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ON THE BAHADUR REPRESENTATION OF SAMPLE QUANTILES
FOR DEPENDENT SEQUENCES

By WEI Biao Wu
University of Chicago

We establish the Bahadur representation of sample quantiles for linear
and some widely used nonlinear processes. Local fluctuations of empirical
processes are discussed. Applications to the trimmed and Winsorized means
are given. Our results extend previous ones by establishing sharper bounds
under milder conditions and thus provide new insight into the theory of
empirical processes for dependent random variables.

1. Introduction. Let (sx)recz be independent and identically distributed
(i.i.d.) random variables and Iét be a measurable function such that

(l) Xn=G(...,en-1,8n)

is a well-defined random variable. Cleafty, represents a huge class of stationary
processes. LeF (x) = P(X, < x) be the marginal distribution function &f, and

let f be its density. For G< p < 1, denote byt, = inf{x: F(x) > p} the pth
quantile of F. Given a sampleXy, ..., X, let§, , be thepth (0 < p < 1) sample
guantile and define the empirical distribution function

1 n
Fa(0) == Ly,<r.
=
For simplicity we also refer t§, , as thepth quantile ofF;,. In this paper we are
interested in finding asymptotic representations;,0f. Assuming that(X;)icz
are i.i.d. andf'(¢£,) > 0, Bahadur [1] first established the almost sure result

p— Fu(§p)
S(&p)

where a sequence of random variabifgss said to beDgs (1) if Z,,/r, is almost
surely bounded. Refinements of Bahadur’s result in the i.i.d. setting were provided
by Kiefer in a sequence of papers; see [19-21]. In particular, Kiefer [19] showed
that if /” is bounded in a neighborhood &f and f (§,,) > 0, then

. Enp—Ep—p— FaGp/f(Ep) 2293734 p12(1 — pl/2
®) “,r,nfo.lfpi n—34(log logn)3/4 B f(&p)

) Enp=Ep+ + Oas[n~**(logn)*/?(loglogn)*/4],
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almost surely for either choice of sign. Recent contributions can be found
in [4, 10].

Extensions of the above results to dependent random variables have been
pursued in [26] form-dependent processes, in [27] for strongly mixing processes,
in [16] for short-range dependent (SRD) linear processes and in [17] for long-
range dependent (LRD) linear processes. The main objective of this paper is to
generalize and refine these results for linear and some nonlinear processes.

Sample quantiles are closely related to empirical processes, and the asymptotic
theory of empirical processes is then a natural vehicle for studying their
limiting behavior. There is a well-developed theory of empirical processes for
i.i.d. observations; see, for example, the excellent treatment by Shorack and
Wellner [29]. The celebrated Hungarian construction can be used to obtain
asymptotic representations of sample quantiles (cf. Chapter 15 in [29]).

Recently there have been many attempts toward a convergence theory of
empirical processes for dependent random variables. Such a theory is needed for
the related statistical inference. Ho and Hsing [17] and Wu [31] considered the
empirical process theory for LRD sequences and obtained asymptotic expansions,
while Doukhan and Surgailis [9] considered SRD processes. Instantaneous
transforms of Gaussian processes are treated in [7]. Further references on this topic
can be found in the recent survey edited by Dehling, Mikosch and Sgrensen [6].

For dependent random variables, powerful tools like the Hungarian construction
do not exist in general. To obtain comparable results as in the i.i.d. setting, we
propose to employ a martingale-based method. The main idea is to approximate
sums of stationary processes by martingales. Such approximation schemes act as a
bridge which connects stationary processes and martingales. One can then leverage
several results from martingale theory, such as martingale central limit theorems,
martingale inequalities, the martingale law of the iterated logarithm, and so on, to
obtain the desired results. Gordin [13] first applied the martingale approximation
method and established a central limit theory for stationary processes; see
also [14]. Wu and Woodroofe [37] present some recent developments. Several of
its applications on various problems are given in [15, 18, 31, 32, 34].

Historically many limit theorems for dependent random variables have been
established under strong mixing conditions. On the other hand, although the
martingale approximation-based approach imposes mild and easily verifiable
conditions, it nevertheless may allow one to obtain optimal results, in the sense
that they may be as sharp as the corresponding ones in the i.i.d. setting.

In this paper, for some SRD linear processes we obtain the following asymptotic
representation of sample quantiles:

P — Fu(§p)
fép)

(cf. Theorem 1), which gives an optimal boumd®/“(loglogn)¥* in view
of Kiefer's result (3) for i.i.d. random variables. Sample quantiles for LRD

Enp=E&p+ + Oas[n~¥*(loglogn)®4]
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processes and some widely used nonlinear processes are also discussed and similar
representations are derived. In establishing such asymptotic representations, we
also consider the local and global behavior of empirical processes of dependent
random variables.

We next introduce the necessary notation. A random varigbls said
to be in £9, g > 1, if |€]l, := [E(E|)]Y? < co. Write |- || =] - [|2. De-
note the shift proces§; = (..., &r—1, &r) and the projection operataPié =
EE|F:) — E|Fr—1), k € Z. For a sequence of random variablgs, we say
that Z,, = o0a5(ry) if Z,/r, converges to 0 almost surely. Writg, ~ b, if
lim,— o0 an /b, = 1.

The rest of the paper is structured as follows. Pointwise and uniform Bahadur
representations for SRD linear processes are presented in Section 2 and proofs
are given in Section 6. LRD processes and nonlinear time series are discussed in
Sections 3 and 4, respectively. Applications to the trimmed and Winsorized means
are given in Section 5. Section 7 contains proofs and some discussion of results
presented in Section 3.

2. SRD processes. A causal (one-sided) linear process is definedXpy=

Y 2oaick—i, Whereg, are i.i.d. random variables amgl are real coefficients such
that X; exists almost surely. The almost sure existenc&Xpfcan be checked
by the well-known Kolmogorov three-series theorem (cf. [3]). [fetand F, be
the density and distribution functions of respectively. Recall that and F,, are
the distribution and the empirical distribution functionsXyf and&, is the pth
quantile of F. Without loss of generality letp = 1. Define the truncated process by
Xnk= Zj?‘;n_k aje,—j, k <n,and theconditional empirical distribution function
by

12 12

Fi(x) ==Y E(lx,<|Fi—1) ==Y Fe(x — X i-1).

iz o

Throughout this section we assume that

4) SURLfe (x) + | £ (x)]] < o.

It is easily seen that (4) implies sUp (x) + | f'(x)|] < oo in view of the relation
F(x) = E[Fe(x — Y72 a;¢x—i)] and the Lebesgue dominated convergence
theorem. Define the functior,(n) = (loglogn)Y/? if ¢ > 2 and ¢,(n) =
(logn)®?(loglogn) if ¢ = 2.

THEOREM 1. Let X; = Y 2pa;ex—; and assume (4), f(§,) > 0 and
E(ler]|*) < oo for some o > 0.

(@) If

o
(5) > lai| ™4 = 0 (log™4 n)

i=n
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for some g > 2, then (i) there exists C > 0 such that 8, , = Cl,(n)/[f(§,)/n]
satisfies

(6) Fo(6p+38ng)>p>Fu(p—8nq)  almostsurely
and |&, , — &,| < 6,4 almost surely, and (ii) the Bahadur representation holds:
- Fn _
(7) brp =&+ L0 4 0, [n¥%(0g logn)"/2¢/%(n)1.
f(&p)
(b) If
oo .
(8) Z |ai|m|n(a/2,1) < 0,

i=1
then (i) and (ii) in (a) hold for ¢ = 2.

REMARK 1. If o =2, then the proces&Xy)rcz has finite variance, and (8)
implies that(X;)x<z is short-range dependent since its covariances are summable.

REMARK 2. If o > 2 andthereis @ > 2 such that (5) holds, thén:°, |a;| =
O (log~Y% ). The implication is clear iy < «. If ¢ > «, then}"7° |a; |°‘/‘1 >
-2, lail %/ and we also havg 2, |a;| = O(Iog‘l/“ n. Therefore in the case
a > 2 it suffices to check (5) for the special case- « instead of verifying it for
a whole range oy > 2. The condition}"%°  |a;| = O(log=% ) is fairly mild
for a linear process being short-range dependent. For example, it is satisfied if
an = 0 (n~tlog=t~Yep).

