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A NEW CLASS OF GENERALIZED BAYES MINIMAX RIDGE
REGRESSION ESTIMATORS

BY YUZO MARUYAMA AND WILLIAM E. STRAWDERMAN1

University of Tokyo and Rutgers University

Let y = Aβ + ε, wherey is anN × 1 vector of observations,β is ap × 1
vector of unknown regression coefficients,A is anN × p design matrix and
ε is a spherically symmetric error term with unknown scale parameterσ .
We consider estimation ofβ under general quadratic loss functions, and,
in particular, extend the work of Strawderman [J. Amer. Statist. Assoc. 73
(1978) 623–627] and Casella [Ann. Statist. 8 (1980) 1036–1056,J. Amer.
Statist. Assoc. 80 (1985) 753–758] by finding adaptive minimax estimators
(which are, under the normality assumption, also generalized Bayes) ofβ,
which have greater numerical stability (i.e., smaller condition number) than
the usual least squares estimator. In particular, we give a subclass of such
estimators which, surprisingly, has a very simple form. We also show that
under certain conditions the generalized Bayes minimax estimators in the
normal case are also generalized Bayes and minimax in the general case of
spherically symmetric errors.

1. Introduction. In this paper we consider adaptive ridge regression estima-
tors in the general linear model with homogeneous spherically symmetric errors.
There are three main contributions: (a) we propose sufficient conditions on esti-
mators for simultaneously reducing risk and increasing numerical stability relative
to the least squares estimator for all full rank design matrices, (b) under normality,
we obtain a broad class of generalized Bayes estimators satisfying the above suffi-
cient conditions, and (c) this class contain a subclass of particularly simple form,
which, we hope, adds to the practical utility of our results.

Hoerl and Kennard [11] introduced the ridge regression technique as a way to
simultaneously reduce the risk and increase the numerical stability of the least
squares estimator in ill-conditional problems. The risk reduction aspect of Hoerl
and Kennard’s method was often observed in simulations but was not theoretically
justified. Strawderman [19] looked at the problem in the context of minimaxity
and produced minimax adaptive ridge-type estimators, but ignored the condition
number aspect of the problem. Casella [7, 8] considered both the minimaxity and
condition number aspects and gave estimators which were minimax and condition
number decreasing for some, but not all, design matrices. Neither Strawderman
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nor Casella gave generalized Bayes minimax estimators. Moreover, to the best of
our knowledge, almost all theoretical results on ridge regression in the literature
depend on normality.

In the present paper we propose a broad class of minimax estimators which
increases the numerical stability of the least squares estimator for all full
rank design matrices, under the assumption of a spherically symmetric error
distribution. Furthermore, under normality a broad class of generalized Bayes
estimators included in the above class is found. What is particularly noteworthy
about our class of estimators is that it contains a subclass with a form (adapted
to the case of unknownσ 2) which is remarkably similar to that of the estimators
originally suggested in [17] for the case Cov(X) = I . In particular, our simple
generalized Bayes estimators of the mean vector are of the form

θ̂SB = (
I − α/{γ (α + 1) + W }C−1)X,

whereW = X′C−1D−1X/S for some positive-definite matricesC andD.
To be more precise, we start the familiar linear regression modelY = Aβ + ε,

whereY is anN × 1 vector of observations,A is the knownN × p design matrix
of rank p, β is thep × 1 vector of unknown regression coefficients, andε is an
N × 1 vector of experimental errors. We assumeε has a spherically symmetric
distribution with a densityσ−Nf (ε′ε/σ 2), whereσ is an unknown scale parameter
andf (·) is a nonnegative function on the nonnegative real line.

The least squares estimator ofβ is β̂ = (A′A)−1A′y. Since the covariance
matrix of β̂ is proportional toσ 2(A′A)−1, the least squares estimator may
not be a suitable estimator when some components ofβ̂ or some linear
combinations ofβ̂ have a very large variance and whenA′A is nearly singular.
Additionally, (A′A)−1 may have inflated diagonal values so that small changes in
the observations produce large changes inβ̂. Hoerl and Kennard [11] proposed the
ridge estimator

β̂R(k) = (A′A + kIp)−1A′y,(1.1)

wherek is a positive constant, to ameliorate these problems. Adding the numberk

before inverting amounts to increasing each eigenvalue ofA′A by k.
In particular, ifP is thep × p orthogonal matrix of eigenvectors of(A′A)−1,

with d1 ≥ d2 ≥ · · · ≥ dp as eigenvalues, it follows that

P ′(A′A)−1P = D, P ′P = Ip,

whereD = diag(d1, . . . , dp). Then (1.1) can be written as

β̂R(k) = P(D−1 + kIp)−1P ′Ay.(1.2)

The ridge estimator is more stable thanβ̂ in the sense that the condition number
of the estimator is reduced.
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However, we are interested in proposing better estimators thanβ̂ from the
decision-theoretic point of view. We measure the loss in estimatingβ by b with
loss functions

Lj(b,β,σ 2) = σ−2(b − β)′(A′A)j (b − β),(1.3)

where (A′A)j = P diag(d−j
1 , . . . , d

−j
p )P ′. In particular,Lj for j = 0,1,2 are

known as squared error loss, predictive (or scale invariant) loss and Strawder-
man’s [19] loss, respectively. Then the risk function of an estimatorb is given
by Rj(b,β,σ 2) = E[Lj(b,β,σ 2)]. The least squares estimatorβ̂ is minimax
with constant risk. Therefore,b is a minimax estimator ofβ if and only if
Rj(b,β,σ 2) ≤ Rj(β̂, β, σ 2) for all β and σ 2. Hence, the search for estimators
better thanβ̂ is a search for minimax estimators.

