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Variable selection in the linear regression model takes many apparent
faces from both frequentist and Bayesian standpoints. In this paper we
introduce a variable selection method referred to as a rescaled spike and
slab model. We study the importance of prior hierarchical specifications
and draw connections to frequentist generalized ridge regression estimation.
Specifically, we study the usefulness of continuous bimodal priors to model
hypervariance parameters, and the effect scaling has on the posterior mean
through its relationship to penalization. Several model selection strategies,
some frequentist and some Bayesian in nature, are developed and studied
theoretically. We demonstrate the importance of selective shrinkage for
effective variable selection in terms of risk misclassification, and show this
is achieved using the posterior from a rescaled spike and slab model. We
also show how to verify a procedure’s ability to reduce model uncertainty in
finite samples using a specialized forward selection strategy. Using this tool,
we illustrate the effectiveness of rescaled spike and slab models in reducing
model uncertainty.

1. Introduction. We consider the long-standing problem of selecting vari-
ables in a linear regression model. That is, gixendependent respons&s with
correspondingk -dimensional covariates = (x; 1, ..., x; k)", the problem is to
find the subset of nonzero covariate parameters ffos (81, ..., Bk)’, Where
the model is assumed to be

(1) Yi=ao+pixi1+ -+ PBrxik +e =ao+XB+e, i=1...,n.

The ¢; are independent random variables (but not necessarily identically distrib-
uted) such thaE(e;) = 0 andE(e?) = o'2. The variancer? > 0 is assumed to be
unknown.

The true value foB will be denoted byBy = (B1.0,---,Bk.0)" and the true
variance of; by o—g > 0. The complexity, or true dimension, is the numbepgph
coefficients that are nonzero, which we denot&fyWe assume that4 ko < K,
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where K, the total number of covariates, is a fixed value. For convenience, and
without loss of generality, we assume that covariates have been centered and
rescaled so thai! ;x;x =0 andZ?zlek =n foreachk =1, ..., K. Because

we can definerg = Y, the mean of th&; responses, and replaieby the centered
valuesY; — Y, we can simply assume thag = 0. Thus, we removeg throughout

our discussion.

The classical variable selection framework involves identification of the nonzero
elements of B, and sometimes, additionally, estimation kf. Information-
theoretic approaches [see, e.g., Shao (1997)] considef alidiels and select the
model with the best fit according to some information based criteria. These have
been shown to have optimal asymptotic properties, but finite sample performance
has suffered [Bickel and Zhang (1992), Rao (1999), Shao and Rao (2000) and
Leeb and Pétscher (2003)]. Furthermore, such methods become computationally
infeasible even for relatively smaK . Some solutions have been proposed [see,
e.g., Zheng and Loh (1995, 1997)] where a data-based ordering of the elements
of B is used in tandem with a complexity recovery criterion. Unfortunately, the
asymptotic rates that need to be satisfied serve only as a guide and can prove
difficult to implement in practice.

Bayesian spike and slab approaches to variable selection (see Section 2) have
also been proposed [Mitchell and Beauchamp (1988), George and McCulloch
(1993), Chipman (1996), Clyde, DeSimone and Parmigiani (1996), Geweke (1996)
and Kuo and Mallick (1998)]. These involve designing a hierarchy of priors
over the parameter and model spaces of (1). Gibbs sampling is used to identify
promising models with high posterior probability of occurrence. The choice of
priors is often tricky, although empirical Bayes approaches can be used to deal
with this issue [Chipman, George and McCulloch (2001)]. With increading
however, the task becomes more difficult. Furthermore, Barbieri and Berger (2004)
have shown that in many circumstances the high frequency model is not the
optimal predictive model and that the median model (the model consisting of those
variables which have overall posterior inclusion probability greater than or equal
to 50%) is predictively optimal.

In recent work, Ishwaran and Rao (2000, 2003, 2005) used a modified
rescaled spike and slab model that makes use of continuous bimodal priors for
hypervariance parameters (see Section 3). This method proved particularly suitable
for regression settings with very larg€. Applications of this work included
identifying differentially expressing genes from DNA microarray data. It was
shown that this could be cast as a special case of (1) under a near orthogonal
design for two group problems [Ishwaran and Rao (2003)], and as an orthogonal
design for general multiclass problems [Ishwaran and Rao (2005)]. Along the
lines of Barbieri and Berger (2004), attention was focused on processing posterior
information for B (in this case by considering posterior mean values) rather than
finding high frequency models. This is because in high-dimensional situations it
is common for there to be no high frequency model (in the microarray examples
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consideredk was on the order of 60,000). Improved performance was observed
over traditional methods and attributed to the procedure’s ability to maintain a
balance between low false detection and high statistical power. A partial theoretical
analysis was carried out and connections to frequentist shrinkage made. The
improved performance was linked to selective shrinkage in which only truly zero
coefficients were shrunk toward zero from their ordinary least squares (OLS)
estimates. In addition, a novel shrinkage plot which allowed adaptive calibration
of significance levels to account for multiple testing under the l&geetup was
developed.

1.1. Statement of main results.  In this article we provide a general analysis of
the spike and slab approach. A key ingredient to our approach involves drawing
upon connections between the posterior mean, the foundation of our variable
selection approach, and frequentist generalized ridge regression estimation. Our
primary findings are summarized as follows:

1. The use of a spike and slab model with a continuous bimodal prior for
hypervariances has distinct advantages in terms of calibration. However, like
any prior, its effect becomes swamped by the likelihood as the sample size
increases, thus reducing the potential for the prior to impact model selection
relative to a frequentist method. Instead, we introduce a rescaled spike and
slab model defined by replacing tliieresponses witk/n-rescaled values. This
makes it possible for the prior to have a nonvanishing effect, and so is a type of
sample size universality for the prior.

2. This rescaling is accompanied by a variance inflation pararhgtéris shown
through the connection to generalized ridge regression ithatontrols the
amount of shrinkage the posterior mean exhibits relative to the OLS, and
thus can be viewed as a penalization effect. Theorem 2 of Section 3 shows
that if A, satisfiesr, — oo and A,/n — 0, then the effect of shrinkage
vanishes asymptotically and the posterior mean (after suitable rescaling) is
asymptotically equivalent to the OLS (and, therefore, is consistergfor

3. While consistency is important from an estimation perspective, we show for
model selection purposes that the most interesting case occursiyhken.

At this level of penalization, at least for orthogonal designs, the posterior mean
achieves an oracle risk misclassification performance relative to the OLS under
a correctly chosen value for the hypervariance (Theorem 5 of Section 5). While
this is an oracle result, we show that similar risk performance is achieved using
a continuous bimodal prior. Continuity of the prior will be shown to be essential
for the posterior mean to identify nonzero coefficients, while bimodality of the
prior will enable the posterior mean to identify zero coefficients (Theorem 6 of
Section 5).

4. Thus, the use of a rescaled spike and slab model, in combination with
a continuous bimodal prior, has the effect of turning the posterior mean into
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a highly effective Bayesian test statistic. Unlike the analogous frequentist
test statistic based on the OLS, the posterior mean takes advantage of model
averaging and the benefits of shrinkage through generalized ridge regression
estimation. This leads to a type of “selective shrinkage” where the posterior
mean is asymptotically biased and shrunk toward zero for coefficients that are
zero (see Theorem 6 for an explicit finite sample description of the posterior).
The exact nature of performance gains compared to standard OLS model
selection procedures has to do primarily with this selective shrinkage.

5. Information from the posterior could be used in many ways to select variables;
however, by using a local asymptotic argument, we show that the posterior is
asymptotically maximized by the posterior mean (see Section 4). This naturally
suggests the use of the posterior mean, especially when combined with a
reliable thresholding rule. Such a rule, termed “Zcut”, is motivated by a ridge
distribution that appears in the limit in our analysis. Also suggested from this
analysis is a new multivariate null distribution for testing if a coefficient is zero
(Section 5).

6. We introduce a forward stepwise selection strategy as an empirical tool
for verifying the ability of a model averaging procedure to reduce model
uncertainty. If a procedure is effective, then its data based version of the forward
stepwise procedure should outperform an OLS model estimator. See Section 6
and Theorem 8.

1.2. Sdective shrinkage. A common thread underlying the article, and key
to most of the results just highlighted, is the selective shrinkage ability of the
posterior. It is worthwhile, therefore, to briefly amplify what we mean by this.
Figure 1 serves as an illustration of the idea. The+est statistic&Z; , estimated
by OLS under the full model are plotted against the corresponding posterior mean
valuesﬂk , under our rescaled spike and slab model (the notation used will be
explained later in the paper). As mentioned, these rescaled models are derived
under a,/n-rescaling of the data, which forces the posterior mean ogte-acale.

This is why we plot the posterior mean against a test statistic. The results depicted
in Figure 1 are based on a simulation, as in Breiman (1992), for an uncorrelated
(near-orthogonal) design whetg= 105, K = 400 and:n = 800 (see Section 8 for
details). Selective shrinkage has to do with shrinkage for thezeg@oefficients,

and is immediately obvious from Figure 1. Note howﬁqu are shrunken toward

a cluster of values near zero for many of the zero coefficients, but are similar to the
frequentistZ-tests for many of the nonzero coefficients. It is precisely this effect
we refer to as selective shrinkage.

In fact, this kind of selective shrinkage is not unique to the Bayesian variable
selection framework. Shao (1993, 1996) and Zhang (1993) studied cross-validation
and bootstrapping for model selection and discovered that to achieve optimal
asymptotic performance, a nonvanishing bias term was needed, and this could be
constructed by modifying the resampling scheme (see the references for details).
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Fic. 1. Selective shrinkage. Z-test statistics Zk » Versus posterior mean values ﬂk (blue circles
are zero coefficients, red triangles nonzero coefficients). Result from Breiman si mulatlon of Section 8
with an uncorrelated design matrix, kg = 105, K = 400and n = 800.

Overfit models (ones with too many parameters) are preferentially selected without
this bias term. As a connection to this current work, this amounts to detecting zero
coefficients—which is a type of selective shrinkage.

1.3. Organization of the article. The article is organized as follows. Section 2
presents an overview of spike and slab models. Section 3 introduces our rescaled
models and discusses the universality of priors, the role of rescaling and
generalized ridge regression. Section 4 examines the optimality of the posterior
mean under a local asymptotics framework. Section 5 introduces the Zcut selection
strategy. Its optimality in terms of risk performance and complexity recovery is
discussed. Section 6 uses a special paradigm in whjcis assumed ordered a
priori, and derives both forward and backward selection strategies in the spirit of
Leeb and Pétscher (2003). These are used to study the effects of model uncertainty.
Sections 7 and 8 present a real data analysis and simulation.