Assuming thatE(|e;x|*) < oo for somea > 0 and that|a,| = O(n™*) with
k > 14 2/a, Hesse [16] obtained the representation

p— Fu()p)
) Enp=6&pt 7 &)
wherey > [@2(8« — 5) + 2a(10k — 9) — 13]/(4ak — 2« — 2)2. In comparison
to Hesse’s result, our condition (5) only requikes max(1, 2/«). If g > 2, then
the error term (7) i9as [n—3/4(loglogn)1/2£1/2( )1 = Oas[n3*(loglogn)®4,
which gives an optimal bound; see Kiefer’s relationship (3). The bound is much
better than the one in (9). For exampledif= 1 andx = 3.01, then Hesse’s
result (9) gives the error boun@,s (n~%%%31-). On the other hand, in Hesse’s
resulte; does not need to have a density.

+ Oas (n™ /7)),

REMARK 3. It is unclear whether Kiefer's law of the iterated logarithm (3)
can be extended to SRD processes. Our result only provides an upper bound.
Kiefer's [19] proof involves extremely meticulous analysis and it depends heavily
onthei.i.d. assumption. It seems that Kiefer's arguments cannot be directly applied
here.
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ExaMPLE 1. Suppose that; is symmetric and its distribution function
Fe(x) =1 - L(x)/x* x > 0, where O< « <2 and L is slowly varying
at co. Here a functionL(x) is said to be slowly varying ato if, for any
A >0, lim,_  L(Ax)/L(x) = 1. Notice thatg; is in the domain of attraction of
symmetrice-stable distributions.

Assume thata,| = O(n™") for somer > 2/«. Then forg € (2, ra), (5) holds.
In this case,E(|¢]|¥) = 2af5’°x—1L(x)dx may be infinite. However, there
exists a pair(a/,q’) such thatE(l¢|*) < oo and (5) holds for this pair.
Actually, one can simply choose’ < a such that 2< ro’ and let ¢’ =
(2 4+ ra’)/2. Then Y2 |g;|Mn@' /4D — gpl—e'/dy with ra’/q’ > 1 and
E(lel®) < 1+ [CP(le]* > wydu = 1 + 2’ [{°x* " 1L(x)dx < oo. By
Theorem 1 we have the Bahadur representation (7) with the optimal error bound
Oas[n~%*(loglogn)¥].

Theorem 1 establishes Bahadur’s representation for a spmglg€0, 1). The
uniform behavior of, , — &, over p € [po, p1l, 0 < po < p1 < 1, is addressed
in Theorem 2. Such results have applications in the study of the trimmed and
Winsorized means; see Section 5. Lgi) = (logn)*/4(loglogn)?4 if ¢ > 2 and
12(n) = (logn)¥2(loglogn).

THEOREM 2. Let X = Y 2a;er—;. Assume (4), infyo<p<p, f(&p) > 0O for
some0 < pg < p1 < land

(10) sup| £ (x)| < oo.
X
In addition, assume that there exist « > 0 and ¢ > 2 such that E(]e|%) < oo and

o0
(11) Z a;|MN@/aD < o,
i=1

Then (i) SUPyy<p<py 16n.p — Epl = 0aslig (n)/+/n] and (i) the uniform Bahadur
representation holds:

P — Fn(sp)

| = Oasl ymiogn) .

(12) sup
PO=pP=p1

Sn,p _Sp -

REMARK 4. Generally speaking, (12) cannot be extendegde= 0 and/or
p1 = 1. The quantity¢, , — &, exhibits an erratic behavior gs— 0 or 1. The
extremal theory is beyond the scope of the current paper.

REMARK 5. If gg has finite moments of any order, then under the condition
32, la;| < 0o, (12) gives the bound—*4(logn)/2*" for anyn > 0.
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REMARK 6. The Kiefer—Bahadur theorem asserts that for i.i.d. random vari-
ables the left-hand side of (12) has the optimal orde¥*(logn)¥/2(loglogn)¥/4;
see Chapter 15 in [29]. Our bound®/4(,, (n) logn)¥/2 is not sharp. The reason is
that we are unable to obtain a law of the iterated logarithm fog sup, | F;, (x) —
F(x)|; see (54) in the proof of Theorem 2 in Section 6.5, where the weaker re-
SUlt sUp ., < | Fn(x) — F(x)| = 0aslty (n)/+/n]is proved. On the other hand, in
proving Theorem 1, we are able to establish a law of the iterated logarithm for
F,(x) — F(x) at asingle point x [cf. Proposition 1 and (i) of Lemma 10], by
which the optimal rat@,s [n~%*(loglogn)¥4] in (7) can be derived.

3. LRD processes. Let the coefficientsig =1, a,, = n~PLn), n > 1, where
1/2 < B < 1 andL is a function slowly varying at infinity; leX; = Y72y a;ex—i,
where ¢, are i.i.d. random variables with mean zero and finite variance. By
Karamata's theorem (see, e.g., Theorem 0.6 in [25]), the covarign@es=
E(XoX,) ~ Cgn'=2PL2(n), where Cg = E(e?) [°x 7P (1 + x)~P dx, are not
summable and the process is said to be long-range dependent. The asymptotic
behavior of LRD processes is quite different from that of SRD ones. We shall
apply the empirical process theory developed in [31] and establish Bahadur’s
representation for long-range dependent processes.

Let W, = /n Y 7_ kY2728 12(k) and

Cp
n
(1-p8@B—-28)
By Karamata’'s theoremW¥, ~ n?=2#L%(n)/(3/2 — 2B) if B < 3/4, ¥, ~
JnL*(n) if B = 3/4, where L*(n) = Y7_, L?(k)/k is also a slowly vary-

ing function, andWw, ~ /Y2 kY2728 12(k) if B > 3/4. Let A,(B) =
W2(logn)(loglogn)? if B < 3/4 andA,(B) = w2(logn)3(loglogn)? if g > 3/4.

(13) 021 =InX,|1>~ 3-2612(n).

n

THEOREM 3. Assume inf,,<,<p,, f(§,) > 0 for some 0 < pg < p1 < 1,
E(sf) < oo and

2
(14) > sup £ ()] +/ | fL(u)|?du < oo.
i—0 ¥ R

Let b, = o,,.1(logn)*?(loglogn)/n. Then

L PR XEfE
L e e R D
13) s VBT0gn  bu/ANB)
= Oas [b}’l + \/ﬁ + " i|
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The three terms in th&@,s bound of (15) have different orders of magni-
tude for differents, and correspondingly the term that dominates the bound
is different. If 8 > 7/10, since 32 — 38 < —8/2—1/4 and—8 < —f/2 —

1/4, it is easily seen thabf + by/A(B)/n = o[/(b,logn)/n] in view of

W, = O[/nL*(n) + n?>=2$L2(n)] and /A, (B) < ¥, (logn)®?(loglogn). Hence

the dominant one in the bound of (15) &as[+/(b,logn)/n]. On the other
hand, if g < 7/10, then \/(,10gm)/n = o[bux/Ax(B)/n), bu/Ax(B)/n ~
C1n3Y2=P 3(n)(logn)(loglogn)? and b3 ~ Con*2=B [3(n)(logn)®/? x
(loglogn)® for some 0< C1, C2 < 00. SOb,+/A,(B)/n = o(b3). For the bound-
ary cases = 7/10, the situation is more subtle since the growth rate of the slowly
varying functionL is involved. In summary, noting thab, = O[/nL*(n) +
n?=2PL2(n)], the error bound of (15) is

16
(16) — O[B4 3/2-3) (]

for some slowly varying functiot.1. This bound is less accurate than the one for
the SRD or the i.i.d. counterparts since rtag/2 — 1/4, 3/2 — 38) > —3/4 if

B <1.1f3/4 < B <1, then the bound i®,5[n#/2~Y4L1(n)]. See Section 7.1
for more discussion on the sharpness of (15) and (16).