To simplify expressions and to make matters a bit clearer, it is helpful to rotate
the problem via the following transformation, so that the covariance matrix ofβ̂

becomes diagonal. LetQ be anN × N orthogonal matrix such that

QA =
(

D−1/2P ′
0

)

and letD∗ be theN × N diagonal matrix diag(d1, . . . , dp,1, . . . ,1). Next define
two random vectorsX = (X1, . . . ,Xp)′ andZ = (Z1, . . . ,Zn)

′, wheren = N −p,
by (

X

Z

)
= D1/2∗ QY.

Then(X′,Z′)′ has the joint density given by∏
d

−1/2
i σ−p−nf

({(x − θ)′D−1(x − θ) + z′z}/σ 2),(1.4)

where θ = P ′β. Notice also thatX and Z′Z can be expressed asP ′β̂ and
(y − Aβ̂)′(y − Aβ̂), respectively. DenoteZ′Z by S, as is customary. The original
problem is thus equivalent to estimation ofθ under the loss functionLj(δ, θ, σ 2) =
(δ − θ)′D−j (δ − θ)/σ 2, wherej corresponds toj in (1.3). We will consider
the problem in this equivalent canonical form. Note thatL0 is, in a sense, the
least favorable amongLj for j ≥ 0 under multicollinearity becauseLj for j > 0
relatively reduces the contribution of components with large variance.

Strawderman [19] and Casella [7] essentially considered the class of estimators
of the form

θ̂R(K) = (I − {I + D−1K−1}−1)X,

which originally came from straight generalization of (1.2), that is, the generalized
ridge estimator

β̂R(K) = (A′A + PKP ′)−1A′y = P(D−1 + K)−1P ′A′y,(1.5)
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whereK = diag(k1, . . . , kp). Under general quadratic loss they proposed a suf-
ficient condition for minimaxity under normality for adaptive estimatorsθ̂R(K̂),
whereK̂ = ψ(X′D−1X/S)diag(a1, . . . , ap), ψ is a suitable positive function and
ai is positive for alli. Casella [7] discussed the relationship between minimaxity
and stability (in terms of lowered condition number) and pointed out that forcing
ridge regression estimators to be minimax makes it difficult for them to provide
the numerical stability for which they were originally intended. Casella [8] found
that, under certain conditions on the structure of the eigenvalues of the design
matrix, both minimaxity underL0 and stability can be simultaneously achieved
for a special caseψ(w) ≡ w−1.

In Section 2, for the general spherically symmetric case, we give a class of
minimax estimators ofθ (and hence, by transformation,β) underLj , somewhat
broader than those of Strawderman [19] and Casella [7, 8]. We then give a class
of generalized hierarchical prior distributions onθ andσ 2 which, in the normal
case, give generalized Bayes estimators satisfying the minimaxity condition. This
class generalizes (also to the class of unknownσ 2) the class of priors in [3,
4, 10, 14, 18]. We further show that, for certain choices of parameters in the
hierarchy, the resulting estimators have the simple form indicated above. We also
show that in certain cases a version of our minimax estimator is generalized
Bayes for the entire class of spherically symmetric error distributions. Section 3
is devoted to the study of general conditions under which the generalized ridge
regression estimator̂βR(K) competitive withβ̂ has increased numerical stability
(i.e., decreased condition number). Section 4 is devoted to showing that we
may always choose a minimax estimator (which is also generalized Bayes under
normality) in our class which has greater numerical stability than the least squares
estimator. In particular, our simple generalized Bayes minimax stable estimators
under normality are quite practical for the general spherically symmetric case. In
Section 5 we give some numerical results.

2. A class of minimax generalized Bayes estimators. In this section we first
give a sufficient condition for minimaxity under the lossLj and the spherically
symmetric case, and then use it to obtain a class of generalized Bayes minimax
estimators under the normal case. This class contains a subclass of a particularly
simple form, which we hope adds to the practical utility of our results. We also
show that in certain cases a version of our minimax estimator is generalized Bayes
for the entire class of spherically symmetric error distributions.

Our estimators are of the form

θ̂φ =
(
I − S

X′C−1D−1X
φ

(
X′C−1D−1X

S

)
C−1

)
X,(2.1)

whereC = diag(c1, . . . , cp), whereci ≥ 1 for any i. We note that estimators of
the form (2.1) satisfy “directional consistency,” a weak necessary condition for
admissibility discussed in [5].

