, on
event E, [defined in (12)] with P(E,) — 1 as n — oo,

Vi =) BNQ.07),  0=r=p,
where
05 =g varly (1)} + 0> (X~ O EQAU)),
2 _ VEQDEW (W)} — (EX)P]+ o HEX)PEWAWUNX Dy

" {EX))?
_2EG Y WNEXD —(EX)PThyivarXn)
{E(X))? -
and
1 E(Xy) E(X))
E(X)) EXD ... EXi1Xp)
(8) X =
E(X,) EXiX,) ... EX3)

is assumed to be nonsingular, according to condition (C5) in Section 6.

4. Estimating the asymptotic variance. The observable data is of the form
(Ui, 5(,2-, f’m), i=1,...,n, for a sample of size n, where )~(m~ = (ani, e ani)
are the p-dimensional predictors. Correspondingly, the underlying unobserv-
able predictors, responses and errors are (XnTl-, Yui.eni), i = 1,...,n, where
Xni = Xntiy---, Xnpi). Let {(U] ik nr]k, Y,;Jk, X,’ij, Y,;jk,e;ljk),k =1,..., Ly,
r=1,....p} = {(Uni, Xpris Ynir Xoris Ypris enri)si = 1, ... onyr = 1,...,p :
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Uyi € By} denote the data for which U,; € B,;, where we refer to ( I’ljk’ X:Wk, Yr;jk,
X;lrjk, Y, s €n) as the kth element in bin B,;. Further let (U/T X;U, Y/T X,/U, Y,;/T,

) be the data matrix belonging to the jth bin, where U = njl, .. L _),
Y,—(njl,.. L) Y,_(njl,... Y/jL)€;U=(€},,Ul,... n]L)aIlan]k—
(1, anjk,.. np]k) X' nik = = (1, anjk, npjk) for k =1, L, contain p
components of the kth element in bin j, and

X = (X7 x'T T x . = (xT x'T T
nj = ( njl> - njLn]')Lan(]"f'l)’ nj = ( njl> - njLn_;)Lan(pH)’

Then we can express the least squares estimates of the multiple regression of
the observable data falling in the jth bin B,; as

) Bl = Buojs s Bup)” = X EX )T XY

leading to the parameter estimates 0 and y,,, glven in (6) and (7), respectively,
where X, =n~!' " X,,; and anj = Ln] Zk"’l anjk

Let y,; be the least squares estimates of the multiple regression of the unobserv-
able data falling into By;, that is,

(10) Vi = Fn0jis - Vi) = Xy Xp) "' Xpi Yol

This quantity is not estimable, but will be used in the proof of the main results.
For the estimates given in (6) and (7) to be well defined, the least squares es-

timate ﬁnj must exist for each bin By;. This requires that the inverse of XZJTX;U is

well defined, that is, det(X TX ,i) 7 0. Correspondingly, 7,; will exist under the

condition that det(X, TX ! ) ;ﬁ 0. Deﬁne the events

A, = {a) € Q:inf]| det(L;le;JT.X,;m > ¢ and min L,; > p},
J ) J
(11)
A, = {a) €Q: 1nf|det(L 1X/TX )| > ¢ and min L,; > p}
J

where ¢ =min{p/2, [inf; (¢7(U}¥), ..., 5 (UNIPp/2}, p is as defined in (C5),
U,’l;‘ = L;jl Z,f"’l U’ nik is the average of the U’s in B,; and (22, ¥, P) is the un-

derlying probability space. On event Any Pno and P, given in (6) and (7), and on
event A,, Y, given in (10) are well defined, respectively. Event E,, in Theorems
1 and 2 is defined to be the intersection of A,, and A, that is,

(12) E,=ANA,.

It is shown in Appendix A.3 that P(E,) — 1 as n — oo.
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THEOREM 2. Under the technical conditions (C1)—(C7) in Section 6, on
event E, [defined in (12)] with P(E,) — 1 asn — oo,

2

Anzr—pnfr, 0<r<p,
where
Lnj 2 2
(Z :BnOJ VnO)
m Ln]
1 2 2 v/ A v/ 2
ZZ( _/3an_,Bnlenljk_"'_ﬂnijnpjk)
j 1k=1
"L
X{Z n](L X/TX/)”},
j=1
, 13, & Var & 2.2
Onr = |:; Z ﬁnl’j anjk + J/nr - 2_ Z ﬂ’”’J Z X”r]k T VarS X,
j=1 k=l j=1
1 m nj R . » R
{;ZZ( k= Bnoj = But i X jx — - — Bupi X i) }

m
Lyj 2o T3 Z2
X {Z n]anj(L X/ an rr }:|/an’

j=1

and s}z?r =mn—1"! ?:1()~(nri — X

REMARK. These proposed variance estimates are motivated by the identi-
fiability conditions, the definition of the smooth varying coefficient functions
given in (5), Lemma A.3 and Lemma A.4(a). Using the consistency of Bnrj
for the value of the function S, at the midpoint of the jth bin and the defi-
nitions of Y/k and an]k’ we target the quantities o>E{y(U)}, )/OZE{wZ(U)},

E(XZ)E{x/fZ(U)} and yrzE{¢,(U)1//(U)}E(Xr2) with the estimators n~!' x

1an11( njk ﬁan - ﬂnle,/ujk - 5an np]k)2 Z?:l”_anjﬁzfoj’
_1 m IIBnrj ZL"J I"_/k and n~ Vnr Z] 1,Bnrj Zk IX;”,]k, respectively. Fur-
thermore, relying mainly on Lemmas A.3 and A.4(a), we target (X 1) 11 and
(EX)P 6, with Y7 Ly(Ly; X X)) and 37 n =L X2, x

(L, XiE X)), respectively.
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5. Applications and Monte Carlo study. Under the technical conditions
(C1)—(C7) in Section 6,

N

r

(13) G — 7)) BNO,1),  0<r<pasn— oo.

