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CONFIDENCE SETS FOR NONPARAMETRIC
WAVELET REGRESSION

BY CHRISTOPHERR. GENOVESE' AND LARRY WASSERMAN?
Carnegie Mellon University

We construct nonparametric confidence sets for regression functions
using wavelets that are uniform over Besov balls. We consider both
thresholding and modulation estimators for the wavelet coefficients. The
confidence set is obtained by showing that a pivot process, constructed from
the loss function, converges uniformly to a mean zero Gaussian process.
Inverting this pivot yields a confidence set for the wavelet coefficients, and
from this we obtain confidence sets on functionals of the regression curve.

1. Introduction. Wavelet regression is an effective method for estimating
inhomogeneous functions. Donoho and Johnstone (1995a, b, 1998) showed that
wavelet regression estimators based on nonlinear thresholding rules converge at
the optimal rate simultaneously across a range of Besov and Triebel spaces.
The practical implication is that, for denoising an inhomogeneous signal, wavelet
thresholding outperforms linear techniques. See, for instance, Cai (1999), Cai and
Brown (1998), Efromovich (1999), Johnstone and Silverman (2002) and Ogden
(1997). However, confidence sets for the wavelet estimators may not inherit the
convergence rate of function estimators. Indeed, Li (1989) shows that uniform
nonparametric confidence sets for regression estimators decrease in radius at
an~Y4 rate. However, with additional assumptions, Picard and Tribouley (2000)
show that it is possible to get a faster rate for pointwise intervals.

In this paper we show how to construct uniform confidence sets for wavelet
regression. More precisely, we construct a confidence spherefA-tiem for the
wavelet coefficients of a regression functisnWe use the strategy of Beran and
Dumbgen (1998), originating from an idea in Stein (1981), in which one constructs
a confidence set by using the loss function as an asymptotic pivot. Specifically, let
u1i, u2, ... be the coefficients for in the orthonormal wavelet basfs, ¢o, ...,
and let(11, f12, . ..) be corresponding estimates that depend on a (possibly vector-
valued) tuning parameter Let L, (1) = Y, (; (A) — wi)? be the loss function and
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NONPARAMETRIC WAVELET REGRESSION 699

let S,, (1) be an unbiased estimate bf (1). The Beran—DUmbgen strategy has the
following steps:

1. Show that theivot process B, (1) = /n(L, (1) — S, (1)) converges weakly to
a Gaussian process with covariance kelkié, 1).

2. Show thatB, (1,) also has a Gaussian limit, whexg minimizess, (1). This

step follows from the previous stepiif, is independent of the pivot process or

if B,(A,) is stochastically very close 8, (1,) for an appropriate deterministic

sequence.,.

Find a consistent estimatéf of K (A, A,,).

Conclude that

how

LnOn) = SyG) _ }
BN

n A
N Tnla a
= U (MZ_ME)2§—+Sn()¥n)}
i 2t vz

i)n:{ﬂ

is an asymptotic o confidence set for the coefficients, whegedenotes the
upper-taile-quantile of a standard Normal and wherg = [is(A,,).
5. It follows that

Ay = iZMW(') nE JDn}
=1
is an asymptotic 1 « confidence set fof;, =3 y_1 ede.
6. With appropriate function-space assumptions, conclude that dilatingelds
a confidence set fof.

The limit laws—and, thus, the confidence sets—we obtain are uniform over
Besov balls. The exact form of the limit law depends on howili®are estimated.

We consider universal shrinkage [Donoho and Johnstone (1995a)], modulation
estimators [Beran and Dumbgen (1998)] and a restricted form of SureShrink
[Donoho and Johnstone (1995b)].

Having obtained the confidence s&f, we immediately get confidence sets for
any functionalr (). Specifically,(inf ree, T(f), SUpree, T(f)) is an asymptotic
confidence set fof (f). In fact, if 7 is a set of functionals, then the collection
{(nfree, T(f),SUpree, T(f)):T € T} provides simultaneous intervals for all
the functionals in7". If the functionals in7 are point-evaluators, we obtain
a confidence band foy; see Section 8 for a discussion of confidence bands.
An alternative method for constructing confidence bands is given in Picard and
Tribouley (2000). At the cost of additional assumptions, the confidence,sean
be expanded to a confidence set for

In Section 2 we discuss the basic framework of wavelet regression. In Section 3
we give the formulas for the confidence sets with known variance. In Section 4
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we extend the results to the unknown variance case. In Section 5 we describe
how to obtain confidence sets for functionals. In Section 6 we consider numerical
examples. Finally, Section 7 contains technical results and Section 8 contains
closing remarks.

2. Wavelet regression. Let ¢ andy be, respectively, a father and mother
wavelet that generate the following complete orthonormal s&gj0, 1]:
P10,k (x) = 27924 (20x — ),
Vjk(x) =22y (2 x b,

for integersj > Jo andk, where Jg is fixed. Any functionf e L?[0, 1] may be
expanded as

201 oo 2/-1
1) F@) =D ardpi@)+ Y. > Bik k),
k=0 j=Jo k=0

whereay = [ féjox and B = [ fr;«. For fixed j, we call ;. = {B;x 1k =
0,...,2/ — 1} theresolution-; coefficients.
Assume that

Yi=f(xi) +oe;, i=1,...,n,

where f € L?[0, 1], x; = i/n ande; arenp standard Normals. (See Section 7 for
details.) The goal is to estimageunder squared error loss. We assumeihat2’t
for some integer. Let

201 J1 27-1
(2) Fr) =" i)+ D D Bixvjx)
k=0 j=Jo k=0

denote the projection of onto the span of the firat basis elements.
Define empirical wavelet coefficients

n i/n
&k:ZYi/

= i

- n /n
ﬂj,k=ZYi/, )

i
i=1 U=

Dok dx ~ 3 ok )y ~ e+ =7
jo.k(X) ax ~ — Jo.k(Xi)Xi = o + —=Lg,
Jo n P 0 /5 \/7_1
(o2
Jn
where theZ;s andZ; ;s arelb standard Normals. In practice, these coefficients
are computed irD (n) time using the discrete wavelet transform.

We consider two types of estimation: soft thresholding and modulation. The

soft-threshold estimator with threshold> 0, given by Donoho and Johnstone
(1995a, 1995b), is defined by

(3) o = Qg

4) Bk =sanB; Bkl — 2+,

1 n
/n wjvk(x)dngzwj,k(xi)}]i ~Bjk+—=Zjk,
i=1
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wherea; = maxa, 0).

Two common rules for choosing the threshaldre the universal threshold and
the SureShrink threshold. To define these,détbe an estimate of2 and let
on = +/21ogn. Theuniversal threshold is A = p,6 //n. Thelevelwise SureShrink
rule chooses a different threshalg for the n; = 2/ coefficients at resolution
level j by minimizing Stein’s unbiased risk estimator (SURE) with estimated
variance. This is given by

(5) Sn(1) = 22’0+ > S0,
J=J
where
62 A2
(6) Sj()»j)—2:|:7—2—]1{|,3]k|<)L }+m|n(/3,kv :|

k=1

for Jo < j < J1. The minimization is usually performed overO; < p,; 6//n,
although we shall minimize over a smaller interval for reasons that are explained
in the remark after Theorem 3.2. SureShrink can also be used to select a global
threshold by minimizings, (1) using the same constahtat every level. We call

this global SureShrink.