First we give a sufficient condition for minimaxity.
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THEOREM 2.1. Suppose (X′,Z′)′ has a distribution given by (1.4). Then θ̂φ

given by (2.1) is minimax under Lj if φ′(w) ≥ 0 and

0≤ φ(w) ≤ 2(n + 2)−1
( ∑{d1−j

i /ci}
max{d1−j

i /ci}
− 2

)
.

PROOF. See the Appendix.

Next we develop a class of generalized Bayes estimators under normal-
ity. Suppose the distribution of(X′,Z′)′ is normal with covariance matrix
σ 2 diag(d1, . . . , dp,1, . . . ,1) and mean vector(θ ′,0′)′. Consider the following
generalized prior distribution:

θ |λ,η ∼ Np

(
0, η−1D(λ−1C − I )

)
for η = σ−2,

(2.2)
λ ∝ λa(1− γ λ)bI[0,1/γ ] for γ ≥ 1, η ∝ ηe.

This is a generalization of priors considered in [3, 4, 10, 14, 18]. The marginal
density ofX, S, λ andη is proportional to

∫
exp

(
−η

2

∑{
(xi − θi)

2

di

+ λ

ci − λ

θ2
i

di

}
− ηs

2

)
ηp+n/2+eλp/2+a

× ∏
(ci − λ)−1/2(1− γ λ)b dθ(2.3)

∝ exp
(
−ηs

2
(1+ λw)

)
ηp/2+n/2+eλp/2+a(1− γ λ)b,

wherew = x′C−1D−1x/s. Under the lossLj , the generalized Bayes estimator is
given byE(ηθ |X,S)/E(η|X,S), which can be written, using (2.3),

θ̂GB =
(
I − E(λη|X,S)

E(η|X,S)
C−1

)
X =

(
I − φGB(W)

W
C−1

)
X.

Whenp/2+ n/2+ e + 2 > 0,

∫ ∞
0

ηp/2+n/2+e+1 exp
(
−η

2
λ

∑ x2
i

cidi

− ηs

2

)
dη

(2.4)
∝ (1+ λw)−p/2−n/2−e−2,

and we have

φGB(w) = w

γ

∫ 1
0 tp/2+a+1(1− t)b(1+ wt/γ )−p/2−n/2−e−2 dt∫ 1

0 tp/2+a(1− t)b(1+ wt/γ )−p/2−n/2−e−2 dt
,(2.5)
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which is well defined fora > −p/2 − 1 andb > −1. Using an identity which is
given by the change of variablest = (1+ w)λ/(1+ wλ),∫ 1

0
λα(1− λ)β(1+ wλ)−γ dλ

= 1

(w + 1)α+1

∫ 1

0
tα(1− t)β

{
1− tw

w + 1

}−α−β+γ−2

dt,

we have

φGB(w) = w

γ + w

∫ 1
0 tp/2+a+1(1− t)b{1− tw/(w + γ )}n/2+e−a−1−b dt∫ 1

0 tp/2+a(1− t)b{1− tw/(w + γ )}n/2+e−a−b dt
.(2.6)

The following lemma gives some useful properties ofφGB(w).

LEMMA 2.2. If b ≥ 0, e > −p/2−n/2− 2 and −p/2− 1< a < n/2+ e, we
have for φ(w) = φGB(w) given by (2.6):

(i) φ(w) is monotone increasing in w.
(ii) φ(w)/w is monotone decreasing in w.
(iii) lim w→∞ φ(w) = (p/2+ a + 1)/(n/2+ e − a).
(iv) limw→0{φ(w)/w} = (p/2+ a + 1)/{γ (p/2+ a + b + 2)}.

PROOF. The proof of (i) and (ii) is straightforward using monotone likelihood
ratio properties of the densities implied in (2.5) and (2.6). The proof of (iii) and (iv)
follows from (2.6) and (2.5), respectively.�

By Lemma 2.2, parts (i) and (iii), and Theorem 2.1, we have immediately the
following result.

THEOREM 2.3. If b ≥ 0, e > −p/2− n/2− 2 and −p/2− 1< a < n/2+ e,
then θ̂GB is minimax under Lj , provided c1, . . . , cp are chosen so that

0 ≤ p/2+ a + 1

n/2+ e − a
≤ 2

n + 2

( ∑{d1−j
i /ci}

max{d1−j
i /ci}

− 2
)
.

Note if we chooseci = di/dp underL0, the bound on the RHS is 2(p − 2)/

(n + 2). The choices ofa = −2 ande = −1 give a value of(p − 2)/(n + 2) for
the LHS and, hence, forp ≥ 3 andn ≥ 1, these choices ofa ande give minimax
generalized Bayes estimators for anyb ≥ 0 andγ ≥ 1. As Casella [7, 8] indicated,
this choice ofci may be poor from the point of view of the numeric stability of the
estimator. It is important to note at this stage that there is substantial flexibility in
the choice ofC and this flexibility is the key to finding minimax estimators with
increased numerical stability. We consider this point further in Sections 3 and 4.
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2.1. A class of simple generalized Bayes minimax estimators. When b =
n/2 − a + e − 1 in (2.6), the expression forφGB(w) takes a particularly simple
form. In this case,

φGB(w) = w

w + γ
B(p/2+ a + 2, b + 1)

× {
B(p/2+ a + 1, b + 1)

(2.7)
− {w/(w + γ )}B(p/2+ a + 2, b + 1)

}−1

= αw

γ (α + 1) + w
[= φSB(w),say],

whereα = (p/2+ a + 1)/(b + 1) = (p/2+ a + 1)/(n/2+ e − a).
Therefore, our simple generalized Bayes estimator is

θ̂SB =
(
I − α

γ (α + 1) + W
C−1

)
X.(2.8)

Since φSB(w) is increasing inw and approachesα as w → ∞, we have the
following corollary which follows immediately from Theorem 2.1.

