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We propose new bounds on the error of learning algorithms in terms of a
data-dependent notion of complexity. The estimates we establish give optimal
rates and are based on a local and empirical version of Rademacher averages,
in the sense that the Rademacher averages are computed from the data, on a
subset of functions with small empirical error. We present some applications
to classification and prediction with convex function classes, and with kernel
classes in particular.

1. Introduction. Estimating the performance of statistical procedures is
useful for providing a better understanding of the factors that influence their
behavior, as well as for suggesting ways to improve them. Although asymptotic
analysis is a crucial first step toward understanding the behavior, finite sample
error bounds are of more value as they allow the design of model selection (or
parameter tuning) procedures. These error bounds typically have the following
form: with high probability, the error of the estimator (typically a function in a
certain class) is bounded by an empirical estimate of error plus a penalty term
depending on the complexity of the class of functions that can be chosen by the
algorithm. The differences between the true and empirical errors of functions
in that class can be viewed as an empirical process. Many tools have been
developed for understanding the behavior of such objects, and especially for
evaluating their suprema—which can be thought of as a measure of how hard
it is to estimate functions in the class at hand. The goal is thus to obtain the
sharpest possible estimates on the complexity of function classes. A problem
arises since the notion of complexity might depend on the (unknown) underlying
probability measure according to which the data is produced. Distribution-free
notions of the complexity, such as the Vapnik—Chervonenkis dimension [35] or the
metric entropy [28], typically give conservative estimates. Distribution-dependent
estimates, based for example on entropy numbers irLt#i®) distance, where
P is the underlying distribution, are not useful wh&nis unknown. Thus, it is
desirable to obtain data-dependent estimates which can readily be computed from
the sample.
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One of the most interesting data-dependent complexity estimates is the so-
called Rademacher average associated with the class. Although known for a
long time to be related to the expected supremum of the empirical process
(thanks to symmetrization inequalities), it was first proposed as an effective
complexity measure by Koltchinskii [15], Bartlett, Boucheron and Lugosi [1]
and Mendelson [25] and then further studied in [3]. Unfortunately, one of the
shortcomings of the Rademacher averages is that they prgloblal estimates
of the complexity of the function class, that is, they do not reflect the fact that
the algorithm will likely pick functions that have a small error, and in particular,
only a small subset of the function class will be used. As a result, the best
error rate that can be obtained via the global Rademacher averages is at least
of the order of X,/n (wheren is the sample size), which is suboptimal in
some situations. Indeed, the type of algorithms we consider here are known
in the statistical literature as/-estimators. They minimize an empirical loss
criterion in a fixed class of functions. They have been extensively studied and
their rate of convergence is known to be related to the modulus of continuity of
the empirical process associated with the class of functions (rather than to the
expected supremum of that empirical process). This modulus of continuity is well
understood from the empirical processes theory viewpoint (see, e.g., [33, 34]).
Also, from the point of view ofM -estimators, the quantity which determines the
rate of convergence is actually a fixed point of this modulus of continuity. Results
of this type have been obtained by van de Geer [31, 32] (among others), who also
provides nonasymptotic exponential inequalities. Unfortunately, these are in terms
of entropy (or random entropy) and hence might not be useful when the probability
distribution is unknown.

The key property that allows one to prove fast rates of convergence is the
fact that around the best function in the class, the variance of the increments
of the empirical process [or theo(P) distance to the best function] is upper
bounded by a linear function of the expectation of these increments. In the
context of regression with squared loss, this happens as soon as the functions
are bounded and the class of functions is convex. In the context of classification,
Mammen and Tsybakov have shown [20] that this also happens under conditions
on the conditional distribution (especially about its behavior arouf®). IThey
actually do not require the relationship between variance and expectation (of the
increments) to be linear but allow for more general, power type inequalities. Their
results, like those of van de Geer, are asymptotic.

In order to exploit this key property and have finite sample bounds, rather
than considering the Rademacher averages of the entire class as the complexity
measure, it is possible to consider the Rademacher averages of a small subset of
the class, usually the intersection of the class with a ball centered at a function
of interest. Theséocal Rademacher averages can serve as a complexity measure;
clearly, they are always smaller than the corresponding global averages. Several
authors have considered the use of local estimates of the complexity of the function
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class in order to obtain better bounds. Before presenting their results, we introduce
some notation which is used throughout the paper.

Let (X, P) be a probability space. Denote Bya class of measurable functions
from X to R, and setXy, ..., X,, to be independent random variables distributed
according toP. Let o1, ..., 0, ben independenRademacher random variables,
that is, independent random variables for whictoPe 1) = Pr(o; = —1) = 1/2.

For a functionf : XX — R, define

12 12
Pof==> f(X),  PF=EfX),  Ruf==> oif(X).
i=1 i=1

For a classF, set

R,F = SUpR, f.
feF
DefineE, to be the expectation with respect to the random variadjes. ., o,,,
conditioned on all of the other random variables. The Rademacher aver&ge of
is ER, ¥, and the empirical (or conditional) Rademacher averagés afe

n

Ey Ry F = Eﬂa(supZaif(mel, - Xn).
no\re¥ia

Some classical properties of Rademacher averages and some simple lemmas

(which we use often) are listed in Appendix A.1.

The simplest way to obtain the property allowing for fast rates of convergence is
to consider nonnegative uniformly bounded functions (or increments with respect
to a fixed null function). In this case, one trivially has for Ale &, Var[ f]1 < cPf.

This is exploited by Koltchinskii and Panchenko [16], who consider the case of
prediction with absolute loss when functions#have values in0, 1] and there

is aperfect function f* in the class, that isPf* = 0. They introduce an iterative
method involving local empirical Rademacher averages. They first construct a
functiong, (r) = ciR, {f: P, f < 2r}+c24/rx/n+ c3/n, which can be computed
from the data. Fory defined byrg = 1, 711 = ¢, (1), they show that with
probability at least - 2Ne™~,

A 2x
Pf§FN+ ’
n

Whgref is a minimizer of the empirical error, that is, a functionfn satisfying
P, f =inf;c# P, f. Hence, this nonincreasing sequence of local Rademacher av-

erages can be used as upper bounds on the error of the empirical minfmizer
thermore, ify, is a concave function such théat/r ) > E, R, {f € F: P, f <r},
and if the number of iteration¥ is at least H- [log,log,n/x7, then with proba-

bility at least 1— Ne™*,
A <A* X)
ry=<cl\r +-—1,

n



1500 P. L. BARTLETT, O. BOUSQUET AND S. MENDELSON

wherer* is a solution of the fixed-point equatiof(y/r) = r. Combining the

above results, one has a procedure to obtain data-dependent error bounds that are
of the order of the fixed point of the modulus of continuity at O of the empirical
Rademacher averages. One limitation of this result is that it assumes that there is a
function f* in the class withP f* = 0. In contrast, we are interested in prediction
problems whereP f is the error of an estimator, and in the presence of noise there
may not be any perfect estimator (even the best in the class can have nonzero
error).

More recently, Bousquet, Koltchinskii and Panchenko [9] have obtained a more
general result avoiding the iterative procedure. Their result is that for functions
with values in[0, 1], with probability at least - e™*,

t + loglogn
)

’

(1.1 Vie¥F Pf§c<Pnf_|_;¢*_|_

wherer* is the fixed point of a concave functia#), satisfyingy,,(0) =0 and

Wn(«/;)ZEaRn{fG:F:Pnffr}-

The main difference between this and the results of [16] is that there is
no requirement that the class contain a perfect function. However, the local
Rademacher averages are centered around the zero function instead of the one
that minimizesPf. As a consequence, the fixed poititcannot be expected to
converge to zero when ipf¢ Pf > 0.

In order to remove this limitation, Lugosi and Wegkamp [19] use localized
Rademacher averages of a small ball around the mininfizérP, . However, their
result is restricted to nonnegative functions, and in particular functions with values
in {0, 1}. Moreover, their bounds also involve some global information, in the form
of the shatter coefficientSz (X)) of the function class (i.e., the cardinality of
the coordinate projections of the class# on the dataX’). They show that there
are constantgq, ¢ such that, with probability at least -1 8/n, the empirical
minimizer f satisfies

Pf < inf Pf 420, (7y),
feF

where

Tn(r) =c1<EJRn{f e F 1P f <16P,f +15) + 29" ¢ '03”\/Pnf+r)

n

and7, = c2(logS#(X]) + logn)/n. The limitation of this result is that, has to

be chosen according to the (empirically measured) complexity of the whole class,
which may not be as sharp as the Rademacher averages, and in general, is not a
fixed point of . Moreover, the balls over which the Rademacher averages are
computed iny,, contain a factor of 16 in front oP, f. As we explain later, this
induces a lower bound of, when there is no function witl? / = 0 in the class.
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It seems that the only way to capture the right behavior in the general, noisy case
is to analyze the increments of the empirical process, in other words, to directly
consider the functiong — f*. This approach was first proposed by Massart [22];
see also [26]. Massart introduces the assumption

Var[€ s (X) — £ p«(X)]1 < d?(f, f*) < B(P€; — Plys),

wherel ;s is the loss associated with the functign[in other words £ s(X,Y) =
L(f(X),Y), which measures the discrepancy in the prediction mad¢]by is

a pseudometric and* minimizes the expected loss. (The previous results could
also be stated in terms of loss functions, but we omitted this in order to simplify
exposition. However, the extra notation is necessary to properly state Massart's
result.) This is a more refined version of the assumption we mentioned earlier
on the relationship between the variance and expectation of the increments of
the empirical process. It is only satisfied for some loss functibaad function
classesf . Under this assumption, Massart considers a nondecreasing fugiction
satisfying

X
Y(r)>E sup |Pf — Pf*— Pof + Puf|+c—,
fEF d2(f.[*)2=r n

such thaty (r)/+/r is nonincreasing (we refer to this property as the sub-root
property later in the paper). Then, with probability at leastd™",

(1.2) VieF Pﬁf—Pﬂf*SC(l’*—f—f),
n

wherer* is the fixed point ofyy andc depends only orB and on the uniform
bound on the range of functions jf. It can be proved that in many situations of
interest, this bound suffices to prove minimax rates of convergence for penalized
M-estimators. (Massart considers examples where the complexity term can be
bounded using a priori global information about the function class.) However,
the main limitation of this result is that it does not involve quantities that can be
computed from the data.