The second estimator we consider is the modulation estimator given by Beran
and Dumbgen (1998) and Beran (2000). Although these papers did not explicitly
consider wavelet estimators, we can adapt their technique to construct estimators
of the form

(7) o = Egou,
(8) Bik=E&iBjx
whereéy, &5, Ejo+1, - - -, £, are chosen to minimize SURE, which in this case is
_ 201~ 52 52
Sy = 3 [% + (- &) (ak - —)}
k=0 n
J1 2/ 6_2
(9) + > Z[ —+(1-§) (ﬂ ——)]
j=Jo k=0 n

J1
= S¢(&p) + Z S;i(&)).
J=Jo
Following Beran (2000), we minimiz&, (¢£) subject to a monotonicity constraint:
1>&5>&5 > Ejp41 > -+ = &y, We call this the monotone modulator, and we let
£ denote thet’s at which the minimum is achieved.
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Itis natural to consider minimizing, (¢), level by level [Donoho and Johnstone
(19954, 1995b)] or in other block minimization schemes [Cai (1999)] without the
monotonicity constraint. However, we find, as in Beran and Dimbgen (1998),
that the loss functions for these estimators then do not admit an asymptotic
distributional limit which is needed for the confidence set. It is possible to
construct other modulators besides the monotone modulator that admit a limiting
distribution; we will report on these elsewhere.

Having estimated the wavelet coefficients, we then estiryiatenore precisely,

fn_by

. 2lo—1 J1 2/-1 .
(10) @)= D" i)+ Y. D Bk (x).
k=0 j=Jo k=0

It will be convenient to consider the wavelet coefficients, true and estimated,
in the form of a single vector. Let = (1, u2,...) be the sequence of true
wavelet coefficientgao, ..., oy _1, BJo,05 - s ﬁjo,zjo_l, ...). Theoy coefficient
corresponds tqu,, where£ =k + 1 and B, corresponds tqu,, where ¢ =
2/ +k+ 1. Let ¢1, ¢2, ... denote the corresponding basis functions. Because
f € L?[0, 1], we also have that € ¢2. Similarly, letu” = (u1, .. ., un) denote the
vector of firstn coefﬁcients(ao, e Qolg_1, BUg,0s - s ﬁjovzjofl, e /311,211—1)-

For anyc > 0, define

o0
e(c) = {u €023 ul< cZ],
=1
and letB; ,(c) denote a Besov space with radiudf the wavelets are-regular
with r > ¢, the wavelet coefficients of a functiohe B; ,(c) satisfy||ul|5.4 < c,
where

00 . 1/py\ a\ 1/q
(11) ”M“[%q — (Z (2](§+(1/2)—(1/17)) (Z |,3j,k|p) ) ) )
k

Jj=Jo
Let

g’ pzzv
= 1 1
(12) Y {g—i————, 1<p<?2
p

2
We assume thagt, g > 1 and also thay > 1/2. We also assume that the mother
and father wavelets are bounded, have compact support and have derivatives with
finite L2 norms. We will call a space of functions satisfying these assumptions
a Besov ball withy > 1/2 and radiug and the corresponding body of coefficients
with ||;L||§,q < ¢ a Besov body withy > 1/2 and radius.. We use8 to denote
either, depending on context. & is a coefficient body, we will denote kg™ for
any positive integetz, the set of vectorgus, ..., u;) for u € 8.
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Our main results also extend to unions of Besov balls (and bodies), Eix 0,
and define

(13) Fe=U U 820.

p.qzly=1/24n
The parametey is an increment of smoothness required only in the nonsparse case
(p=2).

3. Confidence sets with & known. Here we give explicit formulas for the
confidence set whena is known. The proofs are deferred until Section 7, and
the o unknown case is treated in Section 4. It is to be understood in this section
thato replacess in (5) and (9).

The confidence set is of the form

(14) Dy ={u": Z(Mz fi)?<s?

The definition of the radius, is given in Theorems 3.1, 3.2 and 3.3. In each case
we will show that
(15) I|m sup P{u" e Dy} — 1—a)|=0

pL eB"
for a coefficient body8B. Strictly speaking, the confidence sé, is for
approximate wavelet coefficients, but we show in Section 7 that the approximation
error can be easily accounted for. By the Parseval relation,also yields a
confidence set fof;,. That is,

(16) I|m sup |P{fy € An}— (1—a)| =0,
/1 neBn
where
(17) An:{z,&jd)j:ﬂnei)n}.
j=1

Constructing the confidence sgf, does not require knowledge ofor y.

At the cost of making an additional assumption, namely, an upper bound on the
ball size,4,, can be dilated slightly to produce a confidence setffdFix n, ¢ > 0
and recall the definition of;, . from (13). Then the set

1)
18 C,= Fo.coinf — — 1,
a8) p={re s inf 17— el < -]
for § > 0, satisfies
(29) Ilnrr_1)|orlff|nf P{feCy}=>=1—a.

The factors//n accommodates the difference between the true and approximate
wavelet coefficients. The overcoverage of (18) occurs because one never really
estimatesf, rather, any data-based procedure is inevitably estimating
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REMARK 3.1. It is not surprising that sharp inferences are availableffor
only. The difference betweefi and f,, is effectively not estimable. In the context
of kernel density estimation, Neumann (1998) and Chaudhuri and Marron (2000)
argue that it is sensible to confine inferences to the smoothed version of the
unknown density.

REMARK 3.2. The theorems that follow state that the confidence sets have
correct asymptotic coverage over a Besov spacgith y > 1/2. These results all
hold replacingB by ¥, . for anyn, ¢ > 0. It is also worth noting that ip < 2, the
results still hold withy =1/2.

THEOREM 3.1 (Universal threshold). Suppose that £, is the estimator based
on the global threshold A = p,0//n. Let

(20) 2=02 2 15,0
n/

Then (15), (16)and (19) hold for any Besov body 8 with y > 1/2 and radius
c>0.

3

We consider a restricted version of the SureShrink estimator where we minimize
SURE overpp,o//n < A < p,0/+/n, whereg > 1/+/2.

THEOREM 3.2 (Restricted SureShrink).Let 1/4/2 < ¢ < 1. In the global
case, let Ay, =--- = Aj, = i be obtained by minimizing S, (1) over gp,o//n <
A < pao//n. In the levelwise case, let A = (Ay,....,As;) be obtained by
minimizing S, (Ajy, ..., Ay,). Let

1) 2 =02 Z"‘/ 8.0,

Then (15), (16)and (19) hold for any Besov body 8 with y > 1/2 and radius
c>0.

N
5
N

REMARK 3.3. We conjecture that our results hold with only the restriction
that o > 0. We hope to report on this extension in a future paper. Interestingly,
the above theorem does not hold o= 0 because the asymptotic equicontinuity
of B, fails, so some restriction on SureShrink appears to be necessary.

