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We propose a generalized functional linear regression model for a
regression situation where the response variable is a scalar and the predictor
is a random function. A linear predictor is obtained by forming the scalar
product of the predictor function with a smooth parameter function, and
the expected value of the response is related to this linear predictor via
a link function. If, in addition, a variance function is specified, this leads
to a functional estimating equation which corresponds to maximizing a
functional quasi-likelihood. This general approach includes the special cases
of the functional linear model, as well as functional Poisson regression
and functional binomial regression. The latter leads to procedures for
classification and discrimination of stochastic processes and functional
data. We also consider the situation where the link and variance functions
are unknown and are estimated nonparametrically from the data, using a
semiparametric quasi-likelihood procedure.

An essential step in our proposal is dimension reduction by approximating
the predictor processes with a truncated Karhunen-Loéve expansion. We
develop asymptotic inference for the proposed class of generalized regression
models. In the proposed asymptotic approach, the truncation parameter
increases with sample size, and a martingale central limit theorem is applied
to establish the resulting increasing dimension asymptotics. We establish
asymptotic normality for a properly scaled distance between estimated and
true functions that corresponds to a suitabfemetric and is defined through
a generalized covariance operator. As a consequence, we obtain asymptotic
tests and simultaneous confidence bands for the parameter function that
determines the model.

The proposed estimation, inference and classification procedures and
variants with unknown link and variance functions are investigated in a
simulation study. We find that the practical selection of the number of
components works well with the AIC criterion, and this finding is supported
by theoretical considerations. We include an application to the classification
of medflies regarding their remaining longevity status, based on the observed
initial egg-laying curve for each of 534 female medflies.
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1. Introduction. Many studies involve tightly spaced repeated measurements
on the same individuals or direct recordings of a sample of curves [Brumback
and Rice (1998) and Staniswalis and Lee (1998)]. If longitudinal measurements
are made on a suitably dense grid, such data can often be regarded as a sample
of curves or as functional data. Examples can be found in studies on longevity
and reproduction, where typical subjects are fruit flies [Muller et al. (2001)] or
nematodes [Wang, Miiller, Capra and Carey (1994)].

Our procedures are motivated by a study where the goal is to find out whether
there is information in the egg-laying curve observed for the first 30 days of life
for female medflies, regarding whether the fly is going to be long-lived or short-
lived. Discrimination and classification of curve data is of wide interest, from
engineering [Hall, Poskitt and Presnell (2001)], and astronomy [Hall, Reimann
and Rice (2000)] to DNA expression arrays with repeated measurements, where
dynamic classification of genes is of interest [Alter, Brown and Botstein (2000)].
For multivariate predictors with fixed dimension, such discrimination tasks are
often addressed by fitting binomial regression models using quasi-likelihood based
estimating equations.

Given the importance of discrimination problems for curve data, it is clearly of
interest to extend notions such as logistic, binomial or Poisson regression to the
case of a functional predictor, which may be often viewed as a random predictor
process. More generally, there is a need for new models and procedures allowing
one to regress univariate responses of various types on a predictor process. The
extension from the classical situation with a finite-dimensional predictor vector
to the case of an infinite-dimensional predictor process involves a distinctly
different and more complicated technology. One characteristic feature is that
the asymptotic analysis involves increasing dimension asymptotics, where one
considers a sequence of increasingly larger models.

The functional linear regression model with functional or continuous response
has been the focus of various investigations [see Ramsay and Silverman (1997),
Faraway (1997), Cardot, Ferraty and Sarda (1999) and Fan and Zhang (2000)].
An applied version of a generalized linear model with functional predictors has
been investigated by James (2002). We assume here that the dependent variable
is univariate and continuous or discrete, for example, of binomial or Poisson
type, and that the predictor is a random function. The main idea is to employ a
Karhunen—Loéve or other orthogonal expansion of the random predictor function
[see, e.qg., Ash and Gardner (1975) and Castro, Lawton and Sylvestre (1986)], with
the aim to reduce the dimension to the first few components of such an expansion.
The expansion is therefore truncated at a finite number of terms which increases
asymptotically.

Once the dimension is reduced to a finite number of components, the expansion
coefficients of the predictor process determine a finite-dimensional vector of
random variables. We can then apply the machinery of generalized linear or
guasi-likelihood models [Wedderburn (1974)], essentially solving an estimating or
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generalized score equation. The resulting regression coefficients obtained for the
linear predictor in such a model then provide us with an estimate of the parameter
function of the generalized functional regression model. This parameter function
replaces the parameter vector of the ordinary finite-dimensional generalized
linear model. We derive an asymptotic limit result (Theorem 4.1) for the
deviation between estimated and true parameter function for increasing dimension
asymptotics, referring to a situation where the number of components in the model
increases with sample size.

Asymptotic tests for the regression effect and simultaneous confidence bands
are obtained as corollaries of this main result. We include an extension to the
case of a semiparametric quasi-likelihood regression (SPQR) model in which link
and variance functions are unknown and are estimated from the data, extending
previous approaches of Chiou and Miller (1998, 1999), and also provide an
analysis of the AIC criterion for order selection.

The paper is organized as follows: The basics of the proposed generalized
functional linear model and some preliminary considerations can be found in
Section 2. The underlying ideas of estimation and statistical analysis within the
generalized functional linear model will be discussed in Section 3. The main
results and their ramifications are described in Section 4, preceded by a discussion
of the appropriate metric in which to formulate the asymptotic result, which
is found to be tied to the link and variance functions used for the generalized
functional linear model. Simulation results are reported in Section 5. An illustrative
example for the special case of binomial functional regression with the goal to
discriminate between short- and long-lived medflies is provided in Section 6. This
is followed by the main proofs in Section 7. Proofs of auxiliary results are in the
Appendix.

2. Thegeneralized functional linear model. The data we observe for tlith
subject or experimental unit at€X;(¢),t € 7},Y;), i =1, ..., n. We assume that
these data form an i.i.d. sample. The predictor varid{g), r € 7, is a random
curve which is observed per subject or experimental unit and corresponds to a
square integrable stochastic process on a real int@rvdlhe dependent variable
Y is a real-valued random variable which may be continuous or discrete. For
example, in the important special case of a binomial functional regression, one
would havey e {0, 1}.

Assume that a link functiog(-) is given which is a monotone and twice con-
tinuously differentiable function with bounded derivatives and is thus invertible.
Furthermore, we have a variance functiof(-) which is defined on the range of
the link function and is strictly positive. The generalized functional linear model
or functional quasi-likelihood model is determined by a parameter fungtion
which is assumed to be square integrable on its doraim addition to the link
function g(-) and the variance function?(-).
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Given a real measuréw on 7, define linear predictors

n=a +/,3(t)X(t)dw(t)

and conditional meang = g(n), whereE(Y|X (¢),t € 7) = u andVar (Y| X (¢),

t € T)=0c%nu) =a&%n) for a function 52(n) = o2(g(n)). In a generalized
functional linear model the distribution of would be specified within the
exponential family. For the following (except where explicitly noted), it will be
sufficient to consider the functional quasi-likelihood model

Q) Yi=g<oe+/,8(t)X,-(t)dw(t)>+e,~, i=1...,n,
where
E(e|X(1),1€T) =0,
Var(e|X (1), 1 € T) = o2(n) = 2(n).