In comparison with Bahadur’s representations (2) for i.i.d. observations or (7)
for short-range dependent processes, (15) has an interesting and different flavor
in that it involves the correction terré}_(,ff/(sp)/f(gp). More interestingly,
this correction term is not needed # > 5/6, which includes some LRD
processes. Actually, by Lemma 16 in Section|X, |2 = 0as (b?). Note that
b2 = o(/b,logn//n) if B> 5/6. Then the correction terX2f'(£,)/ f (£p)
can be absorbed into the bougpt, Togn/./n.

If the dependence of the process is strong enough, then we do need the cor-
rection%)_(,zlf/(gp)/f(gp) for a more accurate representation. Specifically, &

(1/2,5/6), then /b, Togn//n = 0(021/n?), b3 + bu/A,(B)/n = 0(021/n?),
and as the central limit theorenf(n/o,,,l = N(0, 1) holds, the correction term
has a nonnegligible contribution.

4. Nonlinear time series. In the case thaG may not have a linear form, we
assume that; satisfies thgeometric-moment contraction (GMC) condition. On a
possibly richer probability space, define i.i.d. random variab}es,;k, i,j,keZ,
which are identically distributed ag and are independent ¢f;) ;cz. The process
X, defined in (1) is said to be geometric-moment contracting if there exisD,
C=C(x) >0andO<r =r(a) < 1 such that for alk > 0,

17) E[|G(...,e-1,€0.61s---,60) —G(...,€ 1,84, €1, ..., En)|*] < Cr".
1> €0

The process(,, :=G(..., &’ 1, &5, €1, ..., &,) Can be viewed as a coupled version
of X, with the “past” o = (...,e_1,¢0) replaced by the i.i.d. copyFy =
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(....¢& 4, &p). Here we shall use (17) as our basic assumption for studying the
asymptotic behavior of nonlinear time series. Since (17) only imposes the decay
rate of the moment of the distan¢&, — X/ |, it is often easily verifiable. In
comparison, the classical strong mixing assumptions are typically difficult to
check. Recently Hsing and Wu [18] adopted (17) as the underlying assumption
and studied the asymptotic behavior of weightéetatistics for nonlinear time
series.

Condition (17) is actually very mild as well. Consider the important special
class ofiterated random functions [11], which is recursively defined by

(18) Xy =G(Xy—-1.8n),
whereG(-, -) is a bivariate measurable function with the Lipschitz constant

|G(x,8) = G(x', 8 <0

(19) L, = sup - <
X' #x lx — x|
satisfying
(20) E(logL;) <0 and E[L{ + |xg — G(xg,¢)|*] < o0

for somea > 0 andxg. Diaconis and Freedman [8] showed that under (20) the
Markov chain (18) admits a unique stationary distribution. Wu and Woodroofe [36]
further argued that (20) also implies the geometric-moment contraction (17);
see Lemma 3. Some recent improvements are presented in [35]. Under suitable
conditions on model parameters, many popular nonlinear time series models such
as TAR, RCA and ARCH satisfy (20). Our main result is given next.

THEOREM 4. Assume (17), suplf(x) + |f'(x)|]] < oo and
inf ,o<p<p, f(&p) > 0for some0 < pg < p1 < 1. Then

- Fn _
(21) sup |6,y — & — 220 _ 0, (¥4 10g 2,
Po<p=p1 f(&p)
PROOF For a fixedr > 2 let m = |wlogn|, wherew = w, is given in
Lemma 1 and¢| denotes the integer part aflet

(22) Xk =G(...,8k—m—2ks Ek—m—1Lk> Ek—m.ks Ek—m+1s Ek—m+2s « - - » Ek—1, Ek)-

Our strategy is to replace the “pasFi_,; = (..., &x—m—1, €k—m) IN X; by the
i.i.d. copies(..., &x—m—2.k, Ek—m—1.k> Ek—m.k) SO that(Xy)rez is anm-dependent
process. WhenX,, is a linear process, Hesse [16] adopted a truncation ar-
gument whichforgets the past¥;_,, and approximatesX; by G, (ex—m+1,

..., &k—1, &) for some measurable functias,. Clearly the distribution function

of Gn(ek_ms1,...,8r_1,8) May be different fromF. Our coupling argument
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has the advantage that the marginal distribution functiorX pfis still F. For
j=212,...,m,let

1 An(j)

- 12
— 1; and F, =-> 1z _,
Tr A 2 s "0 =02 L

i=1

(23) ﬁn,j(x) =

where A,(j) = |n/m] for 1 < j <n —m|n/m| and A,(j) = |[n/m] — 1 for

1+n—mln/m| < j<m.LetA=A,=n/m andb, = c/TogA/+A, where the
constant will be determined later. LeM,, ;(x) = F, j(x) — F(x) and M, (x) =

Fy(x) — F(x). Since|Mn(x) - M,(y)| < maXi<j<m |Mn,j(x) - Mn,j(y)ln by

Lemma 2 there is &, > 0 such that

5 B 1/2
P[ sup |Mn(x>—Mn<y>|>M]

x—y|<b, A2
24
24) m - - 8:(b,logA)l/2 .
<Y P| sup |Mn,j(x)—Mn,j()’)|>T =mO(A™"),
j=1 [u| <by

and similarly P[sup, |My(x)| > 8;+/TOQA/vA] = mO(A~"). Since r > 2,
mA~" = O[n~"(logn)**1] is summable over. By Lemma 1 and the Borel-
Cantelli lemma, we have

sup |[Fn(x) — F()] = [Fa(y) = F)II

|x7y‘§bn
- - 2C, logn
(25) < sup M (x) — My(y)| + 29
[x—y|<by
_ S:(bylogA)Y/2  2C.logn

Al/2 n

and sup | F, (x) — F(x)| < 8;/T0gA/+/A + C;(n"tlogn) almost surely. Now in
b, = c/T0ogA/+/ A we choose = (2 + 82)/[inf po<p<py f(£p)]. Then we have

inf [Fn(%_p +by) — pl

PO=pP=p1
> inf [Fp+by)—pl— sup [Fu(&p) — pl
Po=p=p1 Po<p<p1
_I Slfpb [[Fn(x) — F(x)] = [Fn(y) — F(»)]l
X—Y|<bn
. 2y -1
>b, poflgffplf(s,,) + O (b;) — [8c(/l0g A/~ A+ C(n""logn)]

— [8:4/bnlogA/v/ A4 2C. (n"tlogn)]

> JlogA/vA
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almost surely. Similarly sup_ -, [Fx(§, — by) — p] < 0 almost surely. Hence
for An,p =&np —&p, SUBy<p<p, |An,pl < by @lmost surely since), is nonde-
creasing. SincéF, (¢,,,) — pl < 1/n, by (25)

Sup |[Fn(En,p) — F(&np)] = [Fu(§p) — F(Ep)]

PO<p=p1
= sup |[lp—FE,p]l—[F.(&p) —FEpl+0@1/n)
PO<p=p1
8;(bylogA)Y/2  2C,|
= 0as| 29|+ o/m

= Oas (n"¥*10g¥?n),
which entails (21) in view of inf,<,<,, f(§,) > 0 and, by Taylor's expansion,

F(&1.p) — F(£p) = An p f(§p) + O(AF ) since sup| f'(x)| < co. [

LEMMA 1. Assume (17)and sup, f(x) < oo. Then for any > 1, there exist
w¢, C; > 0 such that for m = |w, logn | we have

(26) P[sup|ﬁn(x) — F,(x)| > Ctn_llogn:| =0m™).

PROOF Letp=rY® o, =—-(1+aH(r+2)/logp andC; =1— (1+
a bt + 1)/logp; let R, be the sef)'_,{|X; — X;| < p™} and letR/ be its
complement. Then

P(R)) <nP(|X; — X;| > p™) <np “"E(|X; — X;|*)
<np *¥Cr" =nCp*" =o(n™").