REMARK 3.4. The theorem also holds with a data-splitting scheme similar
to that used in Nason (1996) and Picard and Tribouley (2000), where we use one
half of the data to estimate the SURE-minimizing threshold and the other half to
construct the confidence set. In the case 1/+/2 this is not required, but it may
be needed in the more general case 0.
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Finally, we consider the modulation estimator.

THEOREM 3.3 (Modulators). Let fn be the estimate obtained from the
monotone modulator. Let

(22) 2= 4 §@),
n
where
o 200 . 2 sen(2 OAN2 .
(23)  2="0 3 (2 -12+40 Z(ue——) 1-&)2,
o =1 n

where & is the estimated shrinkage coefficient associated with ... Then (15), (16)
and (19) hold for any Besov body 8 with y > 1/2 and radius ¢ > 0.

4. Confidence sets with ¢ unknown. Suppose now that is not known.
We consider two cases. The first, assumed in Beran and Dimbgen [(1998),
equation 3.2], is that there exists an independent, uniformly consistent estimate
of o. For example, if there are replications at each design point, then the residuals
at these points provide the required estimatorMore generally, letting£(-)
denote the law of a random variable, they assume the following condition:

(S1) There exists an estimarﬁé, independent of the empirical wavelet coeffi-
cients, such that:(62/0?) depends only on and such that

lim_m (L2675 /0% = 1), N(0,5%) =0,
wherem(-, -) metrizes weak convergence atid> 0.

In the absence of replication (or any other independent estimate®)ofwe
estimates2 by

n
(24) sy=2 3 @
t=(n/2)+1

which Beran (2000) calls the high-component estimator. We then need to assume
that 4 is contained in a more restrictive space. Specifically, we assume the
following:

(S2) The coefficientg of f are contained in the set
(e ) 1B < ¢j, j = Ja)

for somec > 0, J2>Jo and some sequence of positive reais (¢1, &2, ...),
wheres; = 0(271/? andg;. denotes the resolutiop-coefficients.
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Condition (S2) holds wherf is in a Besov ballB with y > 1/2. We note that
such a condition is implicit in Beran (2000) and Beran and Dimbgen (1998) in the
absence of (S1).

Beran and DUmbgen (1998) construct confidence sets avitmknown by
including an extra term in the formula fef to account for the variability i 2.
This strategy is feasible for modulators since terms involdiggeparate nicely in
the estimated loss from the rest of the data. In thresholding estimators the empirical
process in Theorem 7.2 dependsagrin a complicated way, making it difficult to
deal witho separately. We offer two methods for this case. For the soft-thresholded
wavelet estimators it turns out that a plug-in method suffices. More generally, we
can use a “double confidence set” approach.

For both approaches we need the uniform consistenéy of

LEMMA 4.1. For any Besov body 8 with y > 1/2 and for every ¢ > 0,

~2
0—2—1’>8}—>0.
o

(25) supP{
HEB

The proof of this lemma is straightforward and is omitted.
In the plug-in approach we simply replageby & in the expressions of the last
section.

THEOREM 4.1 (Plug-in confidence ball). Theorems 3.1 and 3.2 continue to
hold if 6 replaces o. For the modulation estimator Theorem 3.3 holds with 72
replaced by

22BN 2 o TR :
te=") (26— 1)*+ 206 (— > (2 - 1))
2% 2 o%\? 242
vao?y (a2 -0 ) a-do?
n
=1
In the double confidence set approach, the confidence set is the “tube” equal to
the union of confidence balls obtained by treatings known for every value in a

confidence interval fos. We first need a uniform confidence interval tor This
is given in the following theorem; the proof is straightforward and is omitted.

THEOREM4.2. Let
27) Q. =&2[<1— 6“‘“/2)1 (1— UZ“/z)l}.

Under condition (S1)we have

(28) |Innllor!)f ;rlfoP{a EQut>1—a.
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Under condition (S2)with G = 2, we have, for any Besov body 8 with y > 1/2,
(29) liminf inf Ploe@,}>1-a.

n—>o0 peB,o>0

THEOREM 4.3 (Double confidence set)Let @ =1 — /1 —« if (S1)holds
and let @ = /2 if (S2)holds. Let @, be an asymptotic 1 — & confidence interval
for o, asin Theorem4.2. Let

(30) Dp= | Do,

oe@,
where D, , isa 1 — a confidence ball for n from the previous section obtained
with fixed . Then

o " B

(31) 'Lrl'élf MIQIBH Piu" e Dy} >1—a.
Finally, under condition (S1)or (S2), Theorems 3.1, 3.2and 3.3 continue to hold
with (31) replacing (15) and O, asin (30).

5. Confidencesetsfor functionals. Let f — f be the operation that takgs
to the approximation defined in (44). The reader can think bfas simply the
projection f,, of f onto the span of the first basis functions. Defin€;; to be
the set of £y corresponding to coefficient sequengese D,. For real-valued
functionalsT, define

(32) 53 = inf T, sup T ).
fiecy [y,

We then have the following immediately from the asymptotic coverage of the
confidence set.

LEMMA 5.1. Let 7 bea set of real-valued functionals on a Besov ball 8 with
y > 1/2 and radius ¢ > 0. Then

(33) ILnl'orlf }21‘@ PIT(f)ed(T)foral TeT}>1—c.

We can extend the previous result to include sets of functionals of slowly
increasing resolution. LeF” be a function class and 16}, be a sequence of sets
of real-valued functionals off . Define the worst-case approximation error over
F and7, by

ra(F, T) = sup sup|T(f) — T(f)l.

TeT, feF
For a sequence,,, define
(34) Jo(T) =< inf T(fy)—wy,, sup T(fy)+ wn>
faels freCy
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THEOREM 5.1. For a function class ¥ and a sequence 7;, of sets of real-
valued functionalson F, if w, > r,(F, 75,

(35) ”,{Eior},f le; PIT(f)ed,(T) forall T eT,}>1—a.

PROOF  Follows from the triangle inequality and Lemma 5.1

REMARK 5.1. If the functionals ir¥;, are point evaluatorg (f) = f(x), then
the confidence sets above yield confidence bands.

For a given compactly-supported wavelet basis, define the integeibe the
maximum number of basis functions within a single resolution level whose support
contains any single point:

K =SUp[#Yjr(x) #0:0<k <2/}:0<x <1,j > Jo}.

Note also that||yill1 = 2-/2|y 1. Both « and ||y |1 are finite for all the
commonly used wavelets.

As an example, we consider local averages over intervals whose length
decreases with.

THEOREMbG.2. Fix adecreasing sequence A, > 0 and define
1 b
7, :{T:T(f):b—/ fdx,05a<b§1,|b—a|zAn}.
_a a

Fixn,c > 0and let , . be the union of Besov balls defined in (13).
If the mother and father wavelets are compactly supported with ¥ < co and
¥ ]l1 < oo andif A1 = o(n/(logn)lé)) for some 0 < ¢ < 1, then

(36) Fn(Fper Tn) = o(n* =1/ (logn)4).

