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CHARACTERIZATION OF BAYES PROCEDURES FOR MULTIPLE
ENDPOINT PROBLEMS AND INADMISSIBILITY
OF THE STEP-UP PROCEDURE?

By ARTHUR COHEN AND HAROLD B. SACKROWITZ
Rutgers University

The problem of multiple endpoint testing ferendpoints is treated as a
2% finite action problem. The loss function chosen is a vector loss function
consisting of two components. The two components lead to a vector risk.
One component of the vector risk is the false rejection rate (FRR), that
is, the expected number of false rejections. The other component is the
false acceptance rate (FAR), that is, the expected number of acceptances
for which the corresponding null hypothesis is false. This loss function is
more stringent than the positive linear combination loss function of Lehmann
[Ann. Math. Satist. 28 (1957) 1-25] and Cohen and Sackrowit&nf.
Satist. (2005) 33 126-144] in the sense that the class of admissible rules
is larger for this vector risk formulation than for the linear combination
risk function. In other words, fewer procedures are inadmissible for the
vector risk formulation. The statistical model assumed is that the vector of
variablesZ is multivariate normal with mean vectgr and known intraclass
covariance matrixz. The endpoint hypotheses ate: u; =0VsK; :u; > 0,
i=1,...,k. A characterization of all symmetric Bayes procedures and their
limits is obtained. The characterization leads to a complete class theorem.
The complete class theorem is used to provide a useful necessary condition
for admissibility of a procedure. The main result is that the step-up multiple
endpoint procedure is shown to be inadmissible.

1. Introduction. LetZ be ak x 1 random vector which is multivariate normal
with mean vectop = (u1, ..., ux)’ and known covariance matri®. ASsumex is
intraclass, that is, all variances are equair?:oand all correlations are equal to
Consider thé hypothesis testing problents : u; =0vsK;:u; >0,i=1,... k.
This represents the problem of multiple endpoint testing. We view this problem
as a 2 finite action problem where we can decide whether to reject or accept
eachH; individually. The loss function chosen is a vector loss consisting of two
components. The first component is the number of false rejections and the second
component is the number of false acceptances. The corresponding vector risk has
one component related to the average power of the procedure while the other
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146 A. COHEN AND H. B. SACKROWITZ

componentis related to the average size of the procedure. This will be made precise
in Section 2.

The vector loss function is more stringent than the linear combination loss
function used in Lehmann (1957) and Cohen and Sackrowitz (CS) (2005) in the
sense that the class of admissible procedures for the vector loss function contains
the class of admissible procedures for the linear combination loss function. In other
words, any procedure shown to be inadmissible for the vector loss is inadmissible
for the linear combination loss.

In this paper we offer a characterization of the class of symmetric (permutation
invariant) Bayes procedures. For the normal model, intraclass is the most general
case of permutation invariance. The characterization leads to a useful complete
class theorem. The complete class theorem yields a useful necessary condition for
admissibility of a procedure. Our most important result is that the popular step-up
multiple endpoint testing procedure is inadmissible.

Step-up procedures are studied in many places including Hochberg and
Tamhane (1987), Hochberg (1988) and Shaffer (1995). Step-up procedures have
been studied in connection with procedures that control the false discovery rate
(FDR). See Benjamini and Hochberg (1995), Benjamini and Yekutieli (2001)
and Sarkar (2002). Six of the eighteen multiple endpoints procedures studied by
Dudoit, Shaffer and Boldrick (2003) are step-up procedures.

The inadmissibility result for step-up is of practical importance. Furthermore,
the result is somewhat akin to the Stein-type inadmissibility phenomenon in
the following sense: The step-up procedure leads to admissible tests for each
component individually wherp > 0. See CS (2005). Yet in the finite action
problem if the loss function is the vector loss function of this paper or the sum
of losses for the component problems, the step-up procedure is inadmissible for
k> 2.