Let K = C; — 1. By the triangle inequality, to establish (26) it suffices to show that
(27) ]P’[sup| Fo(x) — Fu(0)|1g, > Kn_llogn} =0n™).
X

Notice that sup|F;, (x) — F,(x)|1g, < SUp.[F,(x + p™) — F,(x — p™)]. Clearly,
the evenfsup,[F,(x + p™) — F(x — p"™)] > Kn~tlogn} implies that there exist
two indicesi and j with j —i > | K logn] such that bothX; and X ; are in the
interval[x — p™, x + p™] for somex € R. Therefore

P[suan(x +p") = Falx — p"™)] > Kn1|09”}

n—|K logn] n
SP[ U U {IXi—XjISZ,Om}]

i=1  j=i+|Klogn]
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n—|K logn] n

< Y Yo POXi— X, <20™)

i=1 j=i+|Klogn]

n

<n Y  P(Xo—X;|<20™.
Jj=LKlogn]

Recall (17) forX} =G(...,¢ 1,80, €1,...,€;). Then
P(|Xo— X <2p™)
<P(Xo— X;| <20™, IX; — X} < o)) + P(IX; — X}| > p7)
<P(Xo— X}l <20" +p/) +p~*/Cr/.
Observe thatXo and X’; are i.i.d. andP(|Xo — X;| < &) = E[P(IXo — X/| <
6|Xf/.)] < 2c¢8, wherec = sup, f(x) < oco. Thus

n
P[sup|f’n(x) — F(x)|1g, > Kn_llogn] <n Z [2¢(20™ + p’) + p% C]
* j=LK logn|
— nO(n,Om + pKlogn) _}_no(pa](logn),

which ensures (27) by the choice Kfandw,. O
LEMMA 2. Let (Zp)rez bei.i.d. random variables with distribution and den-

sity functions Fz and fz for which sup fz(z) < oo; let F,, z(z) = %Zl’le 1z,<;.
Then for all ¢ > 1 there exists C; > 0 such that

C, [ 1/2
(28) BlsupiF, 200 - Pz > T = 0
and
C: (b logn)/?
|, S 1Fuz(0 = F20) ~ (20 = F )} > e |
X—=Y|=bn
29
@ _ow,

where (b,),>1 is a positive, bounded sequence of real numbers such that logn =
o(nby).

Lemma 2 easily follows from classical results for i.i.d. uniform random
variables under quantile transformations; see the Dvoretzky—Kiefer—Wolfowitz
inequality and Inequality 14.0.9 in [29]. The lemma is needed in the proof of
Theorem 4 and it is a special case of Lemma 7 in Section 6.2. We purposefully
state Lemma 2 here also for the sake of comparison: the martingale-based method
may yield results comparable to those obtained under the i.i.d. assumption.
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5. Trimmed and Winsorized means. Let &, 1/, <&,2/, <--- <§,1 be
the order statistics ofXq,..., X,,. Then the trimmed and Winsorized means

are of the formszf(’;)(n)ﬂgn,i/,,/[ﬂ(n) — a(m)] andn o ()&, qmm + (1 —

B()én gny/nt1/n + 2 _a(nmsn,i/n], respectively, wherex(n) = |npo] and
B(n) = |np1].

Stigler [30] studied the asymptotic behavior of trimmed means for i.i.d. random
variables. Here we shall apply Theorems 2 and 4 to obtain a central limit theorem
for some dependent random variables. SRD linear processes and causal processes
satisfying (17) are considered in (i) and (ii) of Theorem 5, respectively. Denote by
N (1, %) a normal distribution with meap and variance 2.

THEOREMS. (i) Let ¢ = 2 and assume that the conditions of Theorem 2 are
satisfied. Then thereisa o < oo such that

Z, o,(n)+1§n,i/n
30
(30) f[ p(n) —a(n)

(if) Assume that the conditions of Theorem 4 are satisfied. Then the central limit
theorem (30) holds.

1 p1 2
— / Sudu]:N(O,a ).
P1— PoJpo

PROOF. (i) Sinceé, , is nondecreasing im, nf’/"

f(’“)/” £,.. du holds for 1< i <n — 1. Hence

1)/n5n udu < gnz/n =

B(n)/n ) [1+B()]/n
n/ Sn,u du < Z Srz l/n = f gn,u du.
a(n)/n i=a(n)+1 [1+a(n)]/n

It is easily seen that, under the conditions of Theorem 2, (12) also holds over the
expanded intervdlpg — t, p1 + t] for some sufficiently smah > 0. Therefore,
we have S, /n<u<q1+8m))/n 15n.4] = Oas (1) and consequently

B(n) n
(31) Y Enim—n | Enudu=0as(d).
i=a(n)+1 Po
By (12) of Theorem 2,

pP1 pP1 riy—F, (gu)
n Md - le - YN
Sradu = | Sud /po £ (&)

pPo
(32) 12

= Oas[n™¥*(:2(n) logn)
Lemma 11 in Section 6.4 asserts tHatn[F,(x) — F(x)], &y, < x < &p,} =
{(W(x), &y, <x <&,,} for some centered Gaussian procésn the Skorohod
spaceDI&,,, £p,] [2]. By the continuous mapping theorem, (30) follows from
(31) and (32).
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(if) By Theorem 4 in [35], under the conditions (17) and sifftx) < oo, we
also have the functional central limit theorefyn[F,(x) — F(x)], &y, < x <
Ep ) = (W), &y, <x <&} for some Gaussian proce$s. So (30) holds in
view of the argument in (i). O

REMARK 7. Using the same argument, it is easily seen that for the Win-
sorized meam_l[a(n)‘én,a(n)/n + (n — B()én pmy/n+1/n + Z?:(’;)(n)+1§l’l,l./n]!
we also have the central limit theorem (30) with the asymptotic mgan—
po)‘lf[fol &, du replaced bypot o + (1— p1)&,, + [ &, du. Other forms of linear
functions of order statistics can be similarly handled.

6. Proofs of Theorems 1 and 2. We first introduce our method. Recall
Fr=(...,ek—1, &) andF;(x) =37 4 Fe(x — X; ;—1)/n. Write F,,(x) — F(x) =
My (x) + N, (x), whereM, (x) = F,(x) — F;(x) andN, (x) = F;(x) — F(x).

Notice that under (4) the conditional empirical distribution functiBji is
differentiable with the uniformly bounded derivativg' (x) = n‘lzf’zl felx —
Xi,i—1) and henceiN,(x)/dx = f(x) — f(x) is also uniformly bounded. The
differentiability property greatly facilitates the related analysis. In comparison,
F, is a step function and hence discontinuous. On the other hal(x)
forms a martingale with bounded, stationary and ergodic incrembnts, —
E(1x,<<|¥i-1). Therefore, results from martingale theory are applicable.

The martingale parM,, and the differentiable paw, are treated in Sections
6.2 and 6.3, respectively. Section 6.4 discusses the oscillatory behavior and some
asymptotic properties of empirical processes, which are needed for the derivation
of Bahadur’s representations. Proofs of Theorems 1 and 2 are given in Section 6.5.

6.1. Some useful results. The following Proposition 1 is needed in proving
Theorems 1 and 2. See [33] for a proof.

PrRoPOSITIONL. Let S,(g) =>""_48(Fi), where g isa measurable function
such that g(Fp) € L4 for someg > 2, E[g(F0)] =0 and

o0
(33) O0q =Y _ [ Pog(Fi)lly < c0.

i=0
Let B, = 18¢%/%(q¢ — 1)¥/?if ¢ > 2and B, = 1if ¢ = 2. Then
(34) 152 ()llg < Byx/n®o4.
Furthermore, if ©,, , := Y72, |Pog(Fi)lly = O[(logm)~Y4] for some g > 2,
then

. S

(35) lim sup+ n(8)

n—oo  +/2nloglogn e

almost surely for either choice of sign, where o = || Y72 Pog (Fi) || < o0.
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In order to apply Proposition 1 t§),(g) =n[F,(x) — F(x)]orn[f(x) — f(x)],
one needs to estimalePoly, <. |l or || Pof: (x — X; i—1)|. The following Lemma 3
provides a simple upper bound if the random variallsatisfies certain moment
conditions. In particularyg is allowed to have infinite variance.