2. Spike and dab models. By a spike and slab model we mean a Bayesian
model specified by the foIIowing prior hierarchy:

(Y|X,,,Ba) N(X,Ba) i=1...,n,

(Bly) ~N(O, I,
y ~n(dy),

)

o2~ pu(do?),
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where 0 is the K-dimensional zero vectol is the K x K diagonal matrix
diag(y1, ..., yk), 7 is the prior measure fop = (y1, ..., yx)' andu is the prior
measure for2. Throughout we assume that bothand . are chosen to exclude
values of zero with probability one; that is{yx >0} =1fork=1,..., K and
w{o?>0)=1.

Lempers (1971) and Mitchell and Beauchamp (1988) were among the earliest
to pioneer the spike and slab method. The expression “spike and slab” referred
to the prior forB used in their hierarchical formulation. This was chosen so that
Br were mutually independent with a two-point mixture distribution made up of
a uniform flat distribution (the slab) and a degenerate distribution at zero (the
spike). Our definition (2) deviates significantly from this. In place of a two-point
mixture distribution, we assume thAthas a multivariate normal scale mixture
distribution specified through the priar for the hypervariancg. Our basic idea,
however, is similar in spirit to the Lempers—Mitchell-Beauchamp approach. To
select variables, the idea is to zero gutcoefficients that are truly zero by making
their posterior mean values small. The spike and slab hierarchy (2) accomplishes
this through the values for the hypervariances. Small hypervariances help to zero
out coefficients, while large values inflate coefficients. The latter coefficients are
the ones we would like to select in the final model.

ExamMpPLE 1 (Two-component indifference priors). A popular version of the
spike and slab model, introduced by George and McCulloch (1993), identifies zero
and nonzer@s;’s by using zero—one latent variable,. This identification is a
consequence of the prior used féyr, which is assumed to be a scale mixture of
two normal distributions:

Bl ™ A= AN, 1) + ANO, xtd),  k=1.....K.
[We use the notation {0, v2) informally here to represent the measure of a normal
variable with mean 0 and varianeé.] The value forrk2 > 0 is some suitably small
value whilec; > 0 is some suitably large value. Coefficients that are promising
have posterior latent variableg, = 1. These coefficients will have large posterior
hypervariances and, consequently, large postgioralues. The opposite occurs
when. 7, = 0. The prior hierarchy fop is completed by assuming a prior fof;.
In principle, one can use any prior over the gossible values fof.71, ..., Zk);
however, often.#, are taken as independent Bernawllj) random variables,
where O< wi < 1. It is common practice to seby = 1/2. This is referred to
as anindifference, or uniform prior. It is clear this setup can be recast as a spike
and slab model (2). That is, the priatdy) in (2) is defined by the conditional
distributions

e, 2. 550" A= 508 20) + A8, 2(). k=1 K,

(Felwo) ™ (A= w)do() + wids (),



736 H. ISHWARAN AND J. S. RAO

wheres, (-) is used to denote a discrete measure concentrated at thewalfe
course, (3) can be written more compactly as

ind
(il T we) ™ (L= wod2() +wid, 2(), k=1,....K.

However, (3) is often preferred for computational purposes.

ExamMPLE 2 (Continuous bimodal priors). In practice, it can be difficult
to select the values forkz, ckrkz and wy used in the priors for and .#.
Improperly chosen values lead to models that concentrate on either too few
or too many coefficients. Recognizing this problem, Ishwaran and Rao (2000)
proposed a continuous bimodal distribution fgiin place of the two-point mixture
distribution fory; in (3). They introduced the following prior hierarchy f8r

(Bl F.tD) " NO, ATD),  k=1...K.
ii.d.

@ (Filvo, w) = (1= w) 8yp() + w1(),

(7 2lar, az) "™ Gammaay, az),
w ~ Uniform[0, 1].

The priorz for p is induced byy, = %12, and thus integrating oven shows
that (4) is a prior for8 as in (2).

In (4), vo (a small near zero value) ang andas (the shape and scale parameters
for a gamma density) are chosen so that= ﬂkrkz has a continuous bimodal
distribution with a spike atg and a right continuous tail (see Figure 2). The spike
atvg is important because it enables the posterior to shrink values for thgizero

o (a) (b)
8
S 1 8]
1 S |
[ [75) 4
c QO cgﬁ
a8 °] 8 S
§f S |
S 0 4 8 12 16 20 24 S0 4 8 12 16 20 24

Hypervariance Hypervariance

Fic. 2. Conditional density for y;, where vg = 0.005,a1 =5 and a» = 50 and (a) w = 0.5,
(b) w = 0.95. Observe that only the height of the density changes as w is varied. [Note as w has
a uniform prior, (a) also corresponds to the marginal density for y;.]
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coefficients, while the right-continuous tail is used to identify nonzero parameters.
Continuity is crucial because it avoids having to manually set a bimodal prior
as in (3). Another unique feature of (4) is the parametents value controls
how likely .7, equals 1 ong, and, therefore, it takes on the role ot@mplexity
parameter controlling the size of models. Notice that using an indifference prior
is equivalent to choosing a degenerate priordoat the value of 12. Using a
continuous prior forw, therefore, allows for a greater amount of adaptiveness in
estimating model size.

3. Rescaling, penalization and universality of priors. The flexibility of a
prior like (4) greatly simplifies the problems of calibration. However, just like
any other prior, its effect on the posterior vanishes as the sample size increases,
and without some basic adjustment to the underlying spike and slab model, the
only way to avoid a washed out effect would be to tune the prior as a function
of the sample size. Having to adjust the prior is undesirable. Instead, to achieve a
type of “universality,” or sample size invariance, we introduce a modified rescaled
spike and slab model (Section 3.1). This involves replacing the originadlues
with ones transformed by @n factor. Also included in the models is a variance
inflation factor needed to adjust to the new variance of the transformed data. To
determine an appropriate choice for the inflation factor, we show that this value
can also be interpreted as a penalization shrinkage effect of the posterior mean.
We show that a value of is the most appropriate because it ensures that the prior
has a nonvanishing effect. This is important, because as we demonstrate later in
Section 5, this nonvanishing effect, in combination with an appropriately selected
prior for y, such as (4), yields a model selection procedure based on the posterior
mean with superior performance over one using the OLS.

For our results we require some fairly mild constraints on the behavior of
covariates.

Design assumptions. Let X be then x K design matrix from the regression
model (1). We shall make use of one, or several, of the following conditions:

(D1) Y}y xix =0andy}_jx? =nforeachk=1,... K.
(D2) max<i<x IXi|l/+/n — 0, where| - || is thel2-norm.
(D3) X'X is positive definite.

(D4) X, =X'X/n — X0, WhereXy is positive definite.

Condition (D1) simply reiterates the assumption that covariates are centered
and rescaled. Condition (D2) is designed to keep any covagidtem becoming
too large. Condition (D3) will simplify some arguments, but is unnecessary
for asymptotic results in light of condition (D4). Condition (D3) is convenient,
because it frees us from addressing noninvertibility for small values tifalso
allows us to write out closed form expressions for the OLS estimate without having
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to worry about generalized inverses. Note, however, that from a practical point of
view, noninvertibility for X,, is not problematic. This is because the conditional
posterior mean is a generalized ridge estimator, which always exists if the ridge
parameters are nonzero.

REMARK 1. We callBr ageneralized ridge estimator for B if Bg = (X'X +
D)~1X'Y, whereD is a K x K diagonal matrix. Here&Y = (Y1, ...,Y,)" is the
vector of responses. The diagonal elemefits .., dx of D are assumed to be
nonnegative and are referred to as the ridge parameters, Wisleeferred to as
the ridge matrix. Ifd; > 0 for eachk, thenX’X + D is always of full rank. See
Hoerl (1962) and Hoerl and Kennard (1970) for background on ridge regression.

3.1. Rescaled spike and slab models. By arescaled spike and slab model, we
mean a spike and slab model modified as follows:

(Vi Ixi, B.02) "ONK B, 02y),  i=1,....n,
(Bly) ~ N, T),

y ~n(dy),

(®)

02 ~ u(do?),

whereY; =, 1n%2y; are rescaled; values g2 = ||Y — XB.|?/(n — K) is the
unbiased estimator farg based on the full model angl, = (X’X)~1X'Y is the
OLS estimate foB, from (1).

The parametek,, appearing in (5) is one of the key differences between (5) and
our earlier spike and slab model (2). One way to think about this value is that it's a
variance inflation factor introduced to compensate for the scaling of theGiven
that a,/n-scaling is used, the most natural choiceXpmwould ben, reflecting the
correct increase in the variance of the data. However, another way to motivate this
choice is through a penalization argument. We show thatontrols the amount
of shrinkage and that a value df = n is the amount of penalization required in
order to ensure a shrinkage effect in the limit.

REMARK 2. Whena, = n, we have found that? in (5) plays an important
adaptive role in adjusting the penalty, but only by some small amount. Our
experience has shown that under this setting the posterier4avill concentrate
around the value of one, thus fine tuning the amount of penalization. Some
empirical evidence of this will be provided later on in Section 8.

REMARK 3. Throughout the paper when illustrating the spike and slab
methodology, we use the continuous bimodal priors (4) in tandem with the rescaled
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spike and slab model (5) under a penalizatign= n. Specifically, we use the
model

¥ %, B.0D) O NXB.o%n),  i=1,....n,
(Bel T 7D ™ N(©, 722, k=1.....K.

© (Tl w) " (A= )by () + wdr (),

(t7 b1, b) '~ Gammay, az),
w ~ Uniform[0, 1],
o2 ~ Gammdba, by),

with hyperparameters specified as in Figure 2 bne: b, = 0.0001. Later theory

will show the benefits of using a model like this. In estimating parameters we
use the Gibbs sampling algorithm discussed in Ishwaran and Rao (2000). We
refer to this method aStochastic Variable Selection, or SVS for short. The SVS
algorithm is easily implemented. Because of conjugacy, each of the steps in the
Gibbs sampler can be simulated from well-known distributions (see the Appendix
for details). In particular, the draw far? is from an inverse-gamma distribution,
and, in fact, the choice of an inverse-gamma priordéris chosen primarily to
exploit this conjugacy. Certainly, however, other priors 3 could be used. In

light of our previous comment, any continuous prior with bounded support should
work well as long as the support covers a range of values that includes one. This is
important because some of the later theorems (e.g., Theorem 2 of Section 3.3 and
Theorem 7 of Section 5.5) require a bounded supportforSuch assumptions

are not unrealistic.

