
The Annals of Statistics
2004, Vol. 32, No. 6, 2642–2678
DOI 10.1214/009053604000000724
© Institute of Mathematical Statistics, 2004
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We are deriving optimal rank-based tests for the adequacy of a vector
autoregressive-moving average (VARMA) model with elliptically contoured
innovation density. These tests are based on the ranks ofpseudo-Mahalanobis
distancesand on normed residuals computed from Tyler’s [Ann. Statist.15
(1987) 234–251] scatter matrix; they generalize the univariate signed rank
procedures proposed by Hallin and Puri [J. Multivariate Anal.39 (1991)
1–29]. Two types of optimality properties are considered, both in the local and
asymptotic sense, a la Le Cam: (a) (fixed-score procedures) local asymptotic
minimaxity at selected radial densities, and (b) (estimated-score procedures)
local asymptotic minimaxity uniform over a classF of radial densities.
Contrary to their classical counterparts, based on cross-covariance matrices,
these tests remain valid under arbitrary elliptically symmetric innovation
densities, including those with infinite variance and heavy-tails. We show
that the AREs of our fixed-score procedures, with respect to traditional
(Gaussian) methods, are the same as for the tests of randomness proposed
in Hallin and Paindaveine [Bernoulli 8 (2002b) 787–815]. The multivariate
serial extensions of the classical Chernoff–Savage and Hodges–Lehmann
results obtained there thus also hold here; in particular, the van der Waerden
versions of our tests are uniformly more powerful than those based on cross-
covariances. As for our estimated-score procedures, they are fully adaptive,
hence, uniformly optimal over the class of innovation densities satisfying the
required technical assumptions.

1. Introduction.

1.1. Multivariate signs and ranks.Much attention has been given recently to
the development of invariant, distribution-free and robust methods in the context
of multivariate analysis. Whereas such concepts as medians, quantiles, ranks or
signs have been present in the classical toolkit of univariate statistical inference
for about half a century, the emergence of their multivariate counterparts has been
considerably slower.
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A fairly complete theory of rank and sign methods for multivariate analysis was
elaborated in the sixties, culminating in the monograph by Puri and Sen (1971).
This theory however suffers the major weakness of being based on componentwise
definitions of ranks and signs, yielding procedures that heavily depend on the
choice of a particular coordinate system. It took about twenty years to see
the emergence of a systematic development of coordinate-free, affine-invariant
competitors to these componentwise sign and rank methods.

This development, initiated in the late eighties, essentially expanded along two
distinct lines of research. The first one, based on the so-calledOja signs and ranks,
is due to Oja, Hettmansperger and their collaborators [Möttönen and Oja (1995),
Möttönen, Oja and Tienari (1997), Möttönen, Hettmansperger, Oja and Tienari
(1998), Hettmansperger, Nyblom and Oja (1994) and Hettmansperger, Möttönen
and Oja (1997); see Oja (1999) for a review]. The second one is associated
with Randles’ concept of interdirections, and was developed by Randles and his
coauthors [Randles (1989), Peters and Randles (1990), Jan and Randles (1994)
and Um and Randles (1998)]. For both groups of methods, only location problems
(one- and two-sample problems, analysis of variance,. . . ) were considered, and
optimality issues were not investigated. This problem of optimality has been
addressed for the first time in Hallin and Paindaveine (2002a) who, still for
the location problem, are constructing fully affine-invariant methods based on
Randles’ interdirections and the so-called pseudo-Mahalanobis ranks that are also
fully efficient (in the Le Cam sense) for the multivariate one-sample location
model. Invariance and robustness on one side, efficiency on the other, thus, should
not be perceived as totally irreconcilable objectives.

The case of multivariate time series problems, in this respect, is much worse,
despite the recognized need for invariant, distribution-free and robust methods
in the area. The univariate context has been systematically explored, with a
series of papers by Hallin, Ingenbleek and Puri (1985), Hallin and Mélard
(1988) and Hallin and Puri (1988, 1991, 1994) on rank and signed rank methods
for autoregressive-moving average (ARMA) and a few other [see, e.g., Hallin
and Werker (2003)] time series models. But, except for a componentwise rank
approach [Hallin, Ingenbleek and Puri (1989), Hallin and Puri (1995)] to the
problem of testing multivariate white noise against vector autoregressive-moving
average (VARMA) dependence—suffering the same lack of affine-invariance as
its nonserial counterparts—and an affine-invariant approach to the same problem
based on interdirections and pseudo-Mahalanobis ranks [Hallin and Paindaveine
(2002b)], the multivariate situation so far remains virtually unexplored from this
point of view.

Our objective is to develop a complete, fully operational theory of optimal
signed rank tests for linear restrictions on the parameters of multiresponse linear
models with VARMA errors and unspecified elliptically symmetric innovation
densities. These tests are based on the ranks ofpseudo-Mahalanobis distancesand
on normed standardized residuals computed from Tyler’s (1987) scatter matrix.
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They generalize the univariate signed rank procedures proposed by Hallin and Puri
(1991, 1994) (Tyler-normed residuals playing the role of multivariate signs). Two
types of optimality properties are considered, both in the local and asymptotic
sense, a la Le Cam: (a) (fixed-score procedures) local asymptotic minimaxity at
selected radial densities, and (b) (estimated-score procedures) local asymptotic
minimaxity, uniform over the set of all radial densities (satisfying adequate
regularity assumptions).

Fulfilling such an objective requires a series of steps, each of which plays an
essential role in the construction of the final methods:

(i) defining the adequate (asymptotically sufficient, in the Le Cam sense)
rank-based measures of serial dependence, establishing the required asymptotic
representation and central-limit results and constructing the optimal tests for fully
specified values of the parameters; this is the aim of the present paper, which
also works out the algebraic problems related with the singularity of information
matrices;

(ii) characterizing the class of linear hypotheses that are invariant under linear
transformations, and for which affine-invariant multivariate rank tests make sense
(a problem that does not appear in one-dimensional setting); this characterization
is obtained in Hallin and Paindaveine (2003);

(iii) establishing the asymptotic linearity of the test statistics we are obtaining
in this paper [see (i) above]; this linearity is required if estimated residuals are
to be substituted for the exact ones in the computation of multivariate ranks and
signs, and is the subject of Hallin and Paindaveine (2004a);

(iv) finally, obtaining the optimal aligned sign and rank tests for linear
restrictions, with a detailed and explicit description of some important special
cases such as testing for the orders of a VARMA error or a rank-based solution
to the multivariate Durbin–Watson problem; see Hallin and Paindaveine (2005).

1.2. The benefits of a rank-based approach.Introducing ranks in multivariate
time series problems is not just a mathematically challenging exercise, or a matter
of theoretical aesthetics. The benefits of rank-based methods indeed are multiple
and “mutually orthogonal” in the sense that none of them is obtained at the expense
of the others.

If efficiency is the main objective, the generalized Chernoff–Savage and
Hodges–Lehmann results of Section 7.2 are important selling points: the fact that
asymptotic relative efficiencies with respect to daily-practice methods are never
less than one, for instance, is not a small advantage.

But there is much more. The tools we are using here were first developed
(in the simpler context of independent observations) in the robustness literature.
Robustness (in the vague but reasonably well-understood sense of “resistance
to outliers”) and efficiency objectives, to a large extent, thus can be attained
simultaneously. Invariance—whether strict (with respect to affine transformations)
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or approximate (with respect to order-preserving radial transformations: see
Section 4 for precise statements)—is another fundamental feature of the methods
we are proposing. A major consequence of invariance indeed is distribution-
freeness, hence exact, similar, unbiased tests, even in the presence of heavy-tailed
distributions. The methods we are developing thus remain valid under a very broad
class of densities, whereas everyday practice requires finite second-order moments,
often fourth-order ones.

Due to the need for consistent estimation of nuisance parameters, some of these
benefits of invariance (such as heavy-tail validity) unavoidably have to be tuned
down when testing for linear restrictions on the parameters. One way around this
problem would consist in modeling median or quantile (auto)regressions, but this
is much beyond the scope of the present paper. Most of the nice consequences of
invariance however remain, under approximate or asymptotic form.

Finally, the methods proposed are fully applicable; see Hallin and Paindaveine
(2004b) for an application to VAR order identification.

1.3. Outline of the paper. The starting point in this paper is a local asymptotic
normality (LAN) result by Garel and Hallin (1995). This LAN result allows for
deriving testing procedures that are locally and asymptotically optimal under a
given innovation densityf , based on a non-Gaussian form of cross-covariances,
theresidualf -cross-covariance matrices.