Note thatw is a constant, and the inclusion of an intercept allows us to require
E(X(¢)) =0forallz.

The errorse; are i.i.d. and we use integration w.r.t. the measiigr) to allow
for nonnegative weight functions(-) such thatv(¢) > 0 forz € 7, v(z) = 0 for
t ¢ T anddw(t) = v(t) dt; the default choice will be (1) = 1;;c7. Nonconstant
weight functions might be of interest when the observed predictor processes are
function estimates which may exhibit increased variability in some regions, for
example, toward the boundaries.

The parameter functio@(-) is a quantity of central interest in the statistical
analysis and replaces the vector of slopes in a generalized linear model or
estimating equation based model. Settirfg= E{52(»)}, we then find

Var(e) =Var{E(e|X(t),t € T} + E{Var(e| X (t),t € T}
= E{6°(n)} =07,
as well asE(e) = 0.
Letp;, j =12, ..., beanorthonormal basis of the function spaéé&dw), that

is, [+ pj (1) pk(t) dw(t) = §i. Then the predictor process(s) and the parameter
function 8(z) can be expanded into

X)) =) ejpj®),  BO=)_ Bipj®)
j=1 j=1
[in the L2(dw) sense] with r.v’s; and coefficient$;, given bye; = [ X (¢) x
pj(t)dw(t) andp; = [ B(t)p,(t)dw(t), respectively. We note th&(e;) =0 and
Zﬂj? < o0. Writing ojz = E(gf.), we findZon = [E(X?(1)) dw(t) < .
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From the orthonormality of the base functigns it follows immediately that

o
fﬁ(t)X(t)dw(t) =Y Bjej.

j=1

It will be convenient to work with standardized errors
¢ =eo(n)=es(n),
for which E(¢/|X) =0, E(¢/) = 0, E(¢2) = 1. We assume thd&(e*) = 4 < 00
and note that in model (1), the distribution of the errergloes not need to be
specified and, in particular, does not need to be a member of the exponential
family. In this regard, model (1) is less an extension of the classical generalized
linear model [McCullagh and Nelder (1989)] than an extension of the quasi-
likelihood approach of Wedderburn (1974). We address the difficulty caused by
the infinite dimensionality of the predictors by approximating model (1) with a
series of models where the number of predictors is truncated=at, and the
dimensionp,, increases asymptotically as— oo.
A heuristic motivation for this truncation strategy is as follows: Setting

P 00
Up=a+) Biej. Vo= ) Bjej.
j=1 j=p+1
we findE(Y|X(t),t € T) = g(a + Z?ilﬂjgj) = g(U, + V). Conditioning on
the firstp components and writingy,, |y, for the conditional distribution function
leads to a truncated link functiqy),,

E(Y|Up) = g,(Up) = E[g(U, + Vp)|U,] = / g(U, +5)dFy,u, (5).

For the approximation of the full model by the truncated link function, we note
that the boundedness gf, |g’()|2 < ¢, implies that

2
{/[g(Up + V) — g(U, +s>]dvaUp(s>}
< [ €@V, = 92dFy,u,6)

< 2c/(V,f + Sz)dFV,,|U1, (s)
and, therefore,
E((2(Up + V) — g, (Up)?)

2
- E( [1eWy 4+ V) = oW, +9)1dFy,u0, (s))

< 2cE(VZ +E(VZ|U,)) = 4cE(V))

o0 o0
=de 3 B D of

j=p+l  j=p+1

)
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The approximation error of the truncated model is seen to be directly tied to
Var (V,) and is controlled by the sequentrse2 =Var(ej), j =1,2,..., which
for the special case of an eigenbase corresponds to a sequence of eigenvalues.

Settingeji) = [ X;(t)pj(t)dw(t), the full model with standardized errassis

o o0
Yi=g<a+2ﬁ18§l))+€,’-5<a+2ﬂ185~1)), i=1...,n.
j=1 j=1
With truncated linear predictorsand meang,

p .
m=a+y Biey), =g,
=1

the p-truncated model becomes

p . p .
3) ' =g,,<a + Zﬂ,-s;’)> +e;5p<a + Zﬁjey’), i=1...n,

j=1 j=1

whereo, is defined analogously tg,. Note thatg(U,) — g,(U,) and, analo-
gously,o (U,) — 6,(U,) are bounded by the error (2). Since it will be assumed
that this error vanishes asymptotically, as> oo, we may instead of (3) work
with the approximating sequence of models

p ) p .
@ r” =g<a + Zﬁjsy)) +€§5(a + Zmeﬁ”), i=1...,n,

j=1 j=1
in which the functionsg and & are fixed. We note that the random variables
Yl.(p) ande/,i =1,...,n, form triangular arraySY[f’,i") ande, ,i=1,...,n,with

changing distribution as changes; for simplicity, we supfi?ess the indiges
Inference will be developed for the sequencepefruncated models (4) with

asymptotic results forp — oo. The practical choice ofp in finite sample

situations will be discussed in Section 5. We also develop a version where the

link function g is estimated from the data, given The practical implementation

of this semiparametric quasi-likelihood regression (SPQR) version adapts to the

changing link functiong, of the approximating sequence (3).

3. Egstimation in the generalized functional linear model. One central
aim is estimation and inference for the parameter funcon. Inference for
B(-) is of interest for constructing confidence regions and testing whether the
predictor function has any influence on the outcome, in analogy to the test for
regression effect in a classical regression model. The orthonormal{pasis=
1,2,...} is commonly chosen as the Fourier basis or the basis formed by the
eigenfunctions of the covariance operator. The eigenfunctions can be estimated
from the data as described in Rice and Silverman (1991) or Capra and Miiller
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(1997). Whenever estimation and inference for the intereejgtto be included,
we change the summation range for the linear predictoo the right-hand side
of the p-truncated model (3) t9°} from Y7, settingsy’ = 1 andfo = . In the
following, inclusion of« into the parameter vector will be the default.

Fixing p for the moment, we are in the situation of the usual estimating equation
approach and can estimate the unknown parameter vgéter (8o, ..., Bp) by
solving the estimating or score equation

%) U(p)=0.

Settinge T = (e¢”, ... ep)), mi = X0 _oBjel’, i =g, i =1,....n, the
vector-valued score function is defined by

(6) UPB) = (Y — g m)e® /o%(uy).

i=1
The solutions of the score equation (5) will be denoted by

A

@) BT =Bo,....Bp);  a=ho.