Finally, as we mentioned earlier, Mendelson [26] gives an analysis similar
to that of Massart, in a slightly less general case (with no noise in the target
values, i.e., the conditional distribution Bfgiven X is concentrated at one point).
Mendelson introduces the notion of th@r-hull of a class of functions (see the
next section for a definition) and considers Rademacher averages of this star-hull
as a localized measure of complexity. His results also involve a priori knowledge
of the class, such as the rate of growth of covering numbers.

We can now spell out our goal in more detail: in this paper we combine the
increment-based approach of Massart and Mendelson (dealing with differences
of functions, or more generally with bounded real-valued functions) with the
empirical local Rademacher approach of Koltchinskii and Panchenko and of
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Lugosi and Wegkamp, in order to obtain data-dependent bounds which depend
on a fixed point of the modulus of continuity of Rademacher averages computed
around the empirically best function.

Our first main result (Theorem 3.3) is a distribution-dependent result involving
the fixed point-* of a local Rademacher average of the star-hull of the class
This shows that functions with the sub-root property can readily be obtained
from Rademacher averages, while in previous work the appropriate functions were
obtained only via global information about the class.

The second main result (Theorems 4.1 and 4.2) is an empirical counterpart
of the first one, where the complexity is the fixed point of an empirical local
Rademacher average. We also show that this fixed point is within a constant factor
of the nonempirical one.

Equipped with this result, we can then prove (Theorem 5.4) a fully data-
dependent analogue of Massart’s result, where the Rademacher averages are
localized around the minimizer of the empirical loss.

We also show (Theorem 6.3) that in the context of classification, the local
Rademacher averages of star-hulls can be approximated by solving a weighted
empirical error minimization problem.

Our final result (Corollary 6.7) concerns regression with kernel classes, that
is, classes of functions that are generated by a positive definite kernel. These
classes are widely used in interpolation and estimation problems as they vyield
computationally efficient algorithms. Our result gives a data-dependent complexity
term that can be computed directly from the eigenvalues of the Gram matrix (the
matrix whose entries are values of the kernel on the data).

The sharpness of our results is demonstrated from the fact that we recover, in
the distribution-dependent case (treated in Section 4), similar results to those of
Massart [22], which, in the situations where they apply, give the minimax optimal
rates or the best known results. Moreover, the data-dependent bounds that we
obtain as counterparts of these results have the same rate of convergence (see
Theorem 4.2).

The paper is organized as follows. In Section 2 we present some preliminary
results obtained from concentration inequalities, which we use throughout.
Section 3 establishes error bounds using local Rademacher averages and explains
how to compute their fixed points from “global information” (e.g., estimates of
the metric entropy or of the combinatorial dimensions of the indexing class),
in which case the optimal estimates can be recovered. In Section 4 we give a
data-dependent error bound using empirical and local Rademacher averages, and
show the connection between the fixed points of the empirical and nonempirical
Rademacher averages. In Section 5 we apply our results to loss classes. We give
estimates that generalize the results of Koltchinskii and Panchenko by eliminating
the requirement that some function in the class have zero loss, and are more general
than those of Lugosi and Wegkamp, since there is no need have in our case to
estimate global shatter coefficients of the class. We also give a data-dependent
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extension of Massart’s result where the local averages are computed around the
minimizer of the empirical loss. Finally, Section 6 shows that the problem of
estimating these local Rademacher averages in classification reduces to weighted
empirical risk minimization. It also shows that the local averages for kernel classes
can be sharply bounded in terms of the eigenvalues of the Gram matrix.

2. Preliminary results. Recall that the star-hull of aroundfy is defined by
stal¥, fo) ={fo+a(f — fo): f € F,a €[0,1]}.

Throughout this paper, we will manipulate suprema of empirical processes, that
is, quantities of the form syp - (Pf — P, f). We will always assume they are
measurable without explicitly mentioning it. In other words, we assume that
the class¥ and the distributionP satisfy appropriate (mild) conditions for
measurability of this supremum (we refer to [11, 28] for a detailed account of
such issues).

The following theorem is the main result of this section and is at the core
of all the proofs presented later. It shows that if the functions in a class have
small variance, the maximal deviation between empirical means and true means
is controlled by the Rademacher average&ofin particular, the bound improves
as the largest variance of a class member decreases.

THEOREMZ2.1. Let & bea class of functions that map X into [a, b]. Assume
that there is some » > 0 such that for every f € &, Var[f(X;)] < r. Then, for
every x > 0, with probability at least 1 — ™,

. 2rx 1 1\x
SUp(Pf — P, f) < inf (2(l+a)ERn?’+ —+(b—a)<—+—>—>,
feF a>0 V' n 3 a/n

and with probability at least 1 — 2¢™*,
SUp(Pf — Pof)

feF

. 1+« 2rx 1 1 1+« X
< inf (2 Es Ry F +,|— + (b — -4+ -+ —)-].
_ae(O,l)( 1—a 7" + n +( a)<3+a+2a(1—a)>n)

Moreover, the same results hold for the quantity sup;c & (Pu f — Pf).

This theorem, which is proved in Appendix A.2, is a more or less direct
consequence of Talagrand’s inequality for empirical processes [30]. However,
the actual statement presented here is new in the sense that it displays the
best known constants. Indeed, compared to the previous result of KoltchinskKii
and Panchenko [16] which was based on Massart's version of Talagrand’s
inequality [21], we have used the most refined concentration inequalities available:
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that of Bousquet [7] for the supremum of the empirical process and that of
Boucheron, Lugosi and Massart [5] for the Rademacher averages. This last
inequality is a powerful tool to obtain data-dependent bounds, since it allows one
to replace the Rademacher average (which measures the complexity of the class
of functions) by its empirical version, which can be efficiently computed in some
cases. Details about these inequalities are given in Appendix A.1.

When applied to the full function clasg, the above theorem is not useful.
Indeed, with only a trivial bound on the maximal variance, better results can be
obtained via simpler concentration inequalities, such as the bounded difference
inequality [23], which would allow/rx /n to be replaced by/x/n. However, by
applying Theorem 2.1 to subsets #f or to modified classes obtained froff,
much better results can be obtained. Hence, the presence of an upper bound on the
variance in the square root term is the key ingredient of this result.

A last preliminary result that we will require is the following consequence of
Theorem 2.1, which shows that if the local Rademacher averages are small, then
balls in L(P) are probably contained in the corresponding empirical balls [i.e.,
in L>(P,)] with a slightly larger radius.

COROLLARY 2.2. Let ¥ bea class of functions that map X into [—b, b] with
b > 0. For every x > 0 and r that satisfy

1162
r>10ER,{f: f e F, Pf2<r}+ ~
n

then with probability at least 1 — e~
(FeF PFfP<riC{feF P f><2r).

PROOF  Since the range of any function in the §et= { f2: f € F, Pf2 <r}
is contained in0, 5], it follows thatVvar[ f2(X;)] < Pf* < b?Pf? < b?r. Thus,
by the first part of Theorem 2.1 (witda = 1/4), with probability at least + ¢,
every f € ¥, satisfies

2b2rx  13b%x
_l’_
3n

5
P.f2<r+ EIERn{fZ:f eF,PfP<r}+

16b%x
3n

16h%x
3n

5 2 2 r
§r+§IERn{f (feF,Pf Sr}+§+

§r—|—5bER,,{f:fefF,Pf2§r}+%+
<2,

where the second inequality follows from Lemma A.3 and we have used, in the
second to last inequality, Theorem A.6 applied¢tar) = x? (with Lipschitz
constant 2 on[—b, b]). O
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3. Error bounds with local complexity. In this section we show that
the Rademacher averages associated with a small subset of the class may be
considered as a complexity term in an error bound. Since tlkeaeRademacher
averages are always smaller than the corresponding global averages, they lead to
sharper bounds.

We present a general error bound involving local complexities that is applicable
to classes of bounded functions for which the variance is bounded by a fixed
linear function of the expectation. In this case the local Rademacher averages are
defined a¥R,{f € F :T(f) <r}whereT(f) is an upper bound on the variance
[typically chosen ag'(f) = Pf2].

There is a trade-off between the size of the subset we consider in these local
averages and its complexity; we shall see that the optimal choice is given by a
fixed point of an upper bound on the local Rademacher averages. The functions
we use as upper bounds adb-root functions; among other useful properties,
sub-root functions have a unique fixed point.

DEFINITION 3.1. A functiony : [0, o0) — [0, 00) is sub-root if it is nonneg-
ative, nondecreasing andrif— v (r)/+/r is nonincreasing for > 0.

We only consider nontrivial sub-root functions, that is, sub-root functions that
are not the constant functiap = 0.

LEMMA 3.2. If ¢ : [0, 00) — [0, co) isanontrivial sub-root function, then it
is continuous on [0, co) and the equation () = r has a unique positive solution.
Moreover, if we denote the solution by »*, then for all » > 0, » > ¢ (r) if and only
ifr*<r.

The proof of this lemma is in Appendix A.2. In view of the lemma, we will
simply refer to the quantity* as theunique positive solution of v (r) = r, or as
thefixed point of .