3.2. Penalization and generalized ridge regression. To recasty,, as a penalty
term, we establish a connection between the posterior mean and generalized ridge
regression estimation. This also shows the posterior mean can be viewed as a
model averaged shrinkage estimator, providing motivation for its use [see also
George (1986) and Clyde, Parmigiani and Vidakovic (1998) for more background
and motivation for shrinkage estimators]. L&}y, o2) = E(B|y, 02, Y*) be the
conditional posterior mean fg from (5). It is easy to verify

B (y.0?) = (XX + 02, T~ H~Ix v
=5, I 2(X'X + 0%, T™H7IXTY,
whereY* = (Y5, ..., Y,")". Thus,ﬁ:(y, o) is the ridge solution to a regression

of Y* on X with ridge matrixa2x,T L. Let 8 = E(8|Y*) denote the posterior
mean forp from (5). Then

%k

B = a,;lnl/zf{(xlx + 020, T™H XYY x w)(dy,da?|Y™).
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Hence,ﬁ: is a weighted average of ridge shrunken estimates, where the adaptive
weights are determined from the posteriorgyafindo2. In other wordsﬁz is an
estimator resulting frorshrinkage in combination with model averaging.

Now we formalize the idea oh, as a penalty term. Defin@j(y,oz) =
6B (y.02)//n. Itis clearf (y,o?) is the ridge solution to a regression 6f
on X with ridge matrixo24,T~1. A ridge solution can always be recast as an
optimization problem, which is a direct way of seeing hoyplays a penalization
role. It is straightforward to show that

K
@) 0,(y.0?% =arg rgini 1Y = XBIZ + 20 Y o2y 1 B2,
k=1

which shows clearly that, is a penalty term.

REMARK 4. Keep in mind that to achieve this same kind of penalization
effect in the standard spike and slab model, (2), requires choosing a prior that
depends upon. To see this, note that the conditional posterior nﬁm %) =
E(Bly,o2,Y) from (2) is of the form

B,(y,0%) = (X'X +o2r 1) ~Ix'y.

Multiplying B8,,(y.02) by /G, gives B (.02, but only if o2 is O(1,), or
if I' has been scaled by 4,,. Either scenario occurs only when the prior depends
uponn.

3.3. How much penalization? The identity (7) has an immediate consequence
for the choice ofy,, at least from the point of view of estimation. This can be
seen by Theorem 1 of Knight and Fu (2000), which establishes consistency for
Bridge estimators (ridge estimation being a special case). Their result can be
stated in terms of hypervariance vectors with coordinates satisfying--- =
vk = y0, Where 0< yp < oo. For ease of notation, we writg = ypl, wherel
is the K-dimensional vector with each coordinate equal to one. Theorem 1 of
Knight and Fu (2000) implies the following:

THEOREM 1 [Knight and Fu (2000)]. Suppose that ¢; are i.i.d. such that
E(e;) = 0 and E(¢?) = o&. If condition (D4) holds and A, /n — Ao > 0, then

K
0" (vol, 0% 5 arg n;in{(ﬂ —B0)'To(B — Bo) +2ro0?yy 1Y BEL-
k=1

In particular, if Ao = 0, then 8- (yo1, o) > Bo.



STRATEGIES IN VARIABLE SELECTION 741

Knight and Fu’s result shows there is a delicate balance between the rate at
which %,, increases and consistency fég. Any sequence., which increases at
a rate ofO(n) or faster will yield an inconsistent estimator, while any sequence
increasing more slowly thamwill lead to a consistent procedure.

The following is an analogue of Knight and Fu’s result applied to rescaled spike
and slab models. Observe that this result does not reguite be identically
distributed. The boundedness assumptionstf@nd i stated in the theorem are
for technical reasons. In particular, the assumptiondRaemains bounded cannot
be removed. It is required for the penalization effect to be completely determined
through the value fok,,, analogous to Theorem 1 (however, recall from Remark 3
that this kind of assumption is not unrealistic).

THEOREM 2. Assume that (1) holds where ¢; are independent such that
E(s;) = 0 and E(e?) = of. Let 8, = 5,8, //n. Assume that conditions (D3)
and (D4) hold. Also, supposethere exists someng > 0 suchthat  {y, > no} = 1for
eachk =1,..., K and that u{o? < s3} = 1 for some 0 < s2 < co. If A,,/n — 0,

then 8 = B° + 0, (hn/n) > Bo.

4. Optimality of the posterior mean. Theorem 2 shows that a penalization
effect satisfyinga,/n — 0 yields a posterior mean (after rescaling) that is
asymptotically consistent foB,. While consistency is certainly crucial for
estimation purposes, it could be quite advantageous in terms of model selection
if we have a shrinkage effect that does not vanish asymptotically and a posterior
mean that behaves differently from the OLS. This naturally suggests penalizations
of the forma,, = n.

The following theorem (Theorem 3) is a first step in quantifying these ideas.
Not only does it indicate more precisely the asymptotic behavior of the posterior
for 8, but it also identifies the role that the normal hierarchy plays in shrinkage.
An important conclusion is that the optimal way to process the posterior in a local
asymptotics framework is by the posterior mean. We then begin a systematic study
of the posterior mean (Section 5) and show how this can be used for effective
model selection.

For this result we assumg, = n. Note that because of the rescaling of s,
the posterior is calibrated to@n-scale, and thus some type of reparameterization
is needed if we want to consider the asymptotic behavior of the posterior mean.
We will look at the case when the true parameter shrinksdba./n-rate. Think
of this as a “local asymptotics case.” In some aspects these results complement the
work in Section 3 of Knight and Fu (2000). See also Le Cam and Yang [(1990),
Chapter 5] for more on local asymptotic arguments.

We assume that the true model is

(8) Yni=Xlt~ﬂn+8m', i=1...,n,
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where for eachn, ¢,1,...,¢&,, are independent random variables. The true
parameter i, = Bo//n. LetY = /nY,;. To model (8) we use a rescaled spike
and slab model of the form

(Y 1Xi, B) ~ N(x; B, n), i=1...,n,

1

()] (Bly) ~v(dBly),
y ~m(dy),

wherev(dB|y) is the prior forg giveny. Write v for the prior measure fg8, that
is, the prior for@ marginalized ovey. Letv,(-|Y}) denote the posterior measure
for B givenY; = (Y}, ..., Y, ). For simplicity, and without loss of generality,
the following theorem is based on the assumption dgais known. There is no
loss in generality in making such an assumption, becau@\mfere unknown, we
could always rescal&,; by \/nY,; /5, and replaces, with opofy/+/n as long as
525 52. Therefore, for convenience we assusge= 1 is known.

THEOREM 3. Assume that v has a density f that is continuous and
positive everywhere. Assume that (8) is the true regression model, where ¢,,; are
independent such that E(e,;) = 0, E(e2,) = 0 = 1 and E(e},) < M for some
M < co. If (D1)~«D4) hold, then for each 8, € RX and each C > 0,

vu(S(B1. C//m)IYD)
°g<vn<5<ﬂo,0/ﬁ>w;)>
a  (f(BD\ 1 , z
L100( g4 ) ~ 501~ B0 ZoBs B + (B1~ Bo'Z.

where Z hasa N(0, X o) distribution. Here S( 8, C) denotes a sphere centered at 8
with radius C > 0.

(10)

Theorem 3 quantifies the asymptotic behavior of the posterior and its sensitivity
to the choice of prior for8. Observe that the log-ratio posterior probability on
the left-hand side of (10) can be thought of as a random functiggy o€all this
function ¥, (B1). Also, the expression on the right-hand side of (10),

(11) —1(B1— B Zo(B1—Bo) + (B1— Bo)'Z.

is a random concave function ¢&; with a unique maximum agg + ):512,

a N(Bo, 251) random vector. Consider the limit under an improper priorgor
where f(Bg) = f(B1) for eachf,. Then ¥, (B,) converges in distribution

to (11), which as we said has a unique maximum at(ﬁdsl):al) vector. This

is the same limiting distribution fox/ﬁﬁfl, the rescaled OLS, under the settings
of the theorem. Therefore, under a flat prior the posterior behaves similarly to the
distribution for the OLS. This is intuitive, because with a noninformative prior
there is no ridge parameter, and, therefore, no penalization effect.
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On the other hand, consider what happens whdras a NO, I'g) prior. Now
the distributional limit of¥,, (B1) is

3B6To " Bo— 3B1T " B1— 5(B1— Bo)' Zo(B1 — Bo) + (B1— Bo)'Z.
As a function off, this is once again concave. However, now the maximum is
B1=(Zo+TH H(ZoBo+2),

which is a NV580, Vo125V 1) random vector, wherdg = | + 2515t Let
O(-|yo) represent this limiting normal distribution.

The distribution Q(-|yo) is quite curious. It appears to be a new type of
asymptotic ridge limit. The next theorem identifies it as the limiting distribution
for the posterior mean.

__THEOREM 4. Assume that B has a N(O, T'g) prior for some fixed T'g. Let
,an(yo) =E(Blyo, Y;) be the posterior mean from (9), where (8) is the true

model. Under the same conditions as Theorem 3, we have ﬁ:n (¥o) 4 OClyo)-

Theorem 4 shows the importance of the posterior mean when coefficients shrink
to zero. In combination with Theorem 3, it shows that in such settings the correct
estimator for asymptotically maximizing the postenmust be the posterior mean
if a normal prior with a fixed hypervariance is used. Notice that the data does not
have to be normal for this result to hold.

5. The Zcut method, orthogonality and model selection performance.
Theorem 4 motivates the use of the posterior mean in settings where coefficients
may all be zero and when the hypervariance is fixed, but how does it perform
in general, and what are the implications for variable selection? It turns out
that under an appropriately specified prior fgr the posterior mean from a
rescaled spike and slab model exhibits a type of selective shrinkage property,
shrinking in estimates for zero coefficients, while retaining large estimated values
for nonzero coefficients. This is a key property of immense potential. By using a
hard shrinkage rule, that is, a threshold rule for setting coefficients to zero, we can
take advantage of selective shrinkage to define an effective method for selecting
variables. We analyze the theoretical performance of such a hard shrinkage model
estimator termed “Zcut.” Our analysis will be confined to orthogonal designs (i.e.,
¥, = Xo =) for rescaled spike and slab models under a penalizatian efn.

Under these settings we show Zcut possesses an oracle like risk misclassification
property when compared to the OLS. Specifically, we show there is an oracle
hypervariancey , which leads to uniformly better risk performance (Section 5.3)
and that this type of risk performance is achieved by using a continuous bimodal
prior as specified by (4).
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5.1. Hard shrinkage rules and limiting null distributions. The Zcut procedure
(see Section 5.2 for a formal definition) uses a hard shrinkage rule based on
a standard normal distribution. Coefficients are set to zero by comparing their
posterior mean values to an appropriate cutoff from a standard normal. This
rule can be motivated using Theorem 4. This will also indicate an alternative
thresholding rule that is an adaptive function of the true coefficients. For simplicity,
assume thap{oc2 = 1} = 1. Under the assumptions outlined above, Theorem 4
implies thatﬁ:(y), the conditional posterior mean from (5), is approximately
distributed asQ,(-|y), a N(v/nDBy/oo, D'D) distribution, whereD is the
diagonal matrix dia@:1/(1 + y1),..., vk /(1 + yk)) (to apply the theorem in
the nonlocal asymptotics case, simply replggewith /nBq/00). Consequently,
the (unconditional) posterior meﬁ should be approximately distributed as

0r() = f O0uCly)m(dy|Y™).