Relevant matrices which play a well-known role in solving the estimating
equation (5) are

—t =0, VR

and with generic copies, ¢, u of n;, ¢©, u;, respectively,

g//2 )
I'=Tp = (Vr)o<k.i<ps Ykl = E(—Skb‘z),
o2(u
8)

L] _1
E=T""=()o<k,i1<p-

We note thatl" = %E(DTD) is a symmetric and positive definite matrix and
that the inverse matrig€ exists. Otherwise, one would arrive at the contradiction
E((Z,fzoakskg/(n)/a(M)))Z) = 0 for nonzero constants, ..., «,.

With vectorsY” = (Y1,...,Y,), ul = (u1, ..., us), the estimating equation
U (B) =0 can be rewritten as

DTv=Y2(y — ) =0.

This equation is usually solved iteratively by the method of iterated weighted
least squares. Under our basic assumption%Ea(sDTD) =T, is a fixed positive
definite matrix for eaclp, the existence of a unique solution for each fixeds
assured asymptotically.
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In the above developments we have assumed that both the link furgtipn
and the variance functiom?(-) are known. Situations where the link and variance
functions are unknown are common, and we can extend our methods to cover the
general case where these functions are smooth, which for fixedrresponds
to the semiparametric quasi-likelihood regression (SPQR) models considered in
Chiou and Muller (1998, 1999). In the implementation of SPQR one alternates
nonparametric (smoothing) and parametric updating steps, using a reasonable
parametric model for the initialization step. Since the link function is arbitrary,
except for smoothness and monotonicity constraints, we may require that estimates
and parameters satisfy8|| = 1, || || = 1 for identifiability.

For given$, ||8Il = 1, setting; = ¥-7_, Bjs;’), updates of the link function
estimateg(-) and its first derivativg’(-) are obtained by smoothing (applying any
reasonable scatterplot smoothing method that allows the estimation of derivatives)
the scatterploi(#;, ¥;);—1...,. Updates for the variance function estimaté.)
are obtained by smoothing the scatterglat, é,?),‘zlw,n, where; = g(n;) are
current mean response estimateséfnd (Y; — ;)2 are current squared residuals.
The parametric updating step then proceeds by solving the score equation (5),
using the semiparametric score

n

9) UB) =D (Y —&m))g' eV /62(8(y)).

i=1

This leads to the solution’, in analogy to (7). For solutions of the score equations
for both scores (6) and (9), we then obtain the regression function estimates

P
(10) B(t)=Po+ > Bip;®).

j=1

Matrices D and I' are modified analogously for the SPQR case, substituting
appropriate estimates.

4. Asymptotic inference. Given an L2-integrable integral kernel function
R(s,1): T2 — R, define the linear integral operatdrg : L2(dw) — L?(dw) on
the Hilbert spacé.2(dw) for f € L2(dw) by
(11) ArH® = [ FORE D).

OperatorsA g are compact self-adjoint Hilbert—Schmidt operators if

fIR(s, 1% dw(s) dw(t) < oo,

and can then be diagonalized [Conway (1990), page 47].
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Integral operators of special interest are the autocovariance opdratof X
with kernel

12) K (s, 1) =cov(X(s), X (1)) =E(X(s)X (1))
and the generalized autocovariance operamwith kernel
(& m)?
(13) GG, 1) =E( = —=X()X(®) ).
o(u)

Hilbert—-Schmidt operatora x generate a metric ifi?,

d2(f.g) = f () — gO)(AR(f — £))(®) dw(r)

- / / (f(5) — g)) (£ (1) — g(O)R(s, 1) dw(s) dw(r)

for f,g € Lz(dw), and given an arbitrary orthonormal bafis, j = 1,2, ...}, the
Hilbert—Schmidt kernel® can be expressed as

R(s,1) =Y ruapi(s)pi(t)
k.l
for suitable coefficients{ry;, k,1 = 1,2,...} [Dunford and Schwartz (1963),
page 1009]. Using for any given functidgne L? the notation

hp,j =/h(s),oj(s)dw(s)

and denoting the normalized eigenfunctions and eigenvalues of the oparator
by {,of, Af,j =1,2,...}, the distance/r can be expressed as

dz(f.) =Y riu(fok — 8pk) fol — 8o.)
k,l

(14)
=Y AR (for s — gpr )%
k

In the following we use the metrids, since it allows us to derive asymptotic
limits under considerably simpler conditions than for the metric, due to its
dampening effect on higher order frequencies. For the sequenggtofincated
models (1) that we are considering,

2.4 2 ; g'()?

6.5 = [ [ (56 = ) (B0 — BOIE(S51 X X)) duw) dwry
is approximated by (8. 8) = (B — B)"T'(B — B) for eachp.

In addition to the basic assumptions in Section 2 and usual conditions on
variance and link functions, we require some technical conditions which restrict
the growth ofp = p, and the higher-order moments of the random coefficients
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Additional conditions are required for the semiparametric (SPQR) case where
both link and variance functions are assumed unknown and are estimated
nonparametrically.

(M1) The link functiong is monotone, invertible and has two continuous bounded
derivatives with||g’ ()|l < ¢, ||g” ()|l < ¢ for a constant > 0. The variance
functiono?(-) has a continuous bounded derivative and there exists 8
such thatr () > 6.

(M2) The number of predictor termg, in the sequence of approximating
pn-truncated models (1) satisfigs — oo and p,n~* — 0 asn — oo.

(M3) It holds that [see (8), where tlg; are defined]

Pn g/4(n) )
> E <<9k1 Eky Ek Eky 4—>§klk2 Ekakq = 0(n/ pp).
k1,...,kq4=0 o (,LL)

(M4) It holds that

Pn £ g/4(n)

Z 0,4(,“) 8k18k38k58k7
=0

14
Ul
E(f_4—(u>8k28k48k68k8)§k1k2 €k3k4 5k5k6 §k7k8 = O(HZPS)
We are now in a position to state the central asymptotic result. Givenp,,
denote bys = (Bo, ..., B,)! the solution of the estimating equations (5), (6)
and byg = (Bo, ..., ﬁp)T the interceptx = Bg and the firstp coefficients of the
expansion of the parameter functigiy) = j?‘;l Bjpj(t)inthe basigp;, j > 1}.

THEOREM4.1. If the basic assumptions arftf1)—(M4) are satisfiedthen

nB—PB) T, BB —punt+D a
NS — N, 1) asn — 0o.

We note that the matriX',, in Theorem 4.1 may be replaced by the empirical
versionl” = %(DDT); this is a consequence of (21), (22) and Lemma 7.2 below.
Whenever only the “slope” parametess, B2, ... but not the intercept parameter
a = fBo are of interestp,, is replaced by, —1 and the(p + 1) x (p + 1) matrixI"
is replaced by the x p submatrix ofl" obtained by deleting the first row/column.