3.1. Error bounds. We can now state and discuss the main result of this
section. Itis composed of two parts: in the first part, one requires a sub-root upper
bound on the local Rademacher averages, and in the second part, it is shown that
better results can be obtained when the class over which the averages are computed
is enlarged slightly.

THEOREM3.3. Let F beaclassof functionswith rangesin [a, b] and assume
that there are some functional 7: ¥ — Rt and some constant B such that for
every f € F,Var[f]1 <T(f) < BPf. Let v be a sub-root function and let »* be
the fixed point of .

1. Assume that v satisfies, for any r > r*,

V(r) = BER,{f € F:T(f) =r}.
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Then, with ¢; = 704and ¢2 = 26, for any K > 1 and every x > 0, with probability
atleast 1 — e,

lKr* n x(11(b —a) + czBK)‘

B n

VieF Pf<—_p s

Also, with probability at least 1 — e,
K+1 K x(11(b —a) + c2BK)

c1
VieF P, f< P *
i nf = K f+ Bi’ + "

2.1f, inaddition, for f € ¥ anda € [0, 1], T(af) < aZT(f), and if ¢ satisfies,
for any r > r*,

¥ (r) = BER,{f e sta¥,0):T(f) =r},

then the same results hold true with ¢; = 6 and ¢ = 5.

The proof of this theorem is given in Section 3.2.

We can compare the results to our starting point (Theorem 2.1). The im-
provement comes from the fact that the complexity term, which was essentially
sup. ¥ (r) in Theorem 2.1 (if we had applied it to the clagsdirectly) is now re-
duced tor*, the fixed point ofyy. So the complexity term is always smaller (later,
we show how to estimate’). On the other hand, there is some loss since the con-
stant in front of P, f is strictly larger than 1. Section 5.2 will show that this is not
an issue in the applications we have in mind.

In Sections 5.1 and 5.2 we investigate conditions that ensure the assumptions of
this theorem are satisfied, and we provide applications of this result to prediction
problems. The condition that the variance is upper bounded by the expectation
turns out to be crucial to obtain these results.

The idea behind Theorem 3.3 originates in the work of Massart [22], who proves
a slightly different version of the first part. The difference is that we use local
Rademacher averages instead of the expectation of the supremum of the empirical
process on a ball. Moreover, we give smaller constants. As far as we know, the
second part of Theorem 3.3 is new.

3.1.1. Choosing the function . Notice that the functiony cannot be chosen
arbitrarily and has to satisfy the sub-root property. One possible approach is to
use classical upper bounds on the Rademacher averages, such as Dudley’s entropy
integral. This can give a sub-root upper bound and was used, for example, in [16]
and in [22].

However, the second part of Theorem 3.3 indicates a possible choiak, for
namely, one can tak¢: as the local Rademacher averages of the star-hulf” of
around 0. The reason for this comes from the following lemma, which shows that if
the class is star-shaped afidf) behaves as a quadratic function, the Rademacher
averages are sub-root.
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LEMMA 3.4. If the class F is star-shaped around f (which may depend
on the data), and 7:¥ — R is a (possibly random) function that satisfies
T(af) <a?T(f)forany f € ¥ andany « € [0, 1], then the (random) function v
defined for » > 0 by

V() =EoRu{f € F:T(f — f)<r)
issub-root and r — E () is also sub-root.

This lemma is proved in Appendix A.2.
Notice that making a class star-shaped only increases it, so that

ER,{f e staKF, fo):T(f) =r} =z ER{f € F:T(f) =r}.

However, this increase in size is moderate as can be seen, for example, if one
compares covering numbers of a class and its star-hull (see, e.g., [26], Lemma 4.5).

3.1.2. Some consequences.  As a consequence of Theorem 3.3, we obtain an
error bound wherF consists of uniformly bounded nonnegative functions. Notice
that in this case the variance is trivially bounded by a constant times the expectation
and one can directly usé(f) = Pf.

COROLLARY 3.5. Let # beaclassof functionswith rangesin [0, 1]. Let ¢ be
a sub-root function, such that for all » > 0,

ER{feF Pf=r}=vy(r),
and let r* be the fixed point of v. Then, for any K > 1 and every x > 0, with
probability at least 1 — e, every f € F satisfies

11+ 26K
Py f + 704K r* 4 X1 20K)
K-1 n

Also, with probability at least 1 — e ™, every f € ¥ satisfies

K+1 11+ 26K
1 704k e 4 XELT20K)

Pf <

Pof <
n

PROOF Whenf € [0, 1], we havevar[ f] < Pf sothat the result follows from
applying Theorem 3.3 witli'(f) = Pf. O

We also note that the same idea as in the proof of Theorem 3.3 gives a converse
of Corollary 2.2, namely, that with high probability the intersectiorfofvith an
empirical ball of a fixed radius is contained in the intersectioffokith an Lo (P)
ball with a slightly larger radius.
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LEMMA 3.6. Let F beaclassof functionsthat map X into[—1, 1]. Fixx > 0.
If

26x
r>20ER,{f: f €sta(F,0), Pf2<r}+—,
n

then with probability at least 1 — e™*,
{f estalF,0): P, f?><r} C{f esta(F,0): Pf2 < 2r}.

This result, proved in Section 3.2, will be useful in Section 4.

3.1.3. Estimating r* from global information. The error bounds involve fixed
points of functions that define upper bounds on the local Rademacher averages.
In some cases these fixed points can be estimated from global information on the
function class. We present a complete analysis only in a simple case, #hsra
class of binary-valued functions with a finite VC-dimension.

COROLLARY 3.7. Let F beaclassof {0, 1}-valued functions with VC-dimen-
siond < oco. Thenfor all K > 1and every x > 0, with probability at least 1 — e™*,
every f € ¥ satisfies

Pf <

K-1 n

Pnf+cK<M + f).

The proof is in Appendix A.2.

The above result is similar to results obtained by Vapnik and Chervonenkis [35]
and by Lugosi and Wegkamp (Theorem 3.1 of [19]). However, they used
inequalities for weighted empirical processes indexed by nonnegative functions.
Our results have more flexibility since they can accommodate general functions,
although this is not needed in this simple corollary.

The proof uses a similar line of reasoning to proofs in [26, 27]. Clearly, it
extends to any class of real-valued functions for which one has estimates for the
entropy integral, such as classes with finite pseudo-dimension or a combinatorial
dimension that grows more slowly than quadratically. See [26, 27] for more details.

Notice also that the rate of lagn is the best known.

3.1.4. Proof techniques. Before giving the proofs of the results mentioned
above, let us sketch the techniques we use. The approach has its roots in classical
empirical processes theory, where it was understood that the modulus of continuity
of the empirical process is an important quantity (hereplays this role). In
order to obtain nonasymptotic results, two approaches have been developed: the
first one consists of cutting the class into smaller pieces, where one has
control of the variance of the elements. This is the so-cahesting technique
(see, e.g., [31-34] and references therein). The second approach consists of
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weighting the functions i by dividing them by their variance. Many results
have been obtained on such weighted empirical processes (see, e.g., [28]). The
results of Vapnik and Chervonenkis based on weighting [35] are restricted to
classes of nonnegative functions. Also, most previous results, such as those of
Pollard [28], van de Geer [32] or Haussler [13], give complexity terms that involve
“global” measures of complexity of the class, such as covering numbers. None
of these results uses the recently introduced Rademacher averages as measures of
complexity. It turns out that it is possible to combine the peeling and weighting
ideas with concentration inequalities to obtain such results, as proposed by
Massart in [22], and also used (for nonnegative functions) by Koltchinskii and
Panchenko [16].

The idea is the following:

(a) Apply Theorem 2.1 to the class of function§w(f): f € £}, wherew is
some nonnegative weight of the order of the varianc¢ dflence, the functions
in this class have a small variance.

(b) Upper bound the Rademacher averages of this weighted class, by “peeling
off” subclasses off” according to the variance of their elements, and bounding the
Rademacher averages of these subclasses sing

(c) Use the sub-root property ¢f, so that its fixed point gives a common upper
bound on the complexity of all the subclasses (up to some scaling).

(d) Finally, convert the upper bound for functions in the weighted class into a
bound for functions in the initial class.

The idea of peeling—that is, of partitioning the clagsinto slices where
functions have variance within a certain range—is at the core of the proof of
the first part of Theorem 3.3 [see, e.g., (3.1)]. However, it does not appear
explicitly in the proof of the second part. One explanation is that when one
considers the star-hull of the class, it is enough to consider two subclasses:
the functions withT (f) <r and the ones witlf'(f) > r, and this is done by
introducing the weighting factdr ( f) v r. This idea was exploited in the work of
Mendelson [26] and, more recently, in [4]. Moreover, when one considers the set
Fr =staF,0) N {T(f) <r}, any functionf’ € F with T(f’) > r will have a
scaled down representative in that set. So even though it seems that we look at the
class stat#, 0) only locally, we still take into account all of the functions #

(with appropriate scaling).

3.2. Proofs. Before presenting the proof, let us first introduce some additional
notation. Given a clas§, » > 1 andr > 0, letw(f) = min{ra¥:k e N, rak >
T(f)}and set

9,:{#f>f:fey-‘}.
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Notice thatw(f) > r, so thatg, C{af: f € F,a € [0, 1]} = staF, 0). Define
V' =supPg—P,g and V, = supP,g— Pg.
8€Gr 8EGr
For the second part of the theorem, we need to introduce another class of functions,
g,::{L:fe?’},
T(f)vr
and define

‘71’+: SUpPg—Png and Vr_ZSUang—Pg-
g4, 8€G,

LEMMA 3.8. With the above notation, assume that thereis a constant B > 0
such that for every f € &, T(f) < BPf.Fix K > 1, A >0and r > 0. If
vVt <r/(ABK), then

K r
VieF Pf < P .
fe F=% 1™ Bk
Also, if V. <r/(ABK), then
VfeF Pf<K+
=K ABK'

Smilarly,if K > 1and r > 0 aresuch that V" < r/(BK), then

r

K
VfeF P Pif 4+ —
fe F=x =2t ke

Also, if V- <r/(BK), then

K +
VfeF P f< Pf

BK'

PROOF.  Notice that for allg € §,, Pg < P,g + V,". Fix f € F and define
g=rf/w(f). WhenT(f) <r, w(f) =r, so thatg = f. Thus, the fact that
Pg < P,g+ V' impliesthatPf < P, f + V.t < P,f +r/(ABK).