We note that the characterization of Bayes procedures for finite action problems
has only been achieved in the past for the case where the action space is a subset
of the real line. See, for example, Karlin and Rubin (1956), Brown, Cohen and
Strawderman (1976) and Van Houwelingen and Verbeek (1985). Finite action
formulations are realistic, practical and important.

Preliminaries and notation will be given in Section 2. The characterization of
symmetric Bayes procedures will be given in Section 3. Section 4 contains a
description of a complete class, a necessary condition for admissibility, and the
result that the step-up procedure is inadmissible. In Section 5, for thetcase
a procedure that is better than step-up is constructed.

2. Preliminaries. This 2 finite action problem has actiona = (a1,
as, ...,ar) wherea; equals 0 or 1 fori = 1,...,k. An action whereg; = 1
means thatH; is rejected, where iti; = 0, H; is accepted. Thus, for example,
a=(1,...,1) means allH; are rejected. It will be convenient to define

F={u:u=(ug,...,ux),u;=0o0r1 alli}.
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Note thatl" can be used to represent the totality of all actions. Howdvew;ll
serve other purposes as well.

Decision rules (-|z) are probability mass functions @hwith the interpretation
thatd (a|z) is the conditional probability of actiomgivenz is observed. For each
a nonrandomized decision rule chooses a single elemdntvaith probability 1
and assigns all other actions probability 0.

Let v;(z) be the probability of rejectingd;. A decision procedurd(alz)

determines a set qﬁi(‘”(z), i=1,..., k,as follows:

(2.1) W@= ) i@

acA;
where A; = {a € I"':ahas a1 in théth positior}. Whereasé(ajz) determines
¥ (2), the reverse is not true. ¥ (z) = (Y1, ..., ¥x)' is nonrandomized, it uniquely
determines somé&(alz). Thed(alz) determined is also nonrandomized.

The parameter space &= {u:u; > 0,i =1,...,k}. Partition the parameter
space into 2 setsQy, v e I', whereQy = {i: ;e = (1, 1o, - .., i), i > 0 if
vi=landu; =0ifv;=0,i=1,...,k}. AlsoletQ") = {u:p € Q, u; =0} and
let Q)¢ be the complement a2 relative toS2.

A loss function is a function of the action taken and the true state of nature.
We will study several different loss functions and their relationships. For each
individual hypothesisH; the loss function is zero for a correct decision, 1 for
rejecting H; when it is true and 1 for accepting; when it is false. (Note that the
ensuing development would also work if 1 is replacedhby > 0, when a false
acceptance is made.) Such a loss function determines a risk

(2.2) Riy(Wi, w) = A= v)Epvi(2) +vi (1 — Epvi(2)).

For the finite action problem a sum of the loss functions of the individual
problems is

k k
(2.3) L@ =) a(l-v)+) I-a)v,  HeQ.
i=1 i=1

The corresponding risk function §%_; R(;), which can be expressed as
(2.4) Ey¢'A—v)+A—-)v).

The risk function (2.4) is used by Lehmann (1957) and CS (2005). CS (2005) also
study a vector loss function consisting of the vector of losses for the individual
component problems. The corresponding vector risk called VRI is

(2.5) (Ry(¥1, 1), -, Ry (g, ).
Another vector loss consisting of two componefits, L1) is where

k k
(26) Lo@m) =) a(l—v), Li@mw=) 1—a)v, preQ.
i=1 i=1
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The corresponding risk function can be expresseaka&y, i), R1(¥, n)), where

k k
(2.7) Ro@W.w) =) 1—v)Eui(2,  Ri(¥.pm) =) vEu(1—v(2).

i=1 i=1
Supposemn is the number of positivg:;. Then according to the definition of
average power given by Benjamini and Hochberg (1995), and noted by Shaffer
(1995) and Dudoit, Shaffer and Boldrick (2003:/m is 1 minus the average
power. Ro/(k — m) is the average size. Also one may justifiably c&f or
Ro/(k — m) the false detection rate or the false rejection rate (FRR) andrgall
or R1/m the false acceptance rate (FAR). We call the vector (i R1) in (2.7)
VRSP since it is related to average size and average power. We note that the class
of admissible procedures is largest for the VRI risk function in (2.5) and smallest
for the risk function in (2.4). Yet the class of admissible procedures is certainly
larger for VRSP than for the risk function in (2.4). Thus any procedure which is
inadmissible for (2.7) is also inadmissible for (2.4).