LEMMA 3. Let X; =) 72qa;er—i, Where g, arei.i.d. with E(|Jex|*) < oo for
some & > 0. Then under (4), || Pog(F)lly = Olla,|™"@/4-D] holds for g(F,) =
1x,<x and g(F,) = fe(x — X, n—1). If additionally (10) is satisfied, then the same
bound also holds for g(%,) = f/(x — Xn,n—1).

PROOF Let (g));cz be ani.i.d. copy ofe;);cz and X = X,, — ane0 + anep;
let G, be the distribution function oX,, — X, 0 = Z’};éajgn_j. Sincec =
sup, fe(x) < oo, itis easily seen that the densigy(x) = G),(x) is also bounded
by c. Observe thaP (X < x|¥o) = P(X, < x|¥_1). By Jensen’s inequality,

Pog(F)llg < IP(X, < x|Fo) — P(X;; < x|Fo)llq
= [E[Gn(x — Xn,0) — Gn(x — Xp,0+ anco — aneg) | Follly
< NGn(x = X5,0) — Gn(x — X0+ ango — ancg) llg
< [ min(claneo — anggl, Dllg

< [E(claneo — ansh))™n0]Y/4

— 0[|an|min(a/q,l)]‘

Here the elementary inequalifnin(|b|, 1)]1¢ < |b|Min(@.q) g applied. The other
casesg(F,) = fe(x — Xpn—1) and g(F,) = fi(x — X, ,—1) can be similarly
proved. O

To establish a uniform Bahadur representatioréfoy — £, over p € [ po, p1l,
0 < po < p1 < 1, we need the following version of maximal inequality, which
will be used to obtain an almost sure upper bound of Sup, | Fy(x) — F(x)].
Similar versions appeared in [2, 22, 24, 28]. For a proof of Lemma 4 see [33].

LEMMA 4. Let (Yr,k € Z)gco be a class of centered stationary processes
in L9, g > 1.Namely, for each 6 € O, (Y p)kez iSastationary processin L7 and
E(Yrp)=0.LetS,9=Y19+ -+ Y,p andletd =d(n) bean integer such that
24-1 -y <24 Then

1/q d . 1/q
(36) {E*[rpaxsupmk,mq“ < Zz(d‘f)/‘f{E*[sup|52j,9|‘1]} :
=N 9ec® =0 0e®

where E* istheouter expectation E*Z = inf{EX : X > Z, X isarandomvariable}.
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6.2. The martingale part M,,.

LEMMA 5. Let (b,),>1 bea positive, bounded sequence of real numbers such
that log®>n = o(nb,). Assume sup, fz(x) < co. Then for any t > 1 there exists a
constant C; > 0 such that

Py sup max n|M,(x+u)— Mn(x)|>C,,/2’<b2klogk}

|u|<b X k=1 p <k

37
37) =0k ).

PROOF Let ¢ = sup, f:(x) < oo. For a givenu > 0, sinceP(x < X;
x4+ u|¥F;_1) <cu, we have

IA

n

Z[E(lx<Xi§x+u|%—l) - E2(1x<X,-§x+u|3ji—l)] <ncu.

i=1
Here without loss of generality we restriet to be nonnegative. Let; =
V2by logk. Sincel, - x, <x+u — E(Lx<x,<x+ulFi—1), 1 <i <n, form bounded
martingale differences, by Freedman’s inequality (cf. Theorem 1.6 in [12]) we get
that

]P’{ max n|M,(x+u)— M,(x)| >Ctk}
k=1 p <k

(38) 9.2 .
<2exd—C<t;/(2Ct +2 x 2°cu)]

forallC > 0. Letay = by /k,u; = iog,i =0,1,..., k—1,andv, =mby /(k2"),
m=0,1,...,2F - 1. Since, = 0(2*bx / k), we have for sufficiently large that

IP’{ max max n|M,(x 4+ u;) — M, (x)|>Ctk}
O<i<k—12k—1_p<2k

(39) < Z]P’{ max _ n My (x +ui) — My(x)| >Ctk}
i—0 k=1 <k
C?logk
2k e
= p[ 2c1 1 ]

and similarly

]P’{ max max n|M,(x +v,)— M, (x)|>Ctk}
O<m<2k—12k—1cp<2k

k-1
(40) < 3 2ex—C%Z/(2CH + 2 x 2 cvy)]

m=0
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2*_1

< 3 2exd—C%Z/(2CH + 2 x 2 cvyp)]
m=0

< 2k+1e ﬂ}

- 2c+1

For anyv, v, < v < vyu4+1, observe that & F(x + vpt1) — FF(x + vy) <
choy [ (k2F),
My (x +v) — My (x) < My(x + vms1) — My (x) + b / (k2°)
and similarly,M,, (x + v) — M,,(x) > M,,(x + v,,,) — My (x) — Cbzk/(kzk). So (40)
yields
IP’{ sup max n|M,(x +v)— M,(x)| > (C+1)tk}

O<v<ay k=1 p <k

2
< 2k+1 exp[Llogk}'
2c+1

Since (41) holds for alk € R, by the triangle inequality, (41) together with (39)
implies

(41)

IP’{ max max n|M,(x+u) — M,,(x)|>(2C+1)tk}

O<u<by 2k=1<p<2k

SP{ max max n|M,(x +u;) — M, (x)|>Ctk}
O<i<k—12k-1 <n<2

+ZIF’{ sup  max n|M,(x+v+u;)— M,(x +u;)|

O<v<og 2k— 1<n<2

> (C + 1)tk}

C2?logk —C?%logk
<2ke p[ g ]+kx2k+lexp[7g]
2c+1

Therefore (37) follows by Iettmgjr =142t +DY202c+ 12 O

LEMMA 6. Assume that the conditions of Lemma 5 are satisfied and in
addition assume that thereisa p > 1 such that for all sufficiently large n we have
that

b2n
42 — < min b; < max b; < pb
(42) p n<j<2n / n<j<2n j = PO

Then for each fixed x € R,

(43) SUp | M, (x 4 u) — My, (x)| = Oas.[@ ]
lul<bp N
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PrROOE Observe that due to (42), for all sufficiently largeve have
ax Vrsupy <p, |My(x +u) — My (x)]|
2k—1p<2k /by Toglogn
< sup  max n|My(x +u) — My(x)|
lu|<pby 2 t<n=2t \/nb, Toglogn
< sup  max n|My(x +u) — My(x)| .
lu|<pby 2 t<n=2t \/Zk_lp_lbzk loglog -1

Hence (43) follows from Lemma 5 via the Borel-Cantelli lemmal

LEMMA 7. Assume (4) and that E(|X1]|%) < oo for some « > 0. Then for all
T > 1there exists C; > 0 such that

C.(logn)Y/2
(44) [supiag, o1 > 0] = 067
and
b (logn)/?
@) B[ sup 1M,0) M| D | = 067

where (b,),>1 is a positive, bounded sequence of real numbers such that logn =
o(nby).

PROOE We only prove (45) since (44) can be similarly proved. ket

Sup, fe(x) < 00, vy = /b, 10gn, ty = vy/n, J =nTFP/% andy;(x) = 1x, < —
E(Lx,<:|%i-1). Then

Inzzp[ sup |Mn(y>—Mn<x>|>Crn}

|X—y|§bn,x§—]

< nP[ sup V() — Yi(x)| > Czn}

|x—yl<bn,x=—J

sn(cm—lE[ sup |Y1(y)—Y1<x)|]

[x—y[<by,x<—J

= O(nt”—l)E[ sup |Y1(x)|}
x<—J4by
= 0020, H(J = by) “E(X1*) = 0™,

where Markov’s inequality is used in the second inequality. Similarly,

|||n;:19>[ sup |Mn(y)—Mn(x)|>Ctn]=0(n—1—f).

|X—y|§bn,x21
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Letx; =ib,/n,i=—N—-1,...,N+1,whereN = |Jn/b, |, and
IIn:=IP’[ sup |M,,(y)—Mn(x)|>Ctn]
[x—y|<b,,—J<x<J

Again by Freedman’s inequality, foe — y| < b,, and sufficiently large:,

Pln| My (y) — My(x)| > Cuy] < 2€XH—C202/(2Cv, + 2ncby)] < 20~ C /@D,
Thus

n|My(x;) — My (x;)| > Cvn] = O(Nz)n—Cz/(Zc-fl)'

For anyx, y with |x — y| < b,, |x| < J and|y| < J, choosei and j such that
x; <x <xjyi1andx; <y <x;;1. Then

n[Mn(xj) — My (xi11)] — 2c¢by, < n[My(y) — My (x)]
<n[Mp(xj+1) — Mp(xi)] + 2chy,.
Therefore (45) follows by choosing? = (2¢ + 1)[(8+ 27)/a + T + 5], given that

P{ sup |Mn(y)_Mn(x)|>(Cr+1)tn}Sln+||n+”|n

lx—yl<bn

by the triangle inequality. (]

REMARK 8. InLemmas 5-7 it is not required thiat — 0. We shall use this
fact to derive (54), which is a key step in proving Theorem 2.