However, due to the possibility of singular local information matrices [such
singularities occur as soon as the VARMA(p1, q1) neighborhood of a null
VARMA (p0, q0) model withp0 < p1 andq0 < q1 is considered], the optimal test
statistics involve unpleasant generalized inverses, which darkens their asymptotic
behavior. Therefore, we first restate the LAN property by rewriting the central
sequence in a way that explicitly involves the ranks (in the algebraic sense) of
local information matrices, and allows for “generalized inverse-free” locally and
asymptotically optimal procedures (see the comments after Proposition 1). Next,
we show how to replace the “parametric” residualf -cross-covariance matrices
appearing in the central sequences with “nonparametric” versions, based on the
ranks of the Mahalanobis distances and the estimated standardized residuals
computed from Tyler’s scatter matrix.

Tyler’s scatter matrix enjoys highly desirable equivariance/invariance prop-
erties. These properties extend to our test statistics; in particular, they are
asymptotically invariant under monotone radial transformations of the residu-
als, hence, asymptoticallydistribution-free with respect to the underlying radial
density. They also are asymptotically distribution-free with respect to the scatter
parameter; it should be stressed, however, that this latter property does not follow
from any affine-invariance property. Unlike the null hypotheses of location or ran-
domness considered in Hallin and Paindaveine (2002a, b), hypotheses involving
general VARMA dependence, as a rule, are not affine-invariant: see Hallin and
Paindaveine (2003) for a precise characterization. Actually, our test statistics are
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strictly affine-invariant whenever the underlying testing problems are, which is of
course the most sensible affine-invariance property we can hope for.

We conclude the paper by computing the asymptotic relative efficiencies of the
proposed nonparametric procedures with respect to the Gaussian ones, showing
that the AREs, as well as the generalized Chernoff–Savage and Hodges–Lehmann
theorems obtained in Hallin and Paindaveine (2002b), are still valid here.

The paper is organized as follows. In Section 2 we describe the testing problem
under study, and state the main assumptions to be made. The LAN structure of
the model is established in Section 3, with a central sequence that exploits the
assumptions of elliptical symmetry. The multivariate counterparts of traditional
ranks and signs are based on Tyler’s scatter matrix, the correspondingTyler
residualsand the so-calledpseudo-Mahalanobis ranks. These concepts are defined
in Section 4, where their consistency and invariance properties are also derived.
They are used, in Section 5, in the definition of a concept of nonparametric
residual cross-covariance matrices, extending to the multivariate context the notion
of rank-based autocorrelations developed in Hallin and Puri (1988, 1991). These
matrices allow for a reconstruction of central sequences, hence, for nonparametric
locally asymptotically optimal procedures. Two types of optimality properties are
considered in Section 6, both in the local and asymptotic sense, a la Le Cam
(we use the term “minimaxity” even though the tests are “maximin” rather than
“minimax”):

(a) (fixed-score procedures) local asymptotic minimaxity at selected radial
densities, and

(b) (estimated-score procedures) local asymptotic minimaxity, uniform over a
broad class of radial densities.

In both cases the proposed tests remain valid under arbitrary elliptically symmetric
innovation densities, including those with infinite variance. In Section 7 the
asymptotic relative efficiencies of the proposed procedures, with respect to their
Gaussian counterparts (based on classical cross-covariances), are derived. Proofs
are concentrated in the Appendix.

2. Notation and main assumptions. Consider the VARMA(p1, q1) model
defined by the stochastic difference equation(

Ik −
p1∑
i=1

AiL
i

)
Xt =

(
Ik +

q1∑
i=1

BiL
i

)
εt , t ∈ Z,(1)

where A1, . . . ,Ap1,B1, . . . ,Bq1 are k × k real matrices (Ik stands for the
k-dimensional identity matrix),L denotes the lag operator and{εt |t ∈ Z}
is an absolutely continuousk-variate white noise process. The parameter of
interest isθ := ((vecA1)

′, . . . , (vecAp1)
′, (vecB1)

′, . . . , (vecBq1)
′)′, with values

in R
k2(p1+q1).
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Fixing some value

θ0 := (
(vecA1)

′, . . . ,
(
vecAp0

)′
,0′

k2(p1−p0)×1,

(vecB1)
′, . . . ,

(
vecBq0

)′
,0′

k2(q1−q0)×1

)′
of the parameterθ that satisfies Assumption (A) below, we want to test the null
hypothesisθ = θ0 against the alternativeθ �= θ0. Choosingp0 < p1 and/orq0 < q1
allows one to test the adequacy of the specified VARMA coefficients inθ0, while
contemplating the possibility of possibly higher-order VARMA models. If the
order is not an issue, one can just letp0 = p1 andq0 = q1.

The null VARMA model must satisfy the usual causality and invertibility
conditions. More precisely, we assume the following onθ0:

ASSUMPTION (A). All solutions of det(Ik − ∑p0
i=1 Aiz

i) = 0, z ∈ C, and
det(Ik + ∑q0

i=1 Biz
i) = 0, z ∈ C (|Ap0| �= 0 �= |Bq0|), lie outside the unit ball inC.

Moreover, the greatest common left divisor ofIk − ∑p0
i=1 Aiz

i andIk + ∑q0
i=1 Biz

i

is Ik.

Write A(L) and B(L) for the difference operatorsIk − ∑p0
i=1 AiL

i and Ik +∑q0
i=1 BiL

i , respectively. LettingB0 := Ik, recall that the Green’s matricesHu,

u ∈ N, associated withB(L) are defined by the linear recursion
∑min(q0,u)

i=0 Bi ×
Hu−i = δu0Ik , whereδu0 = 1 if u = 0, andδu0 = 0 otherwise. Assumption (A)
also allows for defining these Green’s matrices by

+∞∑
u=0

Huz
u :=

(
Ik +

q0∑
i=1

Biz
i

)−1

, z ∈ C, |z| < 1;(2)

as a consequence, the same matrices also satisfy
∑min(q0,u)

i=0 B′
iH

′
u−i = δu0Ik .

Assumption (A), moreover, ensures the existence of someε > 0 such that the
series in (2) is absolutely and uniformly convergent in the closed ball inC with
center 0 and radius 1+ ε. Consequently,‖Hu‖(1 + ε)u goes to 0 asu goes to
infinity. This exponential decrease ensures that(‖Hu‖, u ∈ N) belongs tolp(N)

for all p > 0, wherelp(N) denotes the set of all sequences(xu,u ∈ N) for which∑∞
u=0 |xu|p < ∞. Of course, the same remarks also hold, with obvious changes,

for Green’s matricesGu, u ∈ N, associated with the operatorA(L). For simplicity,
we do not indicate the strong dependence onθ0 of Gu andHu, which of course
are associated with the null operatorsA(L) andB(L).

Under Assumption (A), the white noise{εt } is {Xt}’s innovation process. The
set of Assumptions (B) deals with the density of this innovation. As indicated, we
restrict ourselves to a class of elliptically symmetric densities.

ASSUMPTION (B1). Denote by� a symmetric positive definitek × k

matrix, and byf :R+
0 → R

+ a nonnegative function, such thatf > 0 a.e. and
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0 rk−1f (r) dr < ∞. We will assume throughout that{ε(n)

1 , . . . ,ε
(n)
n } is a finite

realization of an elliptic white noise process with scatter matrix� and radial
densityf , that is, such that its probability density at(z1, . . . , zn) ∈ Rnk is of the
form

∏n
t=1 f (z(n)

t ;�, f ), where

f (z1;�, f ) := ck,f (det�)−1/2f (‖z1‖�), z1 ∈ R
k.(3)

Here‖z‖� := (z′�−1z)1/2 denotes the norm ofx in the metric associated with�.
The constantck,f is the normalization factor(ωk µk−1;f )−1, whereωk stands for
the (k − 1)-dimensional Lebesgue measure of the unit sphereSk−1 ⊂ Rk , and
µl;f := ∫ ∞

0 rlf (r) dr .

Note that the scatter matrix� in (3) need not be (a multiple of ) the covariance
matrix of the observations, which may not exist, and thatf is not, strictly speaking,
a probability density; see Hallin and Paindaveine (2002a) for a discussion.
Moreover,� and f are identified up to an arbitrary scale transformation only.
More precisely, for anya > 0, letting �a := a2� andfa(r) := f (ar), we have
f (x;�, f ) = f (x;�a, fa). This will be harmless in the sequel since cross-
covariances, central sequences, as well as all statistics considered, are insensitive
to a variation ofa.