In this paper we focus on VRSP. To deal with VRSP we use a device utilized
by Cohen and Sackrowitz (1984). That is, we introduce an artificial but useful
problem. Letd be a nuisance parameter which takes on the value 0 or 1. Next
define the one-dimensional loss function

(2.8) L*(a (r.0) = Lo(a p).

It now follows from Cohen and Sackrowitz (1984) that the class of admissible
procedures for the problem using (2.6) as a loss function is the same as the
problem using (2.8) as a loss function but treatth@s a parameter which can
either be 0 or 1. Hence we study the problem using (2.8) as the loss function. The
corresponding risk function will be denoted R&(y¥, (u, 6)).

Now a decision procedung* is Bayes with respect to (w.r.t.) a prior distribution

E(p,0) if
(2.9) E¢R* (Y7, (. 0)) = inf E¢R*(¥ (. 0)).

The prior distribution is written as

So(m)B, if & =0,

E1(w)(1—B), ifo=1,

where g8 is the probability tha® = 0 and&p(i) is the conditional distribution
of u givend = 0 and where(1 — B) is the probability thab = 1 and&1(p) is
the conditional distribution ofx given 6 = 1. We write the density of given
(;, 6), noting that this density is the same regardles8.ofhat is, f (z|u, 0) =
f@lp, 1) = f(z|p) where

(2.10)  f(@@lp) = (1/@r)|B[M2)e~WRIE e B w200

) = |
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Note the marginal distribution afis

(2.11) f@= /Q F@RIBdéo(w) + (1— B) der(w)].

The following theorem describes a Bayes procedure.

THEOREM 2.1. Consider the risk function R*(y, (., 6)). The Bayes proce-
durewr.t. &(u,0) isy™ = ¥y, ..., ¥ where

1 it Joo f@W)[Bdéo(n) + (1 — B) dér(w)]

(212) ¢/ = fo f@lw) dér(p)
0, otherwise.

<A-p),

PrROOFE The risk functionR* (¢, (i, 6)) can be written as

k k
R* W, (1.0)=1—0)> A= v)Eu[vi@]+6 ) viEull— v (2]
i=1 i=1
(2.13)

k
=> {Ov)+A—0—v)Eu¥i(@},  peQ.
i=1

To find the Bayes procedure we must minimize the expected risk. Using (2.13) we
see that this amounts to settirig(z) = 1 if the posterior expected value

(2.14) E{1-©®—V;|z} <0,

where now® andV; are regarded as random variables with joint prior distribution
determined by (u, 6). The left-hand side of (2.14) reduces to

(2.15) P{V; =0|z} — P{® =1]z}.
Now (2.15) is

L[ @B dsom + @ - pdew)
(2.16)

~a-p [ remdamwl/s@.
We see that (2.14) and (2.16) lead to (2.12)]

The step-up procedure we study is as follows:

PROCEDUREZ2.1. LetZx) <Zp) <--- < Zy) be the order statistics for the
set(Z, ..., Zy) and letC; be a strictly increasing set of critical values:

(i) If Zay < C1, acceptH(1) where H(y is the hypothesis corresponding to
Z1). Otherwise reject alH; .
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(i) If Ha is accepted, accept if Zp =< C,. Otherwise reject
Hpo, ..., Hy.

(i) In general, at stagej, if Z;) < C;, accept H . Otherwise reject
Hy, ..., Hg. ' .

Call the step-up procedur¢g,(z). The procedure fok = 2 is shown in
Figure 1.