This would seem to suggest that in testing whether a specific coeffiignis

zero, and, therefore, deciding whether its coefficient estimate should be shrunk to
zero, we should compare its posterior mean v@fgg to thekth marginal ofQ}

under the nullg; o = 0. Given the complexity of the posterior distribution fr

it is tricky to work out what this distribution is exactly. However, in its place we

could use
2
0 )= [N(0. (2 ) Jramiv™)

Notice that this is only an approximation to the true null distribution because
n(dyr|Y™*) does not specifically take into account the null hypothggis = 0.
Nevertheless, we argue th@f |, is a reasonable choice. We will also show that
a threshold rule based @, is not that different from the Zcut rule which uses
a N(O, 1) reference distribution.

Both rules can be motivated by analyzing hawdy,|Y*) depends upon the
true value for the coefficient. First consider what happens wheyt~ 0 and the
null is misspecified. Then the posterior will asymptotically concentrate on jarge
values andy /(1+ yx) should be concentrated near one (see Theorem 6 later in this
section). ThereforeQ;y ,,, will be approximately NO, 1). Also, whenpy o # 0,
the kth marginal distribution foiQ,,(-|y) is dominated by the mean, which in this
case equalsglﬁﬁk,oyk/(1+ vi). Therefore, ify; is Iarge,ﬁ,j’n is of order

og 'VnBro+ 0p(1) =o0g 'Vnpro(l+ 0,(1/v/n)),

which shows that the null is likely to be rejecte(ﬂj’n is compared to a [0, 1)
distribution.

On the other hand, consider whgpno = 0 and the null is really true. Now the
hypervariance,, will often take on small to intermediate values with high posterior
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probability andr (dy,|Y*) should be a good approximation to the posterior under
the null. In such settings, using a® 1) in place ofQ; |, will be slightly more
conservative, but this is what we want (after all the null is really true) zLgtbe

the 100x (1 — «/2) percentile of a standard normal distribution. Observe that

a =P{IN(0, )| = za/2}

-1
sz{|N(O, 1| Zza/2<1_tkyk> }n(dyle*)

= Qz,null{|gz,n| > ZO{/Z}-

Therefore, a cut-off value using a(®| 1) distribution yields a significance level
larger thanQy ;- This is because&} ,, has a smaller variancE((yx/(1 +
v)2Y*) and, therefore, a tighter distribution.

Figure 3 compares the two procedures using the data from our earlier simulation
(recall this uses a near orthogoréldesign). Depicted are boxplots for values
simulated fromQy ,,, for eachk (see the caption for details). The dashed
horizontal lines at+1.645 represent & = 0.10 cutoff using a NO, 1) null,
while the whiskers for each boxplot are 90% null intervals unggr, . In this
example both procedures lead to similar estimated models, and both yield few false
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FiG. 3. Adaptive null intervals. Boxplots of simulated values from Qz,nu”, with k sorted according
to largest absolute posterior mean (data from Figure 1). Values from Qz’nu" were drawn within the
SVS Gibbs sampler from a multivariate N(0, o2V %, V,,) distribution where V, = (X, + r-H-1,
Whiskers identify 90% null intervals. SJperlmposed are Zk , frequentist test statistics (green
squares) and estimated values for ﬁk (blue circles and red triangles used for zero and nonzero
coefficients, resp.).
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discoveries. In general, however, we prefer th@® M) approach because of its
simplicity and conservativeness. Nevertheless @lje, , intervals can always be
produced as part of the analysis. These intervals are valuable because they depict
the variability in the posterior mean under the null but are also adaptive to the true
value of the coefficient via (dy|Y™).

5.2. TheZcutrule. The preceding argument suggests the use of a thresholding
rule that treats the posterior mean as @,\) test statistic. This method, and the
resulting hard shrinkage model estimator, have been referred to as Zcut [Ishwaran
and Rao (2000, 2003, 2005)]. Here is its formal definition.

THE ZCUT MODEL ESTIMATOR. Let ) = (,B\fn, e B\,’@yn)’ be the posterior
mean forg from (5). The Zcut model contains all coefficiertis whose posterior
means satisfyﬂ,jn| > Zq/2. Thatis,

Zcut:= {B: Iﬁf,nl > Zg/2}-

Herea > 0 is some fixed value specified by the user. The Zcut estimat@ s
the restricted OLS estimator applied to only those coefficients in the Zcut model
(all other coefficients are set to zero).

Zcut hard shrinks the posterior mean. Hard shrinkage is important because it
reduces the dimension of the model estimator, which is a key to successful subset
selection. Given that the posterior mean is already taking advantage of shrinkage,
itis natural to wonder how this translates into performance gains over conventional
hard shrinkage procedures. We compare Zcut theoretically to “OLS-hard,” the hard
shrinkage estimator formed from the OLS estimg@pr= (B\in, s B\;}’n)’. Here
is its definition:

THE OLS-HARD MODEL ESTIMATOR. The OLS-hard model corresponds to
the model with coefficientgs; whose Z-statistics, Z ,,, satisfy |Zy ,| > zq/2,

where

1/230
~ n k.n
(12) Zin=="—"7
b G (k) Y2

andsy; is thekth diagonal value frorr):;l. That s,
OLS-hard= {8 :1Zk.nl > za/2}-

The OLS-hard estimator fg8 is the restricted OLS estimator using only OLS-
hard coefficients.
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5.3. Oracle risk performance. If Zcut is going to outperform OLS-hard in
general, then it is reasonable to expect it will be better in the fixed hypervariance
case for some appropriately selecjedTheorem 5, our next result, shows this to
be true in the context of risk performance. We show there exists a yatug that
leads not only to better risk performance, buatformly better risk performance.

Let %o = {k: Br.0 = O} be the indices for the zero coefficientsgy. Define

Az(@)= Y PUBE | = zas2} + Y PUBE M < zas2)-
ke By ke By

This is the expected number of coefficients misclassified by Zcut for a fixed
a-level. This can be thought of as the risk under a zero—one loss function. The
misclassification rate for Zcut i%z (@) /K . Similarly, define

Ro@) =Y PllZinl = 202} + > PUZknl| < zay2)
ke B ke 28

to be the risk for OLS-hard.

THEOREM 5. Assume that the linear regression modd (1) holds such that
ko < K and where ¢; are i.i.d. N(0, o2). Assume that in (5) 8 has a N(O, To)
prior, u{o? =1} =1 and A, = n. Then for each 0 < § < 1/2 there exists a y,
such that Zz (a) < Zo () for all a € [§,1 — §].

Theorem 5 shows that Zcut's risk is uniformly better than the OLS-haathyn
finite sample setting ify is set at the oracle valug,. Of course, in practice,
this oracle value is unknown, which raises the interesting question of whether the
same risk behavior can be achieved by relying on a well-chosen prigr. #lso,
Theorem 5 requires that are normally distributed, but can this assumption be
removed?

5.4. Risk performance for continuous bimodal priors. Another way to frame
these questions is in terms of the posterior behavior of the hypervarigncEsis
is because risk performance ultimately boils down to their behavior. One can see
this by carefully inspecting the proof of Theorem 5. There the orpglis chosen
so that its values are large for the nonz@ggq coefficients and small otherwise.
Under any prioer,

-~ Vk ~
¢ =E ( v*)z .
:Bk,n T 1+ Vkl k,n
In particular, for thex obtained by fixingy at yq, the posterior mean is
shrunk toward zero for the zero coefficients, thus greatly reducing the number of
misclassifications from this group of variables relative to OLS-hard. Meanwhile

for the nonzero coefficientﬁ,,j"n is approximately equal t&k,n, so the risk from
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this group of variables is the same for both procedures, and, therefore, Zcut's risk is
smaller overall. Notice that choosing, in this fashion also leads to what we have
been calling selective shrinkage. So good risk performance follows from selective
shrinkage, which ultimately is a statement about the posterior behavjgr dhis
motivates the following theorem.

THEOREMG6. Assumein (1) that condition (D2) holds and ¢; are independent
suchthat E(g;) = 0, E(e?) = o and E(e}}) < M for some M < oo. Supposein (5)
that u{c2=1}=1and A, =n.

(a) If thesupport for 7= containsa set [1g, 0o)X for somefinite constant ;g > 0,
then, for each small § > 0,

Vk
: 1-56
nn({y 1+)/k> }

where 7, (-] Y*) isthe posterior measure for y.
(b) Let f(-lw) denote the posterior density for y; given w. If 7 is the
continuous bimodal prior specified by (4), then

Y*) L1 ifpo#0,

_u
21+ u)
where go(u) = vou 2g(vou™), g1(u) =u2gu1),

(13) fiulw) o exp( s,in) (L+u)Y2((1 - w)go(u) + wgr(w)),

ai

I
(ap— D!

and & , =&, n~Y2Y"_| x; +Y;. Notethat if B 0 = 0, then &, g, N(O, 1).

g(u) = u“ "t exp(—agu),

Part (a) of Theorem 6 shows why continuity feris needed for good risk
performance. To be able to selectively shrink coefficients, the posterior must
concentrate on arbitrarily large values for the hypervariance when the coefficient
is truly nonzero. Part (a) shows this holds asymptotically as longr dsas
an appropriate support. A continuous prior meets this requirement. Selective
shrinkage also requires small hypervariances for the zero coefficients, which is
what part (b) asserts happens with a continuous bimodal prior. Note importantly
that this is a finite sample result and is distribution free. The expression (13) shows
that the posterior density fox, (conditional onw) is bimodal. Indeed, except for
the leading term

a9 =021 ¥

which reflects the effect on the prior due to the data, the posterior density is nearly
identical to the prior. What (14) does is to adjust the amount of probability at the
slab in the prior (cf. Figure 2) using the valuegffn. As indicated in part (b), if
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the coefficient is truly zero, theg)f” will have an approximate 2-distribution,

so this should introduce a relatively small adjustment. Notice this also implies that
the effect of the prior doesot vanish asymptotically for zero coefficients. This is a

key aspect of using a rescaled spike and slab model. Morever, because the posterior
for yx will be similar to the prior wherg, o = 0, it will concentrate near zero, and
hence the posterior mean will be biased and shrunken toward zero relative to the
frequentistZ-test.

Onthe other hand, if the coefficient is nonzero, then (14) becomes exponentially
large and most of the mass of the density shifts to larger hypervariances. This, of
course, matches up with part (a) of the theorem. Figure 4 shows how the posterior
cumulative distribution function varies in terms.;‘(,ffn. Even for fairly large values
of S,En (e.g., from the 75th percentile ofy?-distribution), the distribution function
converges to one rapidly for small hypervariances. This shows that the posterior
will concentrate on small hypervariances unle,%; is abnormally large.