REMARK 9. Itis worth noting that Lemmas 5-7 also apply to LRD processes.
In Section 7 we will use them to prove the Bahadur representation for LRD
processes. For i.i.d. random variables the increments of the empirical and quantile
processes are discussed in great detail in [5].

6.3. The differentiable part N,,.

LEMMA 8. Let b, — 0. Assume (4) and E(|ex|¥) < oo for some « > 0.
Further assume (5)ifg > 2 or (8)if g =2. Then

2,(n)
46 N, — Ny(x)| =2
(46) ﬁ;ﬁ' (x+1) ()] NG

PROOF Let ¢o = sup, |f/(x)| and recall f*(x) = dF}(x)/dx. Clearly

| f'(x)| < cosincef’(x) =E[f/(x — X;;—1)]. Using Taylor's expansion, we get
b2

SUP [N, (x +1) — Nu(x) —t[ f (x) — fF(X)]] < ?" supld[ f; (x) — f(x)]/dx|

|7]<by

Oas (by) + Oas.(b2).

< b%co.
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LetS,(x) =n[f;(x) — f(x)]. If ¢ > 2, by (50) of Lemma 10 there existS< oo
such that limsup , . |S,(x)|/+/2rnloglogn < C < oo almost surely. Hence (46)
follows. The case that = 2 similarly follows from (ii) of Lemma 10. [

LEMMA 9. Assume (4), (10)and (11). Then for any —oco <1 < u < 0o, we
have

(47) E[lmaxwvn(x)w 4 |N;,<x>|q>] — 02
and
(48) SUp 13, (0] + 1 (1)1 = o 1y )/ .

PROOF We only considey > 2 since the casg = 2 can be similarly han-
dled. By Lemma 3 and (34) of Proposition 1, (11) entails max, [N, (x)|ly =
O(1/y/n) and max<.<,lIN,(x)ll; = O(1/y/n). Since N,(x) = N,() +
[ N (1) dt,

] max N, 1| = oEiN, 0o + o[ [ 1Ny tax]|

u
=0n 1%+ 0{(u —l)E/ IN/ (x)|4 dx}
!
=0(n™1?).
Similarly,
E[ max |N,§(x)|‘1} =0n"1?.
I<x<u
Then (47) follows. LeG,(x) =n[F, (x) — F(x)]. By Lemma 4, (47) implies that
. E[MaX, <o MaX <<y |G (0)|7] & O g 20 1/a2i/2)a

kg‘. 261k/2tz (Zk) = = 2qk/2tg (2k)

=3 0{[1g(2)17%)

k=4
& 0w
B lgk(logk)z =

Then by the Borel-Cantelli lemma, max<, |G, (x)| = oas[tq(n)/n 1, which
in conjunction with the similar claim max,<, |G, (x)| = 0as[iy(n)/n] en-
tails (48). [
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6.4. Limit theoremsfor F,, — F.

LEMMA 10. (i) Assume (4) and (5) for some g > 2. Then for every x there
exist 0 < 01, o2 < oo such that

JAlFa(0) = F()]
=01

(49) Iirrlrl)sogp:t TogTog:
and
(50) lim sup-= Valfy (x) = f(x)] — oy

n—00 +/2loglogn
almost surely for either choice of sign.
(if) Assume (4) and (8). Then for every x

(51) |Fu(x) = FQO)| + | £ (x) = f(x)] = 0as [£2(n) /v/n].

ProoOFE (i) Itis a direct consequence of (35) of Proposition 1 and Lemma 3.
(i) Let R, (x) =n[F,(x) — F(x)]. By (8) and (34) of Proposition 1,R, (x)|| =
O(4/n). Then by Lemma 4,

5 Elma, - [Ra ()] _ 5 O[x*_o2k-0/20i/22

k=4 ZkE%(zk) =4 2%k3(logk)?
i": O (k%2%) o
= —< s
=, 2°k3(logk)?

which entails |R,(x)| = 0as[€2(n)/n] by the Borel-Cantelli lemma. That
| £5(x) — f(x)| = 0as[2(n)//n] similarly follows. O

LEMMA 11. Let ¢ = 2 and assume that the conditions of Theorem 2 are
satisfied. Then {/n[F,(x) — F(x)], &py < x <&p ) = {W(X), &py <x <Ep,) for
some centered Gaussian process W in the Skorohod space D[, &, ].

ProoOF It suffices to verify the finite-dimensional convergence and the
tightness [2]. By Lemma 8#o1x, <. || = O[|a,|™"®/2 D], which is summable in
view of (11) sincey = 2. Then by the Cramér—Wold device, the finite-dimensional
convergence easily follows from Lemma 3 in [31].

Write [ = &,, andu = &,,. Recall F,(x) — F(x) = M, (x) + N,(x). To show
the tightness of/n[F,(x) — F(x)], I < x < u}, it suffices to show that both
{VnN,(x), | <x <u} and{/nM,(x), | < x < u} are tight. The former easily
follows from

E[ sup nlN,(x) — Nn<y)|2] < SZnE[ sup |£(0) — f(e)ﬂ < Cs?

[x—y|<é,I<x,y<u 1<6<u



1954 W. B. WU

in view of (47) of Lemma 9 withg = 2. For the latter, letd, = 1,_x,<, —
E(Li<x,<y|Fi-1), ] <x <y <u. Then by (4E(d?|F;_1) < C(y — x). HereC
denotes a constant which does not depend,onandy and it may vary from line
to line. By Burkholder’s inequality [3],

n
>
i=1

2
C
E[n?| M, (x) — M,(y)|*] < =

2
C
+ ;ME(d,?mfl)nz

> (d? — E(d?| Fi1)

i=1

C
< ;nd% — Edf1Fo)|? + C(y — x)?

C
< -0+C- x)2.

See inequality (48) in [31] for a similar claim. Therefore, by the argument of
Theorem 22.1 in [2], pages 197-199, the prodggsM,,(x), [ < x < u} is tight.
O

REMARK 10. Under conditions of the type given in (8), Wu [32] obtained a
central limit theorem forS, (K)/+/n, whereS,(K) = >_"_;[K(X;) — EK(X)],
K is a measurable function amgmay have infinite variance.

LEMMA 12. Let X; = > 2gaicx—i and assume (4) and E(|ex|*) < oo for
some« > 0. Further assume (42) and log®n = o(nb,,).

(i) If (5) holdswith g > 2, then for every fixed x,
Sup |Fp(x +u) — F(x +u) — [Fp(x) — F(x)]|

|ul<by,
_ Oas. (/b Iog |ogn) + Oas. [bngq (n)]
- Vn Vvn

(ii) 1f (8) holds, then we have (52) with ¢ = 2.

(52)
+ Oas. (byzl)

REMARK 11. The second tern®as[b,€,(n)]/+4/n in the bound of (52) is
needed only whenp = 2.