Using the consistent estimate 62 of o proposed in Theorem 2, it follows
from (13) and Slutsky’s theorem that
n._ . D
L G =) 2N, 0=r=p,
Onr
so that an approximate (1 — «) asymptotic confidence interval for y, has the end-
points

(14) Vur £ 2 Onr
Vnr a/Zﬁ'

Here z4/7 is the (1 — «/2)th quantile of the standard Gaussian distribution.

5.1. Application to creatinine data. An observational study in which various
laboratory and patient data were analyzed for patients with end-stage renal dis-
ease is described in [7]. To illustrate our methods, we analyzed a similar but much
smaller set of data and note that our analysis does not provide inference for the
data in [7]. Variables include serum creatinine level (CRT), cholesterol level (CH),
serum albumin level (ALB) and body mass index (BMI), measured for n = 508
subjects. Creatinine is a protein produced by muscle and released into the blood.
Since the amount produced is relatively stable, the creatinine level in the serum is
determined by the rate at which it is removed, and is therefore an important indica-
tor of renal function. We analyze the dependence of serum creatinine (response) on
cholesterol level and serum albumin (predictors). An unadjusted approach would
be to fit the multiple regression model CRT = yy + y1CH + y»ALB + e, where
e is an error term, usually by least squares. Body mass index (BMI) is defined as
weight/height” and is known to affect both the response and the predictors. This
provides the motivation to adjust for this influence by means of the CAR model (4),
(5), using body mass index as the confounder U .

The parameters yp, 1 and y, were estimated by the CAR algorithm and the
results were compared to the estimates obtained from the least squares regression
of the observed CRT on observed CH and ALB. The estimates and the approxi-
mate 95% asymptotic confidence intervals for the regression parameters obtained
through both methods are displayed in Table 1. The approximate confidence inter-
vals for CAR estimates were obtained as proposed in (14). The scatter-plots of the
raw estimates (Bnrl, e ﬁnrm) (9) versus midpoints of the bins (B, ..., Byy) are
shown in Figure 1 forr =0, 1, 2.

The implementation of the binning algorithm allows for merging of sparsely
populated bins. Bin widths were chosen such that there are at least (p + 1) points,
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TABLE 1
Parameter estimates for the regression model CRT = yg + y1CH + y2ALB + e, obtained by least
squares regression of Y = CRT (serum creatinine level ) on X| = CH (cholesterol level )
and X o = ALB (serum albumin level), and alternatively by covariate
adjusted regression, for n = 508 subjects

Least sq. reg. Covariate adj. reg.

Coefficients Lower b. Estimate Upper b. Lower b. Estimate Upper b.

Intercept 1.2715 4.3685 7.4656 0.3679 3.9987 7.6296
CH —0.0106 —0.0041 0.0023 —0.0154 —0.0082 —0.0009
ALB 1.1819 1.9729 2.7639 1.3065 2.2532 3.2000

Confidence intervals at the 95% level were obtained by the standard ¢-statistic for least squares
regression and by the proposed asymptotic intervals (14) for CAR, respectively.

30
0.04
20 1 0.02 .. . 1
- of e . T Tt ]
53 —
I : ee e -]
5 S 0.02 . .
£ -0.04
-0.06
-0.08
10 15 20 25 10 15 20 25
BMI BMI
10
o 9
-
<
0
10 15 20 25
BMI
FI1G. 1. Scatter-plots of the raw estimates (,f?nrl,...,ﬁnrm) versus midpoints of the bins

(Bu1s -+ Bum) for r =0 (top left panel yand r = 1 (top right panel) and r =2 (bottom left panel)
in the CAR model CRT = By(BMI) + 81 (BMI)CH + y(BMI)ALB + ¢(BMI). Local polynomial
smooth curves have been fitted through the scatter-plots using cross-validation bandwidth choices
of h =28,7,7, respectively, for r =0, 1,2. CRT = serum creatinine level, CH = cholesterol level,
ALB = serum albumin level and BMI = body mass index. Sample size is 508, and the number of bins
formed is 34.
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enough to fit the linear regression with (p — 1) predictors in each bin. Where there
were bins with less than (p 4+ 1) elements, such bins were merged with neighboring
bins. For this example with n = 508, the average number of points per bin was 14,
yielding a total of 34 bins after merging.

For least squares regression, CH was not found significant at the usual 5%
level, while ALB was found to be significant. When applying the CAR method,
CH and ALB were both significant. As BMI increases, the slope parameter of
serum albumin level increases exponentially, while the negative slope parameter
of cholesterol level declines slightly. Adjusting for different BMI levels across pa-
tients, both serum albumin level and cholesterol level seem to play a significant
role for the serum creatinine level. The effects of BMI are thus masking the true
overall negative effect that CH has on CRT in the unadjusted regression equation.