Hence, for any sequence w,, > 0 that satisfies w,, — 0 and liminf,,_, oo w,nt ¢ x
(logn)¥! > 0,

7 liminf inf P{T () forall Te T} >1—a.
(37) Inrglorgfg}w{(f)el()oral €EM}zl-a

6. Numerical examples. Here we study the confidence sets for the zero
function fp(x) = 0 and for the two examples considered in Beran and Diimbgen
(1998). We also compare the wavelet confidence sets to confidence sets obtained
from a cosine basis as in Beran (2000).
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TABLE 1
Coverage and average confidence ball radius, by method, in the
o-known case. Heren = 1024and o = 1

Method Function Coverage Averageradius
Universal fo 0.951 0.274
it 0.949 0.299
f2 0.935 0.439
SureShrink (global) fo 0.946 0.270
f1 0.941 0.292
f2 0.937 0.401
SureShrink (levelwise) fo 0.944 0.268
it 0.940 0.289
f2 0.927 0.395
Modulator (wavelet) fo 0.941 0.258
it 0.940 0.269
f2 0.933 0.329
Modulator (cosine) fo 0.931 0.253
it 0.930 0.259
f2 0.905 0.318

The two functions, defined d®, 1], are given by

(38) fix) = 2(6.75%8(1 - x)3,
1.5, if0<x<0.3,
0.5, if0.3<x <0.6,
(39) L0)=120 if0.6<x<08
0.0, otherwise.

Tables 1 and 2 report the results of a simulation using 0.05, n = 1024,
o =1 and 5000 iterations (which gives a 95% confidence interval for the estimated
coverage of length no more than 0.025). For comparison, the radius of the
standard 95%(2 confidence ball, which uses no smoothing, is 1.074. We used a
symmlet 8 wavelet basis, and all the calculations were done using the S+Wavelets
package.

TABLE 2
Coverage, by thresholding method, in the o -unknown case using the
Plug-in Confidence Ball. Againn = 1024and o = 1

Function Universal SureGL SurelLW WaveMod CosMod

fo 0.961 0.955 0.954 0.955 0.999
f1 0.963 0.955 0.953 0.961 0.999
f2 0.938 0.940 0.929 0.951 0.997
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7. Technical results. Recall that the model is
Yi=f(x) +oeg,

where theg; ~ N(0,1) areliD and f(x) = > jmjdjx). Let X; denote the
empirical wavelet coefficients given by

n i/n
X = y-/ b (x)dx.
! l:Zl “Jicym !
ThenX" = (X4, ..., X,,) are multivariate Normal with
o2
(40) EX;=%;+0(/n), VarX;=—+0(1/n?,
n

uniformly over® [Donoho and Johnstone (1999)], whegg = [ f,¢¢. TheX’s
are asymptotically independent.

That the X ;'s are asymptotically independent poses no problem. Using the
orthogonal discrete wavelet transform to define the empirical wavelet coefficients
yields X" that are exactly independent. Donoho and Johnstone (1999) show
that the means and variances ¥f and X" are close. From this, it follows
that the Kullback—Leibler distance—and, hence, the total variation distance—
between the law of/n (X" — ") and aN,, (0, o21) tends to O uniformly, where
"= (ty, ..., ). In what follows, we may thus assume tkie are independent
Normakiz;, o%/n).

It will be helpful to introduce some notation before proceeding with the ensuing
sections. Lets? = 02/n and definer, = p,o/+/n, where p, = /2Togn. Also
definev,; = —/nu; /o, and leta,; = v,; — up, andb,; = v,; + up,. Note that
\/ﬁXi/O’ =¢g; — v,;. Define

Ini () = 1{|X;| <wurp}=1{vy; —upn < &i <vni +upnt=1Uan <& <bni},
L) =1{X; > ury) = 1{e; > vui +upa} = Le > byi},
L) =1UX; < —ury} =1{e; <vni —upp} =1{e < ani},
Jni(s, 1) =Lsry < Xi <trp} =1{vni +5pn < € < Vni +1pn}.
ForO<u <1 and 1<i <n, define
Zi () = /nl(X; — ury)U{X; > ury} + (X; + ur,)UX; < —ury} — wil?
— \/ﬁ[anz — 2(7”21{X~2 < uzrnz} + min(Xl.Z, uzrf)]
(41)

[(e7 — D(1— 20, (w))

n

SRS

+ 2vpii Ini () — 2uppe; (I () — I (w))].
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EachZz,; represents the contribution of thid observation to the pivot process and
satisfie€Z,; (u) = 0 for every 0< u < 1. We also have that
4
Z,fi (u) = U—[(eiz — 1%+ 4v3isi21m~ () + 4M2,038l-2(1 — Lyi(u))
(42) n
— Avnigi(ef — D lni (1) — Aupnei(ef — (L w) — I;w)].

The relevance of these definitions will become clear subsequently. Throughout this
sectionC’ denotes a generic positive constant not depending gror ¢, that may
change from expression to expression.

7.1. Absorbing approximation and projection errors. As noted in the state-
ments of Theorems 3.1, 3.2 and 3.3, the confidence,séir z” induces a confi-
dence set forf uniformly over Besov spaces. In this section we make this precise.

Define

— n i/n
Fu@) =0 " LiG—1y/m,i/n)(x) / f@)dt
i=1 i=1/n

(43) .
=D 9 x)
=1
and its projection
(44) S ) =D Ty (x).
=1

THEOREM7.1. Fixc,n > 0.Let &, . be the body corresponding to 7, .. Let
D,, be defined by (14) and suppose that

liminf inf P{i"€eD,}>1—q.
n— 00 AneF .

Let G, be defined asin (18). Then
(45) liminf inf P{feC,}>1—a.

n— 00 fETVI,(‘

PROOF  From the results in Brown and Zhao (2001), it follows th#t— £, ||§
and || fu — fl5 =352, /27 are both bounded, uniformly oveB; ,(c), by
(Clogn)/n® for someC > 0 not depending om, g or ¢. It then follows that,
forany f € 7, .,

If = FEE<t(lf = fallo + 11 fu — £1112)2

Clogn

2
- nlt2y

n
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Let
. 17
S3=S3+8n=TZ+5n+Sn,

wheres, = §logn/./n for any fixed, smalb > 0. Let W? = I fu — f;||§. Then

I fw = FallB= 1 fu = I3+ L fyr — Julls = W2+ K2
and

Lf = Fall2 < I F = Frll2+ I — fill2 < Wo + kg
uniformly over ¥, .. Hence,

PUIl fu — full5 > 32} < P(W? > §2 — k2)
=P(W? > 52465, — k2.

Now, liminf,_, o 8, — k2 > 0 and so

limsup sup P{W?2 > sf + 8, — k,f} <limsup sup P{W? > s,f} <a.

n—o0 fe-??r],c n—oQ fe\(Fr],c
To do the same fof’ we note that

Ifo— FIB= 1 fu— FEB+HIS = £05+ 20— £, f2 = f)
=l fo— FREHIF — FRUE+20f0 — £1, fr— fu)
= fo = FHEHIF = FA5+2D (e — o) (me — fte)

i=1

<N fu— FABH NS = FAUZ+20 fu — Fl2 = £7N12
=Ufo = L2+ 1 fu = FR122+11f = full3
< (Wu + kn)? 4+ k2,

where the last inequality follows from the results in Brown and Zhao (2001) since
I fa = £l < 1f = full. We have

PULS — full > 52} < P{(Wy + kn)? > 53)
= P{(Wy + kn)? > 52+ 8,)
=P{W2 + 2k, Wy, + k? > 52 +5,}
< P{Wn2 > s,f} + P{2k, W, +k3 > 8u}.
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The lim sup of the first term is bounded abovedayor the second term,

limsup sup P{2k, W, + k2> §,}

n— oo fg{/Tn_L.