3. Characterization of symmetric Bayes procedures. In order to charac-
terize symmetric Bayes procedures we first recognize that the problem with loss
function (2.8) is invariant under the following groups of transformations:

() G ={g:gzis a permutation of the coordinates »fi.e., g is ak x k
permutation matrix

(i) G=/{g:5(n,0)is a permutation of the coordinates pfwhile leavingd
asis;ie.g =3}

(i) G ={g:2(a) is a permutation of the coordinatesafi.e.,s = g}.

Since the problem is invariant under the finite grauygt follows from Ferguson
[(1967), Theorem 3, page 162] that any symmetric Bayes procedure is Bayes w.r.t.
an invariant prior distribution. Any invariant prior distribution (undgrdepends
only on the maximal invariant paramet@ty), . .., i), ). This restriction then
implies that for Bayes procedures, all prior distributions are symmetrjc far
each fixedd. In particular, the conditional distributiorig () and&1 (i) will be
permutation invariant.

In order to characterize symmetric Bayes procedures we will be using (2.12).
We first wish to express the integrand in a simplified fashion. Toward this end
recall the expression (2.10) fof(z|u). Since X is intraclass, that isX =
Al —p) +p11,1=(@1,....0, 271 = (021 - p))~tI — G17) where
G =p/(1+ (k—1)p), we can express the numerator of (2.12) as

e—(l/Z)Z’E—lz/ exp(ZE "t — (/2T )
3.1) a0
x [Bdéo(n) + (1 — B) dér(p)].

Noting thatZ = ~1u = (62(1 — p)) " 1(Zpn — G1'z1 ), letting for fixedz,

(3.2) dgi(w) =expl—(02(1—p) 'GlZVu + (1/2p' S u} déo (p),
and without loss of generality taking?(1 — p) = 1, we can rewrite (2.12) as

1 @R ={ [ Mipdssn + L prdsiw)
(33 v = <([. ez/“dsfou)l}

<1-g,
0, otherwise.
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Note that in (3.2) we absorb an expression involvarigto the prior. This is okay
sincez is fixed and in the development to follow even wheghangesl'z will
remain constant.

To characterize symmetric Bayes rules it suffices to consider only sample points
such thaty < --- < zx. Now we give:

LEMMA 3.1. Fixzandassumez; <--- <zx. Then
(3.4) 0(29)2) = 9(Q+Y)2), i=1,... k-1
Theinequality is strict unless z; = z; 1.

PROOF We need only consider the integral in the numerator of (3.3). Writing
[Bdég(n) + (1— B)déf ()] asdé™(n), we note

@5 [ erasw= exp( > i+ z,-+1m+1) dE™ ().
Q@ Q) . =
JEGRED!
Make the change of variables = p;11, nia1 = u; in (3.5) tofind (3.5) is equal to

/mw eXp( > Zjﬂj+Zi+1Mi> d& ()

jAii+1

2/52(i+1)exp< Z jkj +Ziﬂi>d§*(ﬂ).

i+l

(3.6)

Thus from (3.5) and (3.6) we have (3.4). Note that the inequality in the proof is
strict unless; = z;+1. This completes the proof of the lemmal]

THEOREM3.2. Letzbesuchthatz; <--- <zx. Letr €{0,1,...,k} bethe
element of the set for which Q(Q"|2) > (1 — B) > Q(Q"*D|z), where r = 0
means Q(Q®|z) < (L —p) forall i=1,...,k and r = k means Q(Q?|z2) >
(1-—p)forali=1,...,k. Thenthe Bayes procedureisy;(z)=0,i=1,...,r,
Vi@=1,i=r+1,... k.