Figure 5 shows how the hypervariances might vary in a real example. We
have plotted the posterior meaﬁgn for the Breiman simulation of Figure 1
againstE((yr /(1 + ))?|Y*) (the variance 0fQ} nun)- This shows quite clearly
the posterior's ability to adaptively estimate the hypervariances for selective
shrinkage. Figure 6 shows how this selective shrinkage capability is translated

Standardized Hypervariance
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FiG. 4. Posterior cumulative distribution function for y; conditional on w (hyperparameters equal
to those in Figure 2 and w = 0.3). Curves from top to bottom are derived by setting skzn at the

25,50, 75 and 90th percentiles for a Xz-distribution with one degree of freedom. Sandardized
hypervariance axis defined as ;. /(1 + ).
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1.2

Null Variance
0.2 04 06 08 1.0

Posterior Mean

FIG. 5. Posterior means /3* versus variances E((yy /(1 + yk)) [Y*) of Qk nun from simulation
used in Figure 1. Trianglesin red are nonzero coefficients.

o
O ]
o
[
ie) 7
IS
O o
7 S
3 Al
©
(&) -
Q0
=z 5
8 2 7
o ™
|_
o |
Kg]
I [ I T I
0 2 4 6 8
Cutoff Value
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Zcut' stotal misclassification is lessthan OLS-hard’s over a range of cutoff values z,, /2.
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into risk performance. As seen, Zcut’s misclassification performance is uniformly
better than OLS-hard over a wide range of cut-off values, exactly as our theory
suggests.

REMARK 5. The assumption in Theorems 5 and 6 thdb? =1} =1 is
not typical in practice. As discussed, it is beneficial to assume dRahas a
continuous prior to allow adaptive penalization. Nevertheless, Theorem 5 shows
even ifo? = 1, thus forgoing the extra benefits of finite sample adaptation, the total
risk for Zcut with an appropriately fixegl is still uniformly better than OLS-hard.
The same argument could be made for Theorem 6. That is, from a theoretical point
of view, it is not restrictive to assume a fixed.

5.5. Complexity recovery. We further motivate Zcut by showing that it
consistently estimates the true model under a threshold value that is allowed to
change witha. Let

Mo=T{B10#0}, ..., 1{Bx.0# 0}
be thekK -dimensional binary vector recording which coordinateg gére nonzero
[I(-) denotes the indicator function]. By consistent estimation of the true model,
we mean the existence of an estimatéﬁ such that//?; LY M. We show that
such an estimator can be constructed fi§mLet

M (C) = ({IBF,1 = C), .. LBl = O

The Zcut estimator corresponds to settifig= z,/2. The next theorem shows
we can consistently recover/p by letting C converge toco at any rate slower

than/n.

THEOREM 7. Assume that the priors = and w in (5) are chosen so that
m{yx > no} =1 for someng > 0for eachk =1,...,K and that ufo? <s3} =1
for some 0 < s& < co. Let ., = M,(Cy), where C, — oo is any positive
increasing sequence such that C,/./n — 0. Assume that the linear regression
model (1) holds where ¢; are independent such that E(e;) = 0, E(¢?) = o and

E(s#) < M for some M < oo. If (D2) holdsand 4, = n, then .4, LA

An immediate consequence of Theorem 7 is that the true model complgxity
can be estimated consistently. By the continuous mapping theorem, we obtain the
following:

COROLLARY 1. Let 4, = (Mip,....Mxy)' and let k, =
Z,{(:lll{//lk,n # 0} be the number of nonzero coordinates of .#;,,. Then, under the

conditions of Theorem 7, &, - ko.
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6. The effects of model uncertainty. In this section we prove an asymptotic
complexity result for a specialized type of forward stepwise model selection
procedure. This forward stepwise method is a modification of a backward
stepwise procedure introduced by Potscher (1991) and discussed recently in Leeb
and Potscher (2003). We show in orthogonal settings that if the coordinates
of By are perfectly ordered a priori, then the forward stepwise procedure leads
to improved complexity recovery relative to the OLS-hard. Interestingly, the
backward stepwise procedure has the worst performance of all three methods
(Theorem 8 of Section 6.3). This result can be used as an empirical tool for
assessing a procedure’s ability to reduce model uncertainty. If a model selection
procedure is effectively reducing model uncertainty, then it should produce an
accurate ranking of coefficients in finite samples. Consequently, the forward
stepwise procedure based on this data based ranking should perform better than
OLS-hard. This provides an indirect way to confirm a procedure’s ability to reduce
model uncertainty.

REMARK 6. The idea of pre-ranking covariates and then selecting models has
become a well established technique in the literature. As mentioned, this idea was
used by Pdtscher (1991) and Leeb and Pdtscher (2003), but also appears in Zhang
(1992), Zheng and Lo (1995, 1997), Rao and Wu (1989) and Ishwaran (2004).

We use this strategy to assess the performance of a rescaled spike and slab
model. For a data based ordering®fwe use the absolute posterior meaﬁsnl.
The first coordinate of8 corresponds to the largest absolute posterior value, the
second coordinate to the second largest value, and so forth. The data based forward
stepwise procedure using this ranking is termed “svsForwd.” Section 6.2 provides
a formal description. In Section 8 we use simulations to systematically compare
the performance of svsForwd to OLS-hard as an indirect way to confirm SVS's
ability to reduce model uncertainty. Figure 7 provides some preliminary evidence
of this capability. There we have compared a rankin§ aking the posterior mean
against an OLS ordering usim@,n |. Figure 7 is based on the simulation presented
in Figure 1.

We note that it is possible to consistently estimate the order of e
coordinates using the posterior mean. Lgt, be thekth largest value from the
set{|B;,l:k=1,...,K}. Thatis,U1, > Up, > -+ > Ug ». Let

My = U1y > Cp), ... {Uxk n = Ca))',
where C,, is a positive sequence satisfying, — oo and C,,//n — 0. By
inspection of the proof of Theorem 7, Corollary 2 can be shown.

COROLLARY 2. Under the conditions of Theorem 7, //7(,1) LY a,...,
1,0%_, )"
—kKo
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FIG. 7. (a)Truerank of a coefficient versus estimated rank using posterior means (circles) and OLS
(squares). The lower the rank, the larger the absolute value of the coefficient. Data from Breiman
simulation of Figure 1 (only nonzero coefficients shown). (b) Same plot as (a) but with true ranks
averaged to adjust for tiesin true coefficient values (simulation used four unique nonzero coefficient
values). Dashed line connects values for true average rank. Note the higher variability in OLS
especially for intermediate coefficients.
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6.1. Backward model selection. We begin by reviewing the backward step-
wise procedure of Potscher (1991). For notational ease, we avoid subscripts of
as much as possible. We assume the coordinat@g bhve been ordered, so that
the firstkg coordinates are nonzero. That is,

Bo=(B10; - Bro.0, OIK,ko)t,

where Ox i, is the (K — ko)-dimensional zero vector. We assume the design
matrix X has been suitably recoded as well. Xgk] be then x k design matrix
formed from the firsk columns of the re-ordered. Let

B°Ik] = (BSIK. ..., BLIkD)
= X[k X[kD)~IX[k]"Y

be the restricted OLS estimator using only the firgariables. To test whether the
kth coefficientg; is zero, define the test statistic

5 n'/2BRIk]
) P = G Gk

where s [k] is the kth diagonal value fron(X[k]’X[k]/n)‘i. Let a1,..., 0k
be a sequence of fixed positisesignificance values for th&; , test statistics.
Estimate the true complexit by the estimatok z, where

kp =max{k:|Zinl > 2002, k=0,..., K}.

To ensure thatg is well defined, takéoyn = 0 andze,/2 = 0.

Observe ifkg = k, then Zk,,, is the first test starting frott = K and going
backward tok = 0 satisfying | Z..| > ze/2 and |Z;..| < za;2 for j =k +
1,..., K. This corresponds to accepting the evght8;+1 =0, ..., Bx = 0}, but
rejecting{B:8: =0, ..., Bx = 0}. The post-model selection estimator fBris
defined as

K
By =OxI{kp =0} + Y (B k1", Of¢_) I{kp = k}.
k=1

It should be clear that the estimatdrg and BB are derived from a backward
stepwise mechanism.

REMARK 7. Observe thaEk,,, uses&,lz, the estimate fo&é based on the full
model, rather than an estimate based on the firsriables, and so, in this way,
is different from a conventional stepwise procedure. The latter estimates are only
unbiased ifk > kg and can perform quite badly otherwise.
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REMARK 8. At first glance it seems the backward procedure requifes
regression analyses to compygék] for eachk. This would be expensive for
large K, requiring a computational effort ob (> X_, k3). In fact, the whole
procedure can be reduced to the problem of finding an orthogonal decomposition
of theX matrix, anO (K 3) operation. This idea rests on the following observations
implicit in Lemma A.1 of Leeb and Poétscher (2003). Let

PL =1 — X[kI(X[K]' X [k]) X[k’

be the projection onto the orthogonal complement of the linear space spanned
by X[k]. Letx) denote theth column vector oKX (thusX[k] = [X(1), - -, X@)])-
Define

ur=xa and w=Pf  xg  fork=2,...,K.
One can show that
Bolkl= (utup)~tulY,  k=1,....K.
Consequently, the backward procedure is equivalent to finding an orthogonal

decomposition ofX. (Note that this argument showg[1], ..., B%[K] are

mutually uncorrelated ife; are independentE(e;) = 0 and E(g;) = 002. See
Lemma A.1 of Leeb and Pétscher (2003). This will be important in the proof of
Theorem 8.)

6.2. Forward model selection. A forward stepwise procedure and its associ-
ated post-model selection estimator & can be defined in an analogous way.
Define

(16) kp=min{k — 1:|Zk | < 2o 2, k=1,..., K +1],

whereZKH,n =0 andak+1 = 0 are chosen to ensure a well-defined procedure.
Observe ifkp = k — 1, thenZ,, is the first test statistic such thiy | < ze /2,
while |Z; ,| > Zaj/2 for j=1,...,k — 1. This corresponds to accepting the event
{B:B1#0,..., fr_1# 0}, butrejectingB: f1 #0, ..., B # 0}. Note thattp = 0

if |Zl,n| < Zay/2- The post-model selection estimator f&y is

K
(17) Br=0xl{kr =0} + Y (BIkI', O _) I{kr = k}.
k=1

The data based version of forward stepwise, svsForwd, mentioned earlier is defined
as follows:

THE SVSFORWD MODEL ESTIMATOR.  Re-order the coordinates gf(and the
columns of the design matriX) using the absolute posterior meass, from (5).

If kr > 1, the svsForwd model is defined as
svsForwd= {Bc:k=1,..., kr};
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otherwise, ifkr = 0, let svsForwd be the null model. Define the svsForwd post-
model selection estimator f@y as in (17).