Lemma 12 follows from Lemmas 6 and 8 and it provides a local fluctuation rate
of empirical processes for linear processes. The last two terms of (52) are due to the
presence of dependence, in the sense that they disappéaait i.i.d. Actually,
if X; arei.i.d., thenF* = F and hencev,, =0.
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LEMMA 13. Assume (4), (10) and (11). Then under the conditions of
Lemma 7, we have for any —oco <[ < u < oo that

sup [[Fn(x) — F(x)] = [Fn(y) — F(D)]I
|x=y[<by, x,y€l[l,u]

/b, logn bntq(n)}
NG + Nk

PrROOF By Lemma 7 it suffices to show that

sup LFy (x) = FO)l = [F/(y) = FO)II < b sup [ £,7(0) — f(©)]
x=y|<bu, x.yellul fell.ul

(53)

= Oas. |:

= by0as. [Lq (n)/\/ﬁ],

which is an easy consequence of Lemmal@.
6.5. Proofs.

PROOF OFTHEOREM1. We only consideg > 2 since the casg = 2 follows
along similar lines.

(i) Let b, = 8,,4. Then (42) holds. By Lemma 12 there exists a consfant oo
such that

I[Fn(p +bn) — F(Ep +bp)] — [Fa(§p) — F(§p)]l < C1y/ (b loglogn)/n

almost surely. Observe thdt(¢, + b,) = F(§p) + b, f(§p) + O(b,f) in view
of (4) via Taylor's expansion. By (i) of Lemma 10, there exists a constant
C2 < oo such thatn|F,(§,) — F(§,)| < Cay/nty(n) almost surely. Choose

C > 0 such thatC — C> — C1,/C/f(,) = 1, namely,C > [C1/,/f(§p) +

JC2/f(€,) + 4L+ C12/4. Then forb, = Cly(n)/Lf Ep)/nl, Fa(Ep + ba) >
p holds almost surely. The other statement that F,(§, — b,) almost surely
similarly follows. LetA, =&, , —&,. SinceF, is nondecreasing, by (6\,| < b,
almost surely.

(if) The argument for Theorem 4 can be applied here. Applying Lemma 12 with
x =£p,, we have

|Fn(En,p) — FEp + Ap) = [Fu(&p) — F(Ep)]l = Oasl[y/ (bnloglogn)/n ].

Notice that|F,(£,,,) — p|l < 1/n and, by Taylor's expansioF (&, + A,) =
P+ Anf(Ep) + O(A2) since sup|f'(x)| < co. Then

Apf(&p) =p— Fou(§p) + Oas [\/ (bnlog Iog”)/n]

and it entails (7). O
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PROOF OFTHEOREM 2. Letl =£&,, andu =£&,,. By Lemma 6 and (48) of
Lemma 9, we have

SUp |Fy(x) — F(x)| < sup |F,(x) — Fy(x)|+ sup |F, (x) — F(x)]

£4 x€[l,u] x€[l,u] x€(l,u]
(54) —0 [,/Ioglogn}_i_o |:Lq(n)]_0 [Lq(n)]
=UVas|——F— as|—F— | =0as|—F—|-
vn vn vn
Letb, =t4(n)/+/n. (i) By Lemma 13,
l<in1 [Fr(x +bp) — F(x)]
> 1<in£ [F(x +bp) — F(x)]
—ISUP | Fn(x) — F(x)]
- sup I[Fn(x) — F(x)] = [Fa(y) = F(W)II

|x=y|<by, I<x,y<u

>b, inf f(&p) + Ob2) + 0as (bn)
po=pu

+ Oas[y/bullogn) /n + bty (n)//n].

Hence infF,(x + b,) — F(x):l < x < u} > 0 almost surely, which implies (i)
together with a similar claim that sgg,(x — b,) — F(x):l <x <u} < 0 almost
surely. The representation (12) then follows from Lemma 13 by using the same
argument as in the proof of (ii) of Theorem 1]

7. Proof and the sharpness of Theorem 3. In the study of LRD processes,
the asymptotic expansion of empirical processes plays an important role [17, 31].
Let Unr = Xo<ji<..<j, [ [5=1@j,6n—j;» Un0 = 1. FOr a nonnegative intege,
similarly to (4) in [31] let

n o

Sn(yi p) = Z[l(x,- <y - Z(—l)’FWy)U,;r}
i=1 r=0

see also [17]. The quantit§,(y; p) can be viewed as the remainder of the

pth-order expansion of},(y). In our derivation of Bahadur’s representation for

LRD processes, we only deal with= 1 and do not pursue the higher-order case

p > 2 since it involves some really cumbersome manipulations.

As in [31], let6, = lan—1lllan—1] + ({2, _1aP) Y + (2, _1a)*/?), ©, =
Y16, By =nOZ + ¥21(0,4; — ©;)2 Since p = 1, 6, = Olla,1| X
(X2, _1a2)Y2]. Recall thaty,, = /n Y7 _1 kY2728 L2(k), A, (B) = W2(logn) x
(loglogn)? if B < 3/4 and A, (B) = W2(logn)3(loglogn)? if B > 3/4. Let
Hy(y) =nl[F;(y) — F(y) + f(y)Xn] andh, (y) = d H,(y)/dy.
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LEMMA 14. AssumeE(ef) < oo and

(55) SUPL /. ()| + SUPLEL )1 + [ 1760 B < oo,
Then
(56) s;Jp|Hn<y>|H + s3p|hn<y)|H —0w,).

PROOF Letl = [p|f/(u)?du andKy(x) = [f-(8 — x) — f.(0)1/~/1. Then
ko(x) = 8Kg(x)/dx = — fL(0 — x)/~/T satisfies[p k3(x) dx = 1. Hence for alp,

Ko € K(0) = {K(x) _ foxgmdt:/Rgz(r) < 1};

see [31] for the definition of the clask. By Theorem 1 in [31], for

1 n
—= D [ fe0 = Xi 1) = f(O)+ [(O)Xi 1]

Sn(Kog, 1) = NG
i=1

we have

E[supS,f(Kg, 1)] =O(E,).
6eR

Notice that S, (K, D)v/T — hy(6) = —f'(6) Y/_y . Then |sup, [, (M)l =
0(Er?) since sup|f'(0)] < oo and || Y7y Xii1 — nX,|| = O(/n). By
Karamata’s theorem, it is easily seen tBat= O (¥?) (cf. Lemma 5 in [31]). Sim-
ilarly, || sup, |H,(»|ll = O(Ex'®) holds under the conditiorty, f2(u) du < co.

The last inequality trivially holds since sy (u) < oco. O

LEMMA 15. AssumeE(ef) < oo and (55).

(i) Let (8,),>1 bea positive, bounded sequence such that logn = o(nd,). Then

(57) SuP 12 (y: 1) — Sp(x; 1| = Oas[\/ndu logn + 8,AY/%(B)].
X—Yy|=<0p

(i) For any —oo <! <u <00, SUR_,, |Su(y; DI = 0as[Ai/*(B)].

PROOF (i) By Lemma 7, sinceE(X) < oo, /nsup,_,<s, |Mn(y) —
M, (x)| = Oas(/8,logn). To show (57), notice that SR y <5, [ Hn(y) —
H, (x)| <8, sup |h,(0)]; it suffices to verify that sup|h, ()| = oas[Ai/z(ﬁ)] in
view of

(58)  Su(y: D) = Su(x; 1) =n[Mu(y) — My()]+ [Hn(y) — Hy(x)].
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By Karamata’s theorem,Zj?:O 26=DI2y,; = O(Wu) if B < 3/4 and
Z?:o 26@=DNI2y,; = 0(dWu) if B> 3/4. So it follows from Lemma 14 that

O1AZ (B)]

d d
(d—j)/2 , — (d—j)/2 NV 27
3. 2007 suplhy (]| = Y- 2420w = B o,

j=0 j=0
which in conjunction with Lemma 4 implies

o0 1 o0
E| maxsuplh ; 2} =Y 0 tlog?d .
P Lszd uplh; )] = 3 0t~ Hog 2 < oo
Hence sup|h,,(y)| = 0as[+/An(B)] via the Borel-Cantelli lemma.
(i) Notice thatS, (y; 1) =nM,(y) + H,(y). By Lemma 7,

«/EISUP IMy(y)| = Oas.(\/ IOg”)-

<y=<u

Using the argument in (i), (56) implies sy, (y)| = 0as[+/A,(B) 1. Hence (ii)
follows in view of \/n = O (¥,) and\/nlogn = o[/A,(B)]. O

LEMMA 16. AssumeE(e}) < oo and (55).Let B, = 0,,.1(logn)Y/?(loglogn),
by =B,/nand A, , =&, , —&,. Then (i) X, = 0as (by) and (ii) if, in addition,
inf,o<p<p, f(&p) > 0for some0 < pg < p1 < 1, we have

(59) sup |An,p|:0as.(bn)
PO=<p=p1

and
(60) SUP |An.p — Xul| = 0as (b2) + 0as[n TAY2(B)].