COROLLARY 2.4. θ̂SB given by (2.8)is minimax under Lj , provided c1, . . . , cp

are chosen so that

0< α ≤ 2

n + 2

( ∑{d1−j
i /ci}

max{d1−j
i /ci}

− 2
)
.

In Section 4 we will show that we can always chooseα, γ andc1, . . . , cp to
simultaneously achieve minimaxity and an increase in the numerical stability of
the least squares estimator.

It is interesting to note that, whenC = D = Ip, our simple estimator has the
form

θ̂SB =
(

1− α

γ (α + 1) + X′X/S

)
X.

This is very closely related to Stein’s [17] initial class of estimators. He suggested
that, for X ∼ N(θ, Ip) with p ≥ 3, there exist estimators dominating the usual
estimatorX among a class of estimators of the formδa,b = (1 − b/(a + X′X))X

for largea and smallb. Hence, our estimators may be regarded as a variant for the
unknown variance case.

Following Stein [17], James and Stein [12] showed thatδa,b for a = 0 and
0 < b < 2(p − 2) dominatesX. Since Strawderman [18] derived Bayes minimax
estimators, many authors have proposed various minimax (generalized) Bayes
estimators. However, the form of these estimators is invariably complicated like
our expression (2.6) above. Simple estimatorsδa,b have received little attention
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althoughδa,b, for a > 0 and 0< b < 2(p − 2), is easily shown to be minimax by
using Baranchik’s [1] condition. It seems that most statisticians have believed that
generalized Bayes estimators which improve onX must have a quite complicated
structure. Our result above indicates that this is not so and that generalized Bayes
minimax estimators improving onX may indeed have a very simple form.

2.2. Generalized Bayes estimators for spherically symmetric distributions.
It seems useful to show that the above generalized Bayes results can be extended
to the general spherically symmetric case (1.4) in certain situations. What is
remarkable about the results is that the resulting generalized Bayes estimators are
independent of the form off (·) and are, hence, identical to those in the normal
case. In particular, assume thatC = I , γ = 1 andb = −a − 2 in the prior given
by (2.2). Then the joint density ofθ andη is (θ ′D−1θ)−p/2−a−1η−a−1+e because∫ 1

0
exp

(
− ηλ

2(1− λ)
θ ′D−1θ

)
ηp/2

(
λ

1− λ

)p/2

λa(1− λ)b dλ

(2.9)
∝ (θ ′D−1θ)−p/2−a−1η−a−1,

if p/2+ a + 1> 0. Under quadratic lossη(d − θ)′(d − θ), the generalized Bayes
estimator is given byE(ηθ |X,S)/E(η|X,S) and we have the generalized Bayes
estimator, with respect to our prior,∫

Rp

∫ ∞
0 θη(n+p)/2−a+ef (η{X′D−1X + S})(θ ′D−1θ)−p/2−a−1 dη dθ∫

Rp

∫ ∞
0 η(n+p)/2−a+ef (η{X′D−1X + S})(θ ′D−1θ)−p/2−a−1 dη dθ

=
∫
Rp

θ(X′D−1X + S)−(n+p)/2+a−e−1(θ ′D−1θ)−p/2−a−1 dθ

×
∫ ∞

0
η(n+p)/2−a+ef (η) dη

×
[∫

Rp
(X′D−1X + S)−(n+p)/2+a−e−1(θ ′D−1θ)−p/2−a−1 dθ

×
∫ ∞

0
η(n+p)/2−a+ef (η) dη

]−1

if
∫ ∞
0 η(n+p)/2−a+ef (η) dη < ∞. Note that this does not depend onf and, hence,

is equal to the generalized Bayes estimator in the normal case. In the normal case,
as seen in Section 2.1, the estimator is well defined ifa > −p/2− 1, b > −1 and
e > −p/2−n/2−2. Sincea = −b−2, the inequality−p/2−1 < a < −1 should
also be satisfied.

If b = n/2 − a + e − 1, which impliese = −n/2 − 1, we have a simple
generalized Bayes estimator

θ̂SB = (
1− α/(α + 1+ W)

)
X,
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whereα = (p/2+ a + 1)/(−a − 1) andW = X′D−1X/S. Note thatα = (p/2+
a + 1)/(−a − 1) can take any positive value because−p/2− 1 < a < −1.

REMARK. The most important point is that, whena = −b − 2, θ andη are
able to be separated as in (2.9). Furthermore, ifγ = 1, C = I anda = −b − 2 are
simultaneously not satisfied, the density cannot be so separated. The results in this
section are closely related to those in [15].

