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Consider the multiple testing problem of testikgnull hypotheses,
where the unknown family of distributions is assumed to satisfy a certain
monotonicity assumption. Attention is restricted to procedures that control
the familywise error rate in the strong sense and which satisfy a monotonicity
condition. Under these assumptions, we prove certain maximin optimality
results for some well-known stepdown and stepup procedures.

1. Introduction. For classical single-stage multiple comparison procedures,
a number of optimality results are available. (See, e.g., [6], Chapter 11, and [11],
Chapter 7 particularly Sections 7.9 and 7.10.) However, no such literature exists
for the more recent stepdown and stepup methods. It is the purpose of the present
paper to establish optimality properties for procedures of the latter kind.

Our setup and conditions are those of Lehmann [9], who discusses such an
optimality result for the testing of two hypotheses. For the general problem of
testingk null hypothesedHy, ..., Hy, considerk random variablesX, ..., Xi;
typically, these are test statistics for the individual hypotheggs..., H;.

We assume thakX = (X1,..., X;) has somek-dimensional joint cumulative
distribution functionF (-) indexed byd = (61, ..., 6;) in RX. The null hypothesis
H; state®); < 0, which is being tested against the alternatites 0.

Stepdown procedures were initiated by Holm [7], while the stepup approach
can be found in [2, 5, 8, 14, 16]. Background material on stepwise procedures is
provided by Hochberg and Tamhane [6] and Westfall and Young [18]. Roughly
speaking, stepdown procedures start by rejecting the most significant hypothesis
(corresponding to the larget;) and then they sequentially consider the most
significant of the remaining hypotheses. Alternatively, stepup procedures start with
the least significant hypothesis (corresponding to the smallgst

Our optimality results require crucial monotonicity assumptions and restric-
tions. We say that a regiom of x values is a monotone increasing region if
x=(x1,...,x;) € M andx; < y; implies thaty = (y1, ..., y¢) is also in.M. We
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assume of our model that increased value lgfad to higher values of, specif-
ically, that if6; < y;, then

Q) ]Mng(xl,...,xk)§/MdFy(x1,...,xk)

for every monotone increasing regioft. This assumption holds, in particular,
if the distributionsFy have densitiegpy with (increasing) monotone likelihood
ratio; that is, ifx = (x1,...,x¢), y = 1,..., ), 0 = (61,...,6) and o’ =
01, ...,0;), then

Do (x) - por(y)
po(x) — po(y)

whenevery; < y; for all i andg; <6’ for all j. This notion of monotonicity was
studied in [10]; other notions of stochastic ordering are discussed in [12].

In addition to condition (1), we will assume an analogous monotonicity property
for the distribution of(61X31, ..., 8Xy), for any §; € {—1, 1}. Specifically, for
every monotone increasing regiai ands; 0; < §;y;,

(2) / dFy(81x1, ..., 0kxk) < / dF,(d1x1, ..., Skxp).
M M

For example, the condition foi—X3, ..., —X}) means that for any monotone
decreasing regios’ (the complement of a monotone increasing region), the
inequality (1) is reversed; that is, the probability of the evgfite M’} increases
as6 decreases (in each component).

Under these assumptions, we shall restrict attention to decision rules satisfying
the following monotonicity condition. A decision rul® based onX states for
each possible value of X the subsef = I, of {1,..., k} of valuesi for which
the hypothesidy; is rejected. A decision rul® is said to be monotone if

xi <y fori eI, buty; < x; fori ¢ I,

implies that/, = I,. Thus, the subset of values that results in rejecting all
hypotheses is a monotone increasing region. More generally, @iX(1, ..., k}
and, based on a monotone decision rule Mgt denote the set of values such
thatl, =1.If §; =1 fori € I ands; = —1 otherwise, then

{(B1xa, ..., Skxp) i (x1, ..., xk) € My}

is a monotone increasing set. By assumption (2), the probability of this set is
increasing ins; 6;.

Among all monotone decision rules that provide strong control of the family-
wise error rate (FWER), that is, of the probability of committing a Type 1 error by
wrongly rejecting one or more true hypotheses, under any configuration of true and
false null hypotheses we shall show how to maximize certain aspects of the power
of the procedures (i.e., of the probability of correctly rejecting false hypotheses).
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However, we note that we are not restricting attention to any kind of stepwise
procedure; rather, the resulting optimal procedures take the form of well-known
stepwise procedures, which will be fully described later.

Here the restriction to monotone procedures is not just for convenience—the
results are not true without this restriction. It is, in fact, possible to improve
the rejection probability without violating the error control by adding small
implausible pieces to the rejection regions, resulting in decision rules that are very
counterintuitive. That this is possible is due to the fact that the bound for the error
control is not attained but only approached in the limit as some parameter values
tend tooo or —oo. For a discussion of the pros and cons of such counterintuitive
decision rules with references to the literature, see [13].

To conclude this introduction, we mention some situations in which the present
approach does and some in which it does not apply. As a first example, consider a
paired comparison experiment with pairs of observatiohsZz;). Let E(Y;) = u;
andE(Z;) = v;, and consider testing the hypotheses- v; — u; = 0 against the
alternativesy; > 0. If we put X; = Z; — Y; and base our inferences on ties,
this reduces to the situation considered here. This example can be extended to
the comparison of two treatments with; and n; observationsi(=1,..., k),
respectively, ork subjects. Another application is the comparisoit dfeatments
with a control. Hered; = u; — no, where theu; (i =1,...,k) and uo are the
means for the& treatments and the control, respectively.