, 8p — k2
=limsup sup P{Wn > 7}
n—oo fefy. 2k,
. sn' J/Clo
=limsup sup P{W,, > " 1 Zgn}
n—00 fef, . 2/2C 2n1/2+n

— 0.

Hence, limsup_, ., P{llf — full > 53 <a. O

7.2. The pivot process. In the rest of this section, for convenience, we will
denotej; simply by ;. We now focus on the confidence st for " defined

by
n
Dy= 10" (i — i) <521
i=1

Our main task in showing thad,, has correct asymptotic coverage is to show that
the pivot process has a tight Gaussian limit. See van der Vaart and Wellner (1996)
for the definition of a tight, Gaussian limit.

Fori =1,...,n, let j(i) denote the resolution level to which indékelongs,
and forj = Jo, ..., J1, let §; denote the set of indices at resolution leygivhich
containsz; = 2/ elements. Let be a sequence of thresholds with one component
per resolution level starting alp, where each; is in the rang€op,0,, 0,041
It is convenient to write = up,o/+/n, whereu is a corresponding sequence of
values in[g, 1]. In levelwise thresholding, thg’s (andu ;s) are allowed to vary
independently. In global thresholding, all of thes (andu;s) are equal; in this
case, we treat (andu) interchangeably as a sequence or scalar as convenient.

The soft threshold estimatgr is defined by

(46) (1) = (Xi —tj@)L{Xi > tjih} + (Xi +1;0)U{Xi < ~tji) ),

fori =1,...,n. The corresponding loss as a function of threshold is

La(t) =Y (i) — ).
i=1
We can write Stein’s unbiased risk estimate as
(47) Su(t) = (07 — 2021{X7 < 124} + min(X7, 12))
i=1
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J1
(48) = > Y (07— 2021{X? <12} + min(X7, 12))
Jj=Joied;

J1
(49) = Z Snj(tj)-
J=Jo

In global thresholding, we will use the first expression. In levelwise thresholding,
eachs,; is a sum of: ; independent terms, and the differep}’s are independent.

The SureShrink thresholds are defined by minimizipgBy independence and
additivity, this is equivalent in the levelwise case to separately minimizing the
Syj(tj)s overt;. That s, recalling that, = p,0//n,

(50) i, =argminS,(u) and f, =u,r, (global),
o<u<l

(51) lipj =argminS,j(u;) and f,; =u,jr,  (levelwise)
o<u;<1

We now define
(52) B, (u) = \/E(Ln(urn) - Sn(urn))-

We regard({B,, (1) :u € U,} as a stochastic process. let- 1/+/2. In the global
case we takél, = [0, 1]. In the levelwise case we take = [o, 1]*°, the set of
sequencesus, ..., u, 1,1,...) for any positive integek and anyp < u; < 1.
This process has mean zero becadgeis an unbiased estimate of risk. The
processB, can be written as

(53) By(w) =) Zni(uj)),

i=1
whereZ,; is defined in (41). For levelwise thresholdingy, () is also additive in
the threshold components:

J1 J1
(54) By(u)= > Buj(uj)= Y > Zui(u)).
j=Jo j=Joied;

EachB,; is of the same basic form as the surmgfindependent terms.

LEMMA 7.1. Let B be a Besov body with y > 1/2 and radius ¢ > 0. The
process B, (u) is asymptotically equicontinuous on U, uniformly over u € 8 for
any o > 1/+/2 with both global and levelwise thresholding. In fact, it is uniformly
asymptotically constant in the sense that, for all § > 0,

(55) lim supsupP*{ sup |B,(u) — B,(v)| > 8} =0.

n—>oo pueB u,veU,
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PrROOFE As above, lels,; = v,; — up, andb,; = v,; + up,. From (41) we
have, forO<u <v <1,

N

Y (Zni (u) — Zp; (U))

202
= (&7 = D)(Ini (v) = Lni ) = vpi&i (Ini (v) — Li (w))
— upnei(1y; ) = L; ) + vpei (1 (0) = 1; ()
= (&7 — DU{upn < |&7 — vuil < Vou} — Vni&iL{upn < & — vui| < vou)
(56) —upn&iL{upy < & — vni < vou} + upn&il{—vpy < & — Vi < —upn}

+ (v — 1) pnti (15 (v) = 1;(v)
= (7 — DL{upn < |&i — Vuil < upn + (v — u)pn}
— bnigil{byi < & <bpi + (v —u)py}
—apigilani — (v —u)pn < & < ani}
+ (v —w)pneill{ei > bpi + (v —u)pp} — Lei < ani — (v —u)pn}l.

From (56) we have that

§|Zni (1) — Zpi(v)|
< (2 + (Ivni| + upn)leil + 1) L{upn < lei — vail < vou)
+ v —ulpplei|1{le; — vnil > von}
(57) < (&f + |vnilleil + D1 {upn < lei — vuil < von)
+ onleilLfle; — vpil = upy}
< (&2 + |vnilleil + D1{opn < l&i — vnil < pu)
+ pulei|L{lei — vuil = 0pn}
= Ay
Let
Ano ={1=<i <n:fv,| <1}, Ap1 ={1<i <n:l<|v| <204},
and

A ={1<i <n:|vl > 204}

Let A = A, 1U A, 2, the set off such thatv,;| > 1. Letng be the cardinality
of A. Let 8 = 2y and note thaB > 1 sincey > 1/2. The Besov condition implies
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the following:
C%np? >Zv21’3> > vEif
€A
no
ieh i=1
> C2né+ﬁ,

where the last inequality holds for large enough It follows from (58) that

(59) no(n) < CnY/ (20 p2/(3+2y)

which iso(/n).
From the above, we have in the global thresholding case that

Sup  |Bn(u) — By (v)|

o<u<v<l

< SUp D | Zui(u) — Zni(v)]
(60) 9<”<v<li—l

2
\/— Z (5 + [vnilléil + D1{opn < [&i — vnil < pn}

+ puleilL{lei — vail = 0pn}].
We break the sumd i, into three sumS ;4 o+ 2 ica,, T 2ica,, and

n2’
consider these one at a time.
For the case where,;| < 1, we have the following:

25 2
T 3 L&+ [vnillei] + D1{opn < l&i — vuil < pn)
n i€Ay,0
+ pnleilL{lei — vail = 0pn}]
<& > (ef + A4 p)leil + 1) 1{lei| = 0pn — 1)
n i€Ay,0

Lets, = op, — 1. By (72) and (73), the expected value of each summand is
E(sf + (L+ pu)leil + D1{lei] = 0pn — 1)
=2ty + pn + D (1) + 4(1 - (D(tn))

=0M_U%.
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The entire sum thus goes to zero as well. To see the last equality, note that there
existsé > 0 such that