PO=p=p1

PROOF () Let S, = ¥, X;. Since a,1 = |ISull ~ Cn®¥?~PL(n), by
Lemma 4
2 d 2
By maxisil| - < B&Z[ZZ("‘”/Z@J} = 0(d tlog2a).
1= r=0

Again by the Borel-Cantelli lemm&,, = 0as (b,).

(i) Similarly as in the proof of Theorem 1, it suffices to show that, due to the
monotonicity of F,,, inf,,< ,<,, [ F (£, + b,) — p] > 0 holds almost surely since
the other inequality SUR<p<p [Fn(Ep — bn) — p] <0 can be similarly derived.
By Lemma 15

inf [Fn(‘i:p+bn)_p]
Po=p=p1

> inf [FEp+by)— fEp+b) Xy — p+SuEp; /nl

~ po<p=p1

— sup [Sp(y; D) = Sp(xs DI/n=: L + 1,
|x_y|§bn
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Since sup | f/(x)| < oo, by Taylor’s expansion SYRF (§p+bn) —p — by f(§p)l =

O(b,zl) and sup | f(&p +bn) — f(Ep)| = O(bn). Letl =&, andu = £, . By (ii) of

Lemma 15, SUR., -, 1S, (x; 1)| = 0as [Ax'2(8)]. By (i) X, = 0as (by). Therefore

L= inf  f(&) by — Xp) + OB+ by X,|) + 0as[AY?(B) /n]
PO<P=p1

l .
=2 B, S Ep)bn

almost surely. By (57) of Lemma 18], = 0as(b,) and hence (59) holds.
Relation (60) follows by lettingy =&, , =&, + A, , in (ii) of Lemma 15 in
view of

sup |F(§p + An,p) 2 f(gp)An,p|
PO=p=p1

sup, | f'(x)]
<SRN sup a2, = 0as )
PO=pP=p1

and sup, < <, [ Ep + A p) — f(Ep)l = 0as(by). O

REMARK 12. Under the stronger condition thatis four times differentiable
with bounded, continuous and integrable derivatives, Ho and Hsing [17] obtained
(61) sup |An,p — }_(nl = Oas. (n_l_kan,l)

PO=pP=p1
forall 0 <1 <min(1 - B, 8 — 1/2); see Theorem 5.1 therein. The result (61) is
very interesting in the sense that, , can be approximated b¥,, which does
not depend onp. Consequently the asymptotic distribution of the trimmed and
Winsorized means easily follows from that¥f,. After elementary calculations it
is easily seen that our bound (60) is slightly sharper.

PROOF OF THEOREM 3. BY (59) sup, -, <,, |An,pl = 0as (bn). Applying
Lemma 15 withx =&, andy =§,, ,, po < p < p1, we have

nosup |Ip—FEp+ Aup)+ fEnp)Xn — [FaEp) — FEp) + FENX]
PO=pP=p1

= Oa_s [,/nbn |Ogn + bn Ai_/z(,B)]
Since supl| f'(x)| + | f”(x)|] < oo, by Taylor's expansion

SUP [F(Ep+ Anp) — P — Aupf(Ep) — AL, f ()2l = 0as (b))
PO=p=p1

(62)

and

SUp | f(Ep+ Anp) — F(Ep) — Anp £ (Ep)| = 0as (b2).
PO<p=p1
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After some elementary calculations, (62) implies

sup f(sp>An,p+f Gp) (An.p — Xn) ——f(s,»xz [p — Fa(€p)]

PO=p=p1

= 0as (b3) + 71045 [/nb, logn + b, AY2(8)].

Observe that, = O[/nL*(n) + n>~26L2(n)] and AY/?

(loglogn) = o(nb,). Thus (15) follows from (60) and

(B) < W, (logn)®/? x

SUP (An.p — Xn)% = 0as[b? + AY2(8)/n)?
PO=P=p1

= 0as[b? + A.(B)/n?]
= 0as[b3 + b, AY?(B) /n]. O

7.1. The sharpness of Theorem 3. It is challenging to obtain a sharp bound
for the left-hand side of (15) in Theorem 3. We now comment on the sharpness of
Lemma 15, which describes the oscillationsFf(x) — F(x) + f(x)X,. Recall
that in the SRD case the sharp oscillation rateFpfx) — F(x) at a fixedx in
Lemma 12 leads to the Bahadur representation with optimal bound by letting
b, = c+/(loglogn)/n for somec > 0. Here we claim that the bound in (57) of
Lemma 15, which is a key ingredient for the derivation of (15), is optimal up to a
multiplicative slowly varying function.

LEMMA 17. Assume E(¢) < oo, (14) and [ | f/'(u)|?du < oo. Let §, =
nY La(n) for someslowly varying function Ly, —1 < y < 0and o, 2 = n®"?AL?(n).

() 148 — 3> y, then [Su(x + 8n; 1) — Sp(x; 1)1//18, = N[O, £()].
(i) 148 —3 <y, then

Sn(x + 8151 — Sp(x; 1)
Op, 26y

(63) X
= f'(0)Cp / [(v — 1)+ (v — u2)41 7P dv dB(u1) dB(u2)

up<uoz<l
for some constant Cg > 0, where B is a standard two-sided Brownian motion
and z4 = max(z, 0). In particular, if y = 1/2 — g, then (i) [resp. (ii)] holds if
7/10< B <1]resp. 1/2< B < 7/10].

REMARK 13. The limiting distribution in (63) is called the Rosenblatt
distribution, a special case of multiple Wiener—It6 integrals [23].
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PROOF OFLEMMA 17. Observe that
Sn(x +6: D) — S (x; ) =n[M,(x +6,) — My (x)] + [Hy(x +8,) — Hy(x)].

Write n[F,(x + 8,) — Fa(x)1=>""_1 K[(x — X;)/8,], where the kerneK (1) =
1—151450- By Lemma 2in [34}7[Mn (x+8,) — M, (x)]/+/nép = N[O, Uz(x)] with
02(x) = f(x) Jg K?(u)du = f(x). By Lemma 14

[ Hy(x +6p) — Hy(x)|| < 6p

Suplin ()| H
y

= 0(8,¥,) = 8,0[/nL*(n) + n>= L%(n)].

If48 — 3> y, thens, ¥, = o(/nd,) and (i) follows.

On the other hand, if4—3 < y, theng € (1/2, 3/4) andh, (x) /o, 2 converges
to the Rosenblatt distribution in (63); see Lemma 4 in [34] and Corollary 3 in [31].
Under the conditions (14) ani, | £/ (u)|2du < oo, by the argument of Lemma 14,
we havel| sup, |h;1(u)|” = O(¥,). Then |H,(x + 8,) — Hy(x) — 8php(x)|| <
82| sup, |k, W) = 0(82W,) and (i) follows in view of \/n8, + 8§20, =
0(8,01,2)-

If y=1/2—8,then$ —3 >y ifandonly if 7/10< 8. O

Lemma 17 asserts the dichotomous convergenc8&, 6f + 6,; 1) — S, (x; 1)
at a fixed pointx. Notice thatX,/[nY2#L(n)] = N(0,02%) and, by (60),
(En.p — &p)/[nY2PL()] = N(0, o) for somes? < oo. Fors, = nY/?=FLy(n),
Lemma 17 shows that, up to a multiplicative slowly varying function, the optimal
bound of [S,(x + 8,;1) — S,(x;1)]/n is nMaX=A/2=1/4.3/2=3f) " This bound
indicates that (15) or (16) is optimal up to a multiplicative slowly varying function.
It also explains why there is a boundgy= 7/10 in (15) or (16); see the discussion
of the three terms in th@, s bound of (15) in Section 3.
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