5.2. Monte Carlo simulation. The confounding covariate U was simulated
from Uniform(2, 6). The underlying unobserved multiple regression model was

(15) Y =4—X;+03X+3X; +e,

where X1 ~ N (1.5,0.7), Xo ~ N(1,1.2), X3~ N(0.5,1) and e ~ N (0, 0.3).
The distortion functions were chosen as Y(U) = (U + 3)/7, ¢1(U) =
(U + 1)2/26.3333, ¢o(U) = (U + 10)/14 and ¢3(U) = (U + 2)%/37.3333, sat-
isfying the identifiability conditions. We conducted 1000 Monte Carlo runs with
sample sizes 100, 400 and 1600. For each run approximate 95% asymptotic con-
fidence intervals were formed for the regression parameters by plugging in the
estimates 8,%,, r=0,..., p, given in Theorem 2, into (14). The estimated coverage
fractions and mean interval lengths for these confidence intervals are given in Ta-
ble 2. The estimated noncoverage fractions are seen to get very close to the target
value 0.05 as sample size increases, and the estimated interval lengths are sharply
decreasing.

We have also carried out simulations to study the effects of different choices
of m, the total number of bins, on the mean square error of the CAR estimates.

TABLE 2
Coverage (in percent) and mean interval length for the approximate 95% asymptotic confidence
intervals formed for the parameters of the regression model (15)

(1] gt V2 V3

n Coverage Length Coverage Length Coverage Length Coverage Length

100 90.7 0.56 90.4 0.32 91.7 0.20 96.6 0.73
400 934 0.21 94.1 0.11 934 0.06 95.5 0.30
1600 94.2 0.10 952 0.05 94.7 0.03 95.0 0.14

The values were obtained from 1000 Monte Carlo runs. The average number of points per bin was 5,
16 and 32 for sample sizes 100, 400 and 1600.
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Under the rate conditions on m given in Section 3, the estimates are found to be
sufficiently robust regarding different choices of m.

6. Proofs of the main results. While the main steps in the proofs of the two
theorems are given here, the auxiliary results for these proofs are deferred to the
Appendix, where they are listed as Lemmas A.1-A.4. We introduce some technical
conditions:

(C1) The covariate U is bounded below and above, —co <a < U < b < oo for
real numbers a < b. The density f(u) of U satisfies inf,<,<p f(#) > ¢1 > 0,
Sup, <, <p f(u) < c2 < oo forreal cy, ¢z, and is uniformly Lipschitz contin-
uous, that is, there exists a real number M such that SUp, <y <p | fu+c) —
f(u)| < M|c| for any real number c. S

(C2) The variables (e, U, X,) are mutually independent for r =1, ..., p.

(C4) Contamination functions flr(faﬁd or(), 1 <r < p, are twice continuously
differentiable, satisfying

EyU) =1, E¢-(U) =1, ¢ ()>0,1=<r=p.

(C5) Asn— oo, LXTx B X, where X, the limiting (p + 1) x (p + 1)-matrix,
is nonsingular, that is, p = |det(X)| > 0.

These are mild conditions that are satisfied in most practical situations. Bounded
covariates are standard in asymptotic theory for least squares regression, as are
conditions (C2) and (C5) (see [8]). The identifiability conditions stated in (C4) are
equivalent to

EX|X)=E(X|X), EX/X,) =X,

This means that the confounding of Y by U does not change the mean regression
function. Some further technical conditions will be introduced in Appendix A.1;
these are required to prove the auxiliary lemmas in the Appendix.

For two matrices of the same dimension, let A [] B denote the Hadamard prod-
uct, where A [] B is also of the same dimension with (i, j)th element equal to the
product of the (i, j)th elements of A and B.

PROOF OF THEOREM 1. By Lemma A.4(b) and properties (b), (c), (e), (f)
given in Appendix A.3, it holds that

(16)  sup| (L' Xpi ¥ — (A DLy X7k Yol = 0, (m ™Y piayut,
J

1T “Iv 7 “Iv 9 ¥ ~Ix 9/ % AT
where (Lnj X,/y- Y,ij) = (Lnj Dk Yr/ljk’ Lnj D Yr/lij}/’lljk’ ...,Lnj Dk Y;;ij;zpjk) ,

T 2 2 2 T
(L, X3 Yy = Ly Yo Ly kYo Xonjuo -+ Ly 2k Yo X o) »



INFERENCE FOR ADJUSTED REGRESSION 665

= (W WU, v U1 U, .., Y (U U) and 1p41x1 denotes
a(p+1)x 1 vector of 1’s. Under event E,,;, Lemma A.3 and (16) imply that
Bnoj — V(U ) Vnoj
Buij - {z/x(U’*)/qsl(U'*)}ynl, B
(17) sup =0p(m~)1pt1)x1.
I
B — {1/1(U/*>/¢,, Uni)YFnpi
where ,; is as defined in (10). First consider the case r = 0. Using (17),

V(70 — ¥0)
= f(z T,Ban yO)

J

- Ly; Jn
:;ﬁ U/*))/nO] \/EVO‘}— 0p<7>

i Ly I e d vy
:Z\/—% YUy + (X X))~ anenj}ﬂ—ﬁyﬁop(g)'
J

By property (b), Lemma A.4(a), (b) and substituting L;jl Zk{(Lnle/TX/ )~ x

X/T}lkenjk for {(X;UT-X/ )~ 1X,/UTe;jh, V1 (Pno — yo) further simplifies to
m Ln] / /
you (U, k) V(U 'k)e ik
ZZ[ nj nj nj {(LnjlxlTX ) IX/T}lk]
j=lk=1 ﬁ
(18) NG