To study the convergence of the estimated parameter fungtionwe use the
distancels and the representation (14) with= G, coupled with the expansion

(15)

Pn
p)=3_ Bsri®

j=1
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of the estimated parameter functi(ﬁ”(-) in the basis{ij,j =12, ...}, the
eigenbasis of operatets with associated eigenvaluég. We obtain

B2 (B(), B()) = / / (B(s) — B($)G(s.D(B®) — B®)) dw(s) dw(r)

p
:Z?ﬁpf_ p, Z)‘GﬂG

j=p+1

= (BC — BT (B - B9 + Z AGﬁG

j=p+1

Here
A A 5 \T T
ﬂGZ(ﬁplG,..-,ﬂpg) : ,3G=(,3pf,---,ﬂpg) :

and the diagonal matrik¢ is obtained by replacing in the definition of the matrix
I [see (8)] thes; by £ that are given by

G g(n)

= xwef @ awo.
with the property

(16) E(efs,?)Z// G(s,0)p§ ($)p (1) dw(s) dw(t) = 545

These considerations lead under appropriate moment conditions to the following:

COROLLARY 4.1. If the parameter functiog(-) has the property that

o0 m
17 Y. EE7)| | BOpf 0 dw)| =0
j:p+1 |:/ j i| ( )
then
”ff(ﬁ(S)—ﬂ(S))(ﬂ(l)—ﬂ(l))G(S Hdw(s)dw() —(pn+1) q <4 N©.1)
2pn+1
asn — oo.

We note that property (17) relates to the rate at which higher-order oscillations,
relative to the oscillations of process#gr), contribute to theL? norm of the
parameter functioB(-).

In the case of unknown link and variance functions (SPQR), one applies scatter-
plot smoothing to obtain nonparametric estimates of functions and derivatives and
then obtains the parameter estimafeas solutions of the semiparametric score
equation (9). After iteration, final nonparametric estimates of the link fungjon



GENERALIZED FUNCTIONAL LINEAR MODELS 785

its derivativeg’ and of the variance functiof? are obtained. We implement these
nonparametric curve estimators with local linear or quadratic kernel smoothers,
using a bandwidtt in the smoothing step. For the following result we assume
these conditions:

(R1) The regularity conditions (M1)—-(M6) and (K1)—(K3) of Chiou and Muller
(1998) hold uniformly for allp,,.
(R2) For the bandwidths of the nonparametric function estimates for link and

variance functions — 0, Iogn — oo and|| 2 vl 12 - 0 asn — oo.

The following result refers to the matrix

. A . 12 '\/2( A )
(18) U= Wi<ki<p,,  Wi= Z ( 2(771) 8ki81i)-

COROLLARY 4.2. AssumgR1) and (R2) and replace the matrix" in (15)
by the matrixI" from (18). Then (15) remains valid for the semiparametric
quasi-likelihood (SPQR estimatesf that are obtained as solutions of the
semiparametric estimating equati@®), substituting nonparametrically estimated
link and variance functions

Extending the arguments used in the proofs of Theorems 1 and 2 in Chiou and
Mdller (1998), and assuming additional regularity conditions as described there,
we find for these nonparametric function estimates,

~12 2
g P _, (Iogn+h2+¢p—n

62(1)  o21t)| nh3 h2
nh3

Assuming thath — 0, g '~12| - 0, we obtain from the

boundedness of the design density of the linear predictors away from 8cand
that

16 - 1.

g% g% N

&2(H)  a2(n)
where theo,-terms are uniform inp following (M2). Therefore, the matrix’
approximates the elements of the matrix

Op(1)7

.1 i 1 & (g%m)

I'= ;(DDT) = (Vki)1<k,I<pn> Vil = Z( 20 l)gki81i>
uniformly in k,/ and p,. This, together with the remarks after Theorem 4.1,
justifies the extension to the semiparametric (SPQR) case with unknown link
and variance functions. This case will be included in the following, unless noted
otherwise.
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A common problem of inference in regression models is testing for no
regression effect, that idy: 8 = const, which is a special case of testing for
Ho: B = Bo for a given regression parameter functigm With the representation
Bo(t) = Bojp;(t), the null hypothesis becomé#:B; = po;, j =0,1,2,...,
and Hy is rejected when the test statistic in Theorem 4.1 exceeds the critical value
®(1 — «), for the case of a fully specified link function. Through a judicious
choice of the orthonormal basip;, j = 1,2, ...}, these tests also include null
hypotheses of the typHy: [ B(t)h;(t)dw(t) =t;, j =1,2,..., for a sequence
of linearly independent functions;; these are transformed into an orthonormal
basis by Gram—-Schmidt orthonormalization, whence it is easy to see that these
null hypotheses translate infdy: 8; = f}, j=1,2,..., for suitablet’ if we use
the new orthonormal basis in lieu of tle;, j > 1}. For alternative approaches to
testing in functional regression, we refer to Fan and Lin (1998).

Another application of practical interest is the construction of confidence bands
for the unknown regression parameter functgnn a finite sample situation for
which p = p, is given and estimates for p-vectorsg have been determined, an
asymptotic(1 — «) confidence region fo according to Theorem 4.1 is given by
(B—B)TT(B— B) < c(a), wherec(e) = [p + 1+ 2(p + D®(1— a)]/n, and
" may be replaced by its empirical counterpdrter I'. More precisely, we have
the following:

COROLLARY 4.3. Denote the eigenvectors/eigenvalues of the matrjsee
()1 by (e1, 1), .., (ept1, Apt1), and let

p+1
ek = (ex1, - ek pr1) wk(I)Zsz(f)ekl, k=1,....,p+1
=1
Then for large n and p,,, an approximatg1 — «) simultaneous confidence band
is given by

p+1
wi(1)?

(19) By £ |c@)y -
k=1 "k

A practical simultaneous band is obtained by substituting estimates for
wg andiy, that result from empirical matricds or I" instead ofl".

5. Simulation study and model selection.

5.1. Model order selection. An auxiliary parameter of importance in the
estimation procedure is the numbgerof eigenfunctions that are used in fitting
the functiong(¢). This number has to be chosen by the statistician. An appealing
method is the Akaike information criterion (AIC), due to its affinity to increasing
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model orders, and, in addition, we found AIC to work well in practice. We discuss
here the consistency of AIC for choosipgn the context of the generalized linear
model with full likelihood and known link function.