On the other hand, the approach does not apply to the comparisén of
treatments, that is, the hypothegis u1 = - - - = uy, where in the case of rejection
one wishes to determine the pairs: j for which u; < iu;. As in the preceding
examples, the hypothesis can be reducedAtod, = --- = 6y = 0 with, for
example,6; = u; — w1. However, with the resulting procedure, one can only
determine the significant differences; — p; with i =1 and not those with
1<i<j.

In Section 2 we treat the case= 2 separately. In Section 3 we consider general
k for stepdown procedures, but make a further exchangeability assumption. The
corresponding results for stepup procedures are then provided in Section 4, though
a further assumption of monotonicity of critical values is invoked. Section 5 is a
brief conclusion and all proofs are deferred to Section 6.

Distributional assumptions. We supposé€Xi, ..., Xx) has a joint cumulative
distribution function Fy(-), indexed by# = (61, ...,6;) in R*. The parameter
space is a finite or infinite open rectangle with

of <6, <0V, i=1... k
Similarly, the sample space is assumed to be a finite or infinite open rectangle with

L U
X7 < Xi<x;,



OPTIMALITY OF STEPWISE PROCEDURES 1087

independent off. We further assume the distribution of any subcollection
{X;,i € I} depends only on thogg with i € I, and thatX; tends in probability
tox* as6; — 6F andX; tends in probability tor” as6; — 6Y.

To ease the notation, we assume here and in the remainder of the paggr that
varies in all ofR, so tha1z9iL =—00 andel.U = 0o. We also simplify the notation by
takingx! = —oo andx” = oco. In addition, we assume that the joint distribution
of X has a density with respect to Lebesgue measure; this is used only so that the
critical constants of the optimal procedures can be obtained for control at a given
level o to be achieved exactly, but this hypothesis can certainly be weakened. In
order for the critical constants to be uniguely defined, we further assume that the
joint density is positive on its (assumed rectangular) region of support, but this can
be weakened as well.

2. Thecasek =2. We are testing hypothesés and H, with H; correspond-
ing to #; < 0. Letwp o denote the part of the parameter space where Hgtand
H> are true; letwg 1 correspond to the part whe#, is true andH; is not true;
similarly for w10 andw; 1.

A decision ruleD analogously divides up the sample space into regifns
do,1, d1,0 anddy 1. For exampledp 1 corresponds to the region in the sample space
whereH1 is declared true anfl, is declared false. Also, le} be the region where
H; isrejected, s@y =d10Ud11 andds =do1Ud11.

We will restrict attention to rule® that are

3) monotone

and such that the

4) FWER< a.
Fore = (e1, £2) with &; > 0, consider subsets of elemeits, 6-) defined by
(5) A1(e) = {01 > €1} U {62 > &2}
and
(6) Ao(e) = {01 > e1} N {02 > &2}.
A decision rule is deemed good if the quantities
7 inf  Pyld§
(7) 9€T1<8) 9{do.o}
and
inf P,
(8) LA 9 {d1,1}

are large. As we will see, it isot possible to find a rulé satisfying (3) and (4)
that maximizes (7) and (8) simultaneously.
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In order to appreciate the criteria (7) and (8), first supppseA1(s). Then
at least one; is positive and so we would not want to conclude that k@th
are < 0; rather, we wish to concludé 5. Thus, maximizing (7) maximizes the
minimum probability that we do not concludeo as6 varies inA1(g). Similarly,
if 6 € Aa(e), then botlp; are positive, and so we wish to maximize the (minimum)
chance that we make the decisidiy .

In addition, we also consider the following notion of optimality. Again suppose
0 € A1(¢e), so that at least ong is positive. Then, as above, we do not want to
make the decisiodg 0. However, we also do not wish to make the decisign if,
in fact, H1 is false andH is true; we would rather make the correct decisieg.
So, we also consider the probability of maximizing
9) . I/?f Py{reject at least one false hypothégsis

€Ai(e)

In other words, the criterion (7) maximizes the minimum probability of rejecting
exactly least one hypothesis (regardless of which are true and false), while
criterion (9) maximizes the minimum probability of rejecting at least €aise
hypothesis. The latter criterion seems more compelling, though the former
criterion might be justified in a situation where it is important to know that the
joint null hypothesis (i.e., the global hypothesis that both hypotheses are true) is
not true. In any case, we shall see that the same optimal procédarises from
both criteria.

THEOREM 2.1. Consider the case k = 2 under the assumptions given in
Section 1.

(i) AruleD satisfying (3) and (4) maximizes (7) if
(10) dao ={X1>a10r X2 > ay}

and {X; > a;} C d;, where a1 and a» are determined so that

(12) Poo{X1>ai10r Xp >ap} =«
and
(12) Po {X1> a1} = Pe,{X2 > az}.

Its minimum (rejection) probability over Aq(e) isgiven by P, {X1 > a1}.
(i) The (stepdown) rule D satisfying (3), (4) and (10) that maximizes (8) is
given by

(13) do1=1{X1<b1, X2>az},
(14) dio={X1>a1, X2 < b},
(15) di1={X12>b1, X2 > b2} Ndj,
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where b; satisfies

(16) PolXi > bi} =«

(and s0 b; < a;). The minimum probability of dq 1 over Ax(e) is
Pey o1 X1 > a1, X2 > boU X1 > b1, X2 > ap}.

(iii) Theresult (i) holdsfor D if criterion (7) isreplaced by (9), and (12)isalso
the maximum value of criterion (9).