We will denote by �−1/2 the unique upper-triangulark × k array with
positive diagonal elements that satisfies�−1 = (�−1/2)′�−1/2. With this notation,
�−1/2ε

(n)
1 /‖�−1/2ε

(n)
1 ‖, . . . ,�−1/2ε

(n)
n /‖�−1/2ε

(n)
n ‖ are i.i.d., and uniformly

distributed overSk−1. Similarly, ‖�−1/2ε
(n)
1 ‖, . . . , ‖�−1/2ε

(n)
n ‖ are i.i.d. with

probability density function

f̃k(r) := (µk−1;f )−1rk−1f (r)I[r>0],(4)

where IE denotes the indicator function associated with the Borel setE. The
terminologyradial densitywill be used forf andf̃k indifferently (though onlyf̃k ,
of course, is a genuine probability density). We denote byF̃k the distribution
function associated with̃fk .

Write H (n)(θ0,�, f ) for the hypothesis under which an observationX(n) :=
(X(n)

1 , . . . ,X(n)
n )′ is generated by the VARMA(p0, q0) model (1) with parameter

value θ0 satisfying Assumption (A) and innovation process satisfying Assump-
tion (B1) with “scatter parameter”� and radial densityf . Our objective is to
test H (n)(θ0) := ⋃

�

⋃
f H (n)(θ0,�, f ) against

⋃
θ �=θ0

H (n)(θ). Consequently,
� andf play the role of nuisance parameters; note that the unions, in the defi-
nition of H (n)(θ0), are taken overall possible values of� andf .

The methodology we will adopt in the derivation of optimality results is
based on Le Cam’s asymptotic theory of experiments. This requires the model
(characterized by some fixed value of� and f ) at which optimality is sought
to be locally and asymptotically normal (LAN). LAN, of course, does not hold
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without a few, rather mild, regularity conditions: finite second-order moments and
finite Fisher information forf , and quadratic mean differentiability off 1/2. These
technical assumptions are taken into account in Assumptions (B1′) and (B2), in a
form that is adapted to the elliptical context. We insist, however, on the fact that
these assumptions are made on the density at which optimality is desired, not on
the actual density.

ASSUMPTION (B1′ ). Same as Assumption (B1), but we further assume that
µk+1;f < ∞.

Note that Assumption (B1′) is also required when Gaussian procedures are to be
considered, since these also require the second-order moments of the underlying
distribution to be finite.

Assumption (B2) is strictly equivalent to the assumption thatf 1/2 is differ-
entiable in quadratic mean [see Hallin and Paindaveine (2002a), Proposition 1].
However, it has the important advantage of involving univariate quadratic mean
differentiability only. LetL2(R+

0 ,µl) denote the space of all functions that are
square-integrable with respect to the Lebesgue measure with weightrl onR

+
0 , that

is, the space of measurable functionsh :R+
0 → R satisfying

∫ ∞
0 [h(r)]2rl dr < ∞.

ASSUMPTION (B2). The square rootf 1/2 of the radial densityf is in
W1,2(R+

0 ,µk−1), whereW1,2(R+
0 ,µk−1) denotes the subspace ofL2(R+

0 ,µk−1)

containing all functions admitting a weak derivative that also belongs to
L2(R+

0 ,µk−1).

Denoting by(f 1/2)′ the weak derivative off 1/2 in L2(R+
0 ,µk−1), let ϕf :=

−2(f 1/2)′
f 1/2 : Assumption (B2) ensures the finiteness of theradial Fisher information

Ik,f := (µk−1;f )−1
∫ ∞

0
[ϕf (r)]2rk−1f (r) dr.

In the last set of assumptions, we describe the score functionsK1, K2 to be used
when building rank-based statistics in this serial context.

ASSUMPTION(C). The score functionsK� : ]0,1[→ R, � = 1,2, are contin-
uous differences of two monotone increasing functions, and satisfy

∫ 1
0 [K�(u)]2du<

∞ (� = 1,2).

The score functions yielding locally and asymptotically optimal procedures, as
we shall see, are of the formK1 := ϕf�◦F̃−1

�k and K2 := F̃−1
�k , for some radial

densityf�. Assumption (C) then takes the form of an assumption onf�:
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ASSUMPTION (C′). The radial densityf� is such thatϕf� is the con-
tinuous difference of two monotone increasing functions,µk+1;f� < ∞ and∫ ∞
0 [ϕf�(r)]2rk−1f�(r) dr < ∞.

The assumption being the difference of two monotone functions, which
characterizes the functions with bounded variation, is extremely mild. In most
cases (f� normal, double exponential,. . . ), ϕf� itself is monotone increasing,
and, without loss of generality, this will be assumed to hold for the proofs. The
multivariate t-distributions, however, provide examples of nonmonotone score
functionsϕf� satisfying Assumption (C′).

3. Local asymptotic normality. Let A(L) andB(L) be such thatAi := 0 for
i = p0 + 1, . . . , p1, andBi := 0 for i = q0 + 1, . . . , q1, and consider the sequences
of linear difference operators

A(n)(L) := Ik −
p1∑
i=1

(
Ai + n−1/2γ

(n)
i

)
Li and

B(n)(L) := Ik +
q1∑

i=1

(
Bi + n−1/2δ

(n)
i

)
Li,

where the vectorτ (n) := ((vecγ (n)
1 )′, . . . , (vecγ (n)

p1 )′, (vecδ(n)
1 )′, . . . , (vecδ(n)

q1
)′)′∈

Rk2(p1+q1) is such that supn(τ
(n))′τ (n) < ∞. These operators define a sequence of

VARMA models

A(n)(L)Xt = B(n)(L)εt , t ∈ Z,

hence, in the notation of Section 2, the sequence of local alternativesH (n)(θ0 +
n−1/2τ (n),�, f ).

Let (Z(n)
1 (θ0), . . . ,Z(n)

n (θ0)) be then-tuple of residuals computed from the

initial values ε−q0+1, . . . ,ε0 and X(n)
−p0+1, . . . ,X(n)

0 and the observed series

(X(n)
1 , . . . ,X(n)

n ) via the relation

Z(n)
t (θ0) =

t−1∑
i=0

p0∑
j=0

HiAj X(n)
t−i−j

+ (
Ht+q0−1 · · ·Ht

)


Ik 0 . . . 0
B1 Ik . . . 0
...

...
. . .

...

Bq0−1 Bq0−2 . . . Ik


ε−q0+1

...

ε0

 .

Assumption (A) ensures that neither the (generally unobserved) values
(ε−q0+1, . . . ,ε0) of the innovation, nor the initial values(X(n)

−p0+1, . . . ,X(n)
0 ), have
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an influence on asymptotic results, so that they all safely can be set to zero in the
sequel. DecomposeZ(n)

t (θ0) into

Z(n)
t (θ0) = d

(n)
t (θ0,�)�1/2U(n)

t (θ0,�),

where d
(n)
t (θ0,�) := ‖Z(n)

t (θ0)‖� and U(n)
t (θ0,�) := �−1/2Z(n)

t (θ0)/

d
(n)
t (θ0,�). Writing ϕf := −2(Df 1/2)/f 1/2, whereDf 1/2 denotes the quadratic

mean gradient off 1/2, define, as in Garel and Hallin (1995), the residualf -cross
covariance matrixof lag i as

�
(n)
i;f (θ0) := (n − i)−1

n∑
t=i+1

ϕf

(
Z(n)

t (θ0)
)
Z(n)′

t−i (θ0).(5)

Due to the elliptical structure off , these cross-covariance matrices take the form

�
(n)
i;�,f (θ0) = 1

n − i
�′−1/2

(
n∑

t=i+1

ϕf

(
d

(n)
t (θ0,�)

)
d

(n)
t−i (θ0,�)

× U(n)
t (θ0,�)U(n)′

t−i (θ0,�)

)
�′1/2.

(6)

Hallin and Paindaveine (2002b) are developing optimal procedures based on
nonparametric versions of the cross-covariances (5) or (6) for the problem of
testing elliptic white noise against VARMA dependence.