Since the above sum is over all bins indexed by j, and over all points within
the bins indexed by k, it is equal to the sum over all data points indexed by i,
summed up in a random order. We introduce notation where an(:) refers to the

matrix X, ! y and L) refers to the number of points in the jth bin such that
Uyi € Byjs and {(Ln]%l)X,’yT(l)X’ (l)) nj(i)}rk(i) is the (r, k)th element of the ma-
trix {(L,; 1X/TX’ e 1X/T} for 1 <r < p, where U, = Uy is the kth element in

the ordered sample U njl, e /Ln/') € By;. Thus (18) is equal to
n
Yo (Uni) VY (Uni)eni —1 T T Y0
;[ «/ﬁ + «/ﬁ {(Lnj(l)xl/‘lj(l)xn](l)) X;lj(l)}lk(l) ﬁ
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The term /n (7,0 — o) is asymptotically equivalent to
t
Yo (Uni) Y (Uni)eni — Yo ]
Snor = Ll xT. x 'x —
" ;[ \/ﬁ + ﬁ {( nj(z) nj(i) nJ(z)) nj(l)}]k(l) ﬁ

Jj.k

t

= ZZnOi,

since m //n — 00 as n — oo makes the term O, (y/n/m) negligible.

Let Fpo; be the o-field generated by {e,1,...,enr, Unt, ..., Unsy Lyjc1ys - -,
Lujir), Xn](l), Lo X X,i0y)- Then {Snor = > 1 Znois Faor, 1 <t < n} is a mean-
ZEero martmgale for n > 1, since E(S,01) =0, E(Sn0.141|Fno:) = Snor and Syor
is adapted to Fq;. Since the o-fields are nested, that is, F,0; S Fyo0,+1 for all
t < n, using Lemma A.1, S,0, — N(O, 002) in distribution ([9], Theorem 2.3 and
subsequent discussion), and Theorem 1 follows for r = 0.

Next we show

m L. _
> —BuiXiy — wEX)
e

(20) Nz L B N0, ).
> X, - EX)
j=t "

The asymptotic normality of /n (P, — v;) for r =1,..., p will follow from this
with a simple a_lpplication of the §-method, since p,, = (ZT:l L,,jn_l ﬁnrj nrj) /
(Z’]’?: 1 Lnjn_lff ,/"j) as defined in (7). By the Cramér—Wald (}evice it is enough
to show the asymptotic normality of /n [a{Z’}’: 1 Lnjn_lﬁnrjf( ;wj -y EX)}+
b{ZZf’:l L,,Jrf1 X;lr] E(X,)}] for real a, b, and (20) will follow.

Using (17), properties (b), (c), Lemma A.4(a), (b) and substituting L;jl X

YL X T X )T X e, i for {(XE X, )71 X T e ), we have

m
27” i X = Z wU/*)X;r,[yrH(X’TX') X Fen i+ 0p(m™)
j=1 j=1
m Lnj ¥,
’
=) [—WUé/k)Xerk
j=lk=1t"

X”r] -1 /T /

+ Op(m_ )
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and
m L - m Lnj X
Z#anj ZZ ¢r( jk)an/k+0P(m_ )
j=1 i=tk=1 "

Thus using the same notation as in (19), it holds that

m Ln m Ln ,
ﬁ[a{z = i X VrE(Xr)}er:Z n’X,,,] E(X»”

J=1 J=1

m)anl

—Z[

X ..
nrj(i) -1 1T
+a NG 1,ﬁ(Um')Eni{(Lnj(i)XnJ(z)an(z)) an(i)}rk(i)

b UNXo bE(Xr)i|
ﬁ¢r( m) nri — «/ﬁ

—allEx) +

Jn
o)

m

where anj(l) = Ln] > L X;lrj(l)k Since Op(y/n/m) is asymptotically negligi-
ble, the above term is asymptotically equivalent to

n

— Y Y
Snre = ;[a \/EI//(Um)anl

J-k
v/

X ..
nrj(i) -1 -y
+a NG W(Um')eni{(Lnj(i)an(z)Xn/(z)) an(i)}rk(i)

b Unid) X ri bE(X”)}
ﬁ¢r( m) nri — ﬁ

_a )/r
Jn
t
= Zznri-
i=1

Let Fy; be the o-field generated by {eu1,...,en, Un1, ..., Uns, Lyj1y, - .-,
Lujio). X;lj(l), e X;j(l)}. Then it is easy to check that {Syys = Yi_; Zuris Fure, 1 <
t < n} is a mean-zero martingale for n > 1. Since the o-fields are nested, that
iS, Fopy © Fopys1 for all < n, using Lemma A.2, Sym =2 N(O, (@, ) S, (a, &)T).
Thus, it also follows by a simple application of the §-method that /n (P, — 1) LS

N(O, arz) forr=1,..., p, where 0,2 is as defined in Theorem 1. [
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PROOF OF THEOREM 2. Using Lemma A.4(a) and (b), it holds on event A,
that

1) Sup [Vnj — ¥ = 0p(D1(pt1)x1,
J

where y = (0, V1s -+ yp)T. Using (21) and (17),

Buoj — V(U)o

Buj — (WU /U
(22) sup| =0,(N1(pi1)x1-
J .