Note that oncelp,o andds 1 are determined, so arlg 1 andd o (by monotonic-
ity).

The procedureD of Theorem 2.1 is an example of a stepdown procedure.
It starts by rejecting the most significant hypothesis (corresponding to the
largestX;) and it then sequentially considers the most significant of the remaining
hypotheses. Alternatively, stepup procedures start with the least significant
hypothesis (corresponding to the small&s), and an optimality result is now
given for such a procedure.

REMARK 2.1. The proof shows that the optimal procedirén (i) and (ii) is
the unique rule satisfying (3) and (4) which maximizes (7), in the sense thasif
any other such rule, thes o A do,o has Lebesgue measure 0, whara B denotes
the symmetric difference between sdtand B. Similarly, a ruleE satisfying (3),
(4) and (10) maximizing (8) must satisy 1 A dq 1 has Lebesgue measure 0.
Also, notice that the optimal procedufedoes not depend an It follows that
D is admissible in the following sense. Suppose there exists another monotone
rule E that controls the FWER, and such that

(17) Pold§ o) < Pole§ o) forall 6 e i,

with strict inequality for somé € «wg . Taking the infimum of both sides over
6 € A1(0), it follows that E must also be optimal in the sense of Theorem 2.1(j).
But, by uniquenessep o Adoo has Lebesgue measure 0, which implies the
in (17) is an equality. A similar admissibility result for the regidn, can be
stated as well.

Analogous uniqueness and admissibility results hold for all the optimal
procedures presented later on. For a discussion of admissibility in multiple testing
problems, see [3].

THEOREM 2.2. Consider the case k = 2 under the assumptions given in
Section 1.
(i) AruleD satisfying (3) and (4) maximizes (8) if d1.1 isgiven by

(18) di1={X1> b1, X2 > b3},
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and d; C {X; > b;}, where b; satisfies (16) (so it is the same constant as in
Theorem 2.1). Its minimum probability over Ax(e) is given by P, o, {X1 > b1,
Xo > by}.

(i) The (stepup) rule D satisfying (3), (4) and (18) that maximizes (7) is given
by

(19) do1={X1<b1, X2>a1},
(20) dio={X1>ai, X2 < b},
(21) doo={X1<a1, Xo<ax}Ndj,,

where g; i1s determined so that

(22) Poold o) =
and
(23) Po {X1> a1} = Pe,{X2 > an}.

The value of (23)isthe minimum probability of D over A1(e).
(iii) The result (ii) holds for D if criterion (7) is replaced by (9), and (23) is
also the maximum value of criterion (9).

REMARK 2.2. Note thath; < a; < a;. Also, the best minimum probability
overAi(e) in the case of Theorem 2.1 exceeds the best in the case of Theorem 2.2,
but it reverses for Theorem 2.2.

REMARK 2.3. A remark analogous to Remark 2.1 applies to the optimal
procedure in Theorem 2.2.

REMARK 2.4. It is now clear that, subject to (3) and (4), we cannot find a
rule to maximize both (7) and (8). By Theorem 2.1(i) and Theorem 2.2(ii), such a
rule D would have to satisfy

do,o={X1<a1andX; < ap}
and
di1={X1> b1, X2> b3}
simultaneously, which is impossible because these two sets have a nontrivial

intersection a$; < q;.

REMARK 2.5. The results of this paper do not hold without the monotonicity
assumption. For example, consider part (i) of Theorem 2.2. Suppose furth&g that
and X, are independent witl{; normally distributed with mea# and variance 1.
Thenb; =b =714, the 1— « quantile of the standard normal distribution. The
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probability of d1.1 under (61, 62) with both 6; > 0 is always less thaw and
approachest as eitherg; — oo. Therefore, by adding td; 1 a small enough
region in the southwest quadrant, one can increase the rejection probability without
violating the level constraint; see Section 4 of [13]. Such a procedure is not
monotone. Similarly, regarding the problem addressed in (i) of Theorem 2.1, [9],
Section 3, shows that the maximin test is not monotone.

3. General k stepdown. Consider testing null hypothesedd, ..., H; with
H; corresponding t@; < 0. In this section and the next, we add a symmetry
condition for the joint distribution of X1, ..., X;). Specifically, we assume that
the joint distribution of(X1, ..., X;) underf; = 6 (some value independent of
is exchangeable. This is not a crucial assumption (and actually only needs to hold
atd =0 orf = ¢, wheree is given in the statement of the theorems), but it reduces
the number of critical values from ordef ® k. The results should generalize, but
at the expense of more complicated notation.

Let
Xrg_ZszZ"'Zer
denote the orderef-values, and let,,, ..., H,, denote their corresponding null
hypotheses.

For any (monotone) decision rulg, let E; ; denote the event thai rejects at
least; of the null hypotheses. Far> 0, let

Aj(e) ={(01,...,0r) atleastj 6; satisfys; > ¢}.

Consider the monotone stepdown decision mlthat rejectsH,, .. ., Hy, and
accepts the remaining null hypothesesXif > ¢, for 1 <i < j, but X, 41 <
ck, j+1, where the ; = ¢ j(a) are determined by

(24) Po..0 {X,->ck7jforsomei,l§i§k—j+1}=a.
\,——/
k—j+1 times
Then

Dy j={X, = cri1<i<j}.
Note that (24) implies the important relationship
(25) Ck,j = Ck—1,j-1

if k> j > 2. Also note that, for fixed, ¢, ; is nonincreasing iry.
Since the constantg ; depend only ot — j, we may more succinctly define

(26) Ji—i+1= ki
where thef; are determined by
(27) P, ofmaxXy,...,X;) > fj} =a.