Garel and Hallin (1995) established LAN in this setting (in fact, in a more
general, possibly nonelliptical, context). The quadratic form in their second-order
approximation of local log-likelihoods (hence, also in ours) is not of full rank, due
to the well-known singularity of the information matrix for ARMA models. This
singularity, quite understandably, has to be taken into account in the derivation of
locally optimal inference procedures; in hypothesis testing, this can be achieved in
a straightforward way provided the information matrix is factorized in an adequate
way (see the comments after Proposition 1 for details). This factorization is not
provided by Garel and Hallin (1995), sincethey just deal with LAN, and not with
optimal inference, but it is needed here. Therefore, in Proposition 1, we first restate
LAN under a slightly different form, in the spirit of the univariate results of Hallin
and Puri (1994). As usual, though, the multivariate case is a bit more intricate, and
requires some notational and algebraic preparation.

Associated with anyk-dimensional linear difference operator of the form
C(L) := ∑∞

i=0 Ci L
i (letting Ci = 0 for i > s, this includes, of course, operators
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of finite orders), define for any integersu andv thek2u × k2v matrices

C(l)
u,v :=



C0 ⊗ Ik 0 . . . 0
C1 ⊗ Ik C0 ⊗ Ik . . . 0

...
. . .

...

Cv−1 ⊗ Ik Cv−2 ⊗ Ik . . . C0 ⊗ Ik
...

...

Cu−1 ⊗ Ik Cu−2 ⊗ Ik . . . Cu−v ⊗ Ik


and

C(r)
u,v :=



Ik ⊗ C0 0 . . . 0
Ik ⊗ C1 Ik ⊗ C0 . . . 0

...
. . .

...

Ik ⊗ Cv−1 Ik ⊗ Cv−2 . . . Ik ⊗ C0
...

...

Ik ⊗ Cu−1 Ik ⊗ Cu−2 . . . Ik ⊗ Cu−v


,

respectively; writeC(l)
u for C(l)

u,u andC(r)
u for C(r)

u,u. With this notation, note that
G(l)

u , G(r)
u , H(l)

u andH(r)
u are the inverses ofA(l)

u , A(r)
u , B(l)

u andB(r)
u , respectively.

Denoting byC′(l)
u,v andC′(r)

u,v the matrices associated with the transposed operator
C′(L) := ∑∞

i=0 C′
iL

i , we also haveG′(l)
u = (A′(l)

u )−1, H′(l)
u = (B′(l)

u )−1, and so on.
Let π := max(p1 − p0, q1 − q0) and π0 := π + p0 + q0, and define the

k2π0 × k2(p1 + q1) matrix Mθ0 := (G′(l)
π0,p1

... H′(l)
π0,q1): under Assumption (A)Mθ0

is of full rank.
Finally, consider the operatorD(L) := Ik + ∑p0+q0

i=1 DiL
i [just asMθ0, D(L)

and most quantities defined below depend onθ0; for simplicity, however, we are
dropping this reference toθ0], where, puttingG−1 = G−2 = · · · = G−p0+1 = 0 =
H−1 = H−2 = · · · = H−q0+1,

 D′
1
...

D′
p0+q0

 := −



Gq0 Gq0−1 . . . G−p0+1
Gq0+1 Gq0 . . . G−p0+2

...
. . .

...

Gp0+q0−1 Gp0+q0−2 . . . G0
Hp0 Hp0−1 . . . H−q0+1

Hp0+1 Hp0 . . . H−q0+2
...

. . .
...

Hp0+q0−1 Hp0+q0−2 . . . H0



−1 

Gq0+1
...

Gp0+q0

Hp0+1
...

Hp0+q0


.

Note thatD(L)G′
t = 0 for t = q0 + 1, . . . , p0 + q0, and D(L)H′

t = 0 for t =
p0 + 1, . . . , p0 + q0.

Let {�(1)
t , . . . ,�

(p0+q0)
t } be a set ofk × k matrices forming a fundamental

system of solutions of the homogeneous linear difference equation associated
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with D(L). Such a system can be obtained, for instance, from Green’s matrices
of the operatorD(L) [see, e.g., Hallin (1986)]. Defining

�̄m(θ0) :=


�

(1)
π+1 . . . �

(p0+q0)
π+1

�
(1)
π+2 . . . �

(p0+q0)
π+2

...
...

�(1)
m . . . �

(p0+q0)
m

 ⊗ Ik (m > π),

the Casorati matrixC� associated withD(L) is �̄π0. Putting

Pθ0 :=
(

Ik2π 0
0 C−1

�

)
and Q(n)

θ0
:= H(r)

n−1B′(l)
n−1

(
Ik2π 0

0 �̄n−1

)
,

let

S(n)
�,f (θ0) := (

(n − 1)1/2(vec�(n)
1;�,f (θ0)

)′
, . . . ,

(n − i)1/2(vec�(n)
i;�,f (θ0)

)′
, . . . ,

(
vec�(n)

n−1;�,f (θ0)
)′)′

,

n1/2T(n)
�,f (θ0) := Q(n)′

θ0
S(n)

�,f (θ0)

and

Jθ0,� := lim
n→+∞ Q(n)′

θ0
[In−1 ⊗ (� ⊗ �−1)]Q(n)

θ0
(7)

[convergence in (7) follows from the exponential decrease, asu → ∞, of Green’s
matricesGu andHu; see the comment after Assumption (A)]. Local asymptotic
normality, for fixed� andf , of the model described in Section 2 then can be
stated in the following way.

PROPOSITION 1. Assume that Assumptions(A), (B1′) and (B2) hold. Then
the logarithmL

(n)

θ0+n−1/2τ (n)/θ0;�,f
of the likelihood ratio ofH (n)(θ0 + n−1/2τ (n),

�, f ) with respect toH (n)(θ0,�, f ) is such that

L
(n)

θ0+n−1/2τ (n)/θ0;�,f

(
X(n)

) = (
τ (n)

)′
	

(n)
�,f (θ0) − 1

2

(
τ (n)

)′
��,f (θ0)τ

(n) + oP(1),

asn → ∞, underH (n)(θ0,�, f ), with thecentral sequence

	
(n)
�,f (θ0) := n1/2M′

θ0
P′

θ0
T(n)

�,f (θ0),(8)

and with the asymptoticinformation matrix��,f (θ0) := µk+1;f Ik,f

k2µk−1;f
Nθ,� , where

Nθ ,� := M′
θ0

P′
θ0

Jθ0,�Pθ0Mθ0.(9)

Moreover, 	
(n)
�,f (θ0), still underH (n)(θ0,�, f ), is asymptoticallyNk2(p1+q1)

(0,

��,f (θ0)).
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For the proof see the Appendix.
The benefits of expressing	(n)

�,f and ��,f as in (8) and (9) stem from the
following elementary facts. Sequences of local experiments under LAN con-
verge, in the Le Cam sense, to Gaussian shift experiments, so that optimal tests
for the limit Gaussian shifts determine the form of locally asymptotically opti-
mal tests for the original problem. Consider the problem of testingH0 :τ = 0
againstH1 :τ �= 0 in the single-observation�-variate Gaussian shift experi-
ment under which	 ∼ N�(�τ ,�). Let m := rank(�). If m = �, the optimal
(α-level maximin) test consists in rejectingH0 for large values of	′�−1	, the
null distribution of which isχ2

� . Wheneverm < �, � is singular, and this does not
hold anymore. However, if we succeed in writing	 and� in the form

	 = M′	
o

and � = M′�
o
M,(10)

where both them×� matrixM and them×m matrix�
o

have full rank, the problem
of testing H0 :τ = 0 in the singular�-variate Gaussian shift experiment for
	 ∼ N�(�τ ,�) is strictly the same as that of testingH0 : Mτ = 0 in the full-rank

m-variate Gaussian shift experiment under which	
o ∼ Nm(�

o
Mτ ,�

o
). It follows

that the optimal (α-level maximin) test forH0 rejects the null hypothesis for

large values of	
o ′

�
o −1	

o
, which isχ2

m underH0. Now, clearly,	
o ′

�
o −1	

o = 	′�−	,
where�− denotes an arbitrary generalized inverse of�, so that, if we succeed in
writing 	 and� in the form (10), the somewhat unpleasant recourse to generalized
inverses is not required anymore. This is exactly what expressions (8) and (9) are
allowing for. As a consequence, the degeneracy of the information matrix is kind of
hidden in the explicit forms of the optimal test statistics in Propositions 4, 6 and 7.