Buj — {z/x(U/*)/asp Uy

By (22), properties (b), (c), (d), boundedness considerations and the law of large
numbers,

m Ln'A m Ln' »
> By =7 2 HY WU +op(D)

j=1 j=1

_1 Zw (Uni) +0p(1) = YZELW W) + 0p (1),

m  Lnj . R B .
= Z Y Wi = Buoj — Butj X j — = BupiXppin)”
L -
L U’*
1 m w( ;)
j 1k=1
w(U’*) 2
_yp¢ (Ul*) ”P]kXi/ka—i_OP(l)}
P

1 n
=- Y W (Upen; +0p(1) = > E{Y*(U)} +0p(1),
i=1

Ln] L nj

Z lB}’lrj Z anjk - yr Z w (U,*) Z an]k + 017(1)

j=1

Zw (Uni) X2y +0p(1) = y2EWHU)YEXD + 0,(1)
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and

m Lnj m Ln/

Bn VJZan/k =z Zw(U’*)d)r (Uy) ZX,,rlk—i-op(l)
j=1

j=1 k=1

S| =

Z U (Und)r (Uni) X2, 4 0,,(1)

= yrE{w(Um(U)}E(Xf) +0,(1),

where 8,01 and 6, are as defined in Appendix A.3. Using Lemma A.3,
Lemma A.4(a) and (31),

3 L”j( Ly % )_1 B(xh
— - )
n \ Ly e !

j=1

S Luzy (1o o\ 2 01
> X XKy ) S EEXDP XD
i=1 n nj rr

Since 7,0 LS Y0s Vnr L Vrs s% LS Var(f(,) and )?n, LS E(X,), the result follows.
' O

APPENDIX: AUXILIARY RESULTS AND PROOFS

A.l. Additional technical conditions. We introduce some further technical
conditions:

(C6) The functions hj(u) = [xg1(x,u)dx and hy(u) = [xga(x,u)dx are uni-
formly Lipschitz, where g1 (-, -) and g>(-, -) are the joint density functions of
(X,U) and (Xe, U), respectively.

(C7) The error term satisfies E|e*| < oo for A > 4.

Conditions (C1), (C6) and (C7) are needed for the proof of Lemma A.4 given in
the next section.

A.2. Auxiliary results on martingale differences.

LEMMA A.1. Under the technical conditions (C1)—(C6), on event A, (11) the
martingale differences Z,o; satisfy the conditions

(a) Z E{Z20,1(|Znot| > €)} = O forall e >0,

(b) nO = Z Znot LS 00 for ag > 0.
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PROOF. Let Z,0; = wy0:Vnos, Where wyo; = 1/4/n, and

—1
Vnor = YoV (Unt) + 1ﬂ(Unt)ent{(Lnj(t)X;;(;)X,/U'([))

= Ulnt + A2nréns,

1T
Xoic) 1k = 0

where a1, = Yoy (Unt) — Y0, d2nt = W(Unt){(L,:j(lt)X;UT(,)X,;/'(I))_IX,Z(o}lk(t) and

E(vy) = 0. Using (Cl), (C3) and (C4), it holds on event A, that
SUP| <<y l1ne| < c1 and SUP| <<y l02nt| < €2 for some ¢y, ¢p > 0. Thus, it holds
for & > 0O that

n n
S E(Z20,1(Zn| > )} =Y f 21 (1] > ) d Fupygy 0, (6)
t=1 t=1
n
=3 [ X21 (x| > &/ lwnor w2y, d Fy ()
=1
=n"! fo21(|x| > J/ne)dF,,, (x)
=1

n
<n ' S HE@I NPk, > neh)} 2,
t=1

Now, E (vim) is bounded uniformly in n and ¢, since e, has finite fourth moment
by (C7), and P(v2,, > ne?) = P((ctinr + opren)® > ne?) < P(od,, + a3, €2, +
2|01 Qo0 €ne| > n82) < P(c% + c%e,zu +2cicp|en| > nez). Lemma A.1(a) follows,
since P(c% + c%e,%t + 2cicalens| > ne?) — 0 uniformly in # and ¢, e,%t and |ey;|
being i.i.d. with finite fourth moments.

The term A%O given in Lemma A.1(b) is equal to

Ano = y&{n‘l > W(Um)} +v5 — 2y02{n“ wam}
t t
+2yon ™! Xt: V2 Unenr (Ll Xoeo X o)~ Xnkio b
= 2yon”" Xt: ¥ U (Logloy Xy Xjen)™ X ooy o
! ; V2 Unde | Loty Xnkin Xjen) ™ Xogioy Ve

=T+ +Ts.

It follows from the law of large numbers that

T+ T+ T3 5 3 E(>(U)) + 1§ — 203 E{y (U)} = v var{yr (U)).
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Onevent A,, E(T4|U, X, Lyj) =0 and

)/0 1 2

LU X. Ly = 2 x'T
Var( 4| s Ay n]) - Ylj(l’)}lk([)

Z w (Unt) n](l‘) nj(l’) Xn](t))

= O(n—l).