Jj times
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The procedureD then rejectsH,,, ..., Hy; if and only if X,, > fi_;+1 for
1<i<j.

LEmMmA 3.1. Suppose the assumptions of Section 1 and the symmetry
condition described at the beginning of this section hold.

() Theabove decision rule D controls the FWER at level .
(ii) Define
Bi,j(a, ) = 9;{?;(8) Po{Dy j};

that is, B, j («, €) isthe minimum probability of Dy ; over A;(e). Then

(28) Bi,j(o,e) = Pe  {Sk,j}
\‘,-/
j times
where

(29) Sk.j = {Xn; 0 > fo s Xuj() > fi—jr1

for some permutation r; of {1, ..., j}}.
So (28) is the minimum probability over A;(e) not only of rejecting at least j
hypotheses, but also of rejecting at least j false hypotheses.

THEOREM 3.1. Suppose the assumptions of Section 1 and the symmetry
condition described at the beginning of this section hold.

(i) Among monotone decision rules E that control the FWER, D maximizes

30 inf  Py{E1).
(30) A 9{Ek,1)
Also, D maximizes
inf  Py{E
UL o{Ek,2}

among such rules E that also satisfy Ex 2 C Di 1. In general, for j =2,...,k,
D maximizes

31 inf  Py{E ;
( ) GETj(s) 9{ k,‘/}

among monotone rules E that control the FWER and satisfy
(32) Ei, j C Dy, j-1.
Therefore, for any other rule E, we must have

inf( )Pg(Ek7l/') < Bk, jla, €)

0eAj(e

for at least one ;.
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(i) D alsoisoptimal inthe sense that it maximizes

inf ) Py{reject at least j false hypotheses}

6eA;(e

subject to (32).

REMARK 3.1. The procedur® is essentially unique (up to sets of Lebesgue
measure 0), as described in Remark 2.1, and an admissibility result analogous to
that described in Remark 2.1 holds as well.

REMARK 3.2. For fixedk, the optimal constants witk ; = fi— ;41 are given
by the values

(33) Chk.1s Ck,2y -+ - s Ch k-

But, sinceck 2 = ck—1.1, ck.3 = ck—2.1, and so on, the sequence (33) is equivalent to

Ck,1, Ck—1,1, Ck—2,1, - - -, C1 1.

This is just a sequentially rejective procedure of the kind proposed by Holm [7]:
after the first step using the critical valag1, reduce the number of hypotheses
from k to k — 1 and repeat the first step but now w11 1, and so on. In the case
where theX; have a uniform(0, 1) marginal distribution under the null hypothesis
so that we translate everything inpevalues and reject famall values, Holm [7]
usedc 1 = o/ k since he assumed only the marginal distributions to be known (and
strong error control follows by Bonferroni). Oug 1 would then be determined by

Po....of Xi <ck.1forone ormorevaluesof. 1 <i <k} =«
N——
k times

or, equivalently,

Po

k times

ofmin(X1, ..., Xx) <cr1}=«.

.....

If we further assume independence of thevalues, then the critical con-
stantscy, ; satisfy

1-A—c )=

Thus, the Holm principle remains in effect, except that instead of using=
a/k, the independence assumption implies the exact critical values= 1 —
(1—a)l/k,
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4. General k stepup. Assume the conditions imposed in the previous section.
We are testing null hypotheség, ..., H; with H; corresponding t@; < 0. Let

Xpy=Xo=--=Xp

denote the orderel-values; in the notation of the previous sectidi;) = X, ;.
Consider the following monotone stepup decision rilefor appropriately
chosen constants, ..., d; (to be specified shortly, but assumed nondecreasing).
If X(1) > d1, then reject all null hypotheses. OtherwiseXify < d1 but X o) > do,
reject thek — 1 hypotheses corresponding to the 1 largestX’s. In general, for
the smallestj such thatX ;) > d;, reject thek — j 4 1 hypotheses corresponding
to thek — j + 1 largestX’s and accept the remaining. (Note that the constants
should perhaps be written dg ; to show the dependence énhowever, we will
see that/; ; will be chosen to be independentioénd so we just abbreviate 46.)
The above rule rejects at legshull hypotheses for the sél; ; defined by

Dij={X@>di} U - U{Xjyn) > di—jya}-
Equivalently, at least — j + 1 hypotheses are acceptedif ; occurs, where
D j={X@ =di} N 0 {X—jr1) < di—js1}-
Evidently,
Dy j+1 C Dy j.

The constantd; are determined so that

(34) Po. . . ofLj}=1—a,
Jj times
where

(35) L;j={Xna) <di,..., X <d, for some permutation dfL, ..., j}}.

Note that the constant; does not depend ok as reflected in the notation.
Also, d1 = ckx = c1,1 = f1, Wwherecy 1 and f; are the constants (24) and (26) of
the previous section. However, as pointed out by an anonymous referee, in the case
k > 2, it need not be the case that; is nondecreasing iri. A counterexample
is provided in [4]; some further references on the monotonicity of critical values
are [1] and [15]. In order to prove our results, we need to assume the monotonicity
holds.

LEMMA 4.1. Assume the conditions of Lemma 3.1. Also assume that the
constants d; used in the procedure D are nondecreasing in ;.