On the other hand, i’ (f) > r, thenw(f) = rA* with k > 0 and T (f) €
(rA*=1, rak]. Moreover,g = f/A%, Pg < P,g + V,.©, and thus

Pf _PBuf
WSk

Using the fact thaf' (/) > rA%—1, it follows that

Pf<P,f+MVF <P f+AT(H)VF/r <P,f + Pf/K.
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Rearranging,

-
K—1 "f+ABK'

The proof of the second result is similar. For the third and fourth results, the
reasoning is the same[]

Pf < K Pf
< —
~ K-

PROOF OFTHEOREM3.3,FIRST PART  Let§, be defined as above, wheres
chosen such that> r*, and note that functions i, satisfy||g — Pgllcc <b —a
since O< r/w(f) < 1. Also, we havevar[g] < r. Indeed, ifT (f) <r, theng = f,
and thusvar[g] = Var[ f] < r. Otherwise, wheT'(f) > r, g = f/A* (wherek is
such thatl' (f) e (rAk~1, rAK]), so thatvar[g] = Var[ f]/A% < r.

Applying Theorem 2.1, for alt > 0, with probability 1— e~

2 1 1
Vi <21+ ER, G, + | — —I—(b—a)(— + _)f,
n 3 o/n

LetF(x,y):={f € F:x <T(f) <y} and define to be the smallest integer
such that-A¥*1 > Bb. Then

ER,G, <ER,F(O0,r)+E sup — Rnf
feF (r,Bb) w(f)

k

<ER,¥(0,r)+> E  sup r —Ruf
=0 feF(rad raitl w(f)
(3.1)

=ER,F(O,r) + Z AJE sup  R.f
j=0 feF (rad raitly

t/f(r)
B

+ = Z Ay (rad T,

j =0

By our assumption it follows that fg8 > 1, v (Br) < /By (r). Hence,

ER, G, < —w(r)(l+ﬁ2k f/2>

j=0

and takingh = 4, the right-hand side is upper bounded ly(b)/ B. Moreover, for
r>r* @) < Jr/rig(rt) = 4/rr*, and thus

10(1 |2 1 1
Vr+§u,/rr*+ ﬁ+(b—a)<—+_)£
B n 3 a/n

SetA =101+ a)v/r*/B + /2x/n andC = (b — a)(1/3 + 1/a)x/n, and note
thatVt < AJ/r+C.
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We now show that can be chosen such thﬁ,ﬁ <r/(ABK). Indeed, consider
the largest solutiorg of A\/r +C =r/(ABK). It satisfies:g > 12A2B?K?/2 > r*
andro < (ABK)?A%+ 20BK C, so that applying Lemma 3.8, it follows that every
f € ¥ satisfies

K
Pf <+ 1Pnf+xBKA2+2c

K 20(1 Dt 2x
K b k(10004 a2 g2y 22ETO [T 2
K-1 B n n

1 1\x
+(b—a)(§+a)—

n

Settinga = 1/10 and using Lemma A.3 to show thaf2xr*/n < Bx/(5n) +
5-*/(2B) completes the proof of the first statement. The second statement is
proved in the same way, by considerifg instead ofV,". [

PROOF OFTHEOREM 3.3, SECOND PART The proof of this result uses the
same argument as for the first part. However, we consider the gadsfined
above. One can easily check that C {f < staF,0):T(f) <r}, and thus
ER,G, < ¥(r)/B. Applying Theorem 2.1 td,, it follows that, for allx > 0,
with probability 1— e,

Vr+_2(1+a)w()+ /2rx+(b_ )( i.)%

The reasoning is then the same as for the first part, and we use in the very last step
thaty/2xr*/n < Bx/n +r*/(2B), which gives the displayed constants.]

PROOF OFLEMMA 3.6. The mamy — «? is Lipschitz with constant 2 when
« is restricted td—1, 1]. Applying Theorem A.6,
26x
(3.2 r>10ER,{f?: f e sta(F,0), Pf2 <r}+ —.
n

Clearly, if f € #, then f2 maps to[0, 1] andVar[ 2] < Pf2. Thus, Theorem 2.1
can be applied to the clags = {rf2/(Pf? v r): f € ¥}, whose functions have
range in[0, 1] and variance bounded by Therefore, with probability at least
1—e ¥, everyf € & satisfies

Pf2— P, f? 2rx (1 1\x
L 224+ )ER G+ 4+ (S + 2 )2
d PfZVr =2+ gr+ n +(3+a>n

Selecte = 1/4 and notice that/2rx/n <r/4+ 2x/n to get

Pf%— P, f? r 19%

5
<=ER -4+ .
Pf2vr ~2 ”9’r+2+3n
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Hence, one either han2 < r, or when sz > r, since it was assumed that
Pl’lfz S rl
f2( r 19x>
Pf? ~L (ZER,4, =
Jrert o s GERG g 1,

Now, if g € §,, there existsfo € ¥ such thatg = rf2/(Pf¢ v r). If Pf¢ <r,
then g = f2. On the other hand, iPf2 > r, theng = rfZ/PfZ = f? with
f1estaF,0) and Pf2 < r, which shows that

ER,§, <ER,{f?: f € sta(F,0), Pf? <r}.
Thus, by (3.2),Pf2 < 2r, which concludes the proof.C]

4. Data-dependent error bounds. The results presented thus far use distrib-
ution-dependent measures of complexity of the class at hand. Indeed, the sub-
root functionys of Theorem 3.3 is bounded in terms of the Rademacher averages
of the star-hull of &, but these averages can only be computed if one knows
the distribution P. Otherwise, we have seen that it is possible to compute an
upper bound on the Rademacher averages using a priori global or distribution-free
knowledge about the complexity of the class at hand (such as the VC-dimension).
In this section we present error bounds that can be computed directly from the data,
without a priori information. Instead of computimg we compute an estimatg,,,
of it. The functiony, is defined using the data and is an upper bound}omith
high probability.

To simplify the exposition we restrict ourselves to the case where the functions
have a range which is symmetric around zero, gay, 1]. Moreover, we can
only treat the special case wheFé f) = Pf2, but this is a minor restriction as
in most applications this is the function of interest [i.e., for which one can show

T(f)<BPf].

4.1. Results. We now present the main result of this section, which gives an
analogue of the second part of Theorem 3.3, with a completely empirical bound
(i.e., the bound can be computed from the data only).

THEOREM 4.1. Let ¥ be a class of functions with ranges in[—1,1] and
assume that there is some constant B such that for every f € ¥, P f2 < BPf.
Let ¥, bea sub-root function and let 7* be the fixed point of Un. le x> 0and
assume that w,, satisfies, for any r > 7*

Un(r) = 1B Ryl f € StaF, 0): Py f2 < 2} + 2,
n
where 1 = 2(10V B) and ¢ = ¢1 + 11. Then, for any K > 1 with probability at
least 1 — 3™,
6K

K R 11+ 5BK
VfeF  Pf< Pnf+—r*+x(+—).
K-1 B n
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Also, with probability at least 1 — 3¢™,

K+1 6K 11+ 5BK
+ Pf+—f*+u.

Vie¥F P, f<
! ”f—K B n

Although these are data-dependent bounds, they are not necessarily easy to
compute. There are, however, favorable interesting situations where they can be
computed efficiently, as Section 6 shows.

It is natural to wonder how close the quantityappearing in the above theorem
is to the quantity-* of Theorem 3.3. The next theorem shows that they are close
with high probability.

THEOREM4.2. Let ¥ beaclassof functionswithrangesin[—1, 1]. Fixx > 0
and consider the sub-root functions

v (r) =ER,{f € staF,0): Pf2 <r}
and

Fn(r) = 1By Ro{f € Stal(F, 0): P, f2 < 2r) + 2%,
n

with fixed points »* and 7*, respectively, and with ¢; = 2(10Vv B) and ¢ = 13.
Assume that r* > c3x/n, where cz = 26 Vv (c2 + 2¢1)/3. Then, with probability at
least 1 — 4e™,

rE <P <91+ 1)

Thus, with high probability/* is an upper bound on* and has the same
asymptotic behavior. Notice that there was no attempt to optimize the constants in
the above theorem. In addition, the constaiit-9 ¢1)? (equal to 3969 ifB < 10)
in Theorem 4.2 does not appear in the upper bound of Theorem 4.1.

4.2. Proofs. The idea of the proofs is to show that one can upper baund
by an empirical estimate (with high probability). This requires two steps: the
first one uses the concentration of the Rademacher averages to upper bound the
expected Rademacher averages by their empirical versions. The second step uses
Corollary 2.2 to prove that the ball over which the averages are computed [which
is anL»(P) ball] can be replaced by an empirical one. Thiisjs an upper bound
on, and one can apply Theorem 3.3, together with the following lemma, which
shows how fixed points of sub-root functions relate when the functions are ordered.