Assume the linear predictor vector, consists ofn componentsy,; =

>0 _o€iBj, i =1,...,n, the vectori, of the componentsj,; = Zfzoejﬁj
and the vectom of the componentsz ey ﬁj Let G be the antiderivative
of the (inverse) link functiorg so thatY has the density (in canonical form)
fr(») =exp(yn +a(y) — G(n)). In particular,62(n) = g’'(n). The deviance is

D =20, (Y, 7p) + 2,(Y, g7H(Y)),
with log-likelihood
(Y, fp) =D Yiflip— D Gii,p)-
i=1 i=1
Taylor expansion yields
—20,(Y, ﬁp) = =20, (Y, np)

+2(Vp, (Y. 1) (Bp — Bp)

2
9P 9B
where the second term on the right-hand side is zero, due to the score equation, and
the matrix in the quadratic form is essentiallp” D). It follows from the proof of

Theorem 4.1 that the quadratic forg, — ,)7 DZD — B,) has asymptotic
expectatiorp. Since

+ By — P ( (Y, n,»)(ﬂp B,

—20,(Y, np) = =20, (Y, 1) — Z i —gm))(i,p — i)

+> 8 i) nip — ni)?,

i=1

we arrive at

E®D)=n Y E(gmee)pB—p(l+ol)+E

ki=p+1

/2
=n Y E( (n)SkSZ)ﬁkﬂz p(1+0(1)+ E,,

~2
kl=p+1 ()

whereE, is an expression that does not depengon
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Applying the law of large humbers, and similar considerations as in Section 7,
we find D/E(D) 5 1, as long asp is chosen in(po, cnl/4). Next, applying
results of Section 7,

d(B(), B()) = / / (B(s) — B())G(s, D) (B(1) — B(1)) dw(s) dw(r)

=By =B TBp—B)+ > vikBibBk

k,j=p+1

14 o0
+2) > vikBi — BB

j=lk=p+1

where yi; = E(55;8ecer). We obtain E@(A(), B()) = p/n(L + o(1)) +
Yk j=p+1VikBiBr(1+o0(D)).

This analysis shows that the target functié3(-), 8(-)) to be minimized is
asymptotically close t& (£D/n) + 2p/n. This suggests that we are in the situation
considered by Shibata (1981) for sequences of linear models with normal residuals
and by Shao (1997) for the more general case. While the closeness of the target
function and AIC is suggestive, a rigorous proof that the ordgrselected by
AIC and the orderp,; that minimizes the target function satispy;/pa — 1
in probability asn — oo or a stronger consistency or efficiency result requires
additional analysis that is not provided here. One difficulty is that the usual
normality assumption is not satisfied as one operates in an exponential family or
quasi-likelihood setting.

In practice, we implement AIC and the alternative Bayesian information
criterion BIC by obtaining first the deviance or quasi-deviaizg), dependent
on the model ordep. This is straightforward in the quasi-likelihood or maximum
likelihood case with known link function, and requires integrating the score
function to obtain the analogue of the log-likelihood in the SPQR case with
unknown link function. Once the deviance is obtained, we choose the minimizing
argument of

(20) C(p)=D(p)+2P(p),

where is the penalty term, chosen ag for the AIC and ag logn for the BIC.

Several alternative selectors that we studied were found to be less stable and
more computer intensive in simulations. These included minimization of the leave-
one-out prediction error, of the leave-one-out misclassification rate via cross-
validation [Rice and Silverman (1991)], and of the relative difference between the
Pearson criterion and the deviance [Chiou and Muller (1998)].
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5.2. Monte Carlo study. Besides choosing the numbegrof components to
include, an implementation of the proposed generalized functional linear model
also requires choice of a suitable orthonormal bgsjsj = 1,2, ...}. Essentially
one has two options, using a fixed standard basis such as the Fouriep pasis
9= V2sin(mjt),t € [0, 1], j > 1, or, alternatively, to estimate the eigenfunctions
of the covariance operatarg (11), (12) from the data, with the goal of achieving a
sparse representation. We implemented this second option following an algorithm
for the estimation of eigenfunctions which is described in detail in Capra and
Muller (1997); see also Rice and Silverman (1991). Once the number of model
components has been determined, tlith observed process is reduced to the
p predictorSej’) =[Xi()pjt)dw(t), j =1,..., p. We substitute the estimated
eigenfunctions for th@; and evaluate the integrals numerically.

Once we have reduced the infinite-dimensional model (1) tgitsuncated
approximation (3), we are in the realm of finite-dimensional generalized linear
and quasi-likelihood models. The paramete@ndp, ..., B, in the p-truncated
generalized functional model are estimated by solving the respective score
equation. We adopted the weighted iterated least squares algorithm which is
described in McCullagh and Nelder (1989) for the case of a generalized linear
or quasi-likelihood model with known link function, and the QLUE algorithm
described in Chiou and Miller (1998) for the SPQR model with unknown link
function.

The purpose of our Monte Carlo study was to compare AIC and BIC as selection
criteria for the orderp, to study the power of statistical tests for regression
effect in a generalized functional regression model and, finally, to investigate
the behavior of the semiparametric SPQR procedure for functional regression,
in comparison to the maximum or quasi-likelihood implementation with a fully
specified link function. The design was as follows: Pseudo-random processes
based on the first 20 functions from the Fourier base) = 250:1 gjp;(t) were

generated by using normal pseudo-random variables N (O, 1/j%), j > 1.
Choosingg; =1/j, 1< j <3, po=1, B; =0, j > 3, we definedp(r) =
Y221 Bje() andp(X () = g(Bo+ X524 Bje ), choosing logit link [withg (x) =
exp(x)/(1 + exp(x))] and c-loglog link [with g(x) = exp(—exp(—x))]. Then

we generated responségX) ~ Binomial(p(X), 1) as pseudo-Bernoulli r.v.s
with probability p(X), obtaining a samplé€X;(¢),Y;), i = 1,...,n. Estimation
methods included generalized functional linear modeling with logit, c-loglog and
unspecified (SPQR) link functions.

In results not shown here, a first finding was that the AIC performed somewhat
better than BIC overall, in line with theoretical expectations, and, therefore, we
used AIC in the data applications. To demonstrate the asymptotic results, in
particular, Theorem 4.1, we obtained empirical power functions for data generated
and analyzed with the logit link, using the test statistion the left-hand side
of (16) to test the null hypothesis of no regression effégtg; =0,/ =1,2,....
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This test was implemented as a one-sided test at the 5% level, that is, rejection was
recorded whenevef'| > ®~1(0.95). The average rejection rate was determined
over 500 Monte Carlo runs, for sample sizes 50, 200, as a function of, 0 <

8 < 2, where the underlying parameter vector was as described in the preceding
paragraph, multiplied by, and is given bys, 8, /2, §/3). The resulting power
functions are shown in Figure 1 and demonstrate that sample size plays a critical
role.

To demonstrate the usefulness of the SPQR approach with automatic link
estimation, we calculated the means of the estimated regression parameter
functions A(-) over 50 Monte Carlo runs for the following cases: In each run,
1000 samples were generated with either the logit or c-loglog link function and the
corresponding functiong(-) were estimated in three different ways: Assuming
a logit link, a c-loglog link and assuming no link, using the SPQR method.
The resulting mean function estimates can be seen in Figure 2. One finds that
misspecification of the link function can lead to serious problems with these
estimates and that the flexibility of the SPQR approach entails a clear advantage
over methods where a link function must be specified a priori.