(i) The above decision rule D controlsthe FWER at level «.
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(i) Define

B, i= inf Py{Dy )
,Bk,] DA, () 9{ k,j}

that is, ,gk’j(()l, &) isthe minimum probability of D ; over A;(e). Then
(36) Brj(c. &) = Pe__o(Min(X1,.... X)) > dji1}.
\f"’
j times
The minimum probability over A (e) of rejecting at least j false hypothesesisalso
given by (36).
THEOREM4.1. Assume the conditions of Theorem 3.1. Also assume that the
constants d; used in the procedure D are nondecreasing in ;.

(i) Among monotone decision rules E that control the FWER at level «,
D maximizes

37 inf  Py{E ).
(37) Qelg(e) 0 {Ex i}

Also, D maximizes

inf : Po{Ef k—1}

0cAr_1(e

among rules that satisfy Dy x C Erx—1. In general, for j =k — 1,...,1,
D maximizes

38 inf  Pyl{Ey. ;
( ) Qelfi;]j(e) 9{ k,j}

among monotone rules E that control the FWER and satisfy
(39) Dk,j+1 C Ek7j.
Therefore, for any other rule E, we must have

inf  Py(Er i) < Br.i(a, &
b, (e) o ( k,])<,3k,](a )

for at least one ;.
(i) D alsoisoptimal in the sense that it maximizes

inf | Py{reject at least j false hypotheses}

feA;(e

subject to (39).

REMARK 4.1. Again, the procedur® is unique up to sets of Lebesgue
measure 0, and it is admissible; see Remark 2.1.
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REMARK 4.2. Letting
Xj1=--=Xj:

denote the ordered values of just the fifst’s, the constants; are determined by

.....

ofXj:1<dy,....X;:j <dj}=1-a.

If we compare this with (27), we see thfit < d;, except whenj = 1, in which
casef) =d;.

5. Conclusions. Stepdown and stepup methods were proposed as intuitively
appealing by Holm, Hochberg, Dunnett and Tamhane, and others. The present
paper, treating the case of one-sided alternatives only, used optimality criteria
that seemed reasonable and were not selected to justify predetermined solutions.
It is gratifying that the results confirm the intuition of the originators of these
methods. Even though our assumptions are strong, some stepwise methods can
now be viewed as asymptotically optimal, such as the stepup method of Dunnett
and Tamhane [2]. Outside the strong assumptions imposed in this paper, Westfall
and Young [18] give general resampling methods to approximate the critical values
of stepdown procedures, while Troendle [17] addresses the corresponding problem
for stepup procedures.

6. Proofsand auxiliary results.

PROOF OFTHEOREM2.1. First, observe that for the proceddreggiven in (i),
for 6 € wo,o,
Py{dp o} < Pooldg o} = Poo{X1>a10r X2 > az} =«

by choice ofa;. For this D, by monotonicity, the inf ovef € A1(e) in (7) occurs
at (01, 02) = (g1, —00) or (—o0, €2); this is a shorthand notation so that

Pgl’_oo{dg’o}z lim {dg’o}.
Hp— —00
But then
Psl,—oo{dé,o} = P81{X1 > Cl]_}
and

P—oo,ez{dao} = Psz{XZ > az}.

So, the value of criterion (7) for the procedupss indeed given by (12). Similarly,
the value of criterion (9) foD is also (12). Indeed, & — —oo, the chance that
H, is incorrectly rejected tends to 0.
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To prove (i), suppos& is another decision rule satisfying (3) and (4). Assume
there exists(x1, x2) ¢ do.o, but (x1,x2) € eg,0. Then there exists at least one
component withy; > a;, sayx; > a1. Hence,

Py —o00l€0,0) = Pey,—0olX1 < x1, X2 < x2} = Pe{X1 < x1} > P {X1 < a1}
Therefore,
Psl,—oo{eao} < Pel,—oo{Xl <ai1}= Psl{Xl <ai},

so thatE has a smaller value of criterion (7) than does a claimed optitheabo
it must be the case thap o C doo. But, if eg o is strictly contained indp o such
that the set differencep o A do,o has positive Lebesgue measure, then its region
for rejectingwo 0, namely,eg o, is bigger thandg o, implying

Po,ofeg o} > Po.oldg o} = .

The conclusion is that an optimal regi@ghmust have the stated region (14),.

To prove (ii), let us first check that the claimed solution controls the FWER.
Forf € wo,o0.

Poldg o} <«
as previously argued. Fére wo 1,
Py{Type 1 errof = Pyp{d1,1Ud1 0} < Po{X1> b1} < Pof{X1> b1} =«

similarly for w1 o.

The goal now is to findD satisfying (3), (4) anddg, given by (10) to
maximize (8). Consider another rutesatisfying (3), (4) an@o,o0 = do,0. Suppose
there existsx1, x2) € e1.1 such thatr; < b; for somei, sayi = 1. Then

Po,cofe1,1} = Poool X1 > x1, X2 > x2} = Po{X1 > x1} > Po(X1 > b1) =«,

which would contradict strong control. $g 1 C d1,1. But you cannot take away
points fromds 1 without lowering the minimum power &#1, 62) = (¢, €).
To prove (iii), simply observe, for ang,

Py{rejecting at least one faldg;} < Py{rejecting at least on#;},
and so

inf  Pg{rejecting at least one faldé;} < inf Py{rejecting at least on#;}.
geAi(e) geA1(e)

But the right-hand side i®;, {X1 > a1}, and so it suffices to show thax satisfies

inf  Py{D rejects at least one falgé } = P, {X1 > a1}.
BeAl(e)

But the earlier argument for (12) showed this to be the cask.
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PROOF OFTHEOREM 2.2. To prove (i), supposE is another rule satisfying
(3) and (4) which rejects both hypothesegXf, X») € e1.1. Suppose there exists
(x1, x2) € e1.1 such thatx; < b; for somei, sayi = 1. Then

Posole1,1} > PoooiX1 > x1, X0 > x2} = Po{X1 > x1} > Po{X1> b1} =«,

which would contradict control of the FWER. Sce1.1 C d1.1. But you cannot
take away any point frords 1 without lowering the minimum power &t1, 7).
To prove (ii), note that, for the claimed solution the value of (7) is given by

o8 Po(d0) = Pey—oold o) = Pey X1 > ).