LEMMA 4.3. Suppose that v, U, are sub-root. Let r* (resp. f*l be the fixed
point of ¢ (resp. v,). If for 0 <@ < 1wehave ayy, (r*) < ¥ (r*) < ¥, (r*), then

o2 <t < P
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ProOF  Denoting byr; the fixed point of the sub-root functiany,, then, by
Lemma 3.27% < r* < 7*. Also, sincey, is Sub-rooty, (a?#*) > a, (**) = a#*,
which meansey, (¢%7*) > o?7*. Hence, Lemma 3.2 yield§ > «?7*. [

PROOF OFTHEOREM4.1. Consider the sub-root function

Yi(r) = C—zl]ERn{f estaF,0): Pr2<r}+ M
n

with fixed pointr;. Applying Corollary 2.2 whem > v1(r), it follows that with
probability at least - e™*,

(f esta(F,0): Pf2<r} C{f esta(F,0): P, f><2r).

Using this together with the first inequality of Lemma A.4 (with= 1/2) shows
that if r > 1 (r), with probability at least - 2¢7%,

i) = C—ZIERn{f e staxF, 0): Pf2 <)+ 2

< c1E,Ru{f estaF,0): Pf2 <r}+ %

< 1By Rl f € StalF, 0): Py 2 < 2r) + &F
n
< yn(r).
Choosingr = r{, Lemma 4.3 shows that with probability at least Pe™",
4.1) ri <r*.

Also, for allr > 0,
Y1(r) = BER,{f € sta(F,0): Pf* <r},
and so from Theorem 3.3, with probability at least 2=, every f € ¥ satisfies

6Kry (11+5BK)x
P, 1 .
K-1 f+ B + n

Combining this with (4.1) gives the first result. The second result is proved in a
similar manner. OJ

Pf <

PROOF OFTHEOREM4.2. Consider the functions
V1(r) = SER,{f € staxs . 0): Pf? < r} + (2= ca)x
and

Yo(r) = c1iER,{f € stalF,0): Pf2 <r} + %



1516 P. L. BARTLETT, O. BOUSQUET AND S. MENDELSON

and denote by; andr; the fixed points ofy; andvr,, respectively. The proof of
Theorem 4.1 shows that with probability at least 2e™, ry < 7*.

Now apply Lemma 3.6 to show that if > ¥»(r), then with probability at
least 1— e™*,

(f estaF,0): P, f2<r} C{f esta(F,0): Pf><2r}.

Using this together with the second inequality of Lemma A.4 (with= 1/2)
shows that ifr > y»(r), with probability at least - 2¢7*,

Un(r) = 1B Ry {f € StalF, 0): P, f2 < 20} + 22
n
< c1v/2Ey Ryl f € stalF, 0): P, f2 < r} 4+ 25
n
< V2B, Ro(f € StalF, 0): Pf2 < 2r) + 21
n

372

2
< S clER,(f e StarF, 0): P2 <2r) + (cat2c)x
n

2
< 31ER, ([ € StarF, 0): Pf2 < r) 4 (2T 20X
n

< 3Ya(r),

where the sub-root property was used twice (in the first and second to last
inequalities). Lemma 4.3 thus givé$ < 9r5.
Also notice that for allr, ¥ (r) < ¥1(r), and hence* < rj. Moreover, for
all r > ¥ (r) (hencer > r* > c3x/n), Y2(r) < c1¥(r) + r, so thatyo(r*) <
(c1+ Dr* = (c1 + Dy (r*). Lemma 4.3 implies that; < (1+ cp)?r*. O

5. Prediction with bounded loss. In this section we discuss the application of
our results to prediction problems, such as classification and regression. For such
problems there are anput space X and aroutput space %, and the produck x Y
is endowed with an unknown probability measuteFor example, classification
corresponds to the case whéfas discrete, typicallyy = {—1, 1}, and regression
corresponds to the continuous case, typicglb: [—1, 1]. Note that assuming the
boundedness of the target values is a typical assumption in theoretical analysis
of regression procedures. To analyze the case of unbounded targets, one usually
truncates the values at a certain threshold and bounds the probability of exceeding
that threshold (see, e.g., the techniques developed in [12]).

The training sample is a sequencéX1, Y1), ..., (X,,Y,) of n independent
and identically distributed (i.i.d.) pairs sampled accordingPtoA loss function
£:Y x Y — [0, 1] is defined and the goal is to find a functigh XX — ¥ from a
class¥ that minimizes the expected loss

Et; =EL(f(X),Y).
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Since the probability distributio® is unknown, one cannot directly minimize the
expected loss oveF .

The key property that is needed to apply our results is the facvéngf] < BPf
(or Pf? < BPf to obtain data-dependent bounds). This will trivially be the case
for the clasq¢: f € ¥}, as all its functions are uniformly bounded and nonnega-
tive. This case, studied in Section 5.1, is, however, not the most interesting. Indeed,
it is when one studies the excess risk— ¢ ¢« that our approach shows its superi-
ority over previous ones; when the clggg — ¢ s+ } satisfies the variance condition
(and Section 5.2 gives examples of this), we obtain distribution-dependent bounds
that are optimal in certain cases, and data-dependent bounds of the same order.

5.1. General results without assumptions. Define the following class of
functions, called théoss class associated with £:

br = feFy={x. > Lfx),y): feF}

Notice that¢# is a class of nonnegative functions. Applying Theorem 4.1 to this
class of functions gives the following corollary.

COROLLARY 5.1. For alossfunction ¢:Y x Y — [0, 1], define
~ 5 13«
Y, (r) =20Es R, {f e stalg,0): P, f“ < 2r} + —,
n
with fixed point 7*. Then, for any K > 1 with probability at least 1 — 3¢7*,

11+ 5K
Pnzf+6Kf*+x7( +5K)

VfieF Pir <
f f_K—l n

A natural approach is to minimize the empirical la8gl s over the classF .
The following result shows that this approach leads to an estimate with expected
loss near minimal. How close it is to the minimal expected loss depends on the
value of the minimum, as well as on the local Rademacher averages of the class.

THEOREM5.2. For alossfunction £: Y x Y — [0, 1], define ¥ (r), ¥ (r), r*
and 7* asin Theorem5.1.Let L* = inf ;e P£ ;. Then there is a constant ¢ such
that with probability at least 1 — 2¢~*, the minimizer f € ¥ of P,¢; satisfies

Plp<L"+ c(VL*r*4r¥).
Also, with probability at least 1 — 4e™*,

Plp <L*+c(VL*F* +77).
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The proof of this theorem is given in Appendix A.2.

This theorem has the same flavor as Theorem 4.2 of [19]. We have not used
any property besides the positivity of the functions in the class. This indicates that
there might not be a significant gain compared to earlier results (as without further
assumptions the optimal rates are known). Indeed, a careful examination of this
result shows that wheh* > 0, the difference betweeﬁz andL* is essentially
of order v/r*. For a class off0, 1}-valued functions W|th VC-dimensiod, for
example, this would bg/dlogn/n. On the other hand, the result of [19] is more
refined since the Rademacher averages are not localized around 0 (as they are
here), but rather around the minimizer of the empirical error itself. Unfortunately,
the small ball in [19] is not defined a@,¢ y < Pn€f+r butaspP,fy < 16P,,€f+r.

This means that in the general situation whére> 0, since P,,E}; does not
converge to 0 with increasing (as it is expected to be close Rﬁf which itself
converges taL*), the radius of the ball around (which is 15P, E + ) will

not converge to 0. Thus, the localized Rademacher average over this ball will
converge at speegd/n. In other words, our Theorem 5.2 and Theorem 4.2 of [19]
essentially have the same behavior. But this is not surprising, as it is known that
this is the optimal rate of convergence in this case. To get an improvement in the
rates of convergence, one needs to make further assumptions on the distribution
or on the clas¥ .

5.2. Improved results for the excess risk. Consider a loss functiod and
function class¥ that satisfy the following conditions.

1. For every probability distributiorP there is anf* € ¥ satisfying P£ s+ =
il’]ffejn~ Ply.

2. There is a constant such that¢ is L-Lipschitz in its first argument: for
all y, y1, y2,

€31, y) — £(I2, y)| < L1 — Y2l
3. There is a constar®® > 1 such that for every probability distribution and every
fefF,
P(f— f5%<BP(ly — ).

These conditions are not too restrictive as they are met by several commonly used
regularized algorithms with convex losses.

Note that condition 1 could be weakened, and one could consider a function
which is only close to achieving the infimum, with an appropriate change to
condition 3. This generalization is straightforward, but it would make the results
less readable, so we omit it.

Condition 2 implies that, for alf € F,

Py — )2 <L2P(f — )2
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Condition 3 usually follows from a uniform convexity condition dh An
important example is the quadratic l0&g/, y') = (y — y)2, when the function
class¥ is convex and uniformly bounded. In particular] jff(x) — y| € [0, 1] for
all fe¥,xeX andy € Y, then the conditions are satisfied with= 2 and
B =1 (see [18]). Other examples are described in [26] and in [2].

The first result we present is a direct but instructive corollary of Theorem 3.3.

COROLLARY 5.3. Let F be a class of functions with ranges in[—1,1] and
let £ be aloss function satisfying conditions 1-3above. Let f be any element of
satisfying P,,Ef =infscs Pyl y. Assume y isa sub-root function for which

¥(r) = BLER,{f € F . L*P(f — fH)? <r}.
Then for any x > 0 and any r > v (r), with probability at least 1 — ™,
(11L 4+ 27B)x

-

P —p) <7052 + .
PROOF One applies Theorem 3.3 (first part) to the cldgs— £ with

T(f) = L?P(f — f*)? and uses the fact that by Theorem A.6, and by the sym-
metry of the Rademacher variabldsER, { f : L?P(f — f*)?> <r} > ER,{{; —
L« L2P(f — f*)% <r}. The result follows from noticing tha®, (p—tp)<0.
‘ O

Instead of comparing the loss gfto that of f*, one could compare it to the loss
of the best measurable function (the regression function for regression function
estimation, or the Bayes classifier for classification). The techniques proposed here
can be adapted to this case.