4. Multivariate ranks and signs: invariance and equivariance.

4.1. Pseudo-Mahalanobis distances and Tyler residuals.Likelihoods—hence,
the central sequences (8)—are measurable, jointly, with respect to two types of sta-
tistics:

(i) the distancesd(n)
t (θ0,�) between standardized residuals�−1/2Z(n)

t (θ0)

and the origin inRk , and
(ii) the normalized standardized residualsU(n)

t (θ0,�) := �−1/2Z(n)
t (θ0)/

d
(n)
t (θ0,�).

The (univariate) distancesd(n)
t (θ0,�) are i.i.d. over the positive real line,

with density (4); their ranks thus have the same distribution-freeness and
maximal invariance properties as those of the absolute values of any univariate
symmetrically distributedn-tuple. The normed standardized residualsU(n)

t (θ0,�)

underH (n)(θ0,�, f ) are uniformly distributed over the unit sphere, and, hence,
can be viewed as multivariate generalizations of signs.
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Unfortunately, bothd(n)
t (θ0,�) andU(n)

t (θ0,�) involve, in a crucial way, the
shape parameter�, which, in practice, is never specified, and has to be estimated
from the observations. If the actual underlying distribution has finite second-
order moments [i.e., under Assumption (B1′)], a “natural” consistent candidate
for estimating� is the empirical covariance matrixn−1 ∑n

t=1 Z(n)
t (θ0)(Z

(n)
t (θ0))

′.
Finite second-order moments, however, are too strong a requirement, as we
would like to build testing procedures that are optimal under the assumptions of
Proposition 1, but remain valid under much milder conditions, including the case
of infinite variances. This rules out the empirical covariance as an estimate of�
and, under the weaker Assumption (B1), which does not require anything about
the moments of the underlying distribution, we propose to use Tyler’s estimator of
scatter [see Tyler (1987)].

This estimator is defined as follows. For anyn-tuple Z(n) := (Z(n)
1 ,Z(n)

2 , . . . ,

Z(n)
n ) of k-dimensional vectors, denote byC(n)

Tyl := C(n)
Tyl(Z

(n)) the [unique forn > k

(k − 1)] upper triangulark × k matrix with positive diagonal elements and a “1”
in the upper left corner that satisfies

1

n

n∑
t=1

( C(n)
TylZ

(n)
t

‖C(n)
TylZ

(n)
t ‖

)( C(n)
TylZ

(n)
t

‖C(n)
TylZ

(n)
t ‖

)′
= 1

k
Ik;(11)

Tyler’s estimator of scatter is defined as�̂
(n) := (C(n)′

Tyl C(n)
Tyl)

−1.

When computed from then-tuple of residualsZ(n)
t (θ0), t = 1, . . . , n, Tyler’s

estimator is root-n consistent, up to a multiplicative factor, for the shape matrix�.
More precisely, there exists a positive reala such that

√
n(�̂

(n) − a�) is
OP(1) asn → ∞ under

⋃
f H (n)(θ0,�, f ). Tyler’s estimator is clearly invariant

under permutations of the residualsZ(n)
t (θ0). Moreover,C(n)

Tyl is strictly affine-
equivariant, since

C(n)
Tyl

(
MZ(n)) = dOC(n)

TylM
−1(12)

for some orthogonal matrixO and some scalard that depends onZ(n). See Randles
(2000) for a proof.

The corresponding distances from the origind
(n)
t (θ0, �̂

(n)
) will be called

pseudo-Mahalanobis distances, in order to stress the fact that Tyler’s estimator
of scatter is used instead of the usual sample covariance matrix. The normed
standardized residualsW(n)

t (θ0) := U(n)
t (θ0, �̂

(n)
)—call themTyler residuals—

will be used as a multivariate concept of signs.

4.2. The pseudo-Mahalanobis ranks.As usual in rank-based nonparametric
inference, the pseudo-Mahalanobis distancesd

(n)
t (θ0, �̂

(n)
) will be replaced by

their ranks. This idea, in the multivariate context, actually goes back to Peters
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and Randles (1990), who (in a one-sample location context) proved a consistency
result, which in the present situation can be stated as follows. Denote byR̂

(n)
t (θ0)

the rank of d
(n)
t (θ0, �̂

(n)
) among d

(n)
1 (θ0, �̂

(n)
), . . . , d

(n)
n (θ0, �̂

(n)
), and by

R
(n)
t (θ0,�) the rank ofd(n)

t (θ0,�) amongd(n)
1 (θ0,�), . . . , d

(n)
n (θ0,�).

LEMMA 1 [Peters and Randles (1990)].For all t , R̂
(n)
t (θ0) − R

(n)
t (θ0,�)

is oP(n) asn → ∞ under
⋃

f H (n)(θ0,�, f ).

For each � and n, consider the group ofcontinuous monotone radial
transformationsG(n)

� = {G(n)
g }, acting on(Rk)n, characterized by

G(n)
g

(
Z(n)

1 (θ0), . . . ,Z(n)
n (θ0)

)
:= (

g
(
d

(n)
1 (θ0,�)

)
�1/2U(n)

1 (θ0,�), . . . , g
(
d(n)
n (θ0,�)

)
�1/2U(n)

n (θ0,�)
)
,

whereg :R+ → R+ is continuous, monotone increasing, and such thatg(0) = 0
and limr→∞ g(r)= ∞. The groupG(n)

� is a generating group for the submodel⋃
f H (n)(θ0,�, f ), where the union is taken with respect to the set of all possible

nonvanishing radial densities. The ranksR
(n)
t (θ0,�), t = 1, . . . , n, are a maximal

invariant forG(n)
� . Lemma 1 thus is an indication that statistics based on the pseudo-

Mahalanobis rankŝR(n)
t (θ0) may be asymptotically invariant, in the sense of being

asymptotically equivalent to their counterparts based on the unobservable, strictly
invariant ranksR(n)

t (θ0,�). This will indeed be the case with the test statistics we
are proposing (see Propositions 2 and 4).

Note also that the equivariance property (12) ofC(n)
Tyl under affine transforma-

tions is sufficient to make the pseudo-Mahalanobis ranksR̂
(n)
t (θ0) strictly affine-

invariant.

4.3. Tyler residuals. The transformationC(n)
Tyl characterized in (11) actually

sphericizesthe problem, in the sense that it transforms elliptically distributed
residuals into spherically distributed ones, estimatingU(n)

t (θ0,�) by means of
the Tyler residualsW(n)

t := W(n)
R (θ0) := C(n)

TylZ
(n)
t (θ0)/‖C(n)

TylZ
(n)
t (θ0)‖, with the

following consistency property.

LEMMA 2. Under
⋃

f H (n)(θ0,�, f ), max1≤t≤n{‖W(n)
t (θ0) − U(n)

t (θ0,

�)‖} = OP(n−1/2) asn → ∞.

For the proof see the Appendix.
It is clear from (11) thatC(n)

Tyl(a1Z(n)
1 , . . . , anZ(n)

n ) = C(n)
Tyl(Z

(n)
1 , . . . ,Z(n)

n ) for

any real numbersa1, . . . , an, so thatC(n)
Tyl and, therefore, the Tyler residualsW(n)

t
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themselves, are strictly invariant under radial monotone transformations. Inci-
dently, it readily follows from (12) that the Tyler residuals enjoy the following
strict equivariance property:

LEMMA 3. Denote byW(n)
t (M) the Tyler residuals computed from the

transformed residualsM(Z(n)
1 , . . . ,Z(n)

n ). ThenW(n)
t (M) = OW(n)

t , whereO is
the orthogonal matrix in(12).

For the proof see the Appendix.
Note that Lemma 3 implies that any orthogonally invariant function of the Tyler

residuals is strictly affine-invariant. In particular, statistics that are measurable
with respect to the cosines of the Euclidean angles between theW(n)

t ’s—that
is, measurable with respect to the scalar products(W(n)′

t W(n)

t̃
)—turn out to

be affine-invariant. This shows that the Tyler residuals could be used with the
same success (consistency, invariance properties) as Randles’ interdirections in
the construction of the locally asymptotically optimal affine-invariant tests for
randomness proposed in Hallin and Paindaveine (2002b). This “angle-based”
approach (as opposed to the “interdirection”-based one adopted there) is discussed,
for the one-sample location problem, in Hallin and Paindaveine (2002c).

Fork = 1, the Tyler residuals and pseudo-Mahalanobis ranks reduce to the signs
and the ranks of absolute values of the residuals, respectively. The statistics we are
considering in Sections 5 and 6 thus are multivariate generalizations of the serial
signed-rank statistics considered in Hallin and Puri (1991).