Thus, E(T4) = 0 and var(Ty) = O(n~!), implying that Ty = 0,(n"'/?) on A,.
Similarly, it can be shown that 75 = O, (n~'2) on A,,.
Next consider the last term T, which can also be written as

m  Lnj

—1 Z Z{(LnJIX/TX/ X/T}lk‘// ( ]k)enjk

j=lk=1

Expanding {(L,, 1X’TX/) 1X/T} 2 AU k)e for each k, we get

njk

m Ln}

_1 Z Z{(LnJIX/TX/ )11 njkw(Uan)

j=1k=1
+ (L, IX,TXn])u iV (Ui Xy jic + -
+ (L, IX/TXI”L_])I sV (U, _]k)an_]k}
which by Lemma A.4(a) and the law of large numbers is equal to
P E{P (O HT + (XHLEXD + -
+(XHT L EXD)
+ 2 H 1Y REX ) + -
+2(6 D161 pr E(Xp))
+ {26 DX BEX 1 X) + -
+2(X D16 1 EXG X))+
+ 26D 1D L pr 1 EX o1 X )} + 0, (1)
=P E N6 XT XY, +op(1)
=2 E{W2(U)NX D11 +o,(1),
where X is as defined in (C5) and given explicitly in (8). Thus
A2y By varly (U)) + 02X 1 E(W2A(WU)) = o
and Lemma A.1(b) follows. [J
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LEMMA A.2. Under the technical conditions (C1)-(C6), on event A, (11) the
martingale differences Z,,; satisfy the conditions

nrt

n
(a) Y E{Z} 0(1Zpn| > €)} > 0 forall e >0,
=1

nrt

b  AL=>22L @nZan’  for @b (@b >0.
t=1

PROOF. Let Z,;y = WyprVnsr, Where wyy = 1/\/_ﬁ’ a3pr = aVr Y (Un) Xy —

ayrE(Xy) + br(Un)) Xy — bE(X), Qan = aX,'”j(,)l/f(Um){(L;j%t)XLUT-(,) X

X;lj(t))_lx;g(t)}rk(t)a Unrt = @3pr + Qaprene and E(vyy) = 0. On event Ay,
SUP|<;<, l03ns| < ¢3 and sup;., ., |otans| < c4 for some c3,c4 > 0, and thus
Lemma A.2(a) follows in a fashion similar to Lemma A.1(a).

The term A2, in Lemma A.2(b) is equal to

AL, =a2y3{n‘l sz(Un»X%ﬁ} +a?y2E(X,)) +b2ln—l Z«z»E(Um)XZ,,}
t t
+HHEX,)) — 2a2y3E<Xr){n1 > «/f<Um)Xm} +2aby, (E(X,))
t

+ 2aby, {n—l > w(Un»d»(Um)X,%,t} —2h*E(X,)
t

l’l_l Zd’r(UnI)ant}
t
—2aby, E(X;) {I’l_l Z W(Unt)ant}
t

— 2aby, E(X,) {n‘l Z¢r<Um)Xm}
t
+2a*y,n”! Xt: wz(Unt)ent)_(;zrj(t)anf{(L;j%t)xg"(t)xlzj(t))_lXg"(t) by
—2a’y, E(Xpn”! Zt: ¥ UnenX oo {Logloy X Xngio) ™ Xogio o
+2abn™" Y Un)dr (Und)en X oy Xore (Lt Xogion X)) ™ X oo o
t
X)) Xh

nrj(6) W= nj(e)  nj(t)  nj (1) nj(t) }rk(t)

— 2abEX)n™" > W Undent X i | (Lt X o
t
2 —1 2 2 v/2 —1 T —1 T 2
+a*n™ Y P Unden X ol (Lot Xojor Xnjin) Xngo Vo
t

=T +---+Tis,
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and by the law of large numbers

Ti + -+ Tio & a®y{E(X)) var(y (U)} + var(X,) E{y*(U)}]
+2aby, [E{, (U)W (U E(X}) — (E(X,)}*] + b var(X,.).
Onevent A,, E(T11|U, X, Lyj) =0 and
var(T11|U, X, Ly))

4a462y2 2 2 f(7— 1
= Zw (Unt)X,/qr]X;/wt{(Ln/(t)Xn/(t)an(f))

T 12
Xy Yoy
which is O(n~"). Thus, E(T11) =0 and var(Tj;) = O(n~"), implying that Tj; =
Op (n_l/z) on A,. Similarly, it can be shown that T, = T3 = T4 = OP(n_l/Z)
on A,.

Next consider the last term 775, which can also be expressed as

m Ln/
Tis=a’n"" Y Y (L' X5 X)) T X v (U em X .
j=1k=1
Again expanding {(L,ZI-IX;UT.X/ )X AU, k)e;;kX,/frj for each k, we get
m Ln] _1
s =a’n IZ Z{(L}’IJIX/TX},’U rl X/r] njkw( Jk)
j=lk=1

+ (L, X/TXn,)rzlxnrjeanl”(Un,k)anjk +-
+ (L, X/TX}U rp+1anjen;kW( Xt
which by Lemma A.4(a) and the law of large numbers is equal to
a’o*{E(X) P E(y*(U))
X L6+ (XHHEXD 4+ (X7, E(X})
+ 2D (XTDREX D 4 + 267D (X D pr1 E(X)))
+ 26X BEX X2) + -
+2(6 (XD EXX )+
+ 206D (XD prt EX 1 X )}
+op(1)
= a> e H{EX)PEW2WHX"xTx ") +0,(1)
=’ {E(X)VE{W U)X+ 0p(1).
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Thus
21 Zri2

A2 L @, b)s,(a,b)T :(a,b)[
" Y12 X2

J@nr.

where Z,11 = y2[{E(X,)}?var{y(U)} + var(X,) E{y2(U)}] + o 2(E(X,)}* x
EW> WYX D, Bri2 = v Eldr (DY (UIEXD) — (E(X,)Y] and %2 =
var(X,). Hence Lemma A.2(b) follows. [

A.3. Auxiliary results on approximations of inverses. Defining 8,0k =
w(U,/ljk) — 1//(U,Z-‘) and 8,k = ¢,(U,’ljk) — d)r(U,Z’-‘) forl<k<Ljand 1 <r <p,
where U,’; = L;jl Zfijl U,’ljk is the average of the U’s in B,,j, we obtain the follow-
ing results, by Taylor expansions and boundedness considerations: for 1 <¢,s < p,
O0<r.r'<pandl <€<2 (a)sup ;|Uy;—U,yl < (b—a)/m;(b)supy ; |8u;c| =
O(m™1); (©) sup; I1L;" Sk Suje X il = Om™); (d) sup; [L;' 7 82 Xl =
O(m™2); (&) sup; Ly S Surjk X X il = O(m™1); (£) sup; [Ly;" S S X
Snr ke X it X i) = O(m™2).

