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FALSE DISCOVERY AND FALSE NONDISCOVERY RATES IN
SINGLE-STEP MULTIPLE TESTING PROCEDURES1

BY SANAT K. SARKAR

Temple University

Results on the false discovery rate (FDR) and the false nondiscovery
rate (FNR) are developed for single-step multiple testing procedures. In ad-
dition to verifying desirable properties of FDR and FNR as measures of
error rates, these results extend previously known results, providing fur-
ther insights, particularly under dependence, into the notions of FDR and
FNR and related measures. First, considering fixed configurations of true and
false null hypotheses, inequalities are obtained to explain how an FDR- or
FNR-controlling single-step procedure, such as a Bonferroni or S̆idák pro-
cedure, can potentially be improved. Two families of procedures are then
constructed, one that modifies the FDR-controlling and the other that modi-
fies the FNR-controlling S̆idák procedure. These are proved to control FDR
or FNR under independence less conservatively than the corresponding fami-
lies that modify the FDR- or FNR-controlling Bonferroni procedure. Results
of numerical investigations of the performance of the modified S̆idák FDR
procedure over its competitors are presented. Second, considering a mixture
model where different configurations of true and false null hypotheses are as-
sumed to have certain probabilities, results are also derived that extend some
of Storey’s work to the dependence case.

1. Introduction. The false discovery rate (FDR) and related measures have
been receiving considerable attention due to their relevance as measures of the
overall error rate in multiple testing problems that arise in many scientific inves-
tigations, particularly in the context of DNA microarray analysis. Consider Ta-
ble 1, which summarizes the outcomes in multiple testing of n null hypotheses
H1, . . . ,Hn. Let Q = V/R if R > 0 and = 0 if R = 0, that is, the proportion
of false positives (Type I errors) among the rejected null hypotheses. Genovese
and Wasserman [9] called this the false discovery proportion (FDP). The FDR
is defined by E(Q). It was first introduced in multiple testing by Benjamini and
Hochberg [1], who provided a step-up procedure that controls the FDR with in-
dependent test statistics. Later, Benjamini and Liu [4] offered a step-down FDR
procedure under independence. The FDR-controlling property of the Benjamini–
Hochberg (BH) procedure was extended by Benjamini and Yekutieli [5] to some
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TABLE 1
The outcomes in testing n null hypotheses

Rejected Accepted Total

True null V U n0
False null S T n1
Total R A n

positively dependent multivariate distributions. Sarkar [14] proved that the criti-
cal values of the BH procedure can be used in a more general stepwise procedure
to provide control of the FDR not only under independence, but also when the
test statistics have the same type of positive dependence property as considered by
Benjamini and Yekutieli [5]. In addition, he established the FDR-controlling prop-
erty of the Benjamini–Liu step-down procedure for some positively dependent test
statistics. Genovese and Wasserman [8, 9] investigated some operating characteris-
tics of the BH procedure asymptotically under independence and further extended
the theory of FDR by taking a stochastic process approach.

A slightly different concept of FDR, called the positive false discovery rate
(pFDR), was considered by Storey [17]. It is defined as the conditional FDR given
at least one rejection, that is, pFDR = E(V/R|R > 0), and it has the interpretation
of a Bayesian Type I error rate under a mixture model involving i.i.d. p-values
when a single-step multiple testing procedure is used; see also [18]. Storey [17]
provided estimates of FDR and pFDR under the above mixture model for a single-
step procedure that are related to the empirical Bayes FDR of Efron, Tibshirani,
Storey and Tusher [7]; see also [6]. A new family of FDR procedures based on esti-
mates of FDR was suggested by Storey [17] and Storey, Taylor and Siegmund [19].

An analog of FDR in terms of false negatives (Type II errors) was introduced
by Genovese and Wasserman [8] and Sarkar [15]. It is the FNR, called false
nondiscovery rate by Genovese and Wasserman [8] and the false negatives rate
by Sarkar [15]. It is defined by E(N), where N = T/A if A > 0 and = 0 if A = 0
is the proportion of false negatives among the accepted null hypotheses or the
false nondiscovery proportion (FNP) [9]. Storey [18] defined the pFNR (positive
false nondiscovery rate), the conditional expectation E(T/A|A > 0), as an ana-
log of his pFDR. While Genovese and Wasserman [8] considered new methods
that incorporate both FDR and FNR, Storey [18] established a connection between
multiple testing and classification theory in terms of a combination of pFDR and
pFNR. Sarkar [15] proved that the FNR can be controlled by a step-down analog
of the BH procedure. He also introduced a concept of unbiasedness of an FDR-
or FNR-controlling multiple testing procedure and established this property for a
generalized stepwise procedure under independence.

In this article we mainly concentrate on single-step multiple testing procedures,
and we develop new results on FDR and FNR with dependent test statistics both
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under a model where the configuration of true and false null hypotheses is as-
sumed fixed, yet unknown, and under the so-called mixture model where different
configurations of true and false null hypotheses are assumed to have certain prob-
abilities. The intent of these results is to verify some desirable properties of FDR
and FNR and to extend some previously known results, thereby providing further
insights into the notions of FDR and FNR and related measures, particularly under
dependence.

Suppose that X = (X1, . . . ,Xn) has a joint distribution indexed by the set of
parameters θ = (θ1, . . . , θn). Let Hi : θi ≤ θi0 be tested against Ki : θi > θi0, for
some given θi0, i = 1, . . . , n. Let {Hi : i ∈ J0} and {Hi : i ∈ J1} be the sets of true
and false null hypotheses, respectively. It will be assumed that J0 is nonempty.
Consider a single-step procedure that rejects Hi in favor of Ki if Xi ≥ t for some
fixed t . Two of our main results with fixed J0 and J1 (Theorems 1 and 3) are that
if X is stochastically increasing in each θi , which is typically the case in many
multiple testing problems, then the maximum values of FDR and FNR of a single-
step procedure are (n0/n)P {R > 0} and (n1/n)P {A > 0}, respectively, where the
probabilities are evaluated at θ0 = (θ10, . . . , θn0) and X is assumed exchangeable
under these null hypothesis values. In addition to representing more precise ver-
sions of the results that state that S̆idák and Bonferroni single-step procedures
control FDR or FNR, these theorems show how these procedures can potentially
be improved in terms of having better control of FDR or FNR borrowing infor-
mation about n0 or n1 from the data in the spirit of Benjamini and Hochberg [2],
Benjamini, Krieger and Yekutieli [3], Storey [17] and Storey, Taylor and Siegmund
[19]. Storey, Taylor and Siegmund [19] provided procedures for modifying the BH
procedure using a family of estimates of n0 and proved that they control FDR
under independence. We obtain new families of procedures: one to modify the
FDR-controlling and the other to modify the FNR-controlling S̆idák procedure.
Considering independent test statistics, we prove that they control FDR or FNR.
The modified S̆idák FDR procedures are less conservative under independence
than the corresponding family that modifies the Bonferroni procedure obtained
by using the estimates of n0 considered in [19]. An analogous result is true for
modified S̆idák FNR procedures. Our method of modifying the S̆idák FDR and the
S̆idák FNR procedures relies directly on two new results, Theorems 2 and 4, which
extend inequalities given by Theorems 1 and 3, respectively, under independence
from a single-step to a two-step procedure.