5. Rank-based cross-covariance matrices. The rank-based versions of the
cross-covariance matrices (6) we are proposing are of the form

�̃
(n)
i;K(θ0) := C(n)′

Tyl

(
1

n − i

n∑
t=i+1

K1

(
R̂

(n)
t (θ0)

n + 1

)
K2

(
R̂

(n)
t−i (θ0)

n + 1

)

× W(n)
t (θ0)W

(n)′
t−i (θ0)

)(
C(n)′

Tyl

)−1
,

(13)

whereK1,K2 : ]0,1[→ R are two score functions as in Assumption (C); call (13)
a K-cross-covariance matrix. Let us shortly review some examples of score
functions extending those which are classically considered in univariate rank-
based inference. The simplest scores are the constant ones (K1(u) = K2(u) = 1),
and yield multivariate sign cross-covariance matrices

C(n)′
Tyl

(
1

n − i

n∑
t=i+1

W(n)
t (θ0)W

(n)′
t−i (θ0)

)(
C(n)′

Tyl

)−1
,
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leading to serial versions of Randles’ multivariate sign test statistic [Randles
(2000)]. Linear scores (K1(u) = K2(u) = u) yield cross-covariance matrices of
the Spearman (or Wilcoxon, as only the ranks themselves are involved) type,

C(n)′
Tyl

(
1

(n − i) (n + 1)2

n∑
t=i+1

R̂
(n)
t (θ0)R̂

(n)
t−i (θ0)

× W(n)
t (θ0)W

(n)′
t−i (θ0)

)(
C(n)′

Tyl

)−1
.

(14)

The score functions allowing for local asymptotic optimality under radial
density f� are K1 := ϕf� ◦F̃−1

�k and K2 = F̃−1
�k (see Proposition 4). The most

familiar example is that of the van der Waerden scores, associated with normal
radial densities (f�(r) := φ(r) = exp(−r2/2)), yielding the van der Waerden
cross-covariance matrices

C(n)′
Tyl

(
1

n − i

n∑
t=i+1

√√√√
�−1

k

(
R̂

(n)
t (θ0)

n + 1

)

×
√√√√

�−1
k

(
R̂

(n)
t−i (θ0)

n + 1

)
W(n)

t (θ0)W
(n)′
t−i (θ0)

)(
C(n)′

Tyl

)−1
,

(15)

where�k stands for the chi-square distribution function withk degrees of freedom.
The Laplace scores, associated with double-exponential radial densities (f�(r) :=
exp(−r)), are another classical example.

In order to study the asymptotic behavior of theK-cross-covariance matri-
ces (13) associated with general score functions, under the sequence of null
hypotheses as well as under sequences of local alternatives, we first establish the
following asymptotic representation and joint normality results; see the Appendix
for the proofs.

PROPOSITION2. Let Assumptions(B1) and(C) hold. Then writing

�
(n)
i;K;�,f (θ0)

:= �′−1/2

(
1

n − i

n∑
t=i+1

K1
(
F̃k

(
d

(n)
t (θ0,�)

))

× K2
(
F̃k

(
d

(n)
t−i (θ0,�)

))
U(n)

t (θ0,�)U(n)′
t−i (θ0,�)

)
�′1/2,

vec(�̃(n)
i;K(θ0) − �

(n)
i;K;�,f (θ0)) is oP(n

−1/2) underH (n)(θ0,�, f ) asn → ∞.
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For the proof see the Appendix.
For any square-integrable score functionK defined over]0,1[, let E[K2(U)] :=∫ 1

0 K2(u) du, Dk(K;f ) := ∫ 1
0 K(u) F̃−1

k (u) du, and Ck(K;f ) := ∫ 1
0 K(u)ϕf ◦

F̃−1
k (u) du. Then we have the following:

PROPOSITION 3. Let Assumptions(A), (B1′), (B2) and (C) hold. For any
integerm, the vector

S(n)
m;K;�,f (θ0) := (

(n − 1)1/2(vec�(n)
1;K;�,f (θ0)

)′
, . . . ,

(n − m)1/2(vec�(n)
m;K;�,f (θ0)

)′)′(16)

is asymptotically normal underH (n)(θ0,�, f ) and underH (n)(θ0 + n−1/2τ ,

�, f ), with mean0 underH (n)(θ0,�, f ) and mean

1

k2
Dk(K2;f )Ck(K1;f )[Im ⊗ (� ⊗ �−1)]Q(m+1)

θ0
Pθ0Mθ0τ

underH (n)(θ0 + n−1/2τ ,�, f ), and with covariance matrix

1

k2E[K2
1(U)]E[K2

2(U)][Im ⊗ (� ⊗ �−1)]
under both.

For the proof see the Appendix.
In order to compare Proposition 3 and the corresponding univariate results in

Hallin and Puri (1991,1994), note that

Q(m+1)
θ0

Pθ0Mθ0τ
(n) = ((

a(n)
1 + b(n)

1

)′
, . . . ,

(
a(n)
m + b(n)

m

)′)′
,

with

a(n)
i :=

min(p1,i)∑
j=1

i−j∑
k=0

min(q0,i−j−k)∑
l=0

(Gi−j−k−lBl ⊗ H′
k)

′ vecγ (n)
j

and

b(n)
i :=

min(q1,i)∑
j=1

(Ik ⊗ Hi−j )vecδ(n)
j .

Propositions 2 and 3 show thatK-cross-covariance matrices, while based
on multivariate generalizations of signs and ranks, enjoy the same intuitive
interpretation and inferential properties as their (traditional) parametric Gaussian
counterparts�(n)

i;�,φ(θ0). Proposition 3, for instance, immediately allows for
constructing non-Gaussian portmanteau test statistics and deriving their local
powers. Just as their classical versions (based on the classical�

(n)
i;�,φ ’s), such
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portmanteau tests, however, fail to exploit the information available on the serial
dependence structure of the observations, hence, are not optimal. Section 6 is
devoted to the construction of locally asymptotically optimal tests based on
K-cross-covariances.

6. Optimal tests. We are now ready to state the main results of this paper:
the optimal testing procedures for the problem under study, their invariance
and distribution-freeness features, as well as their local powers and optimality
properties. Optimality here means local asymptotic minimaxity, either based on
fixed-score test statistics, at some selected radial densityf�, or, based on estimated
scores, uniformly over some classF of densities.

6.1. Fixed-score test statistics.Letting

S̃(n)
K (θ0) := (

(n − 1)1/2(vec�̃(n)
1;K(θ0)

)′
, . . . ,

(n − i)1/2(vec�̃(n)
i;K(θ0)

)′
, . . . ,

(
vec�̃(n)

n−1;K(θ0)
)′)′

,

define

n1/2T̃(n)
K (θ0) := Q(n)′

θ0
S̃(n)

K (θ0) and

J(n)

θ0,�̂
:= Q(n)′

θ0

[
In−1 ⊗ (

�̂
(n) ⊗ �̂

(n)−1)]Q(n)
θ0

,
(17)

where�̂
(n) denotes Tyler’s estimator of scatter (see Section 4.1). Finally, let

Q
(n)
K (θ0) := k2n

E[K2
1(U)]E[K2

2(U)] T̃(n)′
K (θ0)

(
J(n)

θ0,�̂

)−1T̃(n)
K (θ0).

The test statisticsQ(n)
f�

(θ0) allowing for local asymptotic optimality under radial

densityf� are obtained with the score functionsK1 := ϕf� ◦F̃−1
�k andK2 := F̃−1

�k .
We then have the following proposition.

PROPOSITION 4. Assume that Assumptions(A), (B1), (B2) and (C) hold.
Consider the sequence of rank testsφ

(n)
K (resp. φ

(n)
f�

) that reject the null

hypothesisH (n)(θ0) wheneverQ(n)
K (θ0) [resp. Q

(n)
f�

(θ0)] exceeds theα-upper

quantile χ2
k2π0,1−α

of a chi-square distribution withk2π0 degrees of freedom,
whereπ0 is defined in Section3. Then:

(i) the test statisticsQ(n)
K (θ0) do not depend on the particular choice of the

fundamental system{�(1)
t , . . . ,�

(p0+q0)
t } (see Section3); for given values ofp0

andq0, they depend onp1 andq1 only throughπ = max(p1 − p0, q1 − q0);
(ii) Q

(n)
K (θ0) is asymptotically invariant with respect to the group of continu-

ous monotone radial transformations;
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(iii) Q
(n)
K (θ0) is asymptotically chi-square withk2π0 degrees of freedom under

H (n)(θ0) (so thatφ(n)
K has asymptotic levelα), and

(iv) Q
(n)
K (θ0) is asymptotically noncentral chi-square, still with k2π0 degrees

of freedom, but with noncentrality parameter

1

k2

D2
k(K2;f )

E[K2
1(U)]

C2
k (K1;f )

E[K2
2(U)] τ ′Nθ0,�τ

under H (n)(θ0 + n−1/2τ ,�, f ), provided, however, that (B1) is reinforced
into (B1′), whereNθ0,� is defined in(9);

(v) if we assume thatf� satifies Assumptions(B1′), (B2) and (C′), the
sequence of testsφ(n)

f�
is locally asymptotically maximin forH (n)(θ0) against⋃

θ �=θ0

⋃
� H (n)(θ,�, f�), at probability levelα.