PRooOE Use Theorem 2.1 and Lemma 3.1]

4. Complete class and inadmissibility of step-up. Symmetric Bayes pro-
cedures and weak * limits of sequences of symmetric Bayes procedures against
symmetric prior distributions form a complete class of symmetric procedures for
this problem. See Weiss [(1961), page 81], where he defines a weak * limit as
follows: Let ¢, be a sequence of procedures. Thignconverges tap if

nleOOR(wn’ ”’) = R(K/f, /L)
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Another complete class of procedures for this problem is the set of almost
everywhere (a.e.) nonrandomized procedures. This follows from a result in
Matthes and Truax (1967) where it is demonstrated that each admigsit@e
must be nonrandomized a.e. It follows that the nonrandomized symmetric Bayes
procedures and their a.e. limits are a complete class of symmetric procedures for
this problem.

We proceed to give a hecessary condition for admissibility based on a complete
class. Toward this end lef be the following partial sums aky, ..., zx). That s,

letr; =35z, j=1.....k. Let1 =0 andr = —oc.

LEMMA 4.1. Let 8 ={tifx > fr—1 — fx > -~ > 11 — 12} Then for j =
2,....k, te 8, 0(QUIt) as a function of ¢; is strictly decreasing while
f,...,tj—1,tj41, ..., t are held fixed.

PROOF Note we may write

S @XO(TI_y 2 (1 — tiy1) i) dE* ()

Jo XTIy (6 — i) ) dEf ()
For fixed t1,%2,...,tj_1,tj41,..., % the numerator is a strictly decreasing
function of #; (recall 1;_1 > 0) while the denominator, being a Schur convex
function of z (it is convex and permutation invariant), is an increasing function
of ¢;, t; € 4, while all other partial sums are fixed. See Marshall and Olkin

(1979) for discussion of Schur convex functions. It follows tigai2/)|t) then
is a decreasing function of. This completes the proof of the lemmal]

(4.1) (V) =

LEMMA 4.2, Let j=2,...,k. Let ¥ (1) be a symmetric Bayes procedure.
Then for t € 8, ¥;(t) is a nondecreasing function of ¢; while (11,...,¢;_1,
tjiy1, ..., t) arefixed.

PrROOF Note sincey (1) is a symmetric Bayes procedure it follows from the
proof of Lemma 4.1 thay ; (t) is nonrandomized fof =2, ..., k. Use Lemma 4.1
again to conclude that fare 8, v;(t) is a nondecreasing function of while
(f1, ..., tj—1,tj41, ..., 1) are fixed. O

THEOREM4.3. Letj=1,...,k—1.Let ¢ (t) beasymmetric procedure such
that there exists a sample point t* € 8 for which v ;(t*) = 0. Then a necessary
condition for ¥ (t) to beadmissibleisthat v;(t) =O0for all t € § suchthat ¢; < t;‘.

ProoF Recall that symmetric Bayes and a.e. limits of sequences of sym-
metric Bayes procedures are a complete class of symmetric procedures. Now
Lemma 4.2 implies that every Bayes procedure has the required property. The
required property must also hold for any a.e. limit of a sequence of symmetric
Bayes procedures. To see this¥ef(t) = (¥1,(7), ..., ¥xa(¢)) be a sequence of
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symmetric Bayes procedures wight) its a.e. limit. Since) ;,(t) is a nondecreas-
ing function it follows that its a.e. limit is also a nondecreasing function. This
establishes the theorem(]

COROLLARY 4.4. Let ¥(2) be a procedure such that there exists a sample

point z* = (z3, ..., zf) with zf > zf_4 > --- > z] for which v (z) = 0. Then a
necessary condition for ¥ (z) to be admissible isthat v, (z) = 0 for all z in the set
(2@ + 2 _)/2=5 2k ST 2k—2 =2 _pr - 2L =21, Tk + TU—1 =2} + Z4_1)-

PrRooF This follows from Theorem 4.3 since = zx, and fixing 71,
Zk—2,...,21 IS equivalent to fixingy_1, ..., 1. [

THEOREM4.5. Thestep-up procedure givenin Procedure 2.1lisinadmissible.