Next, we derive certain results that extend Storey’s [17, 18] work to the de-
pendent case. Storey obtained expressions for the FDR and FNR of a single-
step procedure under a mixture model where, given any configuration of true and
false null hypotheses, the Xi’s are assumed to be independent, providing useful
Bayesian interpretations to his notions of pFDR and pFNR. More specifically,
he proved: pFDR = P {H1 is true|X1 ≥ t} and pFNR = P {H1 is false|X1 < t},
irrespective of the number of tests. Assuming a more general mixture model in
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which the Xi ’s are assumed to be dependent with a location family of distrib-
utions and to have a certain type of positive dependence structure, we prove in
Theorems 5 and 6, respectively, that pFDR ≤ max1≤i≤n P {Hi is true|Xi ≥ t} and
pFNR ≤ max1≤i≤n P {Hi is false|Xi < t}, with the equalities holding under inde-
pendence. An important implication of the first inequality is that Storey’s [17]
q-value for a single-step multiple test under certain commonly encountered types
of dependence is more conservative, as one would desire, than that under indepen-
dence.

The paper is organized as follows. In Section 2 we formally define the stochas-
tic increasing property we need for X to obtain the maximum values of FDR and
FNR for fixed J0 and J1. Section 3 reports the results related to FDR for fixed
J0 and J1, and some numerical results that show the performance of the modified
S̆idák procedure in controlling FDR compared to the modified Bonferroni and the
original Bonferroni and S̆idák procedures. Similar results related to FNR are pre-
sented in Section 4, of course without showing any additional numerical evidence.
Section 5 numerically compares the Bonferroni and S̆idák procedures with their
modified versions in terms of a concept of power involving both FDR and FNR.
Section 6 presents the results on FDR and FNR under the aforementioned mixture
model with dependent X. Proofs are given in Section 7. The paper concludes with
some final remarks in Section 8.

2. Stochastically increasing family of distributions. This section defines a
type of stochastic increasing property of a family of distributions that will be
required to establish our results on FDR and FNR. Whenever an increasing or
decreasing condition or property in terms of X or θ is mentioned, it is to be under-
stood as being coordinatewise.

DEFINITION 1. An n-dimensional random vector X = (X1, . . . ,Xn) or the
corresponding family of distributions {Pθ }, where θ = (θ1, . . . , θn), is said to be
stochastically increasing in θ if Pθ {X ∈ C} is increasing in θ for any set C that is
increasing.

EXAMPLE 1 (Random variables with mixtures of independent stochastically
increasing distributions). In multiple testing, the Xi’s often have distributions
that are mixtures of independent stochastically increasing distributions. That is,
the density of Pθ is often of the form

fθ (x) =
∫ n∏

i=1

fiθi
(xi, y) dG(y),

where fiθi
(x, y) is stochastically increasing in θi for each y and G is a proba-

bility distribution independent of θ . A stronger condition—which is that for any
θi < θ ′

i , fiθ ′
i
(x, y)/fiθi

(x, y) is increasing in x for each i, the monotone likelihood
ratio (MLR) condition of Lehmann [12] satisfied by many of the commonly used
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distributions—is often useful to check for the stochastic increasing property of
fiθi

(x, y) in θi . The multivariate distribution of such random variables is stochas-
tically increasing in θ .

EXAMPLE 2 (Multivariate location family of distributions). Let the density
of Pθ be of the form fθ (x) ≡ f (x − θ). Distributions of this type are stochastically
increasing. This is because, for any θ < θ ′, we have

Pθ ′ {X ∈ C} = Pθ {X ∈ C − (θ ′ − θ)} ≥ Pθ {X ∈ C}.

Many of the distributions that arise in multiple testing are of the type in Ex-
ample 1 or 2. For instance, (i) independent normals with θi’s representing the
means, (ii) absolute values of independent normals with θi ’s representing the ab-
solute means, (iii) independent chi-squares where θi’s are the scale parameters or
(iv) scaled mixtures of all these distributions, are of the type in Example 1. They
arise in simultaneous testing of means or variances of independent normals against
one- or two-sided alternatives. Multivariate lnF that arises in many-to-one com-
parisons of variances against one-sided alternatives is another distribution of the
type in Example 1. Multivariate normal and multivariate t are distributions of the
type in Example 2, arising, for instance, in Dunnett’s many-to-one comparisons
of means against one-sided alternatives in a one-way layout with a known or un-
known common variance.

3. Results on FDR for fixed J0 and J1. In this section we derive results on
the FDR of a single-step procedure, assuming fixed, but unknown, J0 and J1. We
use the following notation here and in the rest of the paper. Define J = {1, . . . , n}
and J(−i) = J − {i}. Define X(1) ≤ · · · ≤ X(n) as the ordered components of the

set {Xj : j ∈ J } and X
(−i)
(1) ≤ · · · ≤ X

(−i)
(n−1) as those of the subset {Xj : j ∈ J(−i)}.

We assume that the marginal distribution of any Xi depends on θ only through the
corresponding θi .

First, we have the following lemma.

LEMMA 1. The FDR of the single-step procedure with fixed critical value t is
given by

FDRθ (t;J0, J1)

= ∑
i∈J0

[
Pθi

{Xi ≥ t} −
n−1∑
j=1

Pθ {X(−i)
(j) ≥ t,Xi ≥ t}

(n − j)(n − j + 1)

]

= Pθ

{
X(n) ≥ t

} − ∑
i∈J1

[
Pθi

{Xi ≥ t} −
n−1∑
j=1

Pθ {X(−i)
(j) ≥ t,Xi ≥ t}

(n − j)(n − j + 1)

]
.

(3.1)
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Now suppose that X is stochastically increasing in θ . Then, since the set
{X(−i)

(j) ≥ t,Xi ≥ t} is increasing in X, the probability Pθ {X(−i)
(j) ≥ t,Xi ≥ t} is

increasing in θ . The probability Pθ {X(n) ≥ t} is also increasing in θ because
{X(n) ≥ t} is an increasing set. Thus, using the first expression of the FDR in (3.1),
we notice that it is decreasing in θ and, hence, in {θi : i ∈ J1} for fixed {θi : i ∈ J0},
whereas from the the second expression we see that it is increasing in {θi : i ∈ J0}
for fixed {θi : i ∈ J1}. In other words, FDRθ (t;J0, J1) decreases as θi moves away
from θi0 for at least one i ∈ J0 or at least one i ∈ J1, with

sup
θ

FDRθ (t;J0, J1) = FDRθ0(t;J0, J1),(3.2)

where θ0 = (θ10, . . . , θn0). If X is exchangeable when θ = θ0 with the common
marginal c.d.f. F0, the right-hand side of (3.2) reduces to

n0

[
F̄0(t) −

n−1∑
j=1

Pθ0{X(−1)
(j) ≥ t,X1 ≥ t}

(n − j)(n − j + 1)

]

= n0

n
FDRθ0(t;J,φ)

= n0

n
Pθ0{R > 0},

(3.3)

where F̄0 = 1 − F0 and φ represents a null set. Thus, we have the following theo-
rem, which is one of the main results of this article.

THEOREM 1. If X is stochastically increasing in θ , then FDRθ (t, J0, J1) de-
creases as θi moves away from θi0 for at least one i ∈ J0 or for at least one i ∈ J1.
Furthermore, if X is exchangeable when θ = θ0, then

sup
θ

FDRθ (t;J0, J1) = n0

n
Pθ0{R > 0}.(3.4)

Theorem 5.3 of [5] gives the above decreasing property of FDR with respect to
only {θi, i ∈ J1} under the assumptions that {Xi, i ∈ J0} and {Xi, i ∈ J1} are jointly
independent and {Xi, i ∈ J1} is stochastically increasing in {θi, i ∈ J1}. Theorem 1
is a version of this for single-step procedures with dependent X and one-sided null
hypotheses.

As a corollary to Theorem 1, if the critical value t provides a level α test
for the overall null hypothesis

⋂n
i=1 Hi , that is, if t satisfies Pθ0{R > 0} =

Pθ0{maxi∈J Xi ≥ t} ≤ α, then we have

FDRθ (t;J0, J1) ≤ n0

n
α,(3.5)

implying that the FDR is controlled at α. Inequality (3.5) is interesting in that it
represents a single-step analog of the same inequality known to hold for stepwise



400 S. K. SARKAR

procedures with Simes [16] critical values providing an α-level test for
⋂n

i=1 Hi

[1, 5, 14]. Regarding the choice for t , if one does not want to utilize the distribu-
tional form of X or if it is unknown, the Bonferroni critical value that satisfies

F0(t) = 1 − α

n
(3.6)

can be used. If, however, X is known to be positively dependent so that the in-
equality Pθ0{maxi∈J Xi < t} ≥ Fn

0 (t) holds under the null hypothesis values with
the equality holding under independence, as in the case of many distributions that
arise in multiple testing, the S̆idák critical value t that satisfies the equation

F0(t) = (1 − α)1/n(3.7)

offers a less conservative choice.
We should point out that there is no surprise that the Bonferroni and S̆idák

single-step procedures control FDR, because they are known to control the family-
wise error rate (FWER). It is also known that, given n0, it can be incorporated in the
Bonferroni and other procedures to improve their FWER control [10]. What is new
here is that Bonferroni and S̆idák procedures can be further improved in terms of
having better control of FDR using an estimate of n0, in the spirit of Benjamini and
Hochberg [2], Benjamini, Krieger and Yekutieli [3], Storey [17] and Storey, Taylor
and Siegmund [19]. For instance, since supθ FDRθ (t;J0, J1) ≤ n0{1 − F0(t)}, as
we see from Theorem 1, rather than controlling n{1−F0(t)}, which the Bonferroni
method does, a better control of FDR can be achieved if we control n̂0{1 − F0(t)}
for some appropriately chosen estimate n̂0 of n0. To estimate n0, Storey [17] sug-
gested using the ratio Kτ/F0(τ ), where Kτ = ∑n

i=1 I (Xi < τ), for some well-
chosen τ . However, Storey, Taylor and Siegmund [19] slightly modified it and
used

n̂0(τ ) = Kτ + 1

F0(τ )
(3.8)

to obtain a new class of BH-type FDR-controlling procedures under independence.
We use this n̂0 in our modification to the Bonferroni procedure. Also, the Xi’s that
are small compared to τ should not be declared large when modified Bonferroni is
used. Thus, our modified Bonferroni procedure rejects Hi whenever

Xi ≥ max
{
τ,F−1

0

(
1 − αF0(τ )

Kτ + 1

)}
.(3.9)

We prove later in this section that our modified Bonferroni procedure controls
FDR under independence and we provide numerical evidence showing that quite
often this control can be achieved much less conservatively. However, when X is
known to be independent or at least positively dependent, a modification to the
S̆idák procedure is expected to produce a better performing procedure than the
modified Bonferroni procedure. So, we first modify the S̆idák procedure. The fol-
lowing theorem suggests how the idea of modifying the Bonferroni procedure can
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be extended to that for the S̆idák procedure. It extends the inequality for the FDR
under independence, given by Theorem 1, from a single-step to a two-step proce-
dure that, for some fixed τ ∈ (−∞,∞) and a predetermined function tτ (k) ≥ τ ,
k = 0,1, . . . , n, first finds k = max0≤i≤n{i :X(i) < τ } (note that X(0) = −∞), then
rejects all Hi for which Xi ≥ tτ (k).

THEOREM 2. Let X be independent with the distribution of Xi , indexed by the
parameter θi , belonging to an MLR family and having identical marginals when
θ = θ0. Then, for a two-step procedure with tτ (k) ≥ τ , for all k = 0,1, . . . , n, the
FDR satisfies the inequality

FDR(2)
θ (tτ ≥ τ ;J0, J1)

≤ F̄0(τ )
∑
i∈J0

n−1∑
k=0

1

n − k

[
1 −

(
1 − F̄0(tτ (k))

F̄0(τ )

)n−k]

× Pθ

{
X

(−i)
(k) < τ ≤ X

(−i)
(k+1)

}
(3.10)

(with X
(−i)
(0) = −∞ and X

(−i)
(n) = ∞).

When τ = −∞, k = 0 with probability 1 and (3.10) reduces to the one given
by Theorem 1 under independence with t = t−∞(0). It is interesting to see that
FDR(2)

θ (tτ ≥ τ ;J0, J1) ≤ FDRθ (τ ;J0, J1).
The modified Bonferroni procedure is a two-step procedure with tτ (k) given by

the right-hand side of (3.9) given Kτ = k; that is, tτ (k) is such that F̄0(tτ (k)) =
min{F̄0(τ ), αF0(τ )/(k + 1)}. We propose to modify the S̆idák procedure using a
two-step procedure where tτ (k) is such that

F̄0(tτ (k)) = F̄0(τ )

[
1 −

(
1 − min

{
1,

α(n − k)F0(τ )

(k + 1)F̄0(τ )

})1/(n−k)]
(3.11)

with tτ (n) = ∞. The right-hand side of (3.10) for this modified S̆idák procedure is
less than or equal to

α
∑
i∈J0

n−1∑
k=0

F0(τ )

k + 1
Pθ

{
X

(−i)
(k) < τ ≤ X

(−i)
(k+1)

}

≤ α
∑
i∈J

n∑
k=1

1

k
Pθ

{
Xi < τ,X

(−i)
(k−1) < τ ≤ X

(−i)
(k)

}

= α

n∑
k=1

Pθ

{
X(k) < τ ≤ X(k+1)

}

= αPθ

{
X(1) < τ

};

(3.12)
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see, for example, [13], page 497, for the first equality in (3.12). Thus, we see that
our modified S̆idák procedure controls FDR under independence.

The right-hand side of (3.10) is less than or equal to

∑
i∈J0

n−1∑
k=0

F̄0(tτ (k))Pθ

{
X

(−i)
(k) < τ ≤ X

(−i)
(k+1)

}
,(3.13)

which, for the modified Bonferroni procedure, is less than or equal to the first ex-
pression in (3.12). Thus, the FDR of the modified Bonferroni procedure is also less
than or equal to αPθ {X(1) < τ } and, hence, is controlled; of course, it is controlled
more conservatively than the modified S̆idák procedure.

We conducted a numerical study to investigate the extent of improvement
offered by our modified S̆idák procedure in controlling FDR over the modi-
fied Bonferroni and the original Bonferroni and S̆idák procedures. We generated
n = 100 dependent random variables Xi ∼ N(µi,1), i = 1, . . . ,100, with the same
variance 1 and a common correlation ρ, and performed 100 hypothesis tests of
µ = 0 against µ > 0, each using first the Bonferroni critical value and then the
S̆idák critical value corresponding to α = 0.05. The value of Q was then calcu-
lated for each procedure by setting n0 of the µi ’s to zero and the remaining µi’s
to a positive value δ. The FDR then was estimated by averaging the Q values
over 5000 iterations. Thus, we have the simulated FDR of the Bonferroni and
S̆idák procedures. We chose F0(τ ) = 1/2 and similarly calculated the FDR of the
modified Bonferroni and S̆idák procedures corresponding to this τ . Table 2 com-
pares the FDRs of the Bonferroni and S̆idák procedures and their modification for
n0 = 30,50,70 and 90, ρ = 0 (independent) and 0.5 (dependent), and for different
values of δ. The last row of this table gives the maximum of the standard errors of
the estimated (simulated) FDRs in each column.

As we expected, the modified S̆idák procedure provided the least conservative
control of FDR under independence. Since the Bonferroni and S̆idák procedures
are relatively more conservative when the actual proportion of true null hypotheses
is small, the idea of improving them using an estimate of n0 should work well in
this situation. This idea is confirmed by our numerical study. Both modified Bon-
ferroni and modified S̆idák procedures are seen to control FDR much less conserv-
atively than their unmodified versions under independence. In the dependent case,
however, the idea of improving the Bonferroni and S̆idák procedures may not work
unless n0 is small and the dependence is weak.

Having found more than one procedure that can control the FDR under inde-
pendence (e.g., the Bonferroni, S̆idák and their modifications), comparing them
further in terms of power seems to be the next important objective. While the
idea of power can be conceptualized in terms of Type II errors (false negatives)
in several different ways, extending it from single testing to multiple testing, one
particular concept, which is the average power [i.e., 1

n1
E(S)], has been used in a
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TABLE 2
Simulated values of the FDR of the Bonferroni and S̆idák procedures and their modifications

with α = 0.05

Independent (ρ = 0) Dependent (ρ = 0.5)

Bonferroni S̆idák Bonferroni S̆idák

n0 δ Original Modified Original Modified Original Modified Original Modified

30 0.5 0.0118 0.0150 0.0119 0.0167 0.0048 0.0167 0.0049 0.0332
1.5 0.0045 0.0073 0.0045 0.0079 0.0006 0.0066 0.0006 0.0412
2.5 0.0008 0.0019 0.0008 0.0022 0.0002 0.0054 0.0002 0.0412

50 0.5 0.0218 0.0259 0.0222 0.0276 0.0092 0.0307 0.0093 0.0493
1.5 0.0103 0.0147 0.0106 0.0149 0.0015 0.0116 0.0015 0.0455
2.5 0.0021 0.0031 0.0021 0.0033 0.0006 0.0093 0.0006 0.0441

70 0.5 0.0315 0.0349 0.0319 0.0359 0.0141 0.0488 0.0144 0.0667
1.5 0.0187 0.0237 0.0189 0.0232 0.0034 0.0196 0.0034 0.0494
2.5 0.0052 0.0061 0.0052 0.0061 0.0013 0.0154 0.0014 0.0463

90 0.5 0.0414 0.0423 0.0423 0.0434 0.0234 0.0734 0.0240 0.0903
1.5 0.0351 0.0382 0.0359 0.0393 0.0108 0.0414 0.0111 0.0642
2.5 0.0173 0.0180 0.0175 0.0189 0.0045 0.0311 0.0046 0.0554

MaxSE 0.0028 0.0028 0.0028 0.0029 0.0020 0.0034 0.0021 0.0038

number of recent papers to compare FDR-controlling procedures [4, 17, 19]. How-
ever, it is argued in [15] that since the FDR is a measure of false positives, it seems
more appropriate to compare different FDR-controlling procedures using a similar
measure in terms of false negatives, the FNR [8, 15]. It will be interesting to see
how the different FDR-controlling procedures in this paper compare in terms of
measures involving FNR under the same distributional setting. This will be carried
out in Section 5 after deriving some results on FNR in the next section.

4. Results on FNR for fixed J0 and J1. We will derive in this section some
results on FNR of a single-step procedure, analogous to those on FDR, again as-
suming a fixed configuration of true and false null hypotheses. First, we have the
following lemma.

LEMMA 2. An explicit expression of FNR is

FNRθ (t;J0, J1)

= ∑
i∈J1

[
Pθi

{Xi < t} −
n−1∑
j=1

Pθ {X(−i)
(j) < t,Xi < t}
j (j + 1)

]

= Pθ {X(1) < t} − ∑
i∈J0

[
Pθi

{Xi < t} −
n−1∑
j=1

Pθ {X(−i)
(j) < t,Xi < t}
j (j + 1)

]
.

(4.1)
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Making the same kind of arguments as we made before for the monotonicity
property of the FDR, we notice that if X is stochastically increasing in θ , the FNR
is increasing in {θi : i ∈ J0} for fixed {θi : i ∈ J1} and is decreasing in {θi : i ∈ J1}
for fixed {θi : i ∈ J0}. In other words, FNRθ (t;J0, J1) decreases as θi moves away
from θi0 for at least one i ∈ J0 or at least one i ∈ J1, with

sup
θ

FNRθ (t;J0, J1) = FNRθ0(t;J0, J1).(4.2)

Since, when θ = θ0, X is exchangeable, the right-hand side in (4.2) reduces to

n1

[
F0(t) −

n−1∑
j=1

Pθ0{X(−1)
(j) < t,X1 < t}
j (j + 1)

]
= n1

n
Pθ0{A > 0}.(4.3)

The equality in (4.3) follows from (4.1); see also [13]. This gives the next main
result of this article.

THEOREM 3. If X is stochastically increasing in θ , then FNRθ (t, J0, J1) de-
creases as θi moves away from θi0 for at least one i ∈ J0 or for at least one i ∈ J1.
Furthermore, if X is exchangeable when θ = θ0, then

sup
θ

FNRθ (t;J0, J1) = n1

n
Pθ0{A > 0}.(4.4)

Clearly, the FNR of a single-step procedure can be controlled at a level β un-
der the condition stated in the above theorem by choosing a fixed t subject to
the condition Pθ0{A > 0} = Pθ0{mini∈J Xi ≤ t} ≤ β . If the dependence struc-
ture of X is not utilized, the equation F0(t) = β/n provides a Bonferroni-type
choice for t . When X is known to be positively dependent so that the inequality
Pθ0{mini∈J Xi ≥ t} ≥ F̄ n

0 (t) is true, with the equality holding under independence,
S̆idák-type t can be determined from the equation F0(t) = 1 − (1 − β)1/n. These
procedures can potentially be improved in terms of having better control of FNR by
borrowing information from the Xi’s exceeding an appropriately chosen value τ .

The following theorem is a FNR analog of Theorem 2 that extends the inequal-
ity on FNR given by Theorem 3 from a single-step to a two-step procedure and
suggests how to modify the above single-step FNR-controlling procedures.

THEOREM 4. Under the conditions stated in Theorem 2, the FNR of a two-
step procedure with tτ (k) ≤ τ for all k = 0,1, . . . , n satisfies the inequality

FNR(2)
θ (tτ ≤ τ ;J0, J1)

≤ F0(τ )
∑
i∈J1

n∑
k=1

1

k

[
1 −

(
1 − F0(tτ (k))

F0(τ )

)k]
Pθ

{
X

(−i)
(k−1) < τ ≤ X

(−i)
(k)

}
.

(4.5)
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When τ → ∞, k = n with probability 1 and the above inequality reduces to that
given by Theorem 3 under independence with t = t∞(n). We modify the S̆idák
procedure using a two-step procedure with tτ (k) ≤ τ satisfying

F0(tτ (k)) = F0(τ )

[
1 −

(
1 − min

{
1,

βkF̄0(τ )

(n − k + 1)F0(τ )

})1/k]
(4.6)

and tτ (0) = −∞. For this modified S̆idák procedure,

FNR(2)
θ (tτ ≤ τ ;J0, J1)

≤ β
∑
i∈J1

n∑
k=1

F̄0(τ )

n − k + 1
Pθ

{
X

(−i)
(k−1) < τ ≤ X

(−i)
(k)

}

≤ β
∑
i∈J1

n−1∑
k=0

1

n − k
Pθ

{
Xi ≥ τ,X

(−i)
(k) < τ ≤ X

(−i)
(k+1)

}

≤ β
∑
i∈J

n−1∑
k=0

1

n − k
Pθ

{
Xi ≥ τ,X

(−i)
(k) < τ ≤ X

(−i)
(k+1)

}

= β

n−1∑
k=0

Pθ

{
X(k) < τ ≤ X(k+1)

}

= βPθ

{
X(n) ≥ τ

}
.

(4.7)

The second inequality in (4.7) follows from the fact that F̄0(τ ) ≤ F̄θi
(τ ); for the

first equality, see [13]. Thus, the above modified S̆idák procedure controls FNR
under independence.

The right-hand side of (4.5) is less than or equal to

∑
i∈J1

n∑
k=1

F0(tτ (k))Pθ

{
X

(−i)
(k−1) < τ ≤ X

(−i)
(k)

}
.(4.8)

This is less than or equal to the right-hand side of the first inequality in (4.7), which
is less than or equal to β , if we choose tτ (k) ≤ τ satisfying

F0(tτ (k)) = min
{
F0(τ ),

βF̄0(τ )

n − k + 1

}
.(4.9)

This gives us our FNR-controlling modified Bonferroni procedure, which is of
course more conservative than the modified S̆idák procedure in the sense that it
allows less nondiscoveries.

REMARK 1. It is important to note that the above results on FNR have been
developed with the idea of controlling false nondiscoveries of any set of true al-
ternatives (or false nulls). However, one is often interested in controlling false
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nondiscoveries of a prespecified set of true alternatives. These results can be easily
modified in such a situation. Let θi = θi1 for some specified θi1 > θi0, i ∈ J1. As-
sume that X is exchangeable under θ = θ1 = (θ11, . . . , θn1). Then Theorem 3 can
be modified to

sup
θ

FNR(t;J0, J1) = n1

n
Pθ1{A > 0}(4.10)

and Theorem 4 can be modified to

FNR(2)
θ (tτ ≤ τ ;J0, J1)

≤ F1(τ )
∑
i∈J1

n∑
k=1

1

k

[
1 −

(
1 − F1(tτ (k))

F1(τ )

)k]

× Pθ

{
X

(−i)
(k−1) < τ ≤ X

(−i)
(k)

}
,

(4.11)

where F1 is the common c.d.f. of Xi under θi1. The Bonferroni and S̆idák proce-
dures as well as their two-step modifications using critical values based on F1 will
provide better control of FNR in this case than values based on F0.

We conducted a numerical study to investigate how well these different FNR
procedures control FNR under a specified set of true alternatives. We noticed, as
in the case of controlling FDR, that although both modified Bonferroni and S̆idák
procedures often control FNR much less conservatively than their unmodified ver-
sions, the modified S̆idák procedure provides the best control of FNR.

5. A numerical study. In this section we compare the different
FDR-controlling procedures under independence discussed in Section 3 in terms
of a concept of power that relates to the unbiasedness condition Sarkar [15] in-
troduced. Since the FDR measures the expected proportion of incorrect decisions,
a good multiple testing procedure must ensure that it does not exceed the ex-
pected proportion of correct decisions. The quantity 1 − FNR, which Genovese
and Wasserman [8] called the correct nondiscovery rate, is a measure of correct
decisions. In situations where controlling false negatives is of primary importance,
the FNR provides a measure of incorrect decisions with the corresponding measure
of correct decisions being 1 − FDR. Whether we have a multiple testing procedure
designed to control FDR or FNR, the inequality FDR + FNR ≤ 1 represents a
desirable property for any such multiple testing procedure. This is referred to as
the unbiasedness condition of an FDR- or FNR-controlling multiple testing pro-
cedure. A natural way to compare different FDR- or FNR-controlling procedures
would be to see how they perform in terms of a measure that reflects the strength
of unbiasedness. This leads us to the consideration of the quantity

πθ = 1 − FDRθ − FNRθ .(5.1)
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It is also related to the idea of Genovese and Wasserman [8], who suggested us-
ing 1 − πθ as a risk function to compare multiple testing procedures. This is our
concept of power.

We investigated how the different FDR procedures in Section 3 perform in terms
of the aforementioned concept of power. We computed the FNR and then the power
1 − FNR − FDR for the Bonferroni and S̆idák procedures and their modified ver-
sions [with F0(τ ) = 1/2] based on the normal data that have been simulated before
for FDR calculations. These simulated powers are displayed in Figure 1. As we see
from this figure, the modified S̆idák procedure is often the most powerful under in-
dependence, especially, as one would expect, when the proportion of true null hy-
potheses is relatively small. The unmodified Bonferroni and S̆idák procedures, not
surprisingly, are practically indistinguishable in terms of their power performance.
One should, however, be cautious in interpreting this graph in the dependent case
(particularly, the upper right two panels), in light of Table 1, which indicates that
the modified Bonferroni and S̆idák procedures may fail to control FDR unless the
dependence is weak and n0 is small.

We should point out that the unbiasedness property of the single-step proce-
dures, which is numerically seen to hold, can be theoretically proved easily from

FIG. 1. Comparison of Bonferroni and S̆idák procedures with their modified versions in terms of
1 − FDR − FNR.
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Theorems 1 and 3. However, a theoretical justification of the same property for the
two-step procedures, which appears to be also true from Figure 1, is an interest-
ing and a more challenging theoretical problem. Also, the same concept of power
could be used to compare different FNR-controlling procedures.

6. Results on FDR and FNR under a mixture model. In this section, we
present appropriate modifications to Lemmas 1 and 2 when a mixture approach
is taken as in [7, 17]. We will, however, assume a slightly more general mixture
model in the sense that it does not assume independence of the test statistics. More
specifically, we first let H = (H1, . . . ,Hn), with Hi = 0 indicating that Hi is true
and Hi = 1 indicating that it is false. Then we assume that (Xi,Hi), i = 1, . . . , n,
have the distribution

X|H ∼ f (x, θH) where θH = (θH1, . . . , θHn), θHi
= (1 − Hi)θ

′
i + Hiθ

′′
i ,

with θ ′
i ≤ θi0, θ

′′
i > θi0, i = 1, . . . , n,

and H ∼ πh,where πh are some probabilities defined on

H = {h = (h1, . . . , hn) :hi = 0 or 1}.

(6.1)

Regarding f , we assume that it belongs to a location family of distributions; that
is, f (x, θH) = f (x − θH), with a positive dependence structure that ensures that,
for any increasing (or decreasing) function φ of X, the expectation E{φ(X)|Xi,H}
is increasing (or decreasing) in Xi . This is true if, for instance, X is positive re-
gression dependent on subset (PRDS) under the density f (x), as in the case of
multivariate normal with positive correlations and many other multivariate distrib-
utions encountered in multiple testing; see, for example, [5, 14]. Of course, when
(Xi,Hi), i = 1, . . . , n, are independent, we assume no particular form for the den-
sity f ; that is, we simply assume that Xi |Hi ∼ f (x, θHi

). Since we assume that θi

takes the value θ ′
i when Hi = 0 and the value θ ′′

i when Hi = 1, the probabilities in
the following discussion are all evaluated under these fixed θ ′ = (θ ′

1, . . . , θ
′
n) and

θ ′′ = (θ ′′
1 , . . . , θ ′′

n ).

THEOREM 5. Under the above mixture model and the conditions assumed
therein,

FDR(t, n) ≤
n∑

i=1

δiP {Hi = 0|Xi ≥ t},(6.2)

where

δi = P {Xi ≥ t} −
n−1∑
j=1

P {X(−i)
(j) ≥ t,Xi ≥ t}

(n − j)(n − j + 1)
and

n∑
i=1

δi = P {R > 0},
(6.3)

with the equality holding when the (Xi,Hi)’s are independent.
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When (Xi,Hi), i = 1, . . . , n, are identically distributed, Theorem 5 reduces to

FDR(t, n) ≤ P {H1 = 0|X1 ≥ t}P {R > 0}.(6.4)

The equality in (6.4) holds when (Xi,Hi), i = 1, . . . , n, are i.i.d., which is Storey’s
[17, 18] result, providing a “Bayesian Type I error rate” interpretation to his notion
of pFDR = FDR/P {R > 0}. Thus, the following corollary to Theorem 5 is an
extension of his result to the dependent case.

COROLLARY 1. Under the above mixture model and the conditions assumed
therein,

pFDR(t, n) ≤ max
1≤i≤n

P {Hi = 0|Xi ≥ t}.(6.5)

When the (Xi,Hi)’s are identically distributed, we have

pFDR(t, n) ≤ P {H1 = 0|X1 ≥ t},(6.6)

with the equality holding when the (Xi,Hi)’s are i.i.d.

Storey [17] introduced a pFDR analog of the p-value, called the q-value, that
provides a measure of the strength of the tests in a multiple testing procedure with
respect to pFDR. For a single-step multiple testing procedure of n hypotheses with
a rejection region of the form Xi ≥ t for each Hi , it is defined as

qn(t) = inf
x≤t

pFDR(x, n).(6.7)

Storey [17], however, considered this quantity when (Xi,Hi), i = 1, . . . , n, are
i.i.d., which is

q(t,H1) = inf
x≤t

P {H1 = 0|X1 ≥ x}.(6.8)

Corollary 1 says that when the (Xi,Hi)’s are dependent with common marginals,
in the sense assumed in that corollary, we have qn(t) ≤ q(t,H1). That is, the
q-value of a single-step multiple test procedure obtained under certain commonly
encountered types of dependence is more conservative, as one would want, com-
pared to the corresponding i.i.d. case.

THEOREM 6. Under the conditions stated in Theorem 5,

FNR ≤
n∑

i=1

γiP {Hi = 1|Xi < t},(6.9)

where

γi = P {Xi < t} −
n−1∑
j=1

P {X(−i)
(j) < t,Xi < t}
j (j + 1)

and

n∑
i=1

γi = P {A > 0},
(6.10)
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with the equality holding when the (Xi,Hi)’s are independent.

This theorem can be proved following arguments similar to those used to prove
Theorem 5 and with the help of an identity for P(A > 0) given by Sarkar [13].

COROLLARY 2. Under the conditions stated in Theorem 5,

pFNR ≤ max
1≤i≤n

P {Hi = 1|Xi < t}.(6.11)

When the (Xi,Hi)’s are identically distributed, we have

pFNR ≤ P {H1 = 1|X1 < t},(6.12)

with the equality holding when the (Xi,Hi)’s are i.i.d.

7. Proofs.

PROOF OF LEMMA 1. The FDP is given by

Q(t;J0, J1) = ∑
i∈J0

n−1∑
j=0

1

n − j
I {R = n − j,Xi ≥ t}.(7.1)

Since {R = n − j} = {X(j) < t ≤ X(j+1)}, with X(0) = −∞ and X(n+1) = ∞, we
have

{R = n − j,Xi ≥ t} = {
X

(−i)
(j) < t ≤ X

(−i)
(j+1),Xi ≥ t

}
.

Therefore,

Q(t;J0, J1) = ∑
i∈J0

n−1∑
j=0

1

n − j
I
{
X(j) < t ≤ X(j+1),Xi ≥ t

}

= ∑
i∈J0

n−1∑
j=0

1

n − j

[
I
{
X

(−i)
(j+1) ≥ t,Xi ≥ t

} − I
{
X

(−i)
(j) ≥ t,Xi ≥ t

}]

= ∑
i∈J0

I {Xi ≥ t} − ∑
i∈J0

n−1∑
j=1

I {X(−i)
(j) ≥ t,Xi ≥ t}

(n − j)(n − j + 1)
.

(7.2)

Taking the expectation in (7.2), we get the first expression of the FDR in Lemma 1.
The second expression follows from the fact that Q reduces to I {R > 0} =
I {X(n) ≥ t} if we consider the first summation in (7.2) over all i ∈ J . �

PROOF OF THEOREM 2. First note that

FDR(2)
θ (tτ ≥ τ ;J0, J1)

=
n∑

k=0

Eθ

{
Q

(
tτ (k);J0, J1

)
I
{
X(k) < τ ≤ X(k+1)

}}
.

(7.3)
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Since tτ (k) ≥ τ for all k, when k = n (i.e., when X(n) < τ ), there is no rejection
of null hypotheses, implying that Q = 0.

Let Fθi
(x) and fθi

(x), respectively, be the c.d.f. and the density of Xi under
any alternative θi for i = 1, . . . , n. Since the Xi’s are assumed to be indepen-
dent, the conditional expectation of Q(tτ (k);J0, J1), given {X(k) < τ ≤ X(k+1)}
for k = 0,1, . . . , n − 1, is the FDR of the single-step procedure based on n − k

independent random variables Y1, . . . , Yn−k with Yi ∼ fθi
(x)I (x ≥ τ)/F̄θi

(τ ) and
critical value tτ (k). Since the density of Yi has the MLR property, implying that
(Y1, . . . , Yn−k) is stochastically increasing, we have from Theorem 1 that this con-
ditional expectation is

≤ n0(τ )

n − k
Pθ0

{
max

1≤j≤n−k
Yj ≥ tτ (k)

}

= n0(τ )

n − k

[
1 −

(
1 − F̄0(tτ (k))

F̄0(τ )

)n−k]
,

(7.4)

where n0(τ ) = ∑
i∈J0

I (Xi ≥ τ). Going back to (7.3), we then have

FDR(2)
θ (tτ ≥ τ ;J0, J1)

≤
n−1∑
k=0

∑
i∈J0

Eθ

{
1

n − k

[
1 −

(
1 − F̄0(tτ (k))

F̄0(τ )

)n−k]

× I
{
Xi > τ,X(k) < τ ≤ X(k+1)

}}

= ∑
i∈J0

n−1∑
k=0

1

n − k

[
1 −

(
1 − F̄0(tτ (k))

F̄0(τ )

)n−k]

× Pθ

{
Xi > τ,X

(−i)
(k) < τ ≤ X

(−i)
(k+1)

}
,

(7.5)

which is the required inequality in Theorem 2. �

PROOF OF LEMMA 2. The FNP is given by

N(t;J0, J1) = ∑
i∈J1

n∑
j=1

1

j
I {A = j,Xi < t}

= ∑
i∈J1

n∑
j=1

1

j
I
{
X(j) < t ≤ X(j+1),Xi < t

}

= ∑
i∈J1

n∑
j=1

1

j

[
I
{
X

(−i)
(j−1) < t,Xi < t

} − I
{
X

(−i)
(j) < t,Xi < t

}]

= ∑
i∈J1

I {Xi < t} − ∑
i∈J1

n−1∑
j=1

I {X(−i)
(j) < t,Xi < t}

j (j + 1)
.

(7.6)
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Taking the expectation of (7.6), we get the first expression of the FNR. The second
expression follows from the fact that

N(t;J0, J1) = I {A > 0} − I {UI (A > 0)/A}

= I
{
X(1) < t

} − ∑
i∈J0

n∑
j=1

1

j
I {A = j,Xi < t}.(7.7)

�

PROOF OF THEOREM 4. We have

FNR(2)
θ (tτ ≤ τ ;J0, J1)

=
n∑

k=1

Eθ

{[
N

(
tτ (k);J0, J1

)|X(k) < τ ≤ X(k+1)

]

× I
{
X(k) < τ ≤ X(k+1)

}}
≤ ∑

i∈J1

n∑
k=1

{
1

k

[
1 −

(
1 − F0(tτ (k))

F0(τ )

)k]

× Pθ

{
Xi < τ,X

(−i)
(k−1) < τ ≤ X

(−i)
(k)

}}
.

(7.8)

The inequality in (7.8) follows from Theorem 3, noting that the conditional expec-
tation of N(tτ (k);J0, J1), given {X(k) < τ ≤ X(k+1)}, is the FNR of the single-step
procedure based on independent Z1, . . . ,Zk with Zi ∼ fθi

(x)I (x < τ)/Fθi
(τ ).

The required inequality in Theorem 4 then follows from (7.8) because Fθi
(τ ) is

decreasing in θi for i ∈ J1. �

PROOF OF THEOREM 5. Since V = ∑n
i=1 I (Xi ≥ t)I (Hi = 0), we first note

from Lemma 1 that the FDR under the mixture model is given by

FDR(t, n) =
n∑

i=1

EH

[
P {Xi ≥ t |Hi = 0}

−
n−1∑
j=1

P {X(−i)
(j) ≥ t,Xi ≥ t |H with Hi = 0}

(n − j)(n − j + 1)

]

=
n∑

i=1

[
P {Xi ≥ t,Hi = 0} −

n−1∑
j=1

P {X(−i)
(j) ≥ t,Xi ≥ t,Hi = 0}
(n − j)(n − j + 1)

]

=
n∑

i=1

[
P {Xi ≥ t,Hi = 0}

×
{

1 −
n−1∑
j=1

P {X(−i)
(j) ≥ t |Xi ≥ t,Hi = 0}
(n − j)(n − j + 1)

}]
.

(7.9)
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We now prove that

P
{
X

(−i)
(j) ≥ t |Xi ≥ t,Hi = 0

} ≥ P
{
X

(−i)
(j) ≥ t |Xi ≥ t

}
(7.10)

under the assumed positive dependence condition of the density f of X.
Let ψ(Xi) = P {X(−i)

(j) ≥ t |Xi, θi = 0}. Then the conditional probability

P {X(−i)
(j) ≥ t |Xi ≥ t, θi} can be written as

E{ψ(Xi)I (Xi ≥ t − θi)}
E{I (Xi ≥ t − θi)} ,(7.11)

with the expectations taken with respect to Xi under θi = 0. Note that ψ(x) is an
increasing function of x under the assumed positive dependence condition of f .
Also, I (x ≥ t) is a totally positive of order two (TP2) function of (x, t) (see, e.g.,
[11]). Therefore, the ratio

E{ψ(Xi)I (Xi ≥ t)}
E{I (Xi ≥ t)}(7.12)

is increasing in t , because it is the expectation of an increasing function of a
random variable whose distribution is stochastically increasing in t . This proves
that P {X(−i)

(j) ≥ t |Xi ≥ t,Hi = 0} ≥ P {X(−i)
(j) ≥ t |Xi ≥ t,Hi = 1}, implying that

the probability P {X(−i)
(j) ≥ t |Xi ≥ t}, being a convex combination of P {X(−i)

(j) ≥
t |Xi ≥ t,Hi = 0} and P {X(−i)

(j) ≥ t |Xi ≥ t,Hi = 1}, is less than or equal to

P {X(−i)
(j) ≥ t |Xi ≥ t,Hi = 0}. Thus the required inequality (7.10) follows.

Applying (7.10) to (7.9), we get the inequality (6.2) to be proved in the theorem.
The fact that

n∑
i=1

δi = P

{
max

1≤i≤n
Xi ≥ t

}
= P {R > 0}(7.13)

follows from [13]. Furthermore, it is clear that the equality in (6.2) holds under
independence of (Xi,Hi). Thus, the theorem is proved. �

8. Concluding remarks. We have obtained in this article some theoretical re-
sults that extend previous work done under the assumption of independent tests.
Two of these set the stage for developing our idea to modify the FDR- and
FNR-controlling Bonferroni and S̆idák procedures and obtaining wider families
of FDR- and FNR-controlling procedures. We developed this idea by extending
inequalities for FDR and FNR under independence from single-step to two-step
procedures. In the case of the Bonferroni procedures, it is somewhat similar to what
Storey, Taylor and Siegmund [19] used to modify the FDR-controlling BH proce-
dure (which is, of course, a stepwise procedure) under independence. In the case of
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S̆idák procedures, however, it is stronger in that we consider modifying less con-
servative procedures. It is important to point out that modifying the S̆idák proce-
dure by simply finding t that controls (n̂0/n){1 −Fn

0 (t)} (the estimated maximum
FDR, which is basically the idea in modifying the FDR-controlling Bonferroni
procedure), does not seem to provide much improvement to the S̆idák procedure.
The same is true for the FNR-controlling S̆idák procedure. This is what we have
noticed based on additional simulations not reported here. Also, as is seen from
Table 2, we need to be cautious using the present modifications when there is too
much dependence in the tests; they may become anticonservative. Procedures that
control FDR are different from those that control FNR. It will be interesting to see
if procedures that control both FDR and FNR can be developed using the results
discussed in this paper.
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