For the proof see the Appendix.
Again, there is no reason to expect the test statistic to be affine-invariant, since

the testing problem itself, in general, is not; see Hallin and Paindaveine (2003).
Nevertheless, the following proposition establishes that whenever the testing
problem under study is affine-invariant (e.g., the problem of testing randomness
against VARMA dependence), then the test statisticsQ

(n)
K (θ0) also are affine-

invariant.

PROPOSITION 5. (i) The null hypothesisH (n)(θ0) is invariant under affine
transformations if and only ifθ0 is such thatAi = aiIk for all i = 1, . . . , p0 and
Bj = bj Ik for all j = 1, . . . , q0.

(ii) When the null hypothesisH (n)(θ0) is affine-invariant, thenQ
(n)
K (θ0) also is.

For the proof see the Appendix.

6.2. Estimated-score test statistics.The testsφ(n)
f�

considered in Proposition 4
achieve parametric efficiency at radial densityf�. ARMA models, though, under
adequate assumptions, are adaptive; this has been shown formally in the univariate
case only [without even requiring symmetric innovation densities; see, e.g., Drost,
Klaassen and Werker (1997)], but is very likely to hold also in higher dimensions.
Adaptiveoptimality property—that is, parametric optimality at allf�—thus can be
expected, provided thatestimated scoresare considered. Proposition 6 shows that
this, indeed, is the case.

An adaptive procedure could be based on the score functionϕ
f̂

associated
with an adequate estimator̂f of the radial density. While being uniformly locally
asymptotically maximin, such a procedure, however, would not have the very
desirable properties of rank-based procedures. This is why we rather propose,
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in the spirit of Hallin and Werker (2003), an adaptive version of the rank-based
procedures described in Proposition 4.

Let us first assume that� is known, so that the genuine distancesd
(n)
t :=

d
(n)
t (θ0,�) can be computed from the observations. Denote byR

(n)
t := R

(n)
t (θ0,

�) the rank ofd(n)
t amongd(n)

1 , . . . , d
(n)
n : underH (n)(θ0,�, f ) theR

(n)
t ’s are the

ranks of i.i.d. random variables with probability density functionf̃k . Next consider
any continuous kernel density estimatorf̌

(n)
k of f̃k that is measurable with respect

to the order statistic of thed(n)
t ’s and satisfies

E
[[

ϕ
f̌

(n)
k

((
F̌

(n)
k

)−1
(

R
(n)
t

n + 1

))(
F̌

(n)
k

)−1
(

R
(n)
t−i

n + 1

)

− ϕ
f̃k

(
F̃−1

k

(
R

(n)
t

n + 1

))
F̃−1

k

(
R

(n)
t−i

n + 1

)]2∣∣∣f̌ (n)
k

]
= oP(1),

(18)

underH (n)(θ0,�, f ) asn → ∞, whereF̌
(n)
k denotes the cumulative distribution

function associated witȟf (n)
k .

A possible choice forf̌ (n)
k satisfying (18) is given in Hájek and Šidák [(1967),

(1.5.7) of Chapter VII]. Another one, specifically constructed for radial densities,
is proposed in Liebscher (2005). An adaptive (still, under specified�) version
of (13) is then

�̌
(n)

i;�(θ0) := �′−1/2

(
1

n − i

n∑
t=i+1

ϕ̌
(n)
f

((
F̌

(n)
k

)−1
(

R
(n)
t

n + 1

))

× (
F̌

(n)
k

)−1
(

R
(n)
t−i

n + 1

)

× U(n)
t (θ0,�)U(n)′

t−i (θ0,�)

)
�′1/2,

(19)

where we letϕ̌(n)
f (r) := ϕ

f̌
(n)
k

(r) + (k − 1)/r [sinceϕf (r) = ϕ
f̃k

(r) + (k − 1)/r ].

Of course, in practice� is not known, and only the estimated distancesd̂
(n)
t :=

d
(n)
t (θ0, �̂

(n)
) can be computed: instead of�̌

(n)

i;�(θ0) given in (19), we therefore
rather use (with the notation of Section 4)

�̂
(n)

i (θ0) := C(n)′
Tyl

(
1

n − i

n∑
t=i+1

ϕ̂
(n)
f

((
F̂

(n)
k

)−1
(

R̂
(n)
t

n + 1

))

× (
F̂

(n)
k

)−1
(

R̂
(n)
t−i

n + 1

)
× W(n)

t (θ0)W
(n)′
t−i (θ0)

)(
C(n)′

Tyl

)−1
,

(20)
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where f̌
(n)
k , F̌

(n)
k and ϕ̌

(n)
f have been replaced by their counterpartsf̂

(n)
k , F̂

(n)
k

and ϕ̂
(n)
f computed from the order statistic of thêd(n)

t ’s. Using the multivariate
Slutsky theorem and working as in the proof of Proposition 2, we obtain that
the difference between (19) and (20) isoP(n−1/2) under

⋃
f H (n)(θ0,�, f ) as

n → ∞. A direct adaptation of the proof of Proposition 3.4 in Hallin and Werker
(2003) then yields a multivariate generalization of the (symmetric version of )
Proposition 6.4 in Hallin and Werker (1999). This adaptation, however, requires
the Fisher information for location associated withf̃k to be finite. Denote byF
the set of all radial densitiesf for which this condition is satisfied: clearly,
{f |Ik,f < ∞ and

∫ ∞
0 rk−3 f (r) dr < ∞} ⊂ F and, in the univariate case(k = 1),

F = {f |I1,f < ∞}.
LEMMA 4. Let Assumptions(B1) and(B2) hold, and assume thatf ∈ F sat-

isfies Assumption(C′). Then bothvec(�̌
(n)

i (θ0) − �
(n)
i;�,f (θ0)) andvec(�̂

(n)

i (θ0) −
�

(n)
i;�,f (θ0)) areoP(n−1/2) underH (n)(θ0,�, f ) asn → ∞.

In order to construct adaptive procedures, we still need to estimate the
asymptotic variance–covariance matrices of either (19) or (20). More precisely, we
need consistent estimates ofIk,f andvk,f := µk+1;f /µk−1;f = E[(F̃−1

k (U))2].
Such estimates are provided by

Ǐ(n) := 1

n

n∑
t=1

(
ϕ̌

(n)
f ◦

(
F̌

(n)
k

)−1
(

R
(n)
t

n + 1

))2

and
v̌(n) := 1

n

n∑
t=1

((
F̌

(n)
k

)−1
(

R
(n)
t

n + 1

))2

,

Î(n) := 1

n

n∑
t=1

(
ϕ̂

(n)
f ◦

(
F̂

(n)
k

)−1
(

R̂
(n)
t

n + 1

))2

and
v̂(n) := 1

n

n∑
t=1

((
F̂

(n)
k

)−1
(

R̂
(n)
t

n + 1

))2

,

respectively. Note that the producťI(n)v̌(n) (resp. Î(n)v̂(n)) depends on the

estimated radial density̌f (n)
k (resp.f̂ (n)

k ) only through itsdensity type—namely,

the scale family{af̌
(n)
k (ar), a > 0} [resp. {af̂

(n)
k (ar), a > 0}]. By the way, the

same property holds true for the adaptive rank-based cross-covariances (19)
and (20); consequently, without any loss of generality, we may assume thatf̌

(n)
k

andf̂
(n)
k are such thaťv(n) = v̂(n) = 1.