PROOF We show that Procedure 2.1 does not satisfy the necessary condi-
tion for admissibility given in Corollary 4.4. Consider the sample paht=
(23,25, 28) Wherez;f =Cj—e¢,j=1,... k, for somee > 0 to be chosen.
Note sinceCy < --- < Cy, z} < 25 < --- < z; and also note thag g, (z*) = 0.

In particular, the last coordinate afg(z*) is zero. Now consider the sample
point z = (23,25, ..., 2{_p Zk—1, 2k) Wherezy = zx—1 = [(Cx + Ck-1)/2] — &.
Notice that for sufficiently smalk, zx—1 > Cix—1, which means thayg(z) =
(0,0,...,0,1,1). In fact there is an open interval afpoints on the linez; +
-1=25+ 21 =1_1,24_p ---,2; DEQINNINg at; =1;°_;/2 and ending before

7k = z; such thatyg,(2) = (0,0,...,0,1, 1)’. In particular, the last coordinate of

¥ su(2) = 1. This represents a violation of the necessary condition for admissibil-
ity given in Corollary 4.4.

The result of Theorem 4.5 is, in a sense, akin to the famous inadmissibility
result of Stein (1956). Stein considered the madel N(u, I) and proved that
if the loss function is the sum of squared errors, tiers an inadmissible
estimator ofu whenk > 3. This in spite of the fact that eacty is admissible
for w; if the loss function is squared error. In our multiple endpoints testing
problemy g, = (¥su1, ¥su2 - - -, ¥suk)  is such thatysy is an admissible test
of H;:u; =0 vsK;:u; >0 when the loss function i€, 1) andp > 0. See CS
(2005). Yety g is inadmissible as a finite action procedure when the loss is the
sum of losses of the component problems [or for the vector loss (2.6)]. Here the
resultis true fok > 2. [

5. A procedure which beats step-up. In the case ofk = 2, the step-up
procedure is shown in Figure 1(a). It is easily seen that the necessary condition
of Theorem 4.3 is violated when(2 < Z1 + Z> < C1 + C». This is the shaded
strip in Figure 1(b). By making changes in this strip we show how to construct
a procedurey ™, that has a vector risk which is less than or equal to the risk of
step-up for allu.
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Fic. 1. (a)and (b) show the step-up procedure ¢sy, (C) shows ¢.

We begin with any fixedr € (2C1, C1 + C2) and considerZ such that
71+ Z> =t. Without loss of generality le¥2 = 1. We note that the conditional
distribution of Z1 given Z1 + Zo =t is N(5 + 3(u1 — u2), 3(1 — p)). Also
(see Figure 2), for the step-up procedwrg,(z), whenzy + z2 = ¢, we have

(0, 1), if z1 <t —Co,
(0,0, ift —Co<z1<Cq,

Yy =311, if C1<z1<t—Cq,
1,0, if C2 < z1.
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Z3

— = By ¥R, I

0
e

I
C*
t=C*

t " z
0 [,Ez Cl‘%Tt-E, EF :\\ 1

FIG. 2. The step-up procedure with thelinez1 +zo =1.

The procedurey™ is constructed as follows. Consid#y,,—,,(t — C1 < Z1 <
ColZy+ Za=1) — Puy—u,(5 < Zy <t — C1|Z1+ Z2 =1). If we let D(r) be
this difference in conditional probabilities, then

(5.1) D(z):cp(%) 4@(%) +%.

Next defineC* = C*(r) by setting

t 2C* —t 1
5.2 Pl=-<Z C*zZ Z:t):cl)(—)——:Dt.
(5.2) <2< 1<C*Z1+ 2> 1) 2 |D(1)]

That is,C* is the solution to

(5.3) q><72c*_t )—}= }+<1>(72C2_’ )—2c1>(4’_2c1 )‘
V2a-p)/) 2 |2 V2(I-p) V2 -p)

Then forzy +zo =t andD(z) > 0, let

0,1, if z9 <t —C*,

¥*(z1,22) =1 (0,0), if t —C* <z1 < C¥,

(1,0, if C* <z1.
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On the other hand, iD(¢) < 0, let
0, 1), if 70 <t —C*,
¥ (z1,22) =1 (1, 1), ift —C*<z1 <C¥,
(1,0), if C* < z1.
The resulting procedure is sketched in Figure 1(c).