LEMMA A.3. Under the technical conditions (C1)-(C6), it holds on event E,,
(12) that

sup| (L' X1 X3) ™' = (@4 D E)l = O0m™ D1 (py1yx(pi1),
J

where
1 1/¢1(Uy) S 1/¢p U
23 oy 1/¢1.(U;;) /97 (U e (epUHe1U) |
1gpU5)  1/(pUHe1(UF)) ... 1/¢5 U

E}”jy: (L;J-IX;]T-X;J-)_I and 1(p41yx(p+1) denotes the (p + 1) x (p + 1) matrix
of 1’s.

PROOF. The proof is by induction on p. Define

Lyj Ly
~ 1 - ~ o~ KA ~
(0) ¢ ¢ 4
24) Xorj = 7 § :X;rjk’ (X;zrjX;/zsj)( )= . E :(X;zrij;lsjk) )
Luj 23 Luj i

and analogously for X;l(,f-) and (X;W-X;lsj)“) where 1 <r,s < p. First consider the

claim for p=1on E,,

S0 _ )

(LX) = ;[ Ky _X"”]

nj Snj Anj ) /(1) 7/(D) '
Xoij = K p? L=Xo; 1
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By boundedness considerations and properties (c¢) and (d), it holds that

2 2 — 1 —_
sup; |X0) — pFUH X, = 0™, sup; |X,1) — g1 (UHX )| = O(m™Y),

and therefore

nd 2
supl{ X0 — (X = et wmix,$) — (X)) }I—sup|dn, OF (U |

=0(m™h,
where d, =det(L,; X/TX/ ;) and dyj = det(L,; X/TX/ ;)- Thus,

wM@ XX )T = (@ Byl = 0m™ Do,

where (®,)22 s as given in (23) and (En)ax2 = (Lyj X/ Xuj)3 0.
Next, we show that Lemma A.3 holds for p + 1, assuming it holds for p. Let

Buj11 Byji2 ]

T b
an12 an22

11 12

) B—l _ [ an an ]

w7 (p+2)x(p+2) — 127
B,;

1 SITS
(Lo X0k X0 (p42)x (p2) = Buj = [

(L, X/TX .
and similarly let
Dyj11 - Dpji2
(Lo X1 X0 (p42)x(p2) = Dij = [ T :
' Dnj12 Dipjn
11 12
Dnj DI’Z] ]

(L, XX, ,
D> Dy

-1 _
”])(p+2)><(p+2) D 1y |:

where Byji1 = (L' X}T X1 (prtyxpty and Dyjin = (Lo XiE X0 (o yxpe.
By the assumption,

(25) Sup |B,,]11 (@0 D En) oty x(p1)| = O™ D1y x(pt1)-

By properties (¢), (d), (e), (f) and boundedness considerations, it holds that

(26) sup| Buji2 — (Vi B Dyji2) | = O (m ™ H1(pi1yx1,
J
27 Supanj22—¢n(p+1)( *)Dyjnal = O(m™"),
J
where B y12 = (Xn(p+1)1 (Xn(p+1)JXf/11/) v ’(Xflv(p+1)1 npj) M, Dn 12 =
/(1) 1(2)
(Xn(p+1)w(Xn<p+1)jX;zu) oo Ky X)) Bz = X001y Duja =

/(

Xn(2,3+1)j and an = (¢p+l(U/*) ¢p+1(U/*)¢1(U/;'< ’---a¢p+1(U/*)¢p(U/*))
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Since B2 = (Buyza — BJy, Byl  Buj12) !, using (25), (26), (27) and the uniform

boundedness of D12, D,

1
nill> Dyjoz on Ap,

sup 1B — {65 (UNDZ = 0m™),
h f 2 U/* D22 — f 2 U* D . DT D_-l D, 0
where inf; |¢ +1( ) | = inf;|¢ +1( ) (Dpj22 nj127nj11 ni12)| > 0,

since ¢p41(-) is assumed to be strictly posmve, and since sup j | Dyjoo — DZjlz X
D, .11 Dpj12| > 0. The latter holds on A, since then sup; |d;| = sup; |det(Dpyj11) X

njll
(DnJZZ DnjlanJ“DnJlZ)| > 0.

Now B11 B,;U + anlanJIQB Brglanﬂl1 Since Dyji2, Dn_jll1 are uniformly
bounded on Ay,
(28) sup 1Byl — (@ T = 0™ D1 ps1yx(p1),

where ®,; is as defined in (23), and T'y; = Dn]11 + D . D,UlzD Dn]uD !