(3)

1.4 1.6 1.8 2

Fic. 1. Empirical power functions for the significance test for a functional logistic regression effect
at the5% level Based orb00simulationsfor sample sizeS0 (dashed and200 (solid), with p = 3.
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FIG. 2. Average estimates of the regression parameter fungti@nobtained ove50 Monte Carlo
runs from data generated either with the logit lifleft panel) or with the c-loglog link(right
panel).Each panel displays the target functi¢golid), and estimates obtained assuming the logit
link (dashed, the c-loglog link(dash-do} and the SPQR method incorporating nonparametric link
function estimatiorfdotted).

6. Application to medfly data and classification. It is a long-standing
problem in evolution and ecology to analyze the interplay of longevity and
reproduction. On one hand, longevity is a prerequisite for reproduction; on the
other hand, numerous articles have been written about a “cost of reproduction,”
which is the concept that a high degree of reproduction inflicts a damage on the
organism and shortens its lifespan [see, e.g., Partridge and Harvey (1985)]. The
precise nature of this cost of reproduction remains elusive.

Studies with Mediterranean fruit flie€ératitis capitatd, or medflies for short,
have been of considerable interest in pursuing these questions as hundreds of
flies can be reared simultaneously and their daily reproduction activity can be
observed by simply counting the daily eggs laid by each individual fly, in addition
to recording its lifetime [Carey et al. (1998a, b)]. For each medfly, one may thus
obtain a reproductive trajectory and one can then ask the operational question
whether particular features of this random curve have an impact on subsequent
mortality [see Mdller et al. (2001) for a parametric approach and Chiou, Muller
and Wang (2003) for a functional model, where the egg-laying trajectories are
viewed as response]. In the present framework we cast this as the problem to
predict whether a fly is short- or long-lived after an initial period of egg-laying
is observed. We adopt a functional binomial regression model where the initial
egg-laying trajectory is the predictor process and the subsequent longevity status
of the fly is the response. Of particular interest is the shape of the parameter
function g(-), as it provides an indication as to which features of the egg-laying
process are associated with the longevity of a fly.

From the one thousand medflies described in Carey et al. (1998a), we select
flies which lived past 34 days, providing us with a sample of 534 medflies. For
prediction, we use egg-laying trajectories from 0 to 30 days, slightly smoothed to
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obtain the predictor process&s(z),t €[0,30],i =1,...,534 Afly is classified

as long-lived if the remaining lifetime past 30 days is 14 days or longer, otherwise
as short-lived. Of the = 534 flies, 256 were short-lived and 278 were long-lived.
We apply the algorithm as described in the previous section, choosing the logit
link, fitting a logistic functional regression.

Plotting the reproductive trajectories for the long-lived and short-lived flies
separately (upper panels of Figure 3), no clear visual differences between the two
groups can be discerned. Failure to visually detect differences between the two
groups could result from overcrowding of these plots with too many curves, but
when displaying fewer curves (lower panels of Figure 3), this remains the same.
Therefore, the discrimination task at hand is difficult, as at best subtle and hard to
discern differences exist between the trajectories of the two groups.

We use the Akaike information criterion (AIC) for choosing the number of
model components. As can be seen from Figure 4, where the AIC criterion is

1 10 20 30 1 10 20 30

Time(days) Time(days)
100 : 100
C
80+t 1 80
60 1 60
40 i 40
20 20
0 e ok
1 10 20 30
Time(days) Time(days)

Fic. 3. Predictor trajectories corresponding to slightly smoothed daily egg-laying cunfes

n = 534 medflies The reproductive trajectories fa256 short-lived medflies are in the upper left
and those fo278 long-lived medflies in the upper right pan&andomly selected profiles from the
panels above are shown in the lower panels§0medflies
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FIG. 4. Akaike information criteriofAIC) as a function of the number of model componentsr
the medfly data

shown in dependency on the model orgerthis leads to the choice = 6. The
cross-validation prediction error criteri®tE = %Z?:l(Y,- — ﬁl.(_‘))z, whereﬁi(_’)
is the leave-one-out estimate f@r, supports a similar choice. The leave-out
misclassification rate estimates are, for the group of long-lived flies, 37% with
logit link and 35% for the nonparametric SPQR link, while for the group of short-
lived flies these are 47% for logit and 48% for SPQR, demonstrating the difficulty
of classifying short-lived flies correctly.

The fitted regression parameter functiofé) for both logistic (logit link)
and SPQR (nonparametric link) functional regression, along with simultaneous
confidence bands (19), are shown in Figure 5; we find that the estimate with
nonparametric link is quite close to the estimate employing the logistic link,
thus providing some support for the choice of the logistic link in this case. The
asymptotic confidence bands allow us to conclude that the link function has a steep
rise at the right end towards age 30 days, and that the null hypothesis of no effect
would be rejected.

The shape of the parameter functigii-) highlights periods of egg-laying
that are associated with increased longevity. We note that under the logit link
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10 20
Time(days)

30

1.5

!

20
Time(days)

30

FIG. 5. The regression parameter function estimafes (19) (solid) for the medfly classification
problem with simultaneous confidence ban(s (dashed. Left panel:Logit link. Right panel:
Nonparametric linkusing the SPQR algorithm

function, the predicted classification probability for a long-lived flygig;) =
exp(n) /(1 + exp(n)). Overlaid with this expit-function, the nonparametric link
function estimate that is employed in SPQR is shown in Figure 6 (choosing
local linear smoothing and the bandwidth 0.55 for the smoothing steps), along
with the corresponding indicator data from the last iteration step. For both links,
larger linear predictorg, and therefore larger values of the parameter regression
function 8(-), are seen to be associated with an increased chance for longevity.
Since the parameter function is relatively large between about 12-17 days and
past 26 days, we conclude that heavy reproductive activity during these periods is
associated with increased longevity. In contrast, increased reproduction between
8-12 days and 20-26 days is associated with decreased longevity. A high level
of late reproduction emerges as a significant and overall as the strongest indicator
of longevity in our analysis. This is of biological significance since it implies that
increased late reproduction is associated with increased longevity and may have a
protective effect. Increased reproduction during the peak egg-laying period around
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5 0 5 1 15 2

FiG. 6. Logit link (dashed and nonparametric link functiorfsolid) obtained via the SPQR
algorithm, with overlaid group indicatorsversus level of linear predictoy.

10 days has previously been associated with a cost of reproduction, an association
that is supported by our analysis.

7. Proof of Theorem 4.1 and auxiliary results. Proofs of the auxiliary
results in this section are provided in the Appendix. Throughout, we assume
that all assumptions of Theorem 4.1 are satisfied and work with the matrices
=), E=T"1= (&), 0<k,I < p, defined in (8) and also with the matrix
212 —. (5,5,1/2)), 0<k,1 < p. We will use both versions (-) andé (-) to represent
the variance function, depending on the context, notingdtiad = 6 () and the
notationg, B for the (p, + 1)-vectors defined before Theorem 4.1 a@) for the
parameter function.