3. Condition numbers and numerical stability. As in Casella [8] and other
papers, we use the condition number to measure numerical stability of our
ridge-type estimators. This discussion focuses on the stability of estimators ofβ

(as opposed to estimators ofθ ). Recall that our estimators ofθ may be represented
asθ̂φ = (I − tC−1)X, wheret = φ(w)/w andw = x′C−1D−1x/s. The vector of
regression parameters,β, is related to the mean vectorθ through the orthogonal
matrix P (θ = P ′β), and the observation vectorX in Section 2 is related to the
least squares estimator,β̂, throughX = P ′β̂. In this section we study the numerical
stability of ridge-type estimators of̂βφ , arising from our improved estimatorŝθφ

of θ through

β̂φ = P θ̂φ = P
(
diag{d−1

i (1− t/ci)
−1})−1

P ′A′y
(3.1)

= G−1A′y.

By (3.1) β̂φ may be regarded as a generalized ridge regression estimatorβ̂R(K)

given by (1.5) when we putki = t/{di(ci − t)}.
The condition number of a matrixH is defined byκ(H) = ‖H‖‖H−1‖,

where‖H‖ = supx′x=1(x
′H ′Hx)1/2 = maxλi , whereλi are the eigenvalues of

the positive-definite matrixH ′H . It follows that if H is a positive-definite matrix,
κ(H) = κ(H−1). As indicated in [8] (see also [2]), the condition number measures
the numerical sensitivity of the solution of a linear equationβ̂ = H−1A′y. In
particular, ifδβ̂ andδ(A′y) indicate perturbations in̂β andA′y, respectively,

|δβ̂|/|β̂| ≤ κ(H)(|δA′y|/|A′y|),
where| · | denotes the usual Euclidean norm. For simplicity of notation, we define
the condition number of an estimator of the form (3.1)κ(β̂φ) to be equal to the
condition number of the matrixG−1, κ(G−1) = κ(G), that is,κ(β̂φ) = κ(G).

It follows immediately from the definition ofκ(G) that (we assumet < 1,
ci ≥ 1)

κ(β̂) = d1/dp(3.2)

and

κ(β̂φ) = maxdi(1− t/ci)

mindi(1− t/ci)
.(3.3)
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In terms of numerical stability, a smaller condition number implies greater
stability. Of course, the condition number given in (3.3) depends ont = φ(w)/w

and, in particular, whent = 0, (3.3) reduces to (3.2). We will be interested in
finding conditions on the estimator̂βφ so that, for all possible values ofw, we
have the inequalityκ(β̂φ) ≤ κ(β̂).

The following result allows condition number improving estimators under two
different conditions onc1, . . . , cp.

THEOREM3.1. Suppose 0≤ φ(w)/w ≤ t0 < 1 for any w. Then κ(β̂φ) ≤ κ(β̂)

for any w if either:

(i) c1 ≤ c2 ≤ · · · ≤ cp and

t0 ≤ min
i>j

(
cicj (d1dj − didp)

cid1dj − cjdidp

)
,(3.4)

or
(ii) cp > c1 ≥ c2 ≥ · · · ≥ cp−1 and

t0 ≤ min
(

c1cp−1(dp−1 − dp)

c1dp−1 − cp−1dp

,
cp−1cp(d1dp−1 − d2

p)

cpd1dp−1 − cp−1d2
p

)
.(3.5)

PROOF. See the Appendix.

In the next section we will see that the two conditions above allow us to choose
minimax generalized Bayes estimators with increased numerical stability for all
full rank designs in the normal case.

4. Minimaxity and stability. In this section we show that the results of
the previous two sections can be combined to give minimax estimators which
simultaneously reduce the condition number relative to the least squares estimator.
Then we give a corollary for the simple generalized Bayes estimatorθ̂SB given
by (2.8) under the normal case, because it seems to have practical utility for the
general spherically symmetric case. Finally, we add some comments for the case
of more general quadratic loss thanLj given by (1.3).

Note that it seems generally desirable to havec1 ≤ · · · ≤ cp since this implies
that the components ofX with larger variances get shrunk more. See [8] for an
expanded discussion of this point.

Our first result below shows that we may find a minimax condition number
improving estimator satisfyingc1 ≤ · · · ≤ cp whenever

∑{di/d1}1−j − 2 > 0.
Note that, whenj ≥ 1,

∑{di/d1}1−j − 2 is always positive.

THEOREM 4.1. Suppose p ≥ 3 and
∑{di/d1}1−j − 2 > 0. If d1 > d2, let

η∗ be the unique root such that
∑{di/d1}η = 2 and let η∗∗ be any value in
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(max{0,1 − j}, η∗). If d1 = d2, let η∗∗ be any value > max(1 − j,0). Then if
ci = (d1/di)

j−1+η∗∗ ,

u+ = 2(n + 2)−1
(∑{di/d1}η∗∗ − 2

)
and

v+ = min
i>j

(
cicj (d1dj − didp)

cid1dj − cjdidp

)
,(4.1)

the estimator θ̂φ where 0 ≤ φ(w)/w ≤ v+ for any w, φ(w) is increasing and
limw→∞ φ(w) ≤ u+, is minimax under Lj and condition number decreasing,
further c1 ≤ · · · ≤ cp.