We now seek to determing o [like Theorem 2.1(i) with the added constraint that
do,0 C df 4]. To prove optimality of the claimed solution, suppdses another rule
satisfying (3), (4) an@ 1 = d1.1, with d1 1 given by (18). Supposex1, x2) ¢ do.o,
but (x1, x2) € eg,0, SO thatx; > a; for somei, sayi = 1. Then

Py —oole0,0) = Pey —cof X1 < x1, X2 < x2}
= Pe (X1 <x1} > P {X1 > aa}.
Therefore,
Pe—ooleg o} < Pe{X1 > aal,

so thatE cannot be optimal. So it must be the case #at C do 0. But if eg o IS
strictly contained indo o, its region for rejectingoo o, Namely.eg o, is bigger than
dg o» In Which case

Po,oleg,0} > Po.oldg o} =,

a contradiction of strong control.
Finally, we check thaD itself exhibits control of the FWER. F& € wo o, the
probability of a Type 1 error isc « because of (22). Far = (61, 62) € wo.1,

Po{Type 1 errof < Py oo{X1> b1, X2 > boU X1 > a1, X2 < by}
= Po{X1> b1} =q,

as required.
The proof of (iii) is completely analogous to the proof of Theorem 2.1(iii}l

PROOF OF LEMMA 3.1. To prove (i), supposéfy,..., H, are true and
Hp,i1, ..., H are false. A Type 1 error occurs if any &f, ..., H, are rejected.
Forthe ruleD, the set where a rejection of any®f, ..., H, occurs is a monotone
increasing set, and so the probability of this event is largest under this configuration
of true and false hypotheses when

01,...,60)=1(0,...,0,00,...,00),
—_——— ———

p times  k—p times
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and this probability is equal to

Po..olX;> f,forsomei=1,...,p}=«a
——
p times
by (27) with j = p.
To prove (ii), note that the minimum power occurs wheis one of the(’j‘.)
points with j values ofs andk — j values of—oo, such as

(40) Wi, j =wg, j(e) =(e,...,8,—00,..., —00).
—_—— ——————
j times k—j times

Then,Pwk,j(Dk,J-) reduces toB; ;(«, ¢) as claimed. Also, for such a configura-
tion wy, ;, only the j hypothesesd7s, ..., H; can be rejected, and so the minimum
probability of rejecting at least hypotheses is the same as the minimum proba-
bility of rejecting exactly; hypotheses (and it is also equal to the probability of
rejecting exactly; false hypotheses).Od

Before the proof of Theorem 3.1, we need two lemmas. We will make use of
the following notation. IfR is any region irR*, let

R*={(x1,...,xk—1) : (X1,...,Xk—1,2) € R}.

LEMMA 6.1. Let R be any monotone rejection region in R¥ [so x =
(x1,...,xx) € Rimpliesy € R if y; > x; for all {].

() If z1 < z2, then R C R*2,

(i) R*, U, R*and ", R* are all monotone rejection regionsin Rk-1,

PROOR If z1 < zp and (x1,...,xx_1) € R, then (x1,...,x;_1,21) € R.
By monotonicity, (x1, ..., xx—1, z2) € R, and so(x1, ..., xx—1) € R*2. The proof
of (i) is just as easy. [

LEMMA 6.2. Assume the distributional assumptions given at the end of

Section 1. Let R be any monotone rejection region in RX. Then for any values
of the parameters 6y, ..., 6;_1,

(41) P91,...,0k,1,oo(R) = P91,...,9k,1 {U RZ}
Z
and

(42) P@]_,...,@k,]_,—OO{R} = P91,...,9k71 {m RZ}
Z
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PrROOE To prove (41),

Poy...o r.00fRY = liM Poy g {(X1,.... Xp1) € R¥k)
k—)

..... o l(X1, ..., Xk_1) € R, X > 7}

§P91 ..... Qk_l{(xla---»xk—l)EURZ].

Also, for everyz,

> Po,.. 01 {(X1, ..., Xk—1) € R%}
and so
Pyy....01.00{R} > Pel,...,ek,ll(Xl, L Xeenel RZ},

and (41) follows.
To prove (42),

P91,...,9k,1,—oo(R)
= lim Py g{(X1,...,Xk—1) € R¥¥)
O — —o0
= Iim Py g{(X1,...,Xk—1) € RM Xy, <z}
— —00
<Py . .o {(X1,...,Xr—1) € R%}
for everyz. Letz — —o0, so thatR* decreases tp) R*. Then we can conclude

P91,...,9k71,—OO(R) = P@]_,...,@k,l{(xl’ B Xk—l) € ﬂ RZ}

Also,

.....

> Poy (X1 XeeD) € R,

and the result follows. [J
Next, given a monotone rejection regi®, define
UNR) = JRY,
Z

U(R) = UYUY(R))
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and
U/(R) =UYU/7(R)).
Similarly, let
IRy = K
Z
and

(R =1Y1'"Y(R)).