For the first step of the proof of Theorem 4.1, we adopt the usual Taylor
expansion based approach for showing asymptotic normality for an estimator
which is defined through an estimating equation; see, for example, McCullagh
(1983). Writing the Hessian of the quasi-likelihood.Bs= Ag U(8) and noting
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that

n
DD =" gPm)eW eV /52(ny),
i=1
we obtain

n

9
Jp= — o (¢ (n)e® (Y; — g ) /52(g ()] - Agmi

i=1

0,7 {g on) g/z(m&Z(n,-)}
2(ni) 4(mi)

=-D"D - Z — g(n))e

=_DTD+R, say.

We aim to show that the remainder tefican eventually be neglected. By a Taylor
expansion, for g betweeng andg,

UB)=UPB)—J38—B)=—J3(8— P

—[D"D(B—B)+ (J3— Jp)(B—B) + (Js — D' D)(B — B)].
Denoting they x g identity matrix by/,, this leads to

V(B —B) = (D" D+ (J;— Jp) + (Jp — DT D) TU(B)
~(ee (%0) () (50 (P70)
y DTD —1U(,3)_
( n > vn

Using the matrix norm|M |2 = (X m2)Y2, we find (see Appendix for the
proof) the following:

LEMMA 7.1. Asn — oo,
DTD\1Uu
Hf(ﬂ B) - ( ) (ﬁ)H 0, (L).

The asymptotically prevailing term is seen to be

i (222) 2

corresponding to
7 (DTD>—1DTV—1/2(Y_M)
n NG
D'D\IDTv-Y2 /DTD\"1DT¢
=( n ) Jn :( > N

n
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Of interest is then the asymptotic distribution@f I Z,,. Defining(p + 1)-vectors
X, and(p + 1) x (p + 1)-matrices¥,, by

1/2 T /
D D'D

(21) Xpy=-2 2y, = r1/2( ) rl/z,

N n
we may decompose this into three terms,
(22) zI'rz, = xI'v2x,

= XTI, + 2% (W, — I,,+1) %,
(23)

+ x; (\Ijn - IP11+1) (\Iln - Ipn+l) “X;n
(24) =F,+ G, + H,, say.

The following lemma is instrumental, as it implies that in deriving the limit
distribution,G,, and H,, are asymptotically negligible as comparedio

LEMMA 7.2. Under the conditions
(M3) p, =o0(n'/3),
(M4/) Z]fln ka=0 E(8k15k28k38k4 04(,7) )gk1k2§k3k4 = 0(”/]7 )

.....

we have that
| W — I, 41]5= 01/ pw).

Note that conditions (M3 and (M4) are weaker than the corresponding
conditions (M2) and (M3) and, therefore, will be satisfied under the basic
assumptions. A consequence of Lemma 7.2 is

|9 (Wi — I, +1) Xu| < 1560 X5 1| W = Ip, 1],
= Op(pn)op(l/\/ pn) = Op(\/ Pn )
Therefore,G,,//pn £ 0. The bound for the tern#, is completely analogous.

Since we will show in Proposition 7.1 below th@! X, — (p, + 1))/+/2pa 4

N(0, 1) [this implies|X, X | = O,(pn)], it follows that G, + H,, = 0,(F;,) S0

that these terms can indeed be neglected. The proof of Theorem 4.1 will therefore
be complete if we show the following:

PROPOSITION7.1. Asn — oo, (X,{X” —(pn+1)/2pn LS N0, 1).

For the proof of Proposition 7.1, we make use of

ﬂ (Zzgu/z)g (nu)) ) ;/\/_>

.‘x;n=
\/ﬁ v=1r=0 v

=0
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and
(1/2) (1/2)
ngtl ko =&un,

to obtain

1Pn n

X0 X =230 3 Z o 8/ 8'Cnvy) (000D 1/ 172

0160, 11 Skip
k Ovy,vo=111,t0= O'(T] 1) G(’?vz)

Pn
™), ) 82()
_Ze Z & €y 5201 )Stl,tz

v=1 t1,1o=0

1 & g () 8’ ()
+203 e, S8 el N ) )
" #va=1 0 (1y) 0 (vy) t1,1=0

=A, + B, say.

We will analyze these terms in turn and utilize the independence of the random
variables associated with observatio(s;, ;) for different values ofi, the
independence of thg of all ¢'s, andE(e’) =0, E? =1

LEMMA 7.3. For A,, it holds that
An - (pn + 1) P
— 0.
A/ Pn

Turning now to the second ter®),, we show that it is asymptotically normal.
Defining the r.v.s

j—1 Pn
g (k) g'(n;j) *) (/)
Wy = /k ' & 1tz
W Jo@@o@ﬂM%;ZIQ v
we may write
2 n
By==> Wy
n -’
Jj=1

A key result is now the following:

LEMMA 7.4. The random variable§W,;,1 < j < n,n € N} form a tri-

angular array of martingale difference sequencestwthe filtrations () =

o e 1<i<j,0<t<p)A<j<nneN).
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Note that#, ; C F,+1,;. Lemma 7.4 implies that the r.vi,; = ~—2—W,;
also form a triangular array of martingale difference sequences. According to the
central limit theorem for martingale difference sequences [Brown (1971); see also

Hall and Heyde (1980), Theorem 3.2 and corollaries], sufficient conditions for

the asymptotic normalit[?z1 VNV,,J- 4 N(0, 1) are the conditional normalization
condition and the conditional Lyapunov condition. The following two lemmas
which are proved in the Appendix demonstrate that these sufficient conditions are
satisfied. We note that martingale methods have also been used by Ghorai (1980)
for the asymptotic distribution of an error measure for orthogonal series density
estimates.

LEMMA 7.5 (Conditional normalization condition).

n
S EWZIFu -0 B> 1 n— oo
j=1

LEMMA 7.6 (Conditional Lyapunov condition).

n
S EWS|Faj—) 50, n— oo
j=1

A consequence of Lemmas 7.5 and 7.6 is tBgn./2 p,, 4 N(0,1). Together
with Lemma 7.4, this implies Proposition 7.1 and, thus, Theorem 4.1.

APPENDIX

We provide here the main arguments of the proofs of several corollaries and of
the auxiliary results which were used in Section 7 for the proof of Theorem 4.1.