6.3. Complexity recovery. The following theorem identifies the limiting dis-
tribution for kg andkg. It also considers OLS-hard. Lép denote the OLS-hard
complexity estimator (i.e.ko equals the number of parameters in OLS-hard).
Part (a) of the following theorem is related to Lemma 4 of Pdtscher (1991).

THEOREM 8. Assume that (D1)+«D4) hold for (1), where ¢; are independent
such that E(e;) = 0, E(¢?) = 08 and E(e}) < M for some M < co. Let kg,
kr and ko denote the limits for kg, kr and ko, respectively, as n — oco. For
1<k =<K,

(@) Plkp =k} =0xT{k <ko} + (1 — akot1) - -- (1 — ag)I{k = ko}
+ (1 —ag1) -+ (1 — ax){k > ko}.
Moreover, when X has an orthogonal design (i.e.,, X, = Zo=1),
(b) Pikr =k} =0x I{k < ko} + (1 — axys1)I{k = ko)
+ (1 — ak+1) kg1 - - - allfk > kol
(€) Plko =k} =0 x I{k < ko}
+P{Byg+1+ -+ Bx =k — ko}I{k > ko},

where ag 11 = 0in (b) and By are independent Bernoulli(e;) random variables
fork=ko+1,..., K.

REMARK 9. Although the result (b) requires an assumption of orthogonality,
this restriction can be removed. See equation (38) of Corollary 4.5 from Leeb and
Potscher (2003).

Theorem 8 shows that forward stepwise is the best procedure in orthogonal
designs. Suppose thaj, = « > 0 for eachk. Then the limiting probability of
correctly estimatingkg is P{kr = ko} = (1 — «) for forward stepwise, while
for OLS-hard and backward stepwise, it (& — o)X —%0. Notice if K — kg is
large, this last probability is approximated by éxgiK — ko)«), which becomes
exponentially small ak increases. Simply put, the OLS-hard and backward
stepwise methods are prone to overfitting. Figure 8 illustrates how the limiting
probabilities vary under various choices f&randkg (all figures computed with
a = 0.10). One can clearly see the superiority of the forward procedure, especially
asK increases.
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FiG. 8. Complexity recovery in the orthogonal case. Limiting probabilities versus model dimen-
sion k for the three estimators kp (=), kg (=) and ko (=): (a) K = 25, kg = 10, (b) K = 50,
ko =20, (¢)K =100,kg = 50.Inall cases oy = 0.10.

7. Diabetesdata example. As an illustration of the different model selection
procedures we consider an example from Efron, Hastie, Johnstone and Tibshirani
(2004). In illustrating the LARS method, Efron, Hastie, Johnstone and Tibshirani
analyzed a diabetes study involvimg= 442 patients in which the response of
interest,Y;, is a quantitative measure of disease progression recorded one year after
baseline measurement. Data included ten baseline variables: age, sex, body mass
index, average blood pressure and six blood serum measurements. All covariates
were standardized and; was centered so that its mean value was zero. Two
linear regression models were considered in the paper. The first was a main effects
model involving the 10 baseline measurements, the second, a “quadratic model,”
which we re-analyze here, was made up of 64 covariates containing the 10 baseline
measurements, 45 interactions for the 10 original covariates and 9 squared terms
(these being the squares of each of the original covariates except for the gender
variable, which is binary).

Table 1 contains the results from our analysis of the quadratic model. Listed
are the top 10 variables as ranked by their absolute posterior méﬁQS,Using
ana = 0.10 criteria, Zcut chooses a model with six variables starting from the
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top variable “bmi” (body mass index) and ending with “age.sex” (the age—sex
interaction effect). The seventh variable, “bmi.map” (the interaction of body mass
index and map, a blood pressure measurement), is borderline significant. Table 1
also reports results using OLS-hard, svsForwd and a new procedure, “OLSForwd”
(all using ane = 0.10 value). OLSForwd is the direct analogue of svsForwd, but
ordersf using Z-statisticsfk,,1 in place of the posterior mean. For all procedures
the values in Table 1 arg-statistics (12) derived from the restricted OLS for the
selected model. This was done to allow direct comparison to the posterior mean
values recorded in column 2.

Table 1 shows that the OLS-hard model differs significantly from Zcut. It
excludes both “ltg” and “hdI” (blood serum measurements), both of which have
large posterior mean values. We are not confident in the OLS-hard and suspect
it is missing true signal here. The same comment applies to OLSForwd, which
has produced the same model as OLS-hard. Note how svsForwd, the counterpart
for OLSForwd, agrees closely with Zcut (it disagrees only on bmi.map, which is
borderline significant). We believe the SVS models are more accurate than the OLS
ones. In the next section we more systematically study the differences between the
four procedures.

REMARK 10. Figure 9 displays the posterior density tof. Note how the
posterior is concentrated near one. This is typical of what we see in practice.

8. Breiman simulations. We used simulations to more systematically study
performance. These followed the recipe given in Breiman (1992). Specifically,
data were generated by takingto be i.i.d. NO, 1) variables, while covariateg

TABLE 1
Top 10 \Lari ables from diabetes data (ranking based on absolute posterior
means | /3,’{“’" ). Entries for model selection procedures are Z-statistics (12)
derived from the restricted OLSfor the selected model

Variable ﬁ,‘:n Zcut  OLShard svsForwd OLSForwd

1 bmi 954 829 1370 815 1370
2 Itg 9.25 7.68 000 7.82 000
3 map 564 539 7.06 499 7.06
4 hdl —4.37 —-4.20 000 —4.31 000
5 sex —3.38 —4.03 —1.95 —4.02 —-1.95
6  age.sex 23 358 319 347 319
7 bmi.map 161 000 256 328 256
8 glu.2 084 000 000 000 000
9 bmi.2 046 000 000 000 000
10 tc.tch —-0.44 000 000 000 000
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FIG. 9. Posterior density for o2 from diabetes analysis.

were simulated independently from a multivariate normal distribution such
that E(x;) =0 and E(x; jx;x) = p// %, where 0< p < 1 was a correlation
parameter. We considered two settings for(i) an uncorrelated desigm, = 0;

(i) a correlated designy = 0.90. For eachp setting we also considered two
different sample size and model dimension configurations: {A} 200 and

K =100; (B)n = 800 andK = 400. Note that our illustrative example of Figure 1
corresponds to the Monte Carlo experiment (B) witk: O.

In the higher-dimensional simulations (B), the nonzgy@ coefficients were in
15 clusters of 7 adjacent variables centered at every 25th variable. For example,
for the variables clustered around the 25th variable, the coefficient values were
given by fosij0 = |h — j|12° for | j| < h, whereh = 4. The other 14 clusters
were defined similarly. All other coefficients were set to zero. This gave a total
of 105 nonzero values and 295 zero values. Coefficient values were adjusted by
multiplying by a common constant to make the theoret®akalue equal to 0.75
[see Breiman (1992) for a discussion of this point].

Simulations (B) reflect a regression framework with a large number of zero
coefficients. In contrast, simulations (A) were designed to represent a regression
model with many weakly informative covariates. For (A), nonzgyg coefficients
were grouped into 9 clusters each of size 5 centered at every 10th variable. Each of
the 45 nonzero coefficients was set to the same value. Coefficient values were then
adjusted by multiplying by a common constant to make the theorefitatalue
equal to 0.75. This ensured that the overall signal to noise ratio was the same as
(B), but with each coefficient having less explanatory power.

Simulations were repeated 100 times independently for each of the four
experiments. Results are recorded in Table 2 for each of the procedures Zcut,
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svsForwd, OLS-hard and OLSForwd (all usingeas: 0.10 value). Table 2 records
what we call “TotalMiss,” “FDR” and “FNR.” The TotalMiss is the total number of
misclassified variables, that is, the total number of falsely identified norgyo
coefficients and falsely identified zero coefficients. This is an unbiased estimator
for the risk discussed in Theorem 5. The FDR and FNR are the false discovery and
false nondiscovery rates defined as the false positive and false negative rates for
those coefficients identified as nonzero and zero, respectively. The TotalMiss, FDR
and FNR values reported are the averaged values from the 100 simulations. Also
recorded i%, the average number of variables selected by a procedure. Table 2 also
includes the performance value “Perf,” a measure of prediction accuracy, defined
as

IXB — XBoll?

IXBoll2
Whereﬁ is the estimator foB,. So Perf equals zero wheﬁ1: 0 and equals one
whenﬁ = Bo. The value for Perf was again averaged over the 100 simulations.

Perf=1—

REMARK 11. Given the high dimensionality of the simulations, both svs-
Forwd and OLSForwd often stopped early and produced models that were much
too small. To compensate, we slightly altered their definitions. For svsForwd, we
modified the definition of  [cf. (16)] to

krp=min{k — 1:|Zg 4| <z 2 @nd|B},| < C.k=1,..., K +1},
whereC = 3. In this way, svsForwd stops the first time the null hypothesis is not
rejectedand if the absolute posterior mean is no longer a large value. The definition

TABLE 2
Breiman simulations

p =0 (uncorrelated X) p = 0.9 (correlated X)

k  Pef TotalMiss FDR FNR k  Pef TotalMiss FDR FNR

(A) Moderate number of covariates with few (55%) that are zero
(n =200,K = 100and 55 zero B o).

Zcut 4144 0815 1199 0097 Q129 1006 0853 3849 0167 Q408
svsForwd 34€02 0753 1509 0054 Q191 831 0826 3939 0156 Q415
OLS-hard 4199 0791 1406 0128 Q145 1108 0707 4531 0496 Q446
OLSForwd 2690 0612 2092 0042 Q258 596 0574 4464 0459 Q445

(B) Large number of covariates with many (74%) that are zero
(n =800,K = 400and 295zero i o).

Zcut 7596 0903 3962 0068 Q106 3667 0953 7261 0055 Q194
svsForwd 881 0904 4119 0130 Q095 2442 0926 8190 0025 Q216
OLS-hard 10674 0883 5854 0279 Q097 4541 0706 12137 0676 0255
OLSForwd 6109 0846 4987 0046 0138 914 0303 10648 0590 0259
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for OLSForwd was altered in similar fashion, but usifig, in place off; , .

8.1. Results. The simulations revealed several interesting patterns, summa-
rized as follows:

1. Zcut beats OLS-hard across all performance categories. It maintains low risk,
has small FDR values and has good prediction error performance in both
the near-orthogonal (uncorrelated) and nonorthogonal (correlateclses.
Performance differences between Zcut and OLS-hard become more appreciable
in the near-orthogonal simulation (B) involving many zero coefficients, because
this is when the effect of selective shrinkage is most pronounced. For example,
the OLS-hard misclassifies about 19 coefficients more on average, and has a
FDR more than 4 times larger than Zcut's. Large gains are also seen in the
correlated case (B). There, the OLS-hard misclassifies over 48 more coefficients
on average than Zcut and its FDR is more than 12 times higher.