Using Corollary 5.3, one can (with minor modification) recover the results
of [22] for model selection. These have been shown to match the minimax results
in various situations. In that sense, Corollary 5.3 can be considered as sharp.

Next we turn to the main result of this section. It is a version of Corollary 5.3
with a fully data-dependent bound. This is obtained by modifyinig three ways:
the Rademacher averages are replaced by empirical ones, the radius of the ball is
inthe L>(P,) norm instead of.»(P), and finally, the center of the ball jéinstead
of f*.

THEOREM 5.4. Let £ be a convex class of functions with range in[—1,1]
and let £ be a loss function satisfying conditions 1-3above. Let f be any element
of ¥ satisfying P,,Ef =infscs Pt y. Define

(51) {[';l’l(r):ClEURn{fE?:Pn(f—f)zﬁc:;r}_k%’
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where c; = 2L(B v 10L), ¢z = 11L% 4 ¢1 and ¢3 = 2824+ 4B(11L + 27B)/c».
Then with probability at least 1 — 4e ™,
705 (11L + 27B)x

P(Lj—tp) < 7"+
n

where 7* is the fixed point of /,,.

REMARK 5.5. Unlike Corollary 5.3, the clasg in Theorem 5.4 has to be
convex. This ensures that it is star-shaped around any of its elements (which
implies thaty, is sub-root even thoug}f is random). However, convexity of the
loss class is not necessary, so that this theorem still applies to many situations of
interest, in particular to regularized regression, where the functions are taken in a
vector space or a ball of a vector space.

REMARK 5.6. Although the theorem is stated with explicit constants, there is
no reason to think that these are optimal. The fact that the constant 705 appears
actually is due to our failure to apply the second part of Theorem 3.3 to the initial
loss class, which is not star-shaped (this would have given a 7 instead). However,
with some additional effort, one can probably obtain much better constants.

As we explained earlier, although the statement of Theorem 5.4 is similar to
Theorem 4.2 in [19], there is an important difference in the way the localized
averages are defined: in our case the radius is a constanttimhbie in [19] there
is an additional term, involving the loss of the empirical risk minimizer, which may
not converge to zero. Hence, the complexity decreases faster in our bound.

The additional property required in the proof of this result compared to the
proof of Theorem 4.1 is that under the assumptions of the theorem, the minimizers
of the empirical loss and of the true loss are close with respect th4h2) and
the Lo(P,) distances (this has also been used in [20] and [31, 32]).

PrROOF OFTHEOREMb5.4. Define the function as

(52) v = —ER (f e F L2P(f — f*)2 <y} + 22V

Notice that sinceF is convex and thus star-shaped around each of its points,
Lemma 3.4 implies thaiy is sub-root. Now, forr > y(r) Corollary 5.3 and
condition 3 on the loss function imply that, with probability at least 4~*,

(11L + 27B)BL2x
- .

(5.3) L°P(f—f*%< BLZP(EJ; — £y+) < TOBL%r +

Denote the right-hand side by Sinces > r > r*, thens > y(s) (by Lemma 3.2),
and thus
2

111
s> 10L2ER,{f € F:L2P(f — f*)2 <s} 4+ ——
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Therefore, Corollary 2.2 applied to the clak§ yields that with probability at
least 1— e,
(feF, LPP(f — [ <s)C{f € F,LPPu(f — [H? < 2s).
This, combined with (5.3), implies that with probability at least 2¢~*,
(11L + 27B)Bx>

n

Pu(f — )2 < 2(70& +
(5.4)

11L 4+ 27B)B
<2(7054 2D,

c2

where the second inequality follows frane v (r) > cox/n. Definec = 2(705+
(11L 4 27B) B/c). By the triangle inequality irL2(Py), if (5.4) occurs, then any
f € ¥ satisfies

Puf = P2 = (JPuCf — 924+ PuCf* — F)2)?

< (YPu(f = f)2 + er )2,

Appealing again to Corollary 2.2 applied IoF as before, but now far > ¢ (r),
it follows that with probability at least + 3¢,

(feFL?P(f - fH?<r)
ClfeF L2P,(f — )? < (V24 c)*L%).
Combining this with Lemma A.4 shows that, with probability at least4e™~,

Y (r) < 1B Ry(f € F:L?P(f — [ <r}+ %
< c1Bo R f 1 Pa(f — [92 < (V24 ) r} + %
< 1B Ralf : Pa(f = f)7 = 4+ 20)r) + ==

< Un(r).

Settingr = r* in the above argument and applying Lemma 4.3 shows-thatr*,
which, together with (5.3), concludes the proof.]

6. Computing local Rademacher complexities. In this section we deal with

the computation of local Rademacher complexities and their fixed points. We first
propose a simple iterative procedure for estimating the fixed point of an arbitrary
sub-root function and then give two examples of situations where it is possible
to compute an upper bound on the local Rademacher complexities. In the case of
classification with the discrete loss, this can be done by solving a weighted error
minimization problem. In the case of kernel classes, it is obtained by computing
the eigenvalues of the empirical Gram matrix.
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6.1. The iterative procedure. Recall that Theorem 4.1 indicates that one can
obtain an upper bound in terms of empirical quantities only. However, it remains
to be explained how to compute these quantities effectively. We propose to use a
procedure similar to that of Koltchinskii and Panchenko [16], by applying the sub-
root function iteratively. The next lemma shows that applying the sub-root function
iteratively gives a sequence that converges monotonically and quickly to the fixed
point.

LEMMA 6.1. Lety :[0, o0) — [0, o0) bea (nontrivial) sub-root function. Fix
ro > r*, and for all k > 0 define rp 1 = ¢ (ry). Thenfor all N > 0, ry11 <rn,

and
2—N
ro
rf<ry < (—) r¥.
r*

In particular, for any ¢ > 0, if N satisfies
|n(ro/r*))
N >1 —,
= OgZ(In(l—i-s)
thenry < (1+&)r*.

PrROOF Notice that ifry > r*, thenryy1 = ¥ (ry) > ¥ (™) = r*. Also,

V() _ Yr”)
=< =r* < 7,
ARV
and sory41 < rx andry1/r* < (ri/r*)Y2. An easy induction shows thag /r* <
(ro/r?". O

Notice that in the results of [16], the analysis of the iterative procedure was tied
to the probabilistic upper bounds. However, here we make the issues separate: the
bounds of previous sections are valid no matter how the fixed point is estimated.
In the above lemma, one can use a random sub-root function.

6.2. Local Rademacher complexities for classification loss classes. Consider
the case wher® = {—1, 1} and the loss is the discrete logsy, y') = 1[y # y'].
Sincet¢? = ¢, one can write

Ey Ru{f € stants, 0): P, f2 < 2r}
=EoRpfals:a€(0,1], f € F, Pyl5 < 2r/a?)
=E,Ryfals:ae (0,1, f € F, Pl s <2r/a?)

= sup aE, R, {ls:f €F, Poly <2r/a?)
ae(0,1] ) ’

= sup aBE,R.{ls:feF, Pty <2r/a?),
aelv/2r 1]



LOCAL RADEMACHER COMPLEXITIES 1523

where the last equality follows from the fact th@té » < 1 for all f. Substituting
into Corollary 5.1 gives the following result.

COROLLARY 6.2. Let Y = {41}, let ¢ be the discrete loss defined on Y and
let F be a class of functions with rangesin Y. Fix x > 0 and define

. 26x
Un(r) =20 sup aBE,R,{l;:feF, Ply<2r/a®}+ —.
aelV2r.1] n

Then for all K > 1, with probability at least 1 — 3¢, for all f € F,

K
Pty <
‘ K

X
Pl K|(7* —),
1 ftc (r —i—n
where 7* is the fixed point of ,,.

The following theorem shows that upper boundsyor(r) can by computed
whenever one can perform weighted empirical risk minimization. In other words,
if there is an efficient algorithm for minimizing a weighted sum of classification
errors, there is an efficient algorithm for computing an upper bound on the
localized Rademacher averages. The empirical minimization algorithm needs to be
run repeatedly on different realizations of #he but with fast convergence toward
the expectation as the number of iterations grows. A similar result was known for
global Rademacher averages and this shows that the localization and the use of
star-hulls do not greatly affect the computational complexity.

THEOREMG6.3. Theempirical local Rademacher complexity of the classifica-
tion loss class, defined in Corollary 6.2, satisfies

. 26x
Un(r)=c sup aBsR,{ls:f€F, Py <2rfa?}+ —

aelv2r.1]
(2 1 1 & 26x
<c sup oE,min (—2—§)u+§2|m+uYil—J(M) +—,
aclvzray PO\ i=1 n

where

J( )—minli + wYile(f(Xi), sign(o; + nY;))
M _fefnizllal wYi|€(f(X;),sign(o; + nY;)).

The quantity /(i) can be viewed as the minimum of a certain weighted
empirical risk when the labels are corrupted by noise and the noise level is
determined by the parameter (Lagrange multiplier)using the fact that/ (u)
is Lipschitz inu, a finite grid of values off (1) can be used to obtain a functign
that is an upper bound af,. Then the functiom — /r sup. ¢ (+')//r’ is a sub-
root upper bound of,,.
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In order to prove Theorem 6.3 we need the following lemma (adapted from [1])
which relates the localized Rademacher averages to a weighted error minimization
problem.

LEMMA 6.4. For every b € [0, 1],
EsRu{ly: feF, Pily <b}
=1 —E,min{P,L(f(X),0): f € F, Put(f(X),Y) <b}.