PrROOF OFCOROLLARY 4.2. Extending the arguments used in the proofs of
Theorems 1 and 2 in Chiou and Miiller (1998), we find for these nonparametric
function estimates under (R1) that

~12 12
t t lo
8 @ 70| _ p( 9n | 2, NPn
r 162(t)  o2(t) nh3 h?
Define the matrix

=1 T - . 1 (8%

= ;(DD ) = (Vi) 1<k,i<py» Vel =~ l; (mé?ki&zi)-
According to (21) and (22), the result (15) remains the same when repl&cing
by I". From (R2) and observing the boundednesg’®fo2 below and above, we

obtainyy = yx(14+0,(1)), where the ,-term is uniform ink, / andp, . The result

16 - 1.
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follows by observing that the semiparametric estinfateas the same asymptotic
behavior as the parametric estimate, except for some minor modifications due to
the identifiability constraint. [

PROOF OF COROLLARY 4.3. The asymptoti¢l — «) confidence ellipsoid
for B € RPHL s (/8 BT (F/c(a))(ﬁ B) <1 Expressmg the vector;&ﬁ in
terms of the eigenvectoes leads to the coefﬁmen;&k > 6k1,31, Bi=>1expr,
and with y = (B} — B5)//c(@) /A, wi(t) = w(t)/c(@)/Ax the confidence
ellipsoid corresponds to the spheyg, yk*z < 1. To obtain the confidence band,
we need to maximizey ", (,ék Bk () = | Xy v wi (1) w.r.t. yk , and subject
to Yy 2 < 1. By Cauchy-Schwarz} Y, v o} (1)] < [y @f (1) ]1/2 and the
maX|m|2|ng yi must be linear dependent with the vecigj(r), .. *1(t), so

that the Cauchy—Schwarz inequality becomes an equality. The result then follows
from the definition of thev}(r). [

PROOF OFLEMMA 7.1. We observe
Jg — DT D|? 2
(|7 =0 (%) o
n 2 n
sincellg™ ()] <c <oo,v=1,2, 6'%(:) <& < 0o andé?(-) > § > 0 according

to (M1).
Together withp,, = o(n/%) (M2), this implies

[(52) (=22)(58) SR o
Vi 2

(22) () (20) 22—

whence the result follows.

Similarly,

PROOF OFLEMMA 7.2. Note that
1w = Ip,eally < 1 ll2| Wyt = Tyl
We show that| ¥, 1 — 1, 112 = 0, (1), implying

-1
e L e

-1
— Wy~ — Ipn+1||2

||\Ijn“2 =< ||Ipn+1H2 +

Observe that
1
vz Ei/Z—DTDE,}/Z

Pn
1/2) 1/2) = &2(ny) RORO!
Z Sk ml ~2( ) ] Em
v=1 9"y k

] m=0 =0
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and, therefore,

E(Jw,* — Ip,11]3)

(1/2) 12 82(Mw) (o
(Z( Z Z Ekjl m1l e 1)‘&\]11)1 81(1:11) Skl

k,1=0 v1=1j1,m1=0

1/2) (1/2)g 2(1v,) 202, (2)
( Z Z Sk]z mzl ~2(77 ) €, 17;)22 — 8

v2=1 jz,m2=0

n+ 1
:0<p n+ )+o(l/p3),
due to (M3). Hence, by (M%),

9~ 1y, s1lo = 0, (W) 0p () = 0517, .

Pn

PROOF OFLEMMA 7.3. Since

1 n Pn v
EAn=2% 3 E(e(?)E(stlstz‘ZE”;>sm put1

v=111,tp=0
using the definition of", E = r-1 andE(e/Z) =1, and, similarly, by (M3),

2

We find that O< Var (A,) = o(p,). This concludes the proof.(]

PROOF OF LEMMA 7.4. All random variables with upper index are
independent ofF, ;1. Hence, we obtain

j_

Pn
E(an|?n/ l)_z /g(nl) Z (I)Stltz ( g(nj) (j)|$nj 1) 0

zll~( )tltgo ]~()[2
since
. )() / g(n) 2U)
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PrROOF OFLEMMA 7.5. We note

E(WZ|Fn.j-1)

j—1 ’ / Dn
;7 1 8 (nzl)g (7712) Z (i1) _(i2)

= Z e e ————— &y &y $z1t2§t3t4
et U ULy i

G &),
XE(Z‘ZJ t;{ ~2(j) jlfinj 1)

j—1

— Z €,- e/ g/(nil)g/(niz) f: (i1) _(i2)

§ e é‘
1% ~/ N= /.. &n t3 Stz
il,izzl 0'(7711)0'(7712) 11,13= 0

and obtain

J=1 pu 2
E(E(ijl‘?ﬂ,j—l)) = Z Z E(éz—((nn;f?tlgzg)stgtl

i=111,13
= —D(pn+ 1.

This implies

(ZE( J|3?,” 1))—>1 n— 00.

We are done if we can shovar (Z {E(W2 |Fn,j—1)}) — 0. In order to obtain
the second moments, we first note

E{E(WZ |, j—DE(WZ | Fu 1)}

]Zl X_: E( o /g/(ml)g/(mz)g/(mg)g’(nu)>

i1,ip=1ig,ig=1 ll 12 13 14 U(ﬂil)5(ni2)5(ﬁi3)5(ﬂi4)

Pn
(1) .(@2) .(i3) .(ia)
X Z €n €1 frg 8z4 Et106 1314

11,..., t4=0
Pn 14
g ()
= M4(k - 1) Z E(T : 8t18128t38t4)$t1t25t3t4
t1,...,14=0 o (n)

+ (G =Dk —D(pp+ D2 +2(k — D2(p + 1),
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and then obtain

n 2
E((Z{E(ijm,,-_l)}) )

Jj=1

E(EWZ|Fnj-D)+2 Y. E(EWS|F.-DEWSI|Fri-1)

1<k<j<n

=2
=1
n Pn 14
=) [M(j - > E(g o) €n - "5t4>5t1t25t3t4
=1 0

~4 :
11,...,14= o (n)

+ (= D%(pa + D%+ 2(j — D2(pn + 1)}

n j—1 Pn g/4(77)
+2 Z Z ((k —Dpa Z E<54(77) “Ep 8t4>§zlt2§t314
1

j=lk=1 rea=0

+ (= Dk = D(pn+ D%+ 20k — D*(pn + 1))

Pn 14
)]
=0 (n?’tl ZZO E(§4(Z) “Epy e 814)§t112§t3t4>

n4 n4
+ 5 (Pt D21+ o(D) + 5 (Pt D(L+0(D).

Applying (M2), we infer

n 2
E((Z{E(anﬂ?n,j—l)}) ) =1+0(1)
j=1

and conclude that

Var (Z{E(W,fjm,,_l)}) -0,

j=1

whence the result follows.

PROOF OFLEMMA 7.6. Combining detailed calculations EtW:j|$’n7]‘_1)
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andE(E(W,‘l‘jUL‘n’j_l)) with (M2) and (M3) leads to

n ~
>_EW)
j=1
1 ) o g" ()
= —— )| O E(~—8888>
<n4pr21 |: [1’.220 0_4(77) 11°13°i5°ty
/4(
1)
X E(%&z&ﬁteezg)§t112§z3t4$t515§t7t8
Pn 14
g"(n)
+ 0(1’13) Z §t3l4%-l7tgE(4—8l38l48t78t3)
t3,14,17,t8=0 o (,u)
=0(1),

completing the proof. O
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