THEOREMS5.1. Theprocedure ¢ * isbetter than ¢ g, for the vector risk VRSP.

PROOF  If we let g y(z) denote the step-up procedure, then it will be shown
that the proceduré¢s*(z) above is such that

(5.4) Ro(Y*, w) + bR1(Y¥*, ) < Ro(¥sy, k) + bR1(Y sy, 1),

with strict inequality for somex, for everyb > 0. Note that the procedung™ does
not depend o. This implies thaty™ beatsy g, for VRSP.

Using (2.7) we show (5.4) by showing
(5.5) E {(¥su@ —¥*@) (1— b+ 1V)|Z1+ Z2=1} >0
forall w € Qy, ve I, andr € (2C1, C1 + C2). We will only study the case of
D) >0 and%t < C* <t — C1 as the other cases are similar. Table 1 outlines
the possible values thatg,, ¥* and (¥gy — ¥*)(1 + (b + 1)v) can take on
for the possible values afi, zo =t — z1 andv. Also Figure 2 is helpful. We let
W(zZ;Vv) = (¥su(2) — ¥*(2))' (1 — (b + 1)v) and studyE, {W(Z; V)| Z1 + Z2 =1t}
as a function ofu for eachv € I'. Note thatu is in the parameter space only when
1 E Qy.

Using the values from Table 1, it is easy to check that the definition
of C* implies E,,,—,,{W(Z;V)|Z1+ Z> =1} =0, all v e I". For example, say
v=(0,1). Then, asZ1|Z1 + Zp =1 ~ N (4, 152) whenuq = o,

Ep— ,AW(Z |21+ Z2 =1}
=t[o( =) - (o))
t—2C* 2C1—t
*M NEe) p) (m)}

ra-n[#( Gargy) (o)

(o) - *(Ja=)]
_[ ( 22C(i_;)> CD( tz(lzci)))}

=0
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TABLE 1
Evaluation of ¢sy(z), ¢*(2) and W(z; v) whenzq +zp =1

\"
(0,00 (1,0) (0,2 1,1
I — b+ v
(1,1) (=b,1) (1, =b) (=b,—b)
W(z;v)
dsu@’ ¢*@ (Wsu@ —9¢*@) (Psu@ —¢* (@) A - B+ Dv)

—co<z1<t—Cy (0,1) (0,1) (0,0 0 0 0 0
t—Cp<z1<C1; (0,00 (0,1) 0, -1) -1 -1 b b
Ci<z1<t—-C* (1,1) (0,1) (1,0 1 —b 1 —b
t—C*<z1<C* (1,1) (0,0) (1,1 2 1-b  1-b —2b
C*<z1<t—-C; (1,1) (1,0 0,1 1 1 —b b
r—C1<z1<C2  (0,0) (1,0) (—1,0) -1 b -1 b
Cy<z1 <00 (1,0) (1,0) (0,0 0 0 0 0

asC* is defined by (5.3).

When u1 # u2 the conditional distribution oZ1|Z1 + Zo =1+t is N(% + 7,
(1;2’))), wheren = 1 — po.

We further note that) < 0 whenu € I'g,1) andn > 0 whenu € I'(1,0). The
proof can be completed by studying the pattern of sign changes (see Table 1) of
W((z1,t — z1); V) as a function of. It follows from the variation diminishing
property [Brown, Johnstone and MacGibbon (1981)] of the normal distribution
that E£,{W(Z;V)|Z1 + Z, =1t} > 0 for all p € Qy, v eI'. This completes the
proof. [
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