PrROOF Notice that fory, y’' € {£1}, £(y, y) =1y # y'1=|y — y'|/2. Thus

2> oil(f(X).Yi) = Y alfX)—1+ > oilf(X)+1]

i=1 i:Y=1 iiY=-—1
= > oiR-IfXD+1)+ > alfX)+1
i:Y;=1 i:Yi=-1

=) Yol f(X)+1+2 ) o
i=1

i:Y;=1

Because of the symmetry of, for fixed X; the vector(—Y;0;)?_; has the same
distribution ag(o;)_;. Thus when we take the expectation, we can replace;
by o;. Moreover, we have

YooilfXp+1= Y IfX)+1+ Y. —IfX)+1
i=1

iio;=1 iio=—1

= > @-1fXy-1+ > —If&X)+1

i:o;=1 iioi=—1
n
=Y —IfXp)—oil+2 > 1,
i=1 iioj=—1

implying that
EsRu{ly:feF, Pyly <b}

=%<EU Y oi+Es Y 1

i:Y;=1 iioj=—1
+ Eosup—Pol(f(X).0): f € F, Pol(f(X),Y) < b}),

which proves the claim. [
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PROOF OFTHEOREM6.3. From Lemma 6.4,

Un(r)=c sup a(} —E, min{P,,e(f(X),a):
aelv2r,1] 2
feF, P(f(X), Y)<&})+@

n

Fix a realization of they;. It is easy to see that whem > 0, eachf for which
P L(f(X),Y) < 2r/a? satisfies

Pat(100,0) 2 Pat(7 0. 0) 4 ( Bat(7X0, 1) - 5 ).

Let L(f, u) denote the right-hand side and fgiu) = mingcs L(f, u). Then
min{ P, ¢(f(X),0): f € F, PL(f(X),Y) < 2r/a?} > g(n).

But, using the fact that(y, y) = (1 —y¥y)/2,

2r
8(w) = min - Z (f (Xi), 01) + pl(f(XD). Yi) = —

92

_ i Z(l f(X)olwl—f(Xi)Yi)_Zr

feF n 2 o
-1 1— f(X;)sign(o; + uY;) |0i+MYi|)
= min - + 1Y —
fe|$ni§1<|az+,u il 2 >
1+pn 2
2 a?

1 .
= min - g loi + 1Y e(f(X;), sign(o; + nYy))

1+pn 2
——Z|O‘,—{—MY|—}— 2 0{2'

i=1
Substituting gives the result]

6.3. Local Rademacher complexitiesfor kernel classes. One case in which the
functionsy and,, can be computed explicitly is whef is a kernel class, that
is, the unit ball in the reproducing kernel Hilbert space associated with a positive
definite kernek. Observe that in this casg is a convex and symmetric set.

Let k be a positive definite function of, that is, a symmetric function such
that for alln > 1,

n
VXx1,....,.%, € X, Yog,...,a, € R Zoc[ocjk(x,-,xj)zo.
i,j=1
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Recall the main properties of reproducing kernel Hilbert spaces that we require:

(&) The reproducing kernel Hilbert space associatedmigthe unigue Hilbert
space# of functions onX such that for allf € £ and allx € X, k(x, -) € # and

(6.1) J&)=(f k(x,)).

(b) # can be constructed as the completion of the linear span of the
functionsk(x, -) for x € X, endowed with the inner product

<Za,-k(x,-, 0. Y Bik(y;, -)>= Z i Bik(xi, yj).
i=1 j=1 i,j=1

We use| - || to denote the norm igt.
One method for regression consists of solving the following least squares
problem in the unit ball of#¢:

. 12 2
min — X;)—Y)".
feH:|\fl<ln g(f( ) )

Notice that considering a ball of some other radius is equivalent to rescaling the
class. We are thus interested in computing the localized Rademacher averages of
the class of functions

F={feH:fl=1).

Assume thatEk(X, X) < oo and defineT : Lo(P) — L2(P) as the integral
operator associated with and P, that is, Tf(-) = [k(-,y) f(y)dP(y). It is
possible to show that is a positive semidefinite trace-class operator. @t
be its eigenvalues, arranged in a nonincreasing order. Also, given an i.i.d. sample
X1,..., X, from P, consider the normalized Gram matrix (kernel matrix)

7, defined ad;, = L(k(X;, X))i,j=1,..»- Let ()" be its eigenvalues, arranged
in a nonincreasing order.

The following result was proved in [24].

THEOREMG6.5. For everyr > 0,

5 o 1/2
IERn{fe?:szfr}f(;gmin{r,)\i}> .

Moreover, there exists an absolute constant ¢ such that if A1 > 1/n, then for every
r>1/n,

1. 1/2
ER,,{fe?:szfr}zc<—Zmin{r,Ai}) .
21

The following lemma is a data-dependent version.
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LEMMA 6.6. For everyr > 0,
Ean{fe}‘:Pnfzgr}s(—Zmin{r,ii}> .
ni=1

The proof of this result can be found in Appendix A.2. The fact that we have
replacedP f2 by P, f2 and conditioned on the data yields a result that involves
only the eigenvalues of the empirical Gram matrix.

We can now state a consequence of Theorem 5.4 for the proposed regression
algorithm on the unit ball of#¢.

COROLLARY 6.7. Assume that sup.cyk(x,x) < 1. Let F = {f € #:
I £l <1} and let ¢ be a loss function satisfying conditions 1-3. Let f be any
element of 7 satisfying P, £ » =infres Pl .

There exists a constant ¢ depending only on L and B such that with probability
atleast 1 — 6e~*,

X
PU:,—1l) <c|F* —),
(f f)_c<r —I—n

Ak

r-< - min | — E k

_O<h<n<l’l . )
l>h

We observe that* is at most of order L,/n (if we takehk = 0), but can be of
order logn/n if the eigenvalues of;, decay exponentially quickly.

In addition, the eigenvalues of the Gram matrix are not hard to compute, so that
the above result can suggest an implementable heuristic for choosing theikkernel
from the data. The issue of the choice of the kernel is being intensively studied in
the machine learning community.

where

PROOF Because of the symmetry of the and because is convex and
symmetric,

EoRu(f € F:Pu(f = )’ <cary =BoRulf — f: f € F, Pu(f = /)? <car)
<EoRu(f—8:f.8€F, Pu(f —8)% <car)
:2E0Rn{f:fefi~’,P,1f <car/4}.
Combining with Lemma 6.6 gives

2c1Es Ru{f € F: Pu(f — )2 <car}+

1/2
<4cl< Zmln{ s A}) +M_

(c2+2)x
n

n
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Let ¢, (r) denote the right-hand side. Notice that is a sub-root function, so the
estimate of Theorem 5.4 can be applied. To compute the fixed poB{f first
notice that adding a constamtto a sub-root function can increase its fixed point
by at most 2. Thus, it suffices to show that

2 c3r vz
. 3" A
<4cq| - miny —, A;

implies

h 1 A~
6.2 <c¢ min | — — ) A
( ) r_605h5n(n+ nl.; )

for some universal constant Under this hypothesis,
2 n
r 2 . [c3r -
— ) <-=) minj—,;
(4(:1) - ”Z: { 4 l}
i=1
=2 min S E LY
"~ n Sc{l....n) 4 '

= i¢s
2 cahr N
=~ min (T + Zki>.
Solving the quadratic inequality for each valueiadives (6.2). O
APPENDIX

A.l. Additional material. This section contains a collection of results that is
needed in the proofs. Most of them are classical or easy to derive from classical
results. We present proofs for the sake of completeness.

Recall the following improvement of Rio’s [29] version of Talagrand’s concen-
tration inequality, which is due to Bousquet [7, 8].

THEOREMA.L1l. Letc > 0,let X; be independent random variables distrib-
uted according to P and let ¥ be a set of functions from X to R. Assume that all
functions f in F satisfyEf =0and || f||oc < c.

Let o be a positive real number such that o2 > sup;. Var[ f (X;)]. Then, for
any x >0,

PZ>EZ+x) < exp(—vh(i»,
Ccv

where Z = supyz Y7y f(Xi), h(x) = (14 x)log(1+ x) — x and v = no? +
2cEZ. Also, with probability at least 1 — e ™%,

ZfEZ—i—«/va—i—%.
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In a similar way one can obtain a concentration result for the Rademacher
averages of a class (using the result of [5]; see also [6]). In order to obtain the
appropriate constants, notice that

Eo SUpY oi f(X;)) =Eo, sup) oi(f(Xi) — (b —a)/2)

feFi=1 feFi=1

and|f —(b—a)/2| < (b—a)/2.
THEOREMA.2. Let F beaclassof functionsthat map X into [a, b]. Let

n
Z=Ey;sup) oif(X;) =nEsR,F.
JeF iz

Then for all x >0,

Pr(Z SEZ 4B _anEz s D _Ga)x ) <e ¥

and

P(Z<EZ—-y(b—a)xEZ)<e™.

LEMMA A.3. Foru,v >0,
Vu+v<Ju+ v,

and for any o > 0,

v
2/uv <au+ —.
o

LEMMA A.4. Fix x > 0, and let F be a class of functions with ranges
in [a, b]. Then, with probability at least 1 — e,

. 1 (b—a)x
ER,F < Inf EsR,F +——").
_ae(o,l)(l—oz + 4na(1—a))

Also, with probability at least 1 — e™*,

. b—a)x/ 1 1
EaRn:? S(LE%<(1+Q)ERW(F + 2n <% + é))

PROOF The second inequality of Theorem A.2 and Lemma A.3 imply that
with probability at least - ¢™*,

b_
ER,F <EoR,F + b-axpp &
n

(b—a)x
dna

<E;R,F +aER,F +

k)
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and the first claim of the lemma follows. The proof of the second claim is similar,
but uses the first inequality of Theorem A.2]

A standard fact is that the expected deviation of the empirical means from the
actual ones can be controlled by the Rademacher averages of the class.