Defining

Š(n)(θ0) := Š(n)
� (θ0) := (

(n − 1)1/2(vec�̌
(n)

1;�(θ0)
)′
, . . . ,

(
vec�̌

(n)

n−1;�(θ0)
)′)′
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and

n1/2Ť(n)(θ0) := n1/2Ť(n)
� (θ0) := Q(n)′

θ0
Š(n)(θ0),

let

Q̌(n)(θ0) := Q̌
(n)
� (θ0) := k2n

Ǐ(n)v̌(n)
Ť(n)′(θ0)

(
J(n)
θ0,�

)−1Ť(n)(θ0),(21)

whereJ(n)
θ0,�

is defined in (17). The same quantities, when computed from the

�̂
(n)

i (θ0)’s, are denoted bŷS(n)(θ0) and T̂(n)(θ0), respectively, yielding the test
statistic

Q̂(n)(θ0) := k2n

Î(n)v̂(n)
T̂(n)′(θ0)

(
J(n)

θ0,�̂

)−1T̂(n)(θ0) = Q̂
(n)

�̂
(θ0).

The test statistic (21) has the very desirable property of being conditionally
distribution-free. Conditional upon theσ -algebraD (n) generated by the order
statisticd(n)

(·) of theexactdistancesd(n) := (d
(n)
1 , . . . , d

(n)
n ), indeed:

(a) the vector of ranksR(n) := (R
(n)
1 , . . . ,R

(n)
n ) is uniformly distributed over

then! permutations of(1, . . . , n),
(b) the normalized residualsU(n)

t are i.i.d. and uniformly distributed over the
unit hypersphere, and

(c) the ranksR(n) and the residualsU(n)
t are mutually independent.

The situation is thus entirely parallel to the classical case of univariate signed
ranks: conditional onD (n), Q̌(n)(θ0) is distribution-free. Denote by̌qα(d(n)

(·) )

its upperα-quantile, and byφ̌(n) := φ̌
(n)
� the indicator of the evenťQ(n)(θ0) >

q̌α(d(n)
(·) ). This test actually has Neymanα-structure with respect tod(n)

(·) and,
consequently, is a permutation test. Proposition 6 and Lemma 4, moreover,
imply that the sequencěφ(n) is asymptotically optimal, uniformly inf , against⋃

f H (n)(θ0,�, f ).
Unfortunately, unlike univariate adaptive signed rank tests, this permutation

test cannot be implemented, since�, in practice, is unspecified. Instead ofφ̌(n),
based onQ̌(n)(θ0), we therefore recommend̂φ(n) = φ̌

(n)

�̂
, based on the test statistic

Q̂(n)(θ0), which rejects the null hypothesisH (n)(θ0) wheneverQ̂(n)(θ0) exceeds
the α-upper quantileχ2

k2π0,1−α
of a chi-square distribution withk2π0 degrees

of freedom. In view of Lemma 4,Q̌(n)(θ0) and Q̂(n)(θ0) are asymptotically
equivalent under

⋃
f H (n)(θ0,�, f ) and contiguous alternatives:φ̂(n) and φ̌(n)

thus share the same asymptotic optimality properties. On the other hand,φ̂(n) loses
the attractive finite-sample Neymanα-structure ofφ̌(n).

Summing up, the following proposition is a direct consequence of Lemma 4.
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PROPOSITION6. Let Assumptions(A), (B1′) and(B2) hold, and assume that
f ∈ F satisfies Assumption(C′). Then:

(i) statements(i)–(iii) of Proposition4 hold for φ̂(n); statement(iv) also holds,
with asymptotic noncentrality parameter

1

k2E
[(

F̃−1
k (U)

)2]E[(
ϕf

(
F̃−1

k (U)
))2]

τ ′Nθ0,�τ

underH (n)(θ0 + n−1/2τ ,�, f );
(ii) the sequence of testŝφ(n) is locally asymptotically maximin forH (n)(θ0)

against
⋃

θ �=θ0

⋃
�

⋃
f H (n)(θ,�, f ), at probability levelα, where the third

union is taken over all radial densitiesf ∈ F satisfying Assumptions(B1′),
(B2) and (C′).

Proposition 5 readily extends to this adaptive procedure.

6.3. The Gaussian procedure.We now briefly describe the parametric
Gaussian procedure for the problem treated in Propositions 4 and 6. This Gaussian
test will serve as a benchmark in Section 7 for the computation of asymptotic rel-
ative efficiencies.

Under Gaussian assumptions the empirical covarianceS(n) := n−1 ×∑n
t=1 Z(n)

t (θ0)Z
(n)′
t (θ0) is a consistent estimator underH (n)(θ0,�, f ) of the in-

novation covariance(E[(F̃−1
k (U))2]/k)�. Let

J(n)
N ;θ0

:= Q(n)′
θ0

[
In−1 ⊗ �̂

(n)

θ0

]
Q(n)

θ0
,

where �̂
(n)

θ0
:= (n − 1)−1 ∑n

t=2 vec(Z(n)
t (θ0)Z

(n)′
t−1(θ0))(vec(Z(n)

t (θ0)Z
(n)′
t−1(θ0)))

′.
In view of the ergodic theorem [see Hannan (1970), Theorem 2, page 203],�̂

(n)

θ0
is

consistent underH (n)(θ0,�, f ) for (E[(F̃−1
k (U))2]/k)2� ⊗ �−1. The following

proposition then follows along the same lines as Proposition 4.

PROPOSITION7. Let Assumptions(A), (B1′) and (B2) hold. Define

Q
(n)
N (θ0) := nT(n)′

S,φ (θ0)
(
J(n)
N ;θ0

)−1T(n)
S,φ(θ0).(22)

Consider the sequence of parametric Gaussian testsφ
(n)
N rejecting the null

hypothesisH (n)(θ0) wheneverQ(n)
N (θ0) exceeds theα-upper quantileχ2

k2π0,1−α

of a chi-square distribution withk2π0 degrees of freedom. Then:
(i) statements(i) and (iii) in Proposition4 hold for φ

(n)
N ; statement(iv) also

holds, with asymptotic noncentrality parameter(E2[F̃−1
k (U)ϕf (F̃−1

k (U))]/k2) ×
τ ′Nθ0,�τ underH (n)(θ0 + n−1/2τ ,�, f );

(ii) the sequence of testsφ(n)
N is locally asymptotically maximin forH (n)(θ0)

against the Gaussian alternative
⋃

� H (n)(θ0,�, φ), at probability levelα.
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The test statisticQ(n)
N (θ0) is not (not even asymptotically) invariant un-

der continuous monotone radial transformations. However, it is asymptotically
distribution-free. On the other hand,Q

(n)
N (θ0), just like Q

(n)
K (θ0) and Q̂(n)(θ0),

is affine-invariant whenever the null hypothesis is.

7. Asymptotic performance.

7.1. Asymptotic relative efficiencies.Computing the ratios of the noncentral-
ity parameters in the asymptotic distributions ofQ

(n)
K , Q

(n)
f�

andQ̂(n) with respect

to Q
(n)
N (see Propositions 4, 6 and 7) yields the asymptotic relative efficiencies of

these tests with respect to their parametric Gaussian counterparts.

PROPOSITION8. Let Assumptions(A), (B1′), (B2) and(C) hold. Then:
(i) the asymptotic relative efficiency under radial densityf of φ

(n)
K with

respect toφ(n)
N is

AREk,f

(
φ

(n)
K /φ

(n)
N

) = 1

k2

D2
k (K2;f )

E[K2
2(U)]

C2
k (K1;f )

E[K2
1(U)] ;

(ii) assuming that(C′) holds instead of(C),

AREk,f

(
φ

(n)
f�

/φ
(n)
N

) = 1

k2

D2
k (f�, f )

Dk(f�)

C2
k (f�, f )

Ck(f�)
,

where we writeDk(f1, f2) andCk(f1, f2) for Dk(F̃
−1
1k ;f2) andCk(ϕf1◦F̃−1

1k ;f2),
respectively, and letCk(f�) := Ck(f�, f�) andDk(f�) := Dk(f�, f�);

(iii) assuming, moreover, that f ∈ F satisfies Assumption(C′), the asymptotic
relative efficiency of the adaptive testφ̂(n) with respect toφ(n)

N under the radial
densityf is

AREk,f

(
φ̂(n)/φ

(n)
N

) = 1

k2Dk(f )Ck(f ).

The AREs for the fixed-score procedures obtained in Proposition 8 coincide
with those obtained in Hallin and Paindaveine (2002b) for the related problem of
testing randomness against VARMA dependence. The numerical values of AREs
of several versions of the proposