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Lety = AB + ¢, wherey isanN x 1 vector of observationg isap x 1
vector of unknown regression coefficientsjs anN x p design matrix and
¢ is a spherically symmetric error term with unknown scale parameter
We consider estimation g8 under general quadratic loss functions, and,
in particular, extend the work of Strawdermah pmer. Satist. Assoc. 73
(1978) 623-627] and Casell&ijn. Satist. 8 (1980) 1036-1056J. Amer.
Satist. Assoc. 80 (1985) 753—-758] by finding adaptive minimax estimators
(which are, under the normality assumption, also generalized Baye) of
which have greater numerical stability (i.e., smaller condition number) than
the usual least squares estimator. In particular, we give a subclass of such
estimators which, surprisingly, has a very simple form. We also show that
under certain conditions the generalized Bayes minimax estimators in the
normal case are also generalized Bayes and minimax in the general case of
spherically symmetric errors.

1. Introduction. In this paper we consider adaptive ridge regression estima-
tors in the general linear model with homogeneous spherically symmetric errors.
There are three main contributions: (a) we propose sufficient conditions on esti-
mators for simultaneously reducing risk and increasing numerical stability relative
to the least squares estimator for all full rank design matrices, (b) under normality,
we obtain a broad class of generalized Bayes estimators satisfying the above suffi-
cient conditions, and (c) this class contain a subclass of particularly simple form,
which, we hope, adds to the practical utility of our results.

Hoerl and Kennard [11] introduced the ridge regression technique as a way to
simultaneously reduce the risk and increase the numerical stability of the least
squares estimator in ill-conditional problems. The risk reduction aspect of Hoerl
and Kennard’s method was often observed in simulations but was not theoretically
justified. Strawderman [19] looked at the problem in the context of minimaxity
and produced minimax adaptive ridge-type estimators, but ignored the condition
number aspect of the problem. Casella [7, 8] considered both the minimaxity and
condition number aspects and gave estimators which were minimax and condition
number decreasing for some, but not all, design matrices. Neither Strawderman
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nor Casella gave generalized Bayes minimax estimators. Moreover, to the best of
our knowledge, almost all theoretical results on ridge regression in the literature
depend on normality.

In the present paper we propose a broad class of minimax estimators which
increases the numerical stability of the least squares estimator for all full
rank design matrices, under the assumption of a spherically symmetric error
distribution. Furthermore, under normality a broad class of generalized Bayes
estimators included in the above class is found. What is particularly noteworthy
about our class of estimators is that it contains a subclass with a form (adapted
to the case of unknowas?) which is remarkably similar to that of the estimators
originally suggested in [17] for the case G&) = 7. In particular, our simple
generalized Bayes estimators of the mean vector are of the form

0se= (I —a/{y(@+1) +W)C™hx,

whereW = X'C~1D~1X/S for some positive-definite matric&sandD.

To be more precise, we start the familiar linear regression mpdeldg + ¢,
whereY is anN x 1 vector of observations} is the knownN x p design matrix
of rank p, B is the p x 1 vector of unknown regression coefficients, anid an
N x 1 vector of experimental errors. We assumbas a spherically symmetric
distribution with a density ~" f (¢’ /o2), whereo is an unknown scale parameter
and f (-) is a nonnegative function on the nonnegative real line.

The least squares estimator gfis B = (A’A)~1A’y. Since the covariance
matrix of B is proportional too2(A’A)~1, the least squares estimator may
not be a suitable estimator when some components3 obr some linear
combinations of8 have a very large variance and whamd is nearly singular.
Additionally, (A’A)~! may have inflated diagonal values so that small changes in
the observations produce large changes.inloerl and Kennard [11] proposed the
ridge estimator

(1.1) Brlk) = (A'A+kI,) Ay,

wherek is a positive constant, to ameliorate these problems. Adding the number
before inverting amounts to increasing each eigenvalu€ afby k.

In particular, if P is the p x p orthogonal matrix of eigenvectors 6A’A) ™2,
with dy > dp > --- > d, as eigenvalues, it follows that

P AAP=D, PP=I,
whereD = diag(dy, ..., dp). Then (1.1) can be written as
(1.2) Br(k) = P(D™Y 4 kI,)"1P’ Ay.

The ridge estimator is more stable tharin the sense that the condition number
of the estimator is reduced.
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However, we are interested in proposing better estimators thémom the
decision-theoretic point of view. We measure the loss in estimatibyg » with
loss functions

(1.3) Lib,B,0%) =072~ B)(A'A) b - B),

where (A’A)/ = Pdiagd,”’,...,d,”)P’". In particular,L; for j =0,1,2 are
known as squared error loss, predictive (or scale invariant) loss and Strawder-
man’s [19] loss, respectlvely Then the risk function of an estimata given
by R;(b, B, %) = E[L; j(b, B, o2)]. The least squares estimatris minimax
with constant risk. Thereforeb is a minimax estimator ofg if and only if
R;(b, B,0?) < R;(B, B,o?) for all g anda?. Hence, the search for estimators
better tharg is a search for minimax estimators.

To simplify expressions and to make matters a bit clearer, it is helpful to rotate
the problem via the following transformation, so that the covariance matrf of
becomes diagonal. L&? be anN x N orthogonal matrix such that

or-(5")

and letD, be theN x N diagonal matrix diag/s, ..., d,, 1,...,1). Next define
two random vector = (X1,..., X)) andZ =(Zy, ..., Z,)’, wheren = N — p,

by
X
<Z> =D.for.

Then(X’, Z’)’ has the joint density given by
(1.4) [Td %07 f({(x = 0) D2 (x — 0) + 7'z} /0?),

where ® = P’B. Notice also thatX and Z'Z can be expressed a®'8 and

(y — AB) (y — AB), respectively. Denot&’Z by S, as is customary. The original

problem is thus equivalent to estimatiorgaiinder the loss functioh ; (8, 6, 02) =

(6 —0)Y D~/ (8 — 6)/0?, where j corresponds tgi in (1.3). We will consider

the problem in this equivalent canonical form. Note thatis, in a sense, the

least favorable among; for j > 0 under multicollinearity becauge; for j > 0

relatively reduces the contribution of components with large variance.
Strawderman [19] and Casella [7] essentially considered the class of estimators

of the form

br(K)=( —{I + D1k} YX,

which originally came from straight generalization of (1.2), that is, the generalized
ridge estimator

(1.5) Br(K)=(A'A+ PKP) *Ay=PD 1+ K)1P' Ay,
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where K = diag(ky, ..., k,). Under general quadratic loss they proposed a suf-

ficient condition for minimaxity under normality for adaptive estimatégsk ),
whereK =y (X'D~1X/S) diagaz, .. ., ap), ¥ is a suitable positive function and

a; is positive for alli. Casella [7] discussed the relationship between minimaxity
and stability (in terms of lowered condition number) and pointed out that forcing
ridge regression estimators to be minimax makes it difficult for them to provide
the numerical stability for which they were originally intended. Casella [8] found
that, under certain conditions on the structure of the eigenvalues of the design
matrix, both minimaxity undef and stability can be simultaneously achieved
for a special casé¢ (w) = w1,

In Section 2, for the general spherically symmetric case, we give a class of
minimax estimators of (and hence, by transformatiofi) underL ;, somewhat
broader than those of Strawderman [19] and Casella [7, 8]. We then give a class
of generalized hierarchical prior distributions érand o2 which, in the normal
case, give generalized Bayes estimators satisfying the minimaxity condition. This
class generalizes (also to the class of unknew) the class of priors in [3,

4, 10, 14, 18]. We further show that, for certain choices of parameters in the
hierarchy, the resulting estimators have the simple form indicated above. We also
show that in certain cases a version of our minimax estimator is generalized
Bayes for the entire class of spherically symmetric error distributions. Section 3
is devoted to the study of general conditions under which the generalized ridge
regression estimatgr(K) competitive with3 has increased numerical stability
(i.e., decreased condition number). Section 4 is devoted to showing that we
may always choose a minimax estimator (which is also generalized Bayes under
normality) in our class which has greater numerical stability than the least squares
estimator. In particular, our simple generalized Bayes minimax stable estimators
under normality are quite practical for the general spherically symmetric case. In
Section 5 we give some numerical results.

2. A class of minimax generalized Bayesestimators. In this section we first
give a sufficient condition for minimaxity under the logs and the spherically
symmetric case, and then use it to obtain a class of generalized Bayes minimax
estimators under the normal case. This class contains a subclass of a particularly
simple form, which we hope adds to the practical utility of our results. We also
show that in certain cases a version of our minimax estimator is generalized Bayes
for the entire class of spherically symmetric error distributions.

Our estimators are of the form

R S x'cip=lx\ 4

(2.1) Oy = (1 X’C—lD—1X¢< 5 )C )X,
whereC = diag(cy, ..., cp), Wherec; > 1 for anyi. We note that estimators of
the form (2.1) satisfy “directional consistency,” a weak necessary condition for
admissibility discussed in [5].

First we give a sufficient condition for minimaxity.
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THEOREM 2.1. Suppose (X', Z’) has a distribution given by (1.4). Then (3¢
given by (2.1)isminimax under L if ¢'(w) > 0and

1-j,
Sid} 7 fei) _2)'

0<¢(w)<2(n +2)—1< —
max{d; "’ /)

PROOFE See the Appendix.

Next we develop a class of generalized Bayes estimators under normal-
ity. Suppose the distribution ofX’, Z’)’ is normal with covariance matrix
o?diagds, ..., dy, 1,...,1) and mean vectord’,0')’. Consider the following
generalized prior distribution:

Ola,n~N,0,n7*DA"C—1) forn=072
(2.2)
A oA (L —y 2o, fory > 1,1« ne.

This is a generalization of priors considered in [3, 4, 10, 14, 18]. The marginal
density ofX, S, A andn is proportional to

N i —60)% A 9?} AW
expl —— Vil P p+n/ -‘re)\‘p/Z—I—a
/ p( 22{ i a—nd) 2)"

(2.3) x [ei =02 - yn)bdo

x exp(—n—zs(l un Xw))np/2+n/2+ekp/2+a(1 _ J/)»)b7

wherew = x’C~1D~1x/s. Under the losd. ;, the generalized Bayes estimator is
given by E(n61X, S)/E(n|X, S), which can be written, using (2.3),

OB = (1 _EGaiX.5) S)c—l>x = (1 - LGB(W)C—1>X.
EmIX, S) W

Whenp/2+n/2+e+2>0,

00 2
p/2+n/2+e+1 exp(—ﬁk X E) d
fo 1 2 Zcidi 2 )7

x (1+Xw)—p/2—n/2—e—2’

(2.4)

and we have

w [g 1P/t — )L+ wefy) P22y
Y fg‘ﬂ’/z'i‘a(l _ l‘)b(l + wt/y)—p/Z—n/Z—e—Z dt ’

(2.5) ¢eB(w) =
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which is well defined fow > —p/2 — 1 andb > —1. Using an identity which is
given by the change of variables= (1 + w)A/(1+ wA),

1
/ AL =P A+ wr) TV da
0

1 1 tw e PtY—2
= — *1L—t p 1—— dt
(w+1)a+1/o (-1 { w+1} '

we have

w foltp/z“‘a“‘l(]_ — t)b{l _ tw/(w + y)}n/2+e—a—1—b dt

2.6 =
(2.6) dcB(w) vt w fo:l'tp/2+a(1—[)b{1—tw/(w+)/)}n/2+e_a_bdt

The following lemma gives some useful propertiegel(w).

LEMMA 2.2. Ifb>0,e>—p/2—n/2—2and—p/2—1<a<n/2+e, We
have for ¢ (w) = ¢pae(w) given by (2.6):

() ¢(w)ismonotoneincreasingin w.
(i) ¢ (w)/w is monotone decreasing in w.
@iy M yooop(w)=(p/24+a+1)/(n/2+e—a).
(iv) limu_o{¢(w)/w}=(p/2+a+D/{y(p/2+a+b+2)}.

ProOOE The proof of (i) and (ii) is straightforward using monotone likelihood
ratio properties of the densities implied in (2.5) and (2.6). The proof of (iii) and (iv)
follows from (2.6) and (2.5), respectively]

By Lemma 2.2, parts (i) and (iii), and Theorem 2.1, we have immediately the
following result.

THEOREM2.3. Ifb>0,e>—p/2—n/2—2and—p/2—1<a<n/2+e,
then Hgp isminimax under L ;, provided cy, .. ., ¢, are chosen so that

1—j )
_p2tatl 2 (Z{di T e} _2).

0 .
“n/24+e—a " n+2 max{dil_"/c,-}

Note if we choose; = d;/d, underLo, the bound on the RHS is(2 — 2)/
(n + 2). The choices ofi = —2 ande = —1 give a value of p — 2)/(n + 2) for
the LHS and, hence, fgr > 3 andn > 1, these choices ef ande give minimax
generalized Bayes estimators for @any 0 andy > 1. As Casella [7, 8] indicated,
this choice of;; may be poor from the point of view of the numeric stability of the
estimator. It is important to note at this stage that there is substantial flexibility in
the choice ofC and this flexibility is the key to finding minimax estimators with
increased numerical stability. We consider this point further in Sections 3 and 4.
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2.1. A class of simple generalized Bayes minimax estimators. When b =
n/2—a+e—1in (2.6), the expression facg(w) takes a particularly simple
form. In this case,

w
¢cg(w)=—B(p/24+a+2,b+1)
w+y

x{B(p/24+a+1b+1)
(2.7)

—{w/(w+y)}B(p/2+a+2.b+1} "

= = psp(w), say]
T yat D tw B e

wherex = (p/24+a+1)/(b+1)=(p/24+a+1)/(n/2+ e —a).
Therefore, our simple generalized Bayes estimator is

N o
2.8 Ogg = I——C_l)X.
(2.8) SB ( ya+1)+ W

Since ¢sp(w) is increasing inw and approachea as w — oo, we have the
following corollary which follows immediately from Theorem 2.1.

COROLLARY 2.4. 6sg given by (2.8)is minimax under Lj,providedcy,...,cp
are chosen so that

O<a<

2 (Z{d}"’/ci} _2)
n+2 max{dl.l_j/ci} '

In Section 4 we will show that we can always choesey andcy,...,c, to
simultaneously achieve minimaxity and an increase in the numerical stability of
the least squares estimator.

It is interesting to note that, whefi = D = I,,, our simple estimator has the
form

N o

b= (1= s
This is very closely related to Stein’s [17] initial class of estimators. He suggested
that, for X ~ N (9, I,) with p > 3, there exist estimators dominating the usual
estimatorX among a class of estimators of the fodpy, = (1 —b/(a + X' X)) X
for largea and smalb. Hence, our estimators may be regarded as a variant for the
unknown variance case.

Following Stein [17], James and Stein [12] showed thag for « = 0 and

0 < b < 2(p — 2) dominatesX. Since Strawderman [18] derived Bayes minimax
estimators, many authors have proposed various minimax (generalized) Bayes
estimators. However, the form of these estimators is invariably complicated like
our expression (2.6) above. Simple estimai®g have received little attention
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althoughé, », fora > 0 and O< b < 2(p — 2), is easily shown to be minimax by
using Baranchik’s [1] condition. It seems that most statisticians have believed that
generalized Bayes estimators which improveXomust have a quite complicated
structure. Our result above indicates that this is not so and that generalized Bayes
minimax estimators improving ol may indeed have a very simple form.

2.2. Generalized Bayes estimators for spherically symmetric distributions.
It seems useful to show that the above generalized Bayes results can be extended
to the general spherically symmetric case (1.4) in certain situations. What is
remarkable about the results is that the resulting generalized Bayes estimators are
independent of the form of (-) and are, hence, identical to those in the normal
case. In particular, assume th@t= 7, y = 1 andb = —a — 2 in the prior given
by (2.2). Then the joint density ¢f andy is (6’ D~19)~P/2—a-1y—a=1+te hecause

1 p/2
ni ry—1 ) /2( A ) a b
expl ————60'D79 |nP/el —— A1 =17 da
/o p( 2(1— ) T\1 (=2

(2.9)
x (Q'D_lQ)_p/z_a_ln_“_l,

if p/2+a+ 1> 0.Under quadratic losg(d — 0)'(d — 0), the generalized Bayes
estimator is given by (n0|X, S)/E(n|X, S) and we have the generalized Bayes
estimator, with respect to our prior,

Jrp JSC OnHP2=ate f(nix' D=1X + S})(0'D~10) P/~ Ldn do
Jro JSS nntp)/2=ate f(n{X'D-1X + §})(8'D~10)~P/2~a=1dn dg

— G(X/D_:LX + S)—(n+]7)/2+d—€—1(0/D—19)—p/z—a—ld@
RP

o
X '/(; ﬂ<n+p)/2_a+€f(77) dn

% |:/ (X/D—].X 4 S)—(n+P)/2+a—e—l(9/D—19)—p/2—a—lde
RP

00 -1
X '/0 n(n+p)/2—a+ef(n) d771|

if [§°ntP/2=ate £ () dn < co. Note that this does not depend grand, hence,
is equal to the generalized Bayes estimator in the normal case. In the normal case,
as seen in Section 2.1, the estimator is well definedsif—p/2 - 1,5 > —1 and
e>—p/2—n/2—2.Sincea = —b — 2, the inequality-p/2— 1 < a < —1 should
also be satisfied.

If b=n/2 —a+ e — 1, which impliese = —n/2 — 1, we have a simple
generalized Bayes estimator

bsg=(1—a/(@+1+W))X,
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wherea = (p/2+a+1)/(—a — 1) andW = X’D~1X/S. Note thatw = (p/2 +
a + 1)/(—a — 1) can take any positive value becausp/2 — 1 <a < —1.

REMARK. The most important point is that, when= —b — 2, § andn are
able to be separated as in (2.9). Furthermore,# 1, C =1 anda = —b — 2 are
simultaneously not satisfied, the density cannot be so separated. The results in this
section are closely related to those in [15].

3. Condition numbersand numerical stability. As in Casella [8] and other
papers, we use the condition number to measure numerical stability of our
ridge-type estimators. This discussion focuses on the stability of estimatgrs of
(as opposed to estimators@f Recall that our estimators 6fmay be represented
asfy = (I —tC~Y) X, wherer = ¢ (w)/w andw = x'C~2D~1x/s. The vector of
regression parameterg, is related to the mean vectérthrough the orthogonal
matrix P (9 = P’B), and the observation vectdf in Section 2 is related to the
least squares estimatgr, throughX = P’B. In this section we study the numerical
stability of ridge-type estimators (ﬁ¢, arising from our improved estimatoég
of 6 through

By = POy = P(diagld; (1 —t/c;) 1)) TP’ Ay
3.1
S =G tA'y.
By (3.1) B¢ may be regarded as a generalized ridge regression estigat&n
given by (1.5) when we put; =1/{d;(c; —1)}.

The condition number of a matri¥l is defined byx(H) = || H||IH ™},
where | H|| = sup,,_,(x’H'Hx)Y/? = maxx;, wherex; are the eigenvalues of
the positive-definite matri¥{’H. It follows that if H is a positive-definite matrix,
k(H) =k (H™1). As indicated in [8] (see also [2]), the condition number measures
the numerical sensitivity of the solution of a linear equatipe= H~1A4’y. In
particular, ifs 8 ands(A’y) indicate perturbations i andA’y, respectively,

18B1/1B1 <k (H)(I8A"y|/|A"y]),
where| - | denotes the usual Euclidean norm. For simplicity of notation, we define
the condition number of an estimator of the form (X1p,) to be equal to the
condition number of the matri& 1, k (G™1) =k (G), that is,k (Bg) = K (G).
It follows immediately from the definition ok (G) that (we assume < 1,
¢i>1)

(3.2) k() =di/d)
and
maxd; (1 —t/c;)

(3.3) «(By) = mind;(1—t/c;)’
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In terms of numerical stability, a smaller condition number implies greater
stability. Of course, the condition number given in (3.3) depends6m (w)/w
and, in particular, whem = 0, (3.3) reduces to (3.2). We will be interested in
finding conditions on the estimatqﬁ@ so that, for all possible values af, we
have the inequality (B,) < « (B).

The following result allows condition number improving estimators under two
different conditions om, ..., cp.

THEOREM3.1. Suppose0 < ¢ (w)/w < to < 1 for any w. Thenx (B4) < i (B)
for any w if either:

(i) c1<c2<--<cpand

(3.4) fo < min(

i>j

cicj(did; —didp)>
cidid; —cjd;d, ’
or

(ii) Cp >C12C22---Zcp,18nd

(3.9) o < min<clcp_l(dl’—1 —dp) cp—1cp(didp_1 — d127)>
. - Cldp—l — Cp—ldp ’ deldp—]_ _ Cp—ldlz, .

PROOF See the Appendix.

In the next section we will see that the two conditions above allow us to choose
minimax generalized Bayes estimators with increased numerical stability for all
full rank designs in the normal case.

4. Minimaxity and stability. In this section we show that the results of
the previous two sections can be combined to give minimax estimators which
simultaneously reduce the condition number relative to the least squares estimator.
Then we give a corollary for the simple generalized Bayes estintatogiven
by (2.8) under the normal case, because it seems to have practical utility for the
general spherically symmetric case. Finally, we add some comments for the case
of more general quadratic loss than given by (1.3).

Note that it seems generally desirable to haves --- < ¢, since this implies
that the components of with larger variances get shrunk more. See [8] for an
expanded discussion of this point.

Our first result below shows that we may find a minimax condition number
improving estimator satisfying; <--- <c¢, wheneverY {d;/d1}*~/ — 2 > 0.

Note that, whery > 1, Y {d; /d1}}~/ — 2 is always positive.

THEOREM 4.1. Suppose p > 3 and Y {d;/d}}/ — 2> 0.1f dy > do, let
ns« be the unique root such that > {d;/d1}" = 2 and let n,, be any value in
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(max0, 1 —.j}, ns). If di = do, let n. be any value > max(1 — j, 0). Then if
¢i = (d1/d;)? ~1,

uy =20n+2) (D (di /)™ - 2)
and

(4.1) v =min

i>]

(Cicj(dldj —didp))
cidid; — cjd;d, ’

the estimator é¢ where 0 < ¢(w)/w < v4 for any w, ¢(w) is increasing and
liMy 00 @(w) < uy, is mnimax under L; and condition number decreasing,
further c; <--- <c,.

PROOF Since(d;/d1)" is strictly decreasing im if d;/d1 < 1, there exists
exactly one rooy), of > (d;/d1)" = 2 if do/d1 < 1, and that root is strictly larger
than 1— j. If diy = d>, Y.(d;/d1)" > 2 for anyn > 0. Hence . > 1 — j and
¢i = (dv/d;)? =17 is monotone nondecreasinginAlso from Theorem 2.1 we
have minimaxity, provided

O<¢p(w) =<

2 <Z{d}‘f/c,-} -2)
n+2\maxd; ! fei)

2
_ n—Jrz(Z{d,-/dl}”** ~2)=uy (>0).

Also by Theorem 3.1(i), since; < cz <--- < ¢, the estimatoré¢ will have
reduced condition number, providedQp (w)/w < v4 foranyw. 0O

From Theorem 4.1 we easily see the robustness of minimaxity with respect to
loss function.

COROLLARY 4.2. A minimax estimator under L; for fixed j, which is given
by Theorem 4.1, retains minimaxity under Ly for j <k < j + 9ss.

For example, supposg{d; /d1}?> — 2 > 0 andLg is used. In Theorem 4.1, we
can choosey,, as strictly greater value than 2. Hence, a minimax estimator using
suchn,, underLg retains minimaxity undef., andL.

There remains the case whepe{d;/d1}*~/ — 2 < 0. Recall that} {d;/
d1)1~7 — 2 is always positive foj > 1. This case corresponds to the case where
there is no spherically symmetric estimatoi & c> = --- = ¢,) and, therefore,
no estimator withe; < ¢ <--- < ¢, can be minimax (e.g., see [6]). Our solution,
while less pleasing in a sense than Theorem 4.1, nevertheless, allows a minimax
estimator which reduces the condition number and, hence, increases the stability.
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THEOREM 4.3. Suppose p > 3 and Y {d;/di}*"7 —2<0.If p > 4, let
vy € (0,1 — j) be the unique solution of Zf’;l{d,-/dl}“ = 2. Let v,, be any

value in [0, vy). If p = 3, choose v, = 0. Then if ¢; = (d;/d,—1)Y 7~ for
i=12,...,p—1landc, > c,

p—1 1-j
_ -1 . Ve 2 d_p} /
U_=2(n+2) <Z{d,/d1} 24 - { )

i=1 p Ld1

and

o min(clcp_l(dp_l —dy) cp-1cp(didy 1 — df,))
a cidp_1—cp_1dp ’ de]_dp_l—Cp_1dl2j ’

the estimator é¢ where 0 < ¢(w)/w < v_ for any w, ¢(w) is increasing and
liMmy— 00 ¢ (w) < u_, isminimax under L ; and condition number decreasing.

PROOF. It is easy to see, as in Theorem 4.1, that v, can be chosen as
indicated. In this case, Theorem 2.1 implies minimaxity, provided

1-j, .
Z{d,' /ci} _ 2)
}

max(d;/ /c;

2
0<¢>(w>§n+2(

2 (1 c1(dy )Y
n+2<,§1{ sy =2+ u_ (>0
Theorem 3.1(ii) then implies, sineg > c1 > c2 > --- > ¢,_1, that our estimator
is condition improving if 0< ¢ (w)/w < v_ foranyw. 0O

Combining Lemma 2.2 and Theorems 4.1 and 4.3, we see that versions
of Theorems 4.1 and 4.3 are valid for the broad class of generalized Bayes
minimax estimators of Theorem 2.3. We omit the straightforward details. We give
explicitly a corollary of Theorems 4.1 and 4.3 for our simple generalized Bayes
estimatosg, because this seems to have practical utility in the general spherically
symmetric case.

COROLLARY 4.4. Osg= (I —a/{y(@+1)+W}C~HX isminimax under L;
and condition number decreasing (and generalized Bayes under normality) if
either:

(i) under the setting of Theorem4.1,0 <uy andy > a/{(a + Dv, }, Or

(ii) under the setting of Theorem4.3,¢ <u_ and y > «/{(a + Lv_}.

Hence, in the normal case, for any full rank design, we may choose a simple
generalized Bayes minimax estimator with increased numerical stability over
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the least squares estimatpr Further, these estimators remain minimax for all
spherically symmetric error distributions.

Finally, we briefly consider the case for general quadratic loss funcligns:
o~2(b—p)' Q(b— B) for a positive definite matrix). Recall that we have assumed
Q = (A’A)/ throughout the paper. It is essential for the derivation of minimax
estimators with numerical stability in Theorems 4.1 and 4.3 #atand(A’A)/
have common eigenvectors. For a genegalwhich does not have common
eigenvectors withA’A, let M be a nonsingular matrix which simultaneously
diagonalizesA’A and Q, whereM satisfies

MA'A)IM =G =diages, ..., gp), MM = Q.

Let X = M’B andd = M’B. As in Section 1, we see th&k’, Z')’ has the joint
density]] gi_l/za‘Nf({(x —0)YG(x — 0) + z/z}/0?) and that the estimation
problem of@ under the squared loss functioh — 0)'(§ — ) is derived as the
equivalent canonical problem. Hence, we can have the same minimaxity result in
Theorem 2.1 for the shrinkage estimator of the form (2.%) i6 substituted fod; .

The corresponding generalized ridge estimator becomes

(AA+MKM) 1Ay,
where K = diag(ky, ..., k,) for k; =1t/{gi(c; —t)}. The eigenvalues of’A +
MKM’' (and hence, the condition number), however, cannot be expressed
explicitly while, in Section 3, the eigenvalues 4fA + PK P’ and the condition

number can. As a result, we cannot explicitly construct minimax estimators with
numerical stability as in Theorems 4.1 and 4.3.

5. Numerical results. In this section we investigate numerically the risk-
performance and condition number-performance of our simple Bayes esti-
mator fsg, given by Corollary 4.4 undeL; for j =0,1,2. In the setting of
Theorem 4.1p,, = (Mmax0,1— j} + ) /2,0 =u4 andy = o/{(a + v} are
chosen. In the setting of Theorem 43, = v, /2,0 =u_ andy = o/{(e + 1)v_}
are chosen. Simulation experiments are done in the following gase9, n = 10,

D = diag(u“, ,u3, ,uz, w, 1, ,u_l, M_z, M_S, ,u_4), where © = 1.2,1.6,2.0,2.4
and#; =0,0.5,1, 1.5, 2 for anyi. The corresponding condition numbers Df
18 (and hence, the condition numbersfbin the original problem), are approx-
imately 43, 43, 256 and 1100, respectively. For only two cages; 2 and 2.4
underLg, Theorem 4.3 is applied.

Table 1 shows the relative performance of our simple estimator with respect to
risk and expected condition number (ECN), that is:

e R(®.0s8)/R (9, X), )
e (expected condition number 6&g) /18,

from 50,000 replications, in each of the above cases. We can draw the following
conclusions:
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TABLE 1
Relative performance of our simple estimatorsunder L for j =0, 1,2

2 0; Lo Ly L
risk ECN risk ECN risk ECN

12 0 Q78 0761 Q785 0643 Q674 Q495
05 0809 Q791 Q808 0669 Q703 Q511
1 0866 0852 Q857 Q734 Q769 Q565
15 0912 Q902 Q903 Q806 0837 Q641
2 0941 Q935 Q934 0861 0889 Q718
16 0 0894 Q95 Q778 Q597 Q955 Q417
05 0917 0963 Q801 0637 Q956 Q425
1 095 0981 0848 Q723 Q961 Q449
15 0967 0989 0891 Q803 Q967 Q487
2 0978 0996 Q923 086 0973 Q537

2 0 0994 Q999 Q778 0594 Q995 Q415
05 0994 Q999 Q807 Q0652 Q995 Q419
1 0995 0999 0861 Q757 Q995 043
15 0995 1 0905 Q839 Q996 Q449

2 0.995 1 0934 Q89 0996 Q475
2.4 0 0994 1 Q778 0593 0998 Q422
0.5 0.994 1 0819 Q679 0999 Q424
1 0.994 1 0882 0802 1 0431
15 0.994 1 0925 Q879 1 0442
2 0.994 1 095 0921 1 0456

(i) When u is large and) {d;/d1} — 2 is nonpositive, minimax stable
estimators using Theorem 4.3 undép have little gain both in the risk
improvement and in the ECN improvement. From the numerical results, our
contribution of Theorem 4.3 may be just theoretical.

(i) Under L1, minimax stable estimators have reasonable performances of risk
and the ECN, regardless pof

(i) Under L2, wheny is large, there is little to gain in risk improvement, while
there is much to gain in ECN improvement. With better choices.Qf « andy,
however, we may have more reasonable performances of risk and ECN.

APPENDIX

PROOF OFTHEOREM2.1. Let
o0
F(x):%/ f(@t)dt
X

and define
VD1 _ /
ETTh(X. 2)] ://h(x,z)cr_NHdi_l/zf((x O/D “(x=6) 5) dx dz

o2 o2
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and

F _ N2 (=D =6) )
E [h(X,Z)]_//h(x,z)a []4: F< + 5 )dxdz,

o2

whereh(x, z) is an integrable function. The identities corresponding to the Stein
and chi-square identities for the normal distribution,

(A.1) ET[(X; —6)h(X, 2)] = d;io2EF[(3/0X)h(X, Z)],
(A.2) E'[Sg(S)] = o2EF E[ng(S) +2Sg'(S)],

where S = Z'Z, are useful in our following proof. We use the version derived
in [13], but earlier versions appear in [16] and elsewhere.
The risk of6y is given by

R; (6,02, 0,)
=E/[@p —0)' D 6y —0)/52]

S2 Y (X2/(c2d))) S{X?/(cidi)}
— Ef i
(A.3) R(Ga X))+ E [ (Z{XZ/(cld)})z ( S )}
S X2/ (cidi)}
_ f el
26/ [ Sy oo T e (B )|

Let W = X’C~1D~1X/S. For the second term in (A.3), using (A.2), we have
f[ X'C2D7IX S { Z(X/C—lD—l)() ”
E il 4> -7 2

(X'C-1D-1X)2 2 s
__F X/C_ZD_fX{ ¢>2(W)_ , ”
£ | eipig |+ sy’

For the third term in (A.3), using (A.1), we have
1 SAXP/(id))\ 7t ( AXE/ (cidy))
Ef[ (X i l ]
Z cidijaz( > ¢< )

S S
& eW)  _X'CZDTIX (¢(W) (W)
_F i _

=k [Z ¢ W 2 S { w w2 ”
Hence, since’(w) > 0, we have

R; (6,02, 6y)

i —9i)Xi<

d(W)X'C2D /X
W X'C-1p-1x

§RJ-(9,62,X)+EF[

4/ x'c-1p-1x 4”

x{<n+2)¢(W> 2) ~—Yc=pox*
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d(W) X' C2X
W X'C-1D-1x

§RJ-(0,02,X)+EF[

1-j )

X {(n +2¢p(W) — ZM +4”
maxd; ' /c;}

<R;6,0% X). O

PROOF OFTHEOREM3.1. Ifci<c2<---<c,, we have
di(l—1t/c;) d;
4 t/c) t/cl)g—’ fori < j
dj(l—l‘/Cj) dj
and
di(l—t/c i(L—to/ci
max ¢ /C)fd( o/¢i)
t dj(l—l/Cj) dj(l—l‘o/Cj)

max(di(l—lo/ci)) < di
i>j dj(l—l‘o/Cj) dp

<cicj(d1dj —d,-dp)>
cidid; — c;d;d, ’

fori > j.

Hence, if

or, equivalently,

fo <min
1>]
we have
maX'di(l—l/Ci)<d1
t minjdj(l—t/cj)_dp’

which proves part (i).
Supposec, > c1 > c2 > -+ > cp—1. Thendy(l —t/c1) > -+ > dp_1(1 —
t/cp—1) and so

maxma)g‘ﬂ ..... p-1di(1—t/6‘i)< d1(1—to/c1)
tominj—y,. p-1d;j(1—1t/d;) ~ dp-1(1—1t0/cp_1)
Also,
d —
max 1(1—1t/c1) Sﬂ
t dy(l—t/cp) ~ dp
and

dy(=1/c)) _  dp(l-10/cy)
i dp_1(L—t/cp-1) ~ dp-1(1—10/cp-1)
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Hence, if

max( di(1—to/c1) ’ dp(L—10/cp) )Sﬂ
dp_1(1—1o/cp) dp_1(1—1to/cp—1) dp,

or, equivalently,

cicp—1(dp—1—dp) cp—1cp(didp_1 — dﬁ))

fo < min( , 5
cidp-1—cp_1dp deldp—l_cp—ldp

we have

max d;(1—1t/c;) - di

tminjdj(1—t/c;) ~ d,’

which proves part (ii). O
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