1 1 2} 1 22,
Ih) = ———=expl — =12} = ———¢ 70 Pu/20n
¢ () 2 2" 2me
1
- «/Znen(ﬁg/V ogn)—e* =o(n~Y?79),
becaus% — 0% < —1/2 — ¢ for large enough:, wheres = |0? — 1/2|/2. It

follows thatp, ¢ (t,) = o(n~Y2), and similarly for(1 — ®(z,)) ~ ¢ (t,)/ 1.
For the case where4 |v,;| < 20,, we have the following:

202
— S0+ Ivnilleil + D1{oon < lei — vail < pu)
Jn
€A,
+ pnleilL{lei — vail = 0pn}]
202 2
=<—F Z (81' +3pn|8i| + 1)]]-{|8i - Vnil = Qpn}

€A1

The expected value of each summand is bounded-by32,. The expected value
of the entire sum is thus bounded by

no(n

%202(2 +3p,) — 0,

becauseg(n)p,/+/n — 0.
For the case wheredg < |v,;|, we have the following from (57):

202
T 3" 17 + [vailleil + D1{opn < lei — vuil < pu)
i€Ay2

+ pnl&ill{lei — vuil = 0pn}l

202
< —( S 24 2puleil + D+ Y (vuil — puleil1{les] > [v] — pn}).

j€Ay2 i€An2

The expected value of the summands in the first term is bounded-b23;.
The expected value of the summands in the second term is bound&{bhy 2
on)® (Jvni|l — o). Hence, the expected value of the entire sum is bounded by

no(n)
Jn
because’ > 1/2 impliesno(n)p,//n — O.

We have shown that SUR, <u<y<1 |Bn () — By (v)| — 0. The result follows for
all § > 0 by Markov’s inequality.

202(24 pp + 2(1vnil — p) @ (Vnil — o)) = O,
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Next, consider the levelwise thresholding case. The product Spaee[o, 1]*°
is the set of sequences,...,ug, 1,1, ...) over positive integerg andp <
uj < 1. By Tychonoff’s theorem, this space is compact and thus totally bounded,
S0 U, is totally bounded under the product meticy, v) = Z;?‘;JO 27 g — vy.
Foru € U, define

Bu(uw) =Y Zni(uq)-
i=1

It follows then that, for any, v € U™, d(u,v) <1—p and

(61) |Bn(u) — By(v)| < Z’Zni(ﬁj(i)) - Zni(yj(i))‘
i=1

(62) <> sup |Zui(u) — Zni ()]
i=1u,v€Uy
i=1

where A,; is theu, v independent bound established above in (57). The result
above shows that
(64) E sup |By(u)— By(v)|— 0.

u,v€U,

This implies thatB,, is asymptotically constant (and thus equicontinuous}n
O

LEMMA 7.2. Let 8 be a Besov body with y > 1/2 and radius ¢ > 0.
For any fixed u,...,u; in either global or levelwise thresholding, the vector
(B, (u1), ..., By(uy)) converges in distribution to a mean zero Gaussian on R¥,
uniformly over u € 8, in the sense that

supm(L(By(u1), ..., Ba(ug)), N(O, Z(u1, ..., ux; n))) = 0,

neB
where m is any metric on R¥ that metrizes weak convergence and where ¥
represents a limiting covariance matrix, possibly different for each w.

PrROOF We begin by showing that the Lindeberg condition holds uniformly
overu e Bandover < u < 1.

First consider global thresholding. Defifi&,; || = sugy<, <1 1Zxi ()]. Recall
thatEZ,; = 0 for alln andi. Now by (41) and (42),

204
Z2.(u) < 7[@? — )2+ 4u?p2e?(1— L (u)) + 2621, ()]

nt-i

=RN1 4+ Ny + N3,
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Note that none oR1, X2 or X3 depends om. Hence,
1 Zn 1PL{1 Zi || > )
< (N1 4 82+ R3)1{(R1 + N2 + R3) > n°)

3 3
<D D N,

r=1s=1

(65)

where J; = 1{X,; > 1?/3}. We will now show that the nine terms in (65) are
exponentially small im, which implies that the Lindeberg condition holds.

First,
2
P{x1>”—}: {|g,.2—1|> ny/n }gzexp{_ nJn }
3 0212 802/12

using the fact thai{| xZ — 1| > ¢} < 2¢~'“"D/8 To boundi,, we use Mills’ ratio:

p{xp ’7_2} - p=|8.| - } 'nVA8 2062 _ 5PV A8 29607
—_— l

3 v 48 n n«f

For the third term, ifu; = 0,83 =0. If u; #0,

n° 2
plve>Th<p(x1 <nin [ 4802Mg}> = b(uo).

An elementary calculus argument shows th@t;) < b(ut), where

PRISEAN. [
M=o m ™ VT

Now, for all largen,
b(s) < Ple > —pa0 + /nlusl}

1/4
§P{s> " ﬁ}f 6 e Wn/12,
nv/2nl/4
These inequalities show that, for > 0 and fors = 1,2, 3, EJ;; < K1 X
exp(—K2min(y, n?)/n). Because,/ER?, < Kaz/n, JEN3 < p2Ka/n and

ENZ < us 2Ks, the Cauchy—Schwarz inequality and (65) show thatyfer0,

(66) E D IZuilI*L{I Zyi | > 1} < Ke(0. 5. ) exp(—K7(o, 5) min(y, n¥)/n).
i=1

Here the constantX’; depend, at most, om. It follows that the Lindeberg
condition holds uniformly by applying the Cauchy—Schwarz inequality to (65).
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Write B,(u) = B,.,(u) to emphasize the dependence pnand similarly
for Z,;.,; (w). In particular, letB,.o(«) denote the process wily = pup = --- =0.
Let £,.,(u) denote the law 0B, , (1) = >7_1 Zpni.u, (u) and lety denote a
Normal with mean O and variance 2. By the triangle inequality,

m(ccn;u(”), N) = m(oCn;O(M)’ JV) + m(ccn;u(”)s °£n;0(u))s

wherem (-, -) denotes the Prohorov metric. By the uniform Lindeberg condition
above, the CLT holds fotl,.o(u) and, hence, by Theorem 7.3;(L,.0(u),
M) — 0. Now we show that

(67) supm (Ly: (), Ln:0(u)) — 0.
neB

Note that

n
%|Zﬂilﬂi(l’t) - Zni;O(u)|

= |(8,2 - 1)(Im';u,i (u) — Ini;O(u)) + Vnigilni;u.,- (u)
- upngi[(lrj;:m () — I;;O(u)) - (In_i;ui (W) — Ir;O(u))”
This can be bounded as in the proof of Lemma 7.1 and the sum split over the same

three caseb,i| <1, 1< |v.i| <20, and|v,;| > 2p,. It follows that
2

n°

(68) SUpE sup |Bn;u(u) — Bpow)| <a
HeEB o<u<l

wherea,, — 0; note thatz, does not depend anor .. Therefore,

2
a

Sup sup P|By., (u) — By.o(uw)| > a, < =ay

HEB o<u<l an

for all largen. Recall that, by Strassen’s theoremP{{X — Y| > ¢} < ¢, then the
marginal laws ofX andY are no more tham apart in Prohorov distance. Hence,

(69) sup sup m(Lp;,w), Ln:0u)) <a, — 0.
neB o<u<l

This establishes the theorem for one When B, (u1, . .., ux) is an R¥-valued
process for some fixek,
Ell By (u1, ..., ur) — Bp.o(ua, ..., up)ll

<kE sup |Bnr;u(u) - Bnr;O(“)L

o<u<l

(70)

so by (68) the sup of the former is boundedlbgﬁ. Sincek is fixed, the result
follows. Thus, (67) holds for any finite-dimensional marginal.
The same method shows that the result also holds in the levelwise ¢ase.