PROOF. Since(di/d1)
η is strictly decreasing inη if di/d1 < 1, there exists

exactly one rootη∗ of
∑

(di/d1)
η = 2 if d2/d1 < 1, and that root is strictly larger

than 1− j . If d1 = d2,
∑

(di/d1)
η > 2 for anyη > 0. Hence,η∗∗ > 1 − j and

ci = (d1/di)
j−1+η∗∗ is monotone nondecreasing ini. Also from Theorem 2.1 we

have minimaxity, provided

0 < φ(w) ≤ 2

n + 2

( ∑{d1−j
i /ci}

max{d1−j
i /ci}

− 2
)

= 2

n + 2

(∑{di/d1}η∗∗ − 2
)

= u+ (> 0).

Also by Theorem 3.1(i), sincec1 ≤ c2 ≤ · · · ≤ cp, the estimatorθ̂φ will have
reduced condition number, provided 0≤ φ(w)/w ≤ v+ for anyw. �

From Theorem 4.1 we easily see the robustness of minimaxity with respect to
loss function.

COROLLARY 4.2. A minimax estimator under Lj for fixed j , which is given
by Theorem 4.1,retains minimaxity under Lk for j < k < j + η∗∗.

For example, suppose
∑{di/d1}2 − 2 > 0 andL0 is used. In Theorem 4.1, we

can chooseη∗∗ as strictly greater value than 2. Hence, a minimax estimator using
suchη∗∗ underL0 retains minimaxity underL1 andL2.

There remains the case where
∑{di/d1}1−j − 2 ≤ 0. Recall that

∑{di/

d1}1−j − 2 is always positive forj ≥ 1. This case corresponds to the case where
there is no spherically symmetric estimator (c1 = c2 = · · · = cp) and, therefore,
no estimator withc1 ≤ c2 ≤ · · · ≤ cp can be minimax (e.g., see [6]). Our solution,
while less pleasing in a sense than Theorem 4.1, nevertheless, allows a minimax
estimator which reduces the condition number and, hence, increases the stability.
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THEOREM 4.3. Suppose p ≥ 3 and
∑{di/d1}1−j − 2 ≤ 0. If p ≥ 4, let

ν∗ ∈ (0,1 − j) be the unique solution of
∑p−1

i=1 {di/d1}ν = 2. Let ν∗∗ be any
value in [0, ν∗). If p = 3, choose ν∗∗ = 0. Then if ci = (di/dp−1)

1−j−ν∗∗ for
i = 1,2, . . . , p − 1 and cp > c1,

u− = 2(n + 2)−1

(p−1∑
i=1

{di/d1}ν∗∗ − 2+ c1

cp

{
dp

d1

}1−j
)

and

v− = min
(

c1cp−1(dp−1 − dp)

c1dp−1 − cp−1dp

,
cp−1cp(d1dp−1 − d2

p)

cpd1dp−1 − cp−1d2
p

)
,

the estimator θ̂φ where 0 ≤ φ(w)/w ≤ v− for any w, φ(w) is increasing and
limw→∞ φ(w) ≤ u−, is minimax under Lj and condition number decreasing.

PROOF. It is easy to see, as in Theorem 4.1, thatν∗, ν∗∗ can be chosen as
indicated. In this case, Theorem 2.1 implies minimaxity, provided

0 < φ(w) ≤ 2

n + 2

( ∑{d1−j
i /ci}

max{d1−j
i /ci}

− 2
)

= 2

n + 2

(p−1∑
i=1

{di/d1}ν∗∗ − 2+ c1

cp

{
dp

d1

}1−j
)

= u− (> 0).

Theorem 3.1(ii) then implies, sincecp > c1 ≥ c2 ≥ · · · ≥ cp−1, that our estimator
is condition improving if 0≤ φ(w)/w ≤ v− for anyw. �

Combining Lemma 2.2 and Theorems 4.1 and 4.3, we see that versions
of Theorems 4.1 and 4.3 are valid for the broad class of generalized Bayes
minimax estimators of Theorem 2.3. We omit the straightforward details. We give
explicitly a corollary of Theorems 4.1 and 4.3 for our simple generalized Bayes
estimatorθ̂SB, because this seems to have practical utility in the general spherically
symmetric case.

COROLLARY 4.4. θ̂SB = (I −α/{γ (α +1)+W }C−1)X is minimax under Lj

and condition number decreasing (and generalized Bayes under normality) if
either:

(i) under the setting of Theorem 4.1,α ≤ u+ and γ ≥ α/{(α + 1)v+}, or
(ii) under the setting of Theorem 4.3,α ≤ u− and γ ≥ α/{(α + 1)v−}.

Hence, in the normal case, for any full rank design, we may choose a simple
generalized Bayes minimax estimator with increased numerical stability over
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the least squares estimatorβ̂. Further, these estimators remain minimax for all
spherically symmetric error distributions.