2. It is immediately clear upon comparing svsForwd to OLSForwd that SVS is
capable of some serious model averaging. These two procedures differ only in
the way they rank coefficients, so the disparity in their two performances is
clear evidence of SVS's ability to model average.

3. In the p = 0 simulations, svsForwd is roughly the same as OLS-hard in
simulation (A) and significantly better in simulation (B). In the correlated
setting, svsForwd is significantly better. Thus, overall svsForwd is as good, and
in most cases significantly better, than OLS-hard. This suggests that svsForwd
is starting to tap into the oracle property forward stepwise has relative to OLS-
hard and provides indirect evidence that SVS is capable of reducing model
uncertainty in finite samples.

4. It is interesting to note how badly OLSForwd performs relative to OLS-hard
in simulation (A) whenp = 0. In orthogonal designs, OLSForwd is equivalent
to OLS-hard, but they = 0 design is only near-orthogonal. With only a slight
departure from orthogonality, we see the importance of a reliable ranking for
the coordinates of. Note that this effect is less pronounced in simulation (B)

because of the larger sample size. This is becXii¥g'n 251 asn — o0, S0
simulation (B) should be closer to orthogonality.

5. While our theory does not cover Zcut's performance in correlated settings, it is
interesting to note how well it does in thre= 0.9 simulations relative to OLS-
hard. The explanation for its success here, however, is probably different from
that for the orthogonal setting. For example, it is possible that its performance
gains may be mostly due to the use of generalized ridge estimators. As is
well known, such estimators are much more stable than OLS in multicollinear
settings. We should also note that while Zcut is better than OLS-hard here, its
performance relative to the orthogonal simulations is noticeably worse. This is
not unexpected though. Correlation has the effect of reducing the dimension
of the problem. So performance measurements like TotalMiss and FDR wiill
naturally be less favorable.
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APPENDIX: PROOFS

PrROOF OFTHEOREM2. We start by establishing thﬁﬁ is consistent, which
is part of the conclusion of Theorem 2. First observe that
B, =n"12 XY = B+ Ay,
whereA, = £-1X"e/n ande = (¢1, ..., &,)". FromE(A,) = 0 and VarA,) =
052;1/;1, itis clear thatﬁfl LY Bo- Next, a little bit of rearrangement shows that
0 (y.0)=(1- @, XX+TH~Ir g .
Consequently,

0, =8 — /(o‘zx,;lex + T H7Ir 18 (v x w(dy. do®|Y™)

a0 2\/—1y—17p° 2
—B° —x;;/o VT8 x w)(dy, do?|Y"),

wherer” = A,/n andV, = X, + azx;r—l. By the Jordan decomposition the-
orem, we can writd/,, = Z,le ek,nd,ana,,, where{vy ,} is a set of orthonormal
eigenvectors with eigenvalugs, ,,}. For convenience, assume that the eigenvalues
have been ordered so that, < --- < ek ,. The assumption th&,, — X, where

Yo is positive definite, ensures that the minimum eigenvalu&ipis larger than
someeg > O for sufficiently large:. Therefore, ifn is large enough,

e1n=eo+ GZA: rr}cin yk_l >e¢o > 0.

Notice that
V=172 _Ze 2V, T8 )% < 5 2IIB, 112 Zyk

Thus, sincey > o over the support of, ando? < so over the support oft,

H/azvnlr An

K 1/2
§e51IIﬂZII<Z / oty A x u)(dy,dozw*))
k=1

1/2
K/Sf’uﬂ I.

noeo

Deduce thad = 5 + 0,(2%) > Bo. O

Before proving Theorem 3, we state a lemma. This will also be useful in the
proofs of some later theorems.
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LEMMA A.1l. Assume that for each n, ¢,1, ..., &,, are independent random
variables such that E(e,;) = 0, E(e2,) = oZ and E(e%,) < M for some finite M.
If (D1)+D4) hald, then

n
(18) n~Y?X'e, = n71/228m~x,- g N(O, 0520),
i=1
wheree, = (g,1, ..., &)

PROOF LetS, = Y1, exXi€//n, wheret € RX is some arbitrary nonzero
vector. Lets? = 02¢'3,¢ and define,; = n=Y2%e,;x!¢/s,. Then, S,/s, =
Y"1 &ni, Whereg,; are independent random variables such ib¥ét,;) =0 and
Z?:lE(;fi) = 1. To prove (18), we will verify the Lindeberg condition

> EAI{|nil = 8) — 0  for eachs > 0,
i=1

wherel(-) denotes the indicator function. This will show th§t/s,, g N(O, 1),
which by the Cramér-Wold device implies (18) becawse> 024’ Xol. Observe
that
2 XO% . 5
E(; gl > 8 = 52 E(ey; Hleni| = rnisnd}),
wherer,; = \/n/|x:£|. By the Cauchy—Schwarz inequality and the assumption of
a bounded fourth moment fey,;,

12 _ MY 2q

E(e2,1{|eni| = rnisnd}) < (B(e*) P(leni] = ruisnd)) :
FniSnd

Boundr,; below by

-1
Fpi =Ty = (1@3)( |x§€|/ﬁ) )
<i<n

Notice thatr, — oo by the assumption that majx; || /+/n — 0. Substituting the
bound forr,;, and since(x/£)? sums tons?2/cZ, ands? remains bounded away
from zero since? — o2€' Xot,

; 2 , 1/2
> E@2HZnil > 8) < o

= ooy Syd O

PROOF OF THEOREM 3. Let ¢(:|m, 1% denote a normal density with
mean m and variancer?. By dividing the numerator and denominator by
n=K/2TT1_, ¢ (Y IX! Bo, n), one can show that

vn(S(B1. C/vm)IYy) _ n*72 [{B € S(B1.C/v/m)}Ln(B) v(dP)
vn(S(Bo. C//m)IY7) — nK/2 [T{B € S(Bo. C//m)ILu(B)v(dB)’

(19)
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where
log(Ln(B)) = —3(B = Bo)' Tu(B —Bo) +1n 2> " euiXi (B — Bo).
i=1

Consider the denominator in (19). By making the change of variablesgrton
u=./n(B — By, we can rewrite this as

(20) / I{u € S(0, C)} Luo(u) f( B +n~Y2u) du,

where logL,o(u)) = g,(u) + O(1/n) andg,(u) = Y71 exixiu/n. The O(1/n)
term corresponds to’X,u/n and is uniform oveu € S(0, C). Observe that, for
eachs > 0,

1 n C2 n
Pllgn (W] = 8} < 5 2E<em~x§u)2 <5 Zl %112 = 0(2),

where the last inequality on the right-hand side follows from the Cauchy—Schwarz
inequality and from the assumption that mgx;||/+/n = o(1). Therefore,

gn(U) L) uniformly overu € S(0, C). Becausef is continuous [and keeping
in mind it remains positive and bounded o0, C)], deduce that the log of (20)
converges in probability to

(21) log(f(Bo)) + Iog</ I{u € S(O, C)}du).

Meanwhile, for the numerator in (19), make the change of variables fam
u=./n(B — B4) to rewrite this as

(22) / I{u € S(0, C)} L1 (W) £ ( By +n~Y2u) du,
where

log(La1(w) = —3(B1 — Bo) Zo( By — Bo)

+n7Y23 X (B — Bo) + gn(U) + o(D)
i=1

uniformly overu € S(0, C). Consider the second term on the right-hand side of
the last expression. Sét= 1 — . By Lemma A.1, sinceg =1, it follows that

n
n Y23 6, 5N, £ Z00).
i=1
Now extract the expressions not depending upontside the integral in (22), take
logs and use, (u) Lo uniformly overu € S(0, C) to deduce that the log of (22)
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converges in distribution to
—3(B1— Bo)' Zo(B1— Bo)

(23)
4 (B1— Bo)'Z +log(f(BD) + Iog( [1ueso. c>}du).

To complete the proof, take the difference of (23) and (21) and note the
cancellation of the logs of I{u € S(0, C)}du. O

PROOF OFTHEOREM4. First note that
Bon(@0) = X' X4nTgH)y XY = (Zo+ T H) 1 20Bo+1n" Y2V, X e, +0(D),

whereV, =X, + Fgl. Theo(1) term on the right-hand side is due ¥y — Xo.
Also, by Lemma A.1, the second term on the right-hand side converges in
distribution to(Xg + 1"51)—12, whereZ has a NO, Xo) distribution. Deduce that

BE (o) 2 0Clyg). O

__PROOF OFTHEOREM 5. A little algebra (keeping in min(EnAz ) shows
ﬂ: =./n(l + rgl)—lﬁ,j/an. Hence, recalling the definition (12) faf ,,

1/2 g0
~ n k.n ~
Bi.n = dr.0 X = = dr,0Z.n

n

wheredy o = yx.0/(1+ yx.0) and the last equality holds becauge= 1. Under the
assumption of normalityﬁﬁ,fw has a Nmy ,, ag) distribution, wheremy , =
/nBr.o. Choosey such thatdy o = 81 for eachk € %y andd;. o = 82 for each
k € %, where 0< 61, 2 < 1 are values to be specified. Therefore,

Ro (o) — Rz (a)
= (K — ko)(P{IN(0, 0&)| > Gnzaj2} — P{IN(O, 08)| > 81 *6nza/2})

+ > (P{NGnn, 08| < Guzajzt — P{NGmy 0, 08)] < 85 Guzas2}),
ke 2

where theP-distributions on the right-hand side correspond to the joint distribution
for a normal random variable and the distribution &, whereanz/ag has an
independenty 2-distribution withn — K degrees of freedom. It is clear that the
sum on the right-hand side can be made arbitrarily close to zero, uniformly for
a € [8,1— §], by choosings, close to one, while the first term on the right-hand
side remains positive and uniformly bounded away from zero evefs, 1 — §]
whatever the choice fa¥;. Thus, for a suitably chose®, Zo (@) — #Zz(x) > 0
foreacha € [6,1—46]. O
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PROOF OFTHEOREM 6. Choose somg € %;. Let A; = {y :d; <1 -4},
whered; =y;/(1+ y;). To prove part (a), we show that

_ S IT@y)
T [ fY ) dy)
By definition, £ (Y*|y) = [ f(Y*|B) f(Bly)dB, where

7 (AjIY7)

1 1
FOVEIB)F(Bly) = cexp(—gw* _XB) (Y — XB) — é/sfrlﬂ)|r|l/2

and C is a generic constant not depending uponBy some straightforward
calculations that exploit conjugacy and orthogonality,

K K
(24) fYfly)y=c exp(% > dksf,n) [Ta+wn Y2
k=1 k=1
where(&y ., ..., Ek.qn) =6, tn"2X!Y.