NONPARAMETRIC WAVELET REGRESSION 721

THEOREM 7.2. For any Besov body with y > 1/2 and radius ¢ > 0 and for
any 1/+/2 < o < 1, there is a mean zero Gaussian process W such that B, ~ W
uniformly over 1 € 8B, in the sense that

(71) supm(L(By), L(W)) — 0,
HESB

where m is any metric that metrizes weak convergence on £°°[p, 1].

PrRooF The result follows from the preceeding lemmas in both the global and
levelwise cases. Lemmas 7.3 and 7.2 show that the finite-dimensional distributions
of the process converge to Gaussian limits. Lemma 7.1 proves asymptotic

equicontinuity. It follows then thatB, converges weakly to a tight Gaussian
processW. [

7.3. The variance and covariance of B,. Recall thatr, = p,0//n, vy =
—/npi /o, ani = vy — upy, andb,; = v, + upy,. Also define

t
(72)  Di(s.t)= / ep(e) de = s (s) — 1 (1),

(3 Dan=[ "62p(e) de = s(s) — 1(1) + D(1) — D),

N

(74)  Ds(s,t) = / "6(62 = Dp(e)de = (% + Db (s) — (12 + Db (1),

Dyt = [ (62— 1% (e) de

=2(D (1) — D(s)) + 5%+ D (s) —t (12 + D (1).
Let K, (u, v) = Cov(B,(u), B, (v)). It follows from (42) that

(75)

Ko (u,u) =EZ5; ()
20 2 2 2
= 7[1 + zvm‘DZ(anis bni) +2u Py (1 — Da(ay;, bni))
— 20, D3(api, byi) + 2upp (D3(_007 ani) — D3(byi, OO))]
204

= 7 1+ 21/!2,03 + 2ap;ibyi D2(ay; , byi)

— 2bpi (@2, + D (ani) + 2an; (b2; + 1) (byi)]
204 2 9
= 7[1"_ 2u o, + Zanibni(qD(bni) - cb(ani))

+ 2b,;a2,p (ani) — 205026 (bni)
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— 2bpi (a2 + D (ani) + 2a5; (b2; + 1) (byi)]

20’4 2 2
= 7[1+ 2u“py + 2a,;bp; (Cb(bm) - (D(am'))

1

I
+ 2a,i ¢ (bpi) — 2bpid (ani) |

o4
[l+I+II]

THEOREM7.3. Let 8 bea Besov ball withy > 1/2 and radius ¢ > 0. Then,

I|m sup =0.

;LG.;'B

Z EZ (u) — 20%

i=1

PROOF Apply Lemma 7.4 to the sum of termisandIl. This is of the form
=301 gn(vni), Where

gn(x) = 2u”p? + 2(x® — u?p2) (P (x + upy) — D (x — upy))
+ 20 — upa)$ (x + upn) — 20x + upa) (x — upy).

We haveg, (0) — 0 becauség, (0)| < 6,0nn_92, and, hencen > 288/¢ implies
that|g,(0)| < &.

Now, if |x| > 2p,, then by Mills’ inequality|g, (x)| < Cp,f If |x] < 2p0p, the
same holds because each term is of onferHence llgnlloo = O(lOgn).

For x in a neighborhood of zero,

1gn(x) — gn(0)] < g, (&)|Ix|  for somel§| < |x]|
< sup g, &)llx].
[E1=<Ix]
Hence,
Suplgn(X) — g, (0)] < |x| suplgs‘u‘p| g, (&)

By direct calculation, fors > 0 andé = min(e, 1/8), supg <, 1g,()l <1, so
|x] <& implies sup |g,(x) — g,(0)] < e. Thus,(g,) is an equicontinuous family
of functions at 0.

By Lemma 7.4, the result follows.[J

LEMMA 7.3. Let 8 be a Besov body with y > 1/2 and radius ¢ > 0. Then
the function K, (u,v) = Cov(B,(u), B,(v)) converges to a well-defined limit
uniformly over u € B:

lim sup|K,u,v) — 254 =0.

n—)ooueﬁ
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PrROOFE Theorem 7.3 proves the result far=v. Let 0<u < v < 1. Then
by (41),
o* 2 2
Zni(u)Zyi(v) = 7(8 -1 (1 =21, (v) + 21; (”))
o3
+ 2—8(82 = D{vr,l;(v) +uryl,;(u) — w;
n

Jn
— 0rn Ly (V) = ury L () 4 3y (u)
+ 2ury Jyi (u, v) — 2ury, Jyi(—v, —u)}
+20262{202 1 (u) + 2ury (1t + rav) Jni (u, v)
+ 2ury (vry — ) Jpi (—v, —u)}.
Letd,; = vy — vp andb,; = v, + vp. We then have
Kn(u, v) = E(Zni (u) Zyi (v))
204 -
= 7[1 — D4(ani, bui) + Da(ani, bni)
— Vo D3(—00, ani) + upp D3(—00, an;) + i
~ 0P D3(bui 00) = tpy D3(bui, ) — 3vyi D3(ani , bui)
— 2upy D3(bui, byi) — 2u0n D3(ni, ani)
+ 205 D2 (ani  bui) + 200n(Pn — Vi) D2(bui, bui)
+ 2uvpn(on + vni) D2(ani, ani)].
The proof that this converges is essentially the same as the proof of Theorem 7.3.
O

LEMMA 7.4. Let 8 be a Besov ball with y > 1/2. Let g, be a sequence of
functions equicontinuous at 0, with ||g,|lc = O((logn)*) for some « > 0, and
satisfying g,(0) — a € R. Then

lim SupEZgn(ui\/ﬁ) =a.

n—)oouei;n i1

PrROOF  Without loss of generality, assume that 0. Let M,, = || g, |lco. FiX
¢ > 0. By equicontinuity, there exists > 0 such thatix| < § implies |g, (x) —
g, (0)| < g/4 for alln. By assumption, there exists ahsuch thatg, (0)| < /4 for
n > N. Since8 is by assumption a Besov ball, there is a consfastich that, for
all n, 1 u2i? < C?logn, for all 1 € B. See Cai [(1999), pages 919 and 920]
for inequalities that imply this.
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Let v,; = ui+/n. The condition onu implies for alln that

n
Y v2i% < C%nlogn.
i=1
Let the set of such,s be denoted b;‘én. We thus have

1ang(uix/ﬁ)

i1

sup

1 n
< sup = .
g = p " Zlg(vm)|

vEeB, T i=1

Let
no= (Cl/ynl/Zy (|Ogn)1/2V/81/y-|.