Finally, we briefly consider the case for general quadratic loss functionsLQ =
σ−2(b−β)′Q(b−β) for a positive definite matrixQ. Recall that we have assumed
Q = (A′A)j throughout the paper. It is essential for the derivation of minimax
estimators with numerical stability in Theorems 4.1 and 4.3 thatA′A and(A′A)j

have common eigenvectors. For a generalQ which does not have common
eigenvectors withA′A, let M be a nonsingular matrix which simultaneously
diagonalizesA′A andQ, whereM satisfies

M(A′A)−1M ′ = G = diag(g1, . . . , gp), MM ′ = Q.

Let X = M ′β̂ andθ = M ′β. As in Section 1, we see that(X′,Z′)′ has the joint
density

∏
g

−1/2
i σ−Nf ({(x − θ)′G−1(x − θ) + z′z}/σ 2) and that the estimation

problem ofθ under the squared loss function(δ − θ)′(δ − θ) is derived as the
equivalent canonical problem. Hence, we can have the same minimaxity result in
Theorem 2.1 for the shrinkage estimator of the form (2.1) ifgi is substituted fordi .
The corresponding generalized ridge estimator becomes

(A′A + MKM ′)−1A′y,

whereK = diag(k1, . . . , kp) for ki = t/{gi(ci − t)}. The eigenvalues ofA′A +
MKM ′ (and hence, the condition number), however, cannot be expressed
explicitly while, in Section 3, the eigenvalues ofA′A + PKP ′ and the condition
number can. As a result, we cannot explicitly construct minimax estimators with
numerical stability as in Theorems 4.1 and 4.3.

5. Numerical results. In this section we investigate numerically the risk-
performance and condition number-performance of our simple Bayes esti-
mator θ̂SB, given by Corollary 4.4 underLj for j = 0,1,2. In the setting of
Theorem 4.1,η∗∗ = (max{0,1 − j} + η∗)/2, α = u+ andγ = α/{(α + 1)v+} are
chosen. In the setting of Theorem 4.3,ν∗∗ = ν∗/2,α = u− andγ = α/{(α + 1)v−}
are chosen. Simulation experiments are done in the following case:p = 9, n = 10,
D = diag(µ4,µ3,µ2,µ,1,µ−1,µ−2,µ−3,µ−4), where µ = 1.2,1.6,2.0,2.4
and θi = 0,0.5,1,1.5,2 for any i. The corresponding condition numbers ofD,
µ8 (and hence, the condition numbers ofβ̂ in the original problem), are approx-
imately 4.3, 43, 256 and 1100, respectively. For only two cases,µ = 2 and 2.4
underL0, Theorem 4.3 is applied.

Table 1 shows the relative performance of our simple estimator with respect to
risk and expected condition number (ECN), that is:

• R(θ, θ̂SB)/R(θ,X),
• (expected condition number ofθ̂SB)/µ8,

from 50,000 replications, in each of the above cases. We can draw the following
conclusions:
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TABLE 1
Relative performance of our simple estimators under Lj for j = 0,1,2

µ θi L0 L1 L2

risk ECN risk ECN risk ECN

1.2 0 0.78 0.761 0.785 0.643 0.674 0.495
0.5 0.809 0.791 0.808 0.669 0.703 0.511
1 0.866 0.852 0.857 0.734 0.769 0.565
1.5 0.912 0.902 0.903 0.806 0.837 0.641

2 0.941 0.935 0.934 0.861 0.889 0.718
1.6 0 0.894 0.95 0.778 0.597 0.955 0.417

0.5 0.917 0.963 0.801 0.637 0.956 0.425
1 0.95 0.981 0.848 0.723 0.961 0.449
1.5 0.967 0.989 0.891 0.803 0.967 0.487
2 0.978 0.996 0.923 0.86 0.973 0.537

2 0 0.994 0.999 0.778 0.594 0.995 0.415
0.5 0.994 0.999 0.807 0.652 0.995 0.419
1 0.995 0.999 0.861 0.757 0.995 0.43
1.5 0.995 1 0.905 0.839 0.996 0.449
2 0.995 1 0.934 0.89 0.996 0.475

2.4 0 0.994 1 0.778 0.593 0.998 0.422
0.5 0.994 1 0.819 0.679 0.999 0.424
1 0.994 1 0.882 0.802 1 0.431
1.5 0.994 1 0.925 0.879 1 0.442
2 0.994 1 0.95 0.921 1 0.456

(i) When µ is large and
∑{di/d1} − 2 is nonpositive, minimax stable

estimators using Theorem 4.3 underL0 have little gain both in the risk
improvement and in the ECN improvement. From the numerical results, our
contribution of Theorem 4.3 may be just theoretical.

(ii) UnderL1, minimax stable estimators have reasonable performances of risk
and the ECN, regardless ofµ.

(iii) Under L2, whenµ is large, there is little to gain in risk improvement, while
there is much to gain in ECN improvement. With better choices ofη∗∗, α andγ ,
however, we may have more reasonable performances of risk and ECN.