LetB={y:1-6<dpy<1-—6;/2,k=1,..., K}, where O< §; < 1 are small
values that will be specified. Observe that
Ja, Y y)m(dy)
Jp F(Y*Iy)m(dy)
Over the setA ; we have the upper bound

f(Y*Iy)SCexp{%< g+ Y 5/3,n+(1—5)5j2,n>}

ke ke B5—1j)

7 (AjIY7) <

because & d; < 1, while overB we have the lower bound

1 K 5\-1/2
f(Y*IJ’)zCeXp:§< > (1—3k)g,§n+(1—5j)gj%n>}1‘[<£> _

ke B4—{j) k=1
An application of Lemma A.1 (which also applies to nontriangular arrays) shows

(ELn, - Ekn) =5, 1(nY?Bo + 0,(D).

Therefore,

n
Ta (A 1Y) 5exp{0,,(l)+ﬁ< > &BEo
(25) n NkeBy—{j}

m(Aj)

+ (85— 8)p% o+ op(l/ﬁ))} R
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Chooses; < 4. It is clear we can find a set of valu¢& :k # j} chosen small
enough so that

Z 81031?,0 + (5j - 5),31270 <0.
ke By—{j}

This ensures that the expression in the exponent of (25) convergesctdn
probability. Note for this result we assunﬁ has a nonzero limit (we give a
proof shortly thai2 > 02). Therefore, sincer(B) must be strictly positive for
small enouglts; > 0 (by our assumptions regarding the supportsfpr conclude
from (25) thatr, (A;|Y™) Bo.

To prove part (b), leffy (yx|w) denote the density fgy, givenw. From (4), itis
seen thatfy (yx|w) = (1 — w)go(yx) + wgi(yx). Therefore,

FEQrlw) o £Y 1) fi (rilw)
ocexp(3dkg? ) L+ v Y2 fi(yelw),

which is the expression (13). Furthermore, by Lemma A.1 deduce &hat

converges to a standard normalgifo = 0 (we are usings? L ag, which still
needs to be proven).

To complete the proof, we now shoﬁy,2 is consistent. For this proof we do
not assume orthogonality, only that, is positive definite (this generality will
be useful for later proofs). Observe tm,f = (e'e — €'He)/(n — K), where
H = X(X'X)~1X". It follows from Chebyshev’s inequality using the moment

assumptions om; thate’e/(n — K) LY og, while from Markov's inequality, for

eachs > 0,

K)8) < E(e'He) _ TracgHE(e€’)) _ Ko? .
(n—K)$ (n—K)$ (n—K)é

P{e'He > (n —

Deduce thas2 > 2. O
PROOF OF THEOREM 7. Under the assumption of orthogonality, and using
the fact thaty,, = n, it follows that
B (y,0%) =6, 1n?DBy+ 5, 'n"Y2DX'e,

whereD is the diagonal matrix diags, ..., dx) anddy = yi /(v + 02). Taking
expectations with respect to the posterior, deduce that

(26) B, =6, 'n"2d} Bro+ 6, di Gk,
whered;’ = E(d|Y*) andy, , is thekth coordinate oK’e//n. From Lemma A.1

ands2 5 o2 (proven in Theorem 6), we hagg 1X'e//n LN, 1. Therefore,
because G d; < 1, deduce that the second term on the right-hand side of (26)
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is O,(1). Now consider the first term on the right-hand side of (26). By
our assumptions regarding the supportsofand ., we must haved; > no/

(no + sg). Thus, d remains bounded away from zero in probability. Hence,
becaus&”, /./n — 0, we have proven that

“1,2% , P |0, if ke A,
Co "Bl = {oo, otherwise. O
PrROOF OFTHEOREM 8. As the proof is somewhat lengthy, we first give a
brief sketch. The basis for the proof will rely on the following result:

0 0, if ko<k<K,
(27) Bilk] = 3§ Bro,0s if k= ko,
Bk,0+ Ax0, if 1<k < ko,

whereAy o is thekth coordinate o[k : k] 1Zolk: —k]Bol—k]. HereBol—k] =
(Bok+1s - --» Bo.x)', while Xo[k : k] and X[k : —k] are thek x k andk x (K — k)
matrices associated wifio which has been partitioned according to

5 _( Solk:kl  Solk:—k] )
0=\ Sol=k:k] Zo[—k:—k]/

First consider what (27) implies whén< kg. Recall the definition (15) fofk,n.

Usinga‘n2 LY 002 (shown in the proof of Theorem 6) and that[k] converges to the

kth diagonal value oEolk : k171, a strictly positive value, deduce from the second
limit of (27) thatP{| Zy,,»| > Zayy 2} = 1. Thus, for (a),

Plkg =k} =P{|Zkn| > 2eg/2@nd|Zj | < za; 2 fOr j=k+1,..., K}
< P{|Zko ] <Z0‘k0/2}_>0‘

For (b), observe that o = 0 (by our assumption of orthogonality). Thus, when
k < ko, the last two lines of (27) imply tha{|Z; ,| > z,/2} — 1, and therefore,

Plkp =k — 1} =P{| Zin| < 2qyj2 8| Zj 4| > 24,2 fOr j=1,.... k — 1}
<P{1Zknl < 20y 2} = 0.
Now for (c), due to orthogonalityZ; , = Zx ., for Z;., defined by (12). Thus,
P{ko > ko} = P{|Z;nl > za;s2TOr j=1,... ko} > L

Thus, for all three estimators the probability of the eviégnk ko} tends to zero.
Now consider whei > ko. We will show for (a) [and, therefore, for (b) and (c)]

5 = = d
(28) Zn = (Zk0+1,l’l7 R} ZK,I’l)t M N(OK—koa I);
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which implies{Zi,+1... ..., Zk ..} are asymptotically independent. By (28),
K
Ptkp =k} — P{IN(0, 1)| > 2o 2} [] P{IN(O, D <za,/2},
j=k+1

which is the third expression in (a). For (b), using (28) and the assumed
orthogonality,

k
Plkr =k} — P{INO, DI < zay,/2} [ P{NO, I > za,/2}.

Jj=ko+1
Meanwhile, for OLS-hard, wheh > kg or k = ko,
K
Plko=k} > P1 > HIZj| = 202} =k koy.
Jj=ko+1

where{Z,+1, ..., Zx} are mutually independent(8, 1) variables. This is the
second expression in (c). Deduce that (a), (b) and (c) hold (thekcadeg for kg
andk g can be worked out using similar arguments).

This completes the outline of the proof. Now we must prove (27) and (28). We
start with (27). LetBo[k] = (Bo.1. - - -» Bo.k)'- Some simple algebra shows that

B°1k1 = Bolk] + (X[KT X[k~ X[k]'X[—k1Bol—K]
+ (X[K) X[k "X [k]e,

whereX[—k] refers to the design matrix which excludes the firesblumns ofX. It
is easy to show that the third term on the right-hand sidg (&). Thus, it follows
that

(29)

B°Ik] > Bolk] + Tolk : k1~ T olk : —k1Bol—kI,

which is what (27) asserts. R
Finally, we prove (28). By (29)3;[k] is thekth coordinate of X[KI'X[k]) L x
X[k]'e whenk > kg, and thus,

Zin = (O, (s [kD2) XK XK1 /m) "2 @, tn ™ Y2X (kT €)
= (Vi, O )&,
where&, =6, 1X’e//n and¥; is thek-dimensional vector defined by
Vi, = (0,1, (sralkD™Y2) (XIKT XK1 /m) .
This allows us to Write?,, =V,§&,, where
V5<0+1 (v§<0+1» UK—ko—l)
V, = : = :

: 7
Vg Vi
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Thus, becausg, g N(O, Xo) by Lemma A.1, we have

5 d
Z, ~ N(OK—ko, VoZoVB),

where Vg is the limit of V,. In particular,V, X,V — VOZOV{). To complete
the proof, we shovWO)SOV6 =1 by proving thatV, X,V,, = |. Note by tedious
(but straightforward) algebra that X, vi = 1. Considelv’/.):nvk whenj # k and
j > ko. By (29), whenk > ko, '

BLlk] = n~tspr[k1Y2vi X €.
By Remark 8 we know thaﬁ,jo+1[ko +1],..., B2[K] are uncorrelated. Thus
E(BSLj1B;1k]) =0 if j # k, and therefore,
0=EV;X'eviX'e) =V X'E(ee' )XV = oV, X' Xv;.

Thus,v’j):nvk =0. Deduce thaV¥, %, V! =1 and, hence, thafoZoVy=1. O

SVS Gibbs sampler.

ALGORITHM. The SVS procedure uses a Gibbs sampler to simulate posterior
values

(B, J.t,w,02Y")

from (6), whereJ = (A4, ..., Zk)" andt = (11, ..., 7x)'. Recall thaty = % 77,
so simulating/ andzt provides a value fop. The Gibbs sampler works as follows:

1. Simulate 8|y, o2, Y*) ~ N(u, 02X), the conditional distribution fof, where
p=3X'Y* and T =X'X+o%nI 1L

2. Simulate.#; from its conditional distribution

ind W1,k w2,k

(ﬂﬂﬂ,‘[,w)’\* ¢ 81(), k:].,...,K,
w1k + w2k 0 W1k + W2k
where
2
w1k = (1 — w)vgl/z eXp(- lBk 2)
2UOTk
and

Wogp=w exp(—ﬁ—’g).
' 2rkz

3. Simulaterk‘2 from its conditional distribution,

@28, J) indeamm<a w1, +ﬁ—’g) k=1,....K
k ’ 1 25 2 ij ) — L, .. .
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4. Simulatew, the complexity parameter, from its conditional distribution,
(wly) ~Betal+#k: vy =1}, L+ #k: yr = vo}).
5. Simulates —2 from its conditional distribution,

1
(07?18, Y*) ~ Gamm<b1 + 2 by —[IY* — Xﬂ||2).
2 2n
6. This completes one iteration. Updatdy settingy, = fkrkz fork=1,...,K.

COMPUTATIONS FOR LARGEK . The most costly computation in running the
Gibbs sampler is the inversion

¥ =X'X+o2arH1

required in updatingd in step 1. This requires @& 3) operations and can be
tremendously slow wheK is large.

A better approach is to updaj® in B blocks of sizeg. This will reduce
computations to order B 2K %), where K = Bg. To proceed, decomposg
as (ﬁzl)’ Ceey ﬂt(B))t, I' as diagl"(l), ceey F(B)) and X as [X(]_), ey X(B)]. Now
update each componef;), j = 1,..., B, conditioned on the remaining values.
Using a subscript-(;) to indicate exclusion of thgth component, drayg ;) from

aN(u;, 02X ) distribution, where

2 11
[LJ- = ijl&j)(Y* — X,(_/)ﬂ_(j)) and Zj = (XE‘/-)X(j) + o nl“(j)) .

Notice that the cross-product termgj)x(j) and X’(j)X_(j) can be extracted
from X’X and do not need to be computed.
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