By applying Lemma 6.2 repeatedly, we also obtain

(43) Pyy....0_j 00,00 RY = Py .o {U (R)}
\q./—d
j times
and
(44) Poy...0_j.—00,.—00l R} = Py o {1 (R)}.
Jj times

PROOF OFTHEOREM 3.1. (i) Note, for any monotone rulg, the smallest
probability of Ej ; over A;(e) occurs wher® = wy 1 defined in (40), as well as
whené is any permutation ofv 1. Furthermore, for any monotone ruke that
controls the FWER, we must have

Po{Ey, j} <a

whené is

(45) vk,j = (00,...,00, 0,...,0),
—— ———

j—1times k—j+1 times

or permutations ofy ;.
To prove the optimality result (30), consider another dlevith £7 ; the subset

of R¥ that accepts all null hypotheses. Suppose there existéxy, ..., x;) ¢ Dy 4,
butx € E,f’l. Then there exists at least one component,&ayx1, with x1 > cx 1.
By monotonicity, the set

(46) L(x)={yeR 1y <x)
is also inEY ;. Then

Py {E; 1) = P L)} = Pe{X1 < x1} > Pe{X1 < cr 1} =1— Bra(a, ¢),
and so the smallest power afover A1(e) satisfies

Py 1 {Ex 1} < Br.a(a, &).
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Therefore, in order foE to be optimal we must have
E; 1 C Dy 1.

But if Dy 1 is a proper subset df; 1 (except for a set with 0 Lebesgue measure),
then

Po....olEx,1} > Po,....o{ D1} =,
~——— ——

k times k times

a contradiction ifE controls the FWER. Therefore, (30) is proved.
To prove the result (31) withi = k, let E be any other monotone decision rule
which has strong control and satisfies the constraint

Epk CDrx—1={Xr > cr1,.... Xrp_y = ckk—1}-

Supposé&  includes apoiny = (y1, ..., yk), wherey; > ¢, ;fori=1,..., k-1
andyx < ¢k k. Then

P, ... oo,O{Ek,k} > Peo,..., oo,O{Xrl Z Vi eens X"k—l > yi—1, Xk = yk}
——
k—1 times k—1 times

= Po{Xy > yk} > Po{ Xk > cr i} = «,

a contradiction of strong control. So such a pairdgannot be inEy x, nor can any
permutation of the coordinates of(by a similar argument). Thereforé&y ; can
at most includeDy . But taking away any points from; ; could only lower the
minimum power ate, ..., ), and soDy i is optimal.

To prove the result (31) with & j < k, let E be any other monotone decision
rule which has strong control and satisfies the constraint (32). Let

(47) Xj1=zXj2=-=Xj:j

denote the ordered values &f, ..., X ;. Since E has strong control, it follows
by (43) that

——
k—j+1 times

Hence,U/~1(E ;) can be viewed as a rejection regionRi—/+1 for the case
with k£ andj replaced by’ =k — j + 1 and;" = 1. [Note that if£; ; satisfies the
constraintEy ; C Dy j—1, then

U/ E j) cUI7H(Dy jo1) = RFIH,

so the constraint is vacuous.] It follows that
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or

PO,—oo,...,—oo,oo ..... oo{Ek,j} =< ,Bk—j-i—l,l(as 0)
——— ——
k—j times j—1 times

By the same reasoning applied to any permutation of

6 =(0,—-o00,...,—00,00,...,00),

k—j times j—1times

j—1 times k—j times

0000l " T (Ex )} < Br—j+1.1(a, 0).
N—_——

j—1 times
SoI"‘J’(E;w-) is a rejection region iR/ that controls the Type 1 error at the point

(0,00,...,00)
————
j—1times

(as well as at permutations of its coordinates), not at lewebut at level
Bi—j+1,1(e, 0). [In words, if you use the rul& which is originally designed to
testk hypotheses, but you ignore the last j hypotheses, the overall probability
of a Type 1 error for testing thg hypotheses is reduced fip_ ; +1,1(c, 0).] Also,
note that the constrairi; ; C Dy, ;1 implies

"B ) 1M (D) =X 1> ckts oo X jm1 > €k jo1)-

(Note thatc, ; always refers to the critical values based on the given valug of
so its dependence anis suppressed.) Then, by the case vkitiind j replaced by
Jj andj (already proved above) andreplaced bysi_ ;1 1(e, 0), it follows that

j times
or
(48) P . e—co...—colEk j} < Bj.i(Bk—jt+11(e, 0), €).

j times  k—j times

We must argue that the right-hand side of (48pjs; («, ). But notice that if we
apply the above reasoning b= D, the inequalities are all equalities. Indeed,

U/~Y(Dy ;) = {atleast one oK1, ..., Xx—j+1> ci i)

and the optimal minimum power (with = 0) for the subproblem withk’ =
k—j+1,j'=1anda’ =« is fr—j+1,1(x, 0). Also,

"I (D) ={Xj 1>k, Xj:j = j)
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is optimal for the cas&” = j” = j at the levela” = Br_j;+11(e, 0). Indeed,
checking the level condition,

.....

j—1 times
= Po{X1 > ck—j+1,1} = Br—j+1.1(e, 0).

So, by the case” = " = j,

..........