I’ljll I’l_]ll

Since B2 = —B“anlz Bn_jZlZ’ using (26), (27), (28) and boundedness consider-
ations,

sup |B,? — (R [ Aw)| = 0(m™ 1 (pp1)x1,
J

where Q,fj = (1/¢p+1(U0), 1/{dp+1(UHo1(UNY, .o 1/p+1(Uy)dp (UpH D
and A,,j = D”D,Ulan_J22 D,ijz. Thus, reassembhng the partitioned ma-
trix B ., Lemma A.3 follows. [

l’l]’

LEMMA A.4. Under the technical conditions (C1)-(C7), for a sequence

In such that r, = Op{/(mlogn)/n}, on event A, (11)

(a) sup| (L' X X7 ™' = X7 = 0, i) 1o nyx (pt 1)
J
(b) sup| L' X el = 0 (r) 1 (py1yx1,
J

where X as defined in (8) is assumed to be nonsingular by (C5), and e;lj =

/ T
(enjl,... n]L ).

PROOF. Using the sample moment notation in (24),

/(1) /(1)
1 anj anj
(1) "(2) NG))
LX/T.X’.: Xt Xntj e (X X))
Ly "Wom .
(1) 1 1(2)
anj (anj nlj)( Yo anj (p+Dx(p+1)
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leads to
dj =Y (=D O XX )10y (Lo X0k X0 (a1, p1)
where the sum is taken over all permutations t of (1, ..., p+1), and sign(t) equals

+1 or —1, depending on whether t can be written as the product of an even or odd
number of transpositions. The terms in the above sum have the general form

/(1) (D (1)
(29) anlj( I/’lle}/’lrzj) ”‘(Xl/’lijI/’lrp+|j) ’
where X6 =1land (r,...,rpy1) is a permutation of (0, ..., p). Considering the

definition of the Nadaraya—Watson kernel estimator [10, 12], we note that an arbi-
trary term in (29) has the form (X;lst;rHlj)(l) = pgr, | (U,y) forO<s<p+1,
KO = /D111y, h= (b —a)/m,and UY = a + 2j — D{(b —a)/(2m))} are
the midpoints of the bins B;. Uniform consistency of Nadaraya—Watson estima-
tors with kernels of compact support has been shown in [4], where

(30) sup |7;lnsrs+1 () — Mgro iy (u)} = Op(rn)a

a<u<b
Mpye () = E(Xs Xp |U = u) = E(XsXy,,), and 1y, is as defined in Lem-
ma A.4. Then (30) implies

SuP Wlnsrs“ (U,f]l) — Myrg iy (Uy{;/[)| = Op(rn),
(31) '

nrs41j

sup [(XpXp ) = E(XoXr )| = Op(rn).
J

Hence the uniform consistency of (29) follows, where the limit of (29) is
E(X;)E(X1Xy,) - E(XpX,,.,), and

(32) sup |dyj — det(X)| = Op(rn)
j

follows.
The cofactor of (L,fle;ZJTan)rg is defined by (—1)" +¢ times the minor of

(L;J-1 X ;UT Xpj)re, where the minor is the determinant after deleting the rth row and

the £th column of (L;le ;UT.an). With a similar argument as in the case of dy;,
it can be shown that the minor of (L;J-IX,;JT-XW-),@ converges uniformly over j to
the minor of (X),, with rate r,. Thus part (a) of the lemma follows. For part (b)
of the lemma, consider

Ly Lyj Ly T
L ey = (Lt e Lt Koo' - Xt -
k=1 k=1 k=1
Each term in the above sum is equal to n%(U,{y), where m(U,fjfl) =E(elU)=0or
m(U,y) = E(X;elU)=0, forr =1,..., p. Thus by the uniform consistency of
n%(UgI) for m(UfgI), part (b) of the lemma follows.
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On event A,, (32) implies that P(inf; dy; > ¢) — 1 as n — oo, where { =
min{p/2, [inf; (¢>12(Ur/l;‘-‘ e, q&f,(U,’;f))]l’p/Z} and p is as defined in (C5). We also
need to show P(min; L,; < p) — 0 as n — oo in order to show that P(A) — 1 as
n— oo.Since P(min; Ly; > p)=1—-PO0=<Ly<pforal j=1,....m)>1-—

;”:1 P(O<Ly<p)=1—msup; P(O <Ly < p),itisenough to show P(0 <
Ly <p)= o(mfl) uniformly in j. Now, L,; ~ Bin(n, py;), where c{ (b —1)/m <
Pnj < c2(b — a)/m uniformly in j, and cj, ¢z are as given in (C1). Therefore,
mPO<Ly<p)=m¥_pu(l—pap)" " n!/(x!(n—x)) <m ¥¥_yn*{ca(b—
a)/my {1 = (c1(b — a)/m)}"™* =~ P _ m(n/m)*{e=1E=OW/M - where “x”
is used to denote asymptotic equivalence. The previously made assumption of
mlogn/n — 0 as n — 0 implies logm/(n/m) — 0 as n — 0. Thus, logm +
xlog(n/m) — nei(b — a)/m — —o0, m(n/m)*{ec1b=—ay/m _ o for x =
0,...,pand mP(0 < Ly; < p) — 0 uniformly in j as n — oo. It follows that
P(A) > 1lasn— oo.

Furthermore, Lemma A.3 implies

sup |dpj — ¢7 (Uyt - 2 (Upt )il = O (m ™).
J

This shows that P (inf; Jnj > ¢) — 1 as n — 0o, which implies P(An) — 1 as
n— 00.Thus P(E,) > lasn —oo. [
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