This is less tham and bigger thanV for largen. Then fori > ng andn > N,
lvil <8 and|g, (vai)| < /2. We have
en—no+1

12 no
- E lgn(Vni)| < — M, +
ni n 2 n

—(1— ctrm €
<n @ 1/2)’)(Iogn)1/2”7(32 Z + 5
Thus, as soon as

cly 2M. NN\ 2/ Cy=1
n(logn)~Y@ =1 > (817 ma(l, T")) ,

we have

1 n
SUP _Z|gn(vni)| <¢g,

v €By i=1

which proves the lemma.
7.4. Proofs of main theorems.

PRoOOF OFTHEOREM3.1. This follows from Theorems 7.2 and 7.3. The last
statement follows from Theorem 7.1]

PRoOOF OFTHEOREM 3.2. This follows from Theorems 7.2 and 7.3 and the
fact that B(it) = B(1) + op(1) uniformly in o <4 <1, andu € 8. The last
statement follows from Theorem 7.1

PROOF OF THEOREM 3.3. This follows from Theorem 3.2 in Beran and
Dimbgen (1998) and Theorem 7.1]
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PROOF OFTHEOREM4.1. Letm =& /0. The pivot process with “plugged
in”is
A n 2
Bu(u) =/n Yy [(wi — fi(urpi))
i=1
+ [mo? — 20 21{X? < u?rZm?) + min(X 2, u?r?m?)]]
2 o’ ¢ 3
= By (urit) + (h° — 1) — Y A= 2{|Bjk| < urpit})
i=1
= By(u) +op (D),
uniformly overu € U, andu € 8, by Lemmas 7.1 and 4.1. The result follows.
O
PROOF OFTHEOREM4.3. Letug andog denote the true values of ando,
respectively. Then under (S1) we have
PMS €D, > Plog e (Qn}P{Mg € Dyloo € Ay}
= P{GO € @n}P{N’g € <>(Dn,ao|GO € C{Zn}
= P{oo € @, }P{1tg € Dn.op}-

Hence,
liminf wgremf@np{f,, eD)>1-a)Y’=01-a).
Under (S2),
P{ug & Dn} =P{ug & Dn, 00 ¢ Qn} + P{ug ¢ Dn, 00 € @y}
< P{oo & @} + P{1g & Dn.og: 90 € A}
< P{oo ¢ @} + P{up ¢ Du.op)-
Thus,

liminf inf P l-a—a)=1-a.
minf inf P(fyeClz(1-d-a)=1-a
This completes the proof.

For the final claim, note that the uniform consistencysadnd the asymptotic
constancy ofB, (Lemma 7.1) imply thatB(zz) = B(1) + op(1), uniformly in
o <u <1andu € 8. The theorem follows from Theorems 3.1, 3.2 and 3.3 and
43. O

PROOF OFTHEOREM5.2. For anyf € ¥, ., we have that
(76) T =TUDNSIT) =TS +IT () =TI
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Sinceff ¥ jx = 0 whenever the support gf;; is contained irfa, 5], the first term
is bounded by (withC’ denoting a possibly different constant in each expression)

IT(H =TI < Y. Z|ﬂ,k|

j=J14+1 k=0

/
_ IylecC
<5

‘ / Yje) dx

o0

Y max|B;.|277/2

j=J1+1
/

- N2 /2
A, 1B;.112

j=J1+1

nA,
= o(n®~1/(logn)14}).

Foragiven O<a<b<l letg=supl<m<n:(m —1)/n <a} and
r=Iinf{l<m <n:b <m/n}. The second term in (76) is bounded by

T = TN < ¢e)|
= ¢z ‘
(g— 1)/n
a r n
(f ol + | |¢z|>
(g=1/n b
~2Jo_ 1
1 [2 Co 4C
< 3 Jel = + KC1 Z max|8; |2,/2}
—4l k=0 i=Jo
-2J0_1
1 [? Co 4KC1
<z > o | = Z I1B;. ||22J/2}
—4] =0 i=To
_ jo_l
1 [? Co 4kCqc
< 3 e =2+ == (Jl—JO)i|
—da L i=0 n
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JO—]_
1 [2 Co C'logn
=— E otk |— +

b—a =0 n

C”(1+ logn)
n

nt~1/(logn)l¥Y).

n

IA

Pl

—

=0

It follows that r,,(F,.c, Tn) = o(né~1/(logn)¥)). The result follows by Theo-
remb5.1. O

8. Discussion. The expected radius of the confidence ball can be shown to be
of ordern—1/4. This is not surprising since the minimax estimation rate for a Besov
space is:~"/@*D which approaches~1/* asy approaches /2. Moreover, Li
(1989) showed that for nonparametric regression without smoothness constraints,
confidence spheres for nonparametric regression cannot shrink fastertHan
Indeed, the presence of the tetyh/» in the squared radius of our confidence balls
implies that rate cannot be faster than/4. This is consistent with the results
in Low (1997) and Cai and Low (2003) that suggest confidence sets cannot be
rate adaptive. Thus, while we have not shown that our confidenc®,sé rate
optimal, we doubt that the rate can be improved. One consequence of the slow
rate of the confidence set is that the arguments that favor threshold estimators over
modulators no longer apply.

We have chosen to emphasize confidence balls and simultaneous confidence
sets for functionals. A more traditional approach is to construct an interval of the
form f(x) £ w,, Where f(x) is an estimate off (x) and w, is an appropriate
sequence of constants. This corresponds to takiaf) = f(x), the evaluation
functional, in Theorem 5.1. There is a rich literature on this subject; a recent
example in the wavelet framework is Picard and Tribouley (2000). Such confidence
intervals are pointwise in two senses. First, they focus on the regression function
at a particular pointe, although they can be extended into a confidence band.
Second, the validity of the asymptotic coverage usually only holds for a fixed
function f: the absolute difference between the coverage probability and the target
1—« converges to zero for each fixed function, but the supremum of this difference
over the function space need not converge. Moreover, in this approach one must
estimate the asymptotic bias of the function estimator or eliminate the bias by
undersmoothing. While acknowledging that this approach has some appeal and is
certainly of great value in some cases, we prefer the confidence ball approach for
several reasons. First, it avoids having to estimate and correct for the bias which is
often difficult to do in practice and usually entails putting extra assumptions on the
functions. Second, it produces confidence sets that are asymptotically uniform over
large classes. Third, it leads directly to confidence sets for classes of functionals
which we believe are quite useful in scientific applications. Of course, we could
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take the class of functionalg to be the set of evaluation functiofgx) and so

our approach does produce confidence bands too. It is easy to see, however, that
without additional assumptions on the functions, these bands are hopelessly wide.
We should also mention that another approach is to construct Bayesian posterior
intervals as in Barber, Nason and Silverman (2002), for example. However, the
frequentist coverage of such sets is unknown.

In Section 5 we gave a flavor of how information can be extracted from the
confidence ball,, using functionals. Beran (2000) discusses a different approach
to exploringC, which he calls “probing the confidence set.” This involves plotting
smooth and wiggly representatives froB). A generalization of these ideas is
to use families of what we calbarametric probes. These are parameterized
functionals tailored to look for specific features of the function such as jumps
and bumps. In a future paper we will report on probes, as well as other practical
issues that arise. In particular, we will report on confidence sets for other shrinkage
schemes besides thresholding and linear modulators.

Acknowledgments. The authors thank the referees for helpful comments.
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