——
j times Jj times
=P (Xj1>cr1. ..., X j = ok i) =B, jla, €).
——
j times

The proof of (ii) is completely analogous to the proof of Theorem 2.1(iii), with
the help of Lemma 3.1(ii). O

PROOF OF LEMMA 4.1. To prove (i), supposéy,..., H, are true and
Hp,i1, ..., H are false. A Type 1 error occurs if any &f;, ..., H, are rejected.
For the rule D, the set where any oM, ..., H, is rejected is a monotone
increasing set (invoking the monotonicity of critical values). Hence the probability
of this event is largest under this configuration of true and false hypotheses when

01,....00)=(0,...,0,00,...,00),
——— ——
p times  k—p times

and this probability is equal to

PO ..... 0,00,..., oo{rejeCt any Ole, ey Hp}
—— —
p timesk—p times
(49) = Po.....0,,..,c0ir€ject any ofdy, ..., H,

—— ——
p times k—p times

Nrejectall ofHpyq, ..., Hi},

because a®y,...,0) — (0,...,0), X(,4+1) > dp11 With probability tending to
——

p times
one, and so the hypothesHs 1, ..., H; are rejected with probability tending to

one. Then (49) is bounded above by
Po....0.00....c0{at leastk — p + 1 rejection$
p timesk—p times

=Py, 0,oo,...,oo{Dk,k7p+l}
R
p timesk—p times
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=1—Po. 000, c0f{X1) <d1,...,Xp) <dp}
R‘/_/ -
p timesk—p times

=1- P() ofLj}=a,
P tlmes

by (34) and (35).
To prove (ii), note that the minimum power occurs whelis one of the(’j‘.)

points with j values ofe andk — j values of—oo, such aswy ; given by (40).
Then

Py ;(Dij) =1— Py X <di,...., X—j+1) < di—j+1}
=1-P, {{X1<dr—js1}U---U{X; <di—j41}},
Nyl

.....

j times

which reduces t@ ; («, ¢) as claimed. O

PROOF OFTHEOREM4.1. To prove (37) (the cage= k), first observe that
Dy = {X(]_) > d]_}.

Consider another monotone ruke, and suppose there exists some paint
(x1,...,xk) With x € E x butx ¢ Dy x. Then there exists at least one component

of x, sayx1, with x1 < d1. By monotonicity the set
M(x) ={y Ry = xi)

is also inEy k. Then

PO,oo ..... oo{Ek,k} = PO,oo ..... colM(x)}
——— S———

k—1 times k—1 times

= Po{X1>x1} > Po{X1>d1} =,
which would contradict strong control. So we must h&yg, C Dy . But then

elEi ik} < Pe,.. e{Dr i},
——

k times k times

.....

and so (37) is proved.
To prove the result (38) in the cage= 1, the constraint is thak ;1 must
containDy 2, or, equivalently,

k-1
E{,C D= {X0 =di}.
i=1

Supposer = (x1, ..., x) € Ef 1 butx ¢ Dy ;. For the sake of argument, assume
thex; are nondecreasmg inwith x; < d; fori =1, ...,k — 1 (so the constraint is
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satisfied), but; > di. Thenx € E;i,1 impliesL(x) € E/f,l’ whereL(x) is defined
in (46). So

k—1 times k—1 times

= Pe{ Xk < xi} > Pe{ Xk < di}.

Therefore

and soEy 1 is less powerful tharDy 1. Therefore such a point cannot exist in
order for Ej 1 to be optimal. (A similar argument applies to any permutation of
the coordinates af.) Thenx € Dy 1 implies x € Ei 1. But adding any points

to Dy.1 would increase the probability of rejection whenr= (0, ..., 0), and this
would contradict the level constraint. So the casel is proved.

To prove (38) for 1< j < k, let E be any other monotone decision rule which
has strong control and satisfies the constraint (39). Since thig; setannot have
probability greater thaw when6 = vy ;, wherevy ; is given by (45), we must
have

k—j+1 times

by (43). ThereforeU/=Y(Ey ;) is a region inR¥=/*1 which has rejection
probabilitye whené = (0, ..., 0). Note that the constrairix ; O Dy, j+1 implies
the regionUf‘l(Ek,j) must contain

UIY Dy j+1) = (Xi—ji1kmjrr > d1} U U Xp—jy1:2> di— ).

Therefore, by the case considered above Witk k — j +1 and;’ = 1, the optimal
region inR¥—/+1is

{Xk—jr1k—j+1>d1}U - U{Xp—j41:1> di—jy1},

which, in fact, is equal t&//~1(Dy ;). So

= Po{X1> dk—j+1} = Pr—j+1.1(a, 0).

Using (43) and applying the argument to any permutation,gf we have

Po,0o,...,00,—00,...,—0ol Ek,j} < Br—j+1,1(c, 0),
-

j—1times k—j times
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or by (44),

-1
So I"‘J'(E;w-) is a rejection region iR/ that controls the Type 1 error at

(0,00, ...,00)
e e’
j—1 times

(as well as permutations of its coordinates), not at levelbut at level
Bi—j+1,1(a, 0). [Also note that the constrair ; D Dy ;41 implies

I"I(E ) D IV (D 1) = 2,

which is always satisfied.] By the case with= j” = j anda” = Bk_jﬂ,l(a, 0)
considered above,

I (Dy j) = (min(X1, ..., X}) > di_j+1)

is optimal for this case and so

j times j times
by Lemma 4.1(ii). Therefore

P . £,—00,..., —oo{Ek,j} =< ,Bk,j(a, €),
—— S ——
j times k—j times

as was to be proved.
The proof of (ii) is analogous to the proof of Theorem 3.1(ii)]
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