LEMMA A.5. For any class of functions %,

x(IEsup(Pf P, f), Esup(P f— Pf))gZER,,J’-‘.
feF feF

PROOF Let X7,..., X, be an independent copy d&fy, ..., X,, and setP,
to be the empirical measure supported X{1..., X;. By the convexity of the
supremum and by symmetry,

Esup(Pf — Py f) =ESupEP, f — P, f)
feF feF
<Esup(P, f — P, f)
feF

1
= —Esup[Za,f(X ) — o f(X; )}

”fej‘-"ll

<1EsupZalf(X)+ Esupz —o; (X))

n fE

=2EsupRnf.

feF

Using an identical argument, the same holdsApy — Pf. O

In addition, recall the following contraction property, which is due to Ledoux
and Talagrand [17].

THEOREMA.6. Let¢ beacontraction, thatis, |¢p(x) —¢(y)| < |x —y|. Then,
for every class F,

EsRypoF <EsR,F

wherepo F :={po f: f e F}.

The interested reader may find some additional useful properties of the
Rademacher averages in [3, 27].
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A.2. Proofs.

PROOF OF THEOREM 2.1. Define V* = sup;cz(Pf — P, f). Since
SUpses Var[ f(X)] <r, and||f — Pflloo <b—a, TheoremA 1 implies that, with
probability at least - e¢™*,

2xr 4dx(b-a)EVt (b-a)x
Ty + .
n n 3n

V*gEV++\/

Thus by Lemma A.3, with probability at least-le™*,

[2 11
v* < inf <(l+oc)EV+_|_ ﬁ+(b_a)(_+_>§>‘
a>0 n 3 a/n

Applying Lemma A.5 gives the first assertion of Theorem 2.1. The second part
of the theorem follows by combining the first one and Lemma A.4, and noticing
that inf, f () + infy, g(a) < infy(f () + g(@)). Finally, the fact that the same
results hold for sup.+ (P, f — Pf) can be easily obtained by applying the above
reasoning to the class¥ = {—f: f € ¥} and noticing that the Rademacher
averages of ¥ and ¥ are identical. [

PROOF OFLEMMA 3.2. To prove the continuity af, letx > y > 0, and note
that sincey is nondecreasingy (x) — ¥ (y)| = ¥ (x) — ¥ (y). From the fact that
¥ (r)/+/r is nonincreasing it follows that (x)/./y < +/x¥(y)/y, and thus

vx) —y(y) = fm—i/f(y) w(y)[ “/_

N vy
Letting x tend toy, |¥(x) — ¥ (y)| tends to O, and) is left-continuous aty.
A similar argument shows the right-sided continuityof

As for the second part of the claim, note thatx)/x is nonnegative and
continuous on(0, oo), and since 1./x is strictly decreasing on0, co), then
¥(x)/x is also strictly decreasing.

Observe that ifiy (x)/x is always larger than 1 ofD, co), then lim_, oo ¥ (x)/
J/x = oo, which is impossible. On the other hand,f(x)/x < 1 on (0, c0),
then lim, .0y (x)/4/x = 0, contrary to the assumption thatis nontrivial. Thus
the equationy (r)/r = 1 has a positive solution and this solution is unique by
monotonicity.

Finally, if for somer > 0, r > ¥ (r), theny(¢)/t < 1 for all ¢ > r [since
¥ (x)/x is nonincreasing] and thug < r. The other direction follows in a similar
manner. [J

PROOF OF LEMMA 3.4. Observe that, by symmetry of the Rademacher
random variables, one has(r) = E,R,{f — f: f € F, T(f— f) <r} so that,
by translating the class, it suffices to consider the case whes®.
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Note thatys is nonnegative, since by Jensen’s inequality

Es SUPR, f > SUPE,R, f =0.
feF feF
Moreover,y is nondecreasing sindef € F :T(f) <r}Cc{f e F:T(f) <r'}
for r <r’. It remains to show that for any0ry < rp, ¥ (r1) > /r1/r2- ¥ (r2). To
this end, fix any sample and any realization of the Rademacher random variables,
and setfp to be a function for which

n
sup > oif(xi)
feF.T(f)sr2i=1
is attained (if the supremum is not attained only a slight modification is required).
Since T (fo) < r2, then T(/r1/r2 - fo) < r1 by assumption. Furthermore,
since ¥ is star-shaped, the functiogr1/r> fo belongs toF and satisfies that

T (J/r1/r2fo) <ri. Hence
sup Zalf(xl) > Zo'l\/7 fO(xt

JeF T(f)<rij—1
=,/— sup me(x,
2 feF :T(f)<rzj—1

and the result follows by taking expectations with respect to the Rademacher
random variables. [J

PROOF OF COROLLARY 3.7. The proof uses the following result of [11],
which relates the empirical Rademacher averages to the emgidcahtropy of
the class. The covering numhafi(e, F, L2(P,)) is the cardinality of the smallest
subAset?A“ of Lo(P,) for which every element of¢ is within ¢ of some element
of ¥

THEOREMA.7 ([11]). Thereexistsan absolute constant C such that for every
class ¥ and every X1, ..., X, € X,

E Rsf<£/oo\/lo N(e, F,La(Py))de
o \n _\/EO g s I, L2y

Define the sub-root function

W (r)=10ER,{f € sta(F,0): Pf2 <r}+ lllogn'

If » > (r), then Corollary 2.2 implies that, with probability at least 1./n,
(f estalF, 0): Pf2 <r} C{f estalF,0): P, f> < 2r),
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and thus
ER,{f € sta(F,0): Pf2<r} <ER,{f e sta(F,0): P, f*> < 2r} + %
It follows thatr* = ¢ (+*) satisfies
(A1) r*510ER,,{festal(?,O):P,,fZSZr*}—i—M.
But Theorem A.7 shows that
ER,{f € sta(F,0): P, f% < 2r*}

=< ’ ’ ’ n .

It is easy to see that we can construckacover for staf¥ , 0) using arne/2-cover

for  and ane /2-cover for the intervalO, 1], which implies
2
log N (e, Star(F , 0), La(Py)) < |ogdv<g, 7, Lz(Pn)> ([j + 1).
Now, recall that [14] for any probability distributio®® and any classF with
VC-dimensiond < oo,

€ 1

Iogav(é, F, L2(P)> <cd Iog(—).

€

Therefore

Vor®
ER,(f € StatF, 0): P, f% < 2} fﬁ/ /|og(}) de
n Jo €
- [edr*log(1/r*)
N n

2 *
S\/C(d_z_i_dr Iog(n/ed)),
n n

wherec represents an absolute constant whose value may change from line to line.
Substituting into (A.1) and solving for* shows that

< cd |Og(n/d),
n

providedn > d. The result follows from Theorem 3.3

PROOF OF THEOREM 5.2. Let f* = argminsey PLy. (For simplicity,
assume that the minimum exists; if it does not, the proof is easily extended by
considering the limit of a sequence of functions with expected loss approaching
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the infimum.) Then, by definition off, Pplp < Pl e, Since the variance

of £¢+(X;, Y;) is no more than some constant times we can apply Bernstein’s
inequality (see, e.g., [10], Theorem 8.2) to show that with probability at
least 1— e %,

Plgx x N L*x «x
PngASPnﬂf*SPEf*‘FC +—)=L"+c¢ +—1.
f n n n n

Thus, by Theorem 3.3, with probability at least Pe™*,

P{;< K L* + L*x+x +K(*+x>
n c - C r - ].
f=K-1 n n n

%
K1 max(L ,x/n)’
r*

noting thatr* > x /n and simplifying gives the first inequality. A similar argument
using Theorem 4.1 implies the second inequalityl

Setting

PROOF OFLEMMA 6.6. Introduce the operat@i, on # defined by
(€ ) = %éf(xakoc,-,x),
so that, using (6.1), )
(g Caf) = %éf(xi)gom,

and(f, C, f) = P, f2, implying thatC, is positive semidefinite.
Suppose that is an eigenfunction of’,, with eigenvalue.. Then for alli

A (X)) =(Cu ) (Xi) = % D FX KX, Xi).
j:l
Thus, the vector f(X1), ..., f(X,)) is either zero (which implieé‘nf =0and
hence\ = 0) or is an eigenvector of, with eigenvalue.. Conversely, iff,v = Av
for some vectow, then
R n 1 n )\. n
cn<2u,-k(x,~, -)) == > vik(Xi, X k(X ) = - > vik(X;, ).
i=1 i,j=1 j=1
Thus, the eigenvalues @f, are the same as thdargest eigenvalues @f,, and the
remaining eigenvalues @, are zero. Let);) denote these eigenvalues, arranged
in a nonincreasing order.
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Let (®;);>1 be an orthonormal basis ¢¥ of eigenfunctions of, (such that
®; is associated with;). Fix 0 < 4 < n and note that for any € #

Y oif(Xi) = <f, > oik(X;, ')>
i—1

i=1

Il
/\

h h
AR
j=1

j=1

+<f, Z<Xn:a,-k(xi, ), c1>,>c1>j>.

j>h\i=1

:!: <ZO’,‘/€(XZ', '), q)j>q)j>
Aj

If | fIl<1and
r>Pofi=(f.Cuf) = Ailf. ®;)

i>1

then by the Cauchy—Schwarz inequality

Y 2
Y ooif(Xi) < Z <Zﬁzk(Xz, ), Pj >
i=1

j=1 ]
(A.2)
n 2
Z<Za,-k(x,~,-),c1>,> :
j>h\i=1
Moreover,

2
1 " 1
;E0<201k(Xl’)a(D]> _E Z 00y k(Xl’ ) D, )(k(Xla)sq>]>

i=1 if=1

1
= ;pk(&,‘),cbj)z

which implies the result. O
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