APPENDIX

PROOF OFTHEOREM 2.1. Let

F(x) = 1
2

∫ ∞
x

f (t) dt

and define

Ef [h(X,Z)] =
∫ ∫

h(x, z)σ−N
∏

d
−1/2
i f

(
(x − θ)′D−1(x − θ)

σ 2 + z′z
σ 2

)
dx dz
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and

EF [h(X,Z)] =
∫ ∫

h(x, z)σ−N
∏

d
−1/2
i F

(
(x − θ)′D−1(x − θ)

σ 2 + z′z
σ 2

)
dx dz,

whereh(x, z) is an integrable function. The identities corresponding to the Stein
and chi-square identities for the normal distribution,

Ef [(Xi − θi)h(X,Z)] = diσ
2EF [(∂/∂Xi)h(X,Z)],(A.1)

Ef [Sg(S)] = σ 2EF E[ng(S) + 2Sg′(S)],(A.2)

whereS = Z′Z, are useful in our following proof. We use the version derived
in [13], but earlier versions appear in [16] and elsewhere.

The risk ofθ̂φ is given by

Rj(θ, σ 2, θ̂φ)

= Ef [(θ̂φ − θ)′D−j (θ̂φ − θ)/σ 2]

= R(θ,σ 2,X) + Ef

[
S2

σ 2

∑{X2
i /(c

2
i d

j
i )}

(
∑{X2

i /(cidi)})2
φ2

(∑{X2
i /(cidi)}
S

)]
(A.3)

− 2Ef

[∑ S

σ 2

Xi

cid
j
i

(Xi − θi)
∑ X2

i

cidi

φ

(∑{X2
i /(cidi)}
S

)]
.

Let W = X′C−1D−1X/S. For the second term in (A.3), using (A.2), we have

Ef

[
X′C−2D−jX

(X′C−1D−1X)2

S

σ 2

{
Sφ2

(
X′C−1D−1X

S

)}]

= EF

[
X′C−2D−jX

X′C−1D−1X

{
(n + 2)

φ2(W)

W
− 4φ(W)φ′(W)

}]
.

For the third term in (A.3), using (A.1), we have

∑
Ef

[
1

cid
j
i σ 2

(Xi − θi)Xi

(∑{X2
i /(cidi)}
S

)−1

φ

(∑{X2
i /(cidi)}
S

)]

= EF

[∑ d
1−j
i

ci

φ(W)

W
+ 2

X′C−2D−jX

S

{
φ′(W)

W
− φ(W)

W2

}]
.

Hence, sinceφ′(w) ≥ 0, we have

Rj(θ, σ 2, θ̂φ)

≤ Rj(θ, σ 2,X) + EF

[
φ(W)

W

X′C−2D−jX

X′C−1D−1X

×
{
(n + 2)φ(W) − 2

∑ d
1−j
i

ci

X′C−1D−1X

X′C−2D−jX
+ 4

}]
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≤ Rj(θ, σ 2,X) + EF

[
φ(W)

W

X′C−2X

X′C−1D−1X

×
{
(n + 2)φ(W) − 2

∑{d1−j
i /ci}

max{d1−j
i /ci}

+ 4
}]

≤ Rj(θ, σ 2,X). �

PROOF OFTHEOREM 3.1. If c1 ≤ c2 ≤ · · · ≤ cp, we have

di(1− t/ci)

dj (1− t/cj )
≤ di

dj

for i < j

and

max
t

di(1− t/ci)

dj (1− t/cj )
≤ di(1− t0/ci)

dj (1− t0/cj )
for i > j.

Hence, if

max
i>j

(
di(1− t0/ci)

dj (1− t0/cj )

)
≤ d1

dp

or, equivalently,

t0 ≤ min
i>j

(
cicj (d1dj − didp)

cid1dj − cjdidp

)
,

we have

max
t

maxi di(1− t/ci)

minj dj (1− t/cj )
≤ d1

dp

,

which proves part (i).
Supposecp > c1 ≥ c2 ≥ · · · ≥ cp−1. Then d1(1 − t/c1) ≥ · · · ≥ dp−1(1 −

t/cp−1) and so

max
t

maxi=1,...,p−1 di(1− t/ci)

minj=1,...,p−1 dj (1− t/dj )
≤ d1(1− t0/c1)

dp−1(1− t0/cp−1)
.

Also,

max
t

d1(1− t/c1)

dp(1− t/cp)
≤ d1

dp

and

max
t

dp(1− t/cp)

dp−1(1− t/cp−1)
≤ dp(1− t0/cp)

dp−1(1− t0/cp−1)
.
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Hence, if

max
(

d1(1− t0/c1)

dp−1(1− t0/cp)
,

dp(1− t0/cp)

dp−1(1− t0/cp−1)

)
≤ d1

dp

or, equivalently,

t0 ≤ min
(

c1cp−1(dp−1 − dp)

c1dp−1 − cp−1dp

,
cp−1cp(d1dp−1 − d2

p)

cpd1dp−1 − cp−1d2
p

)
,

we have

max
t

maxi di(1− t/ci)

minj dj (1− t/cj )
≤ d1

dp

,

which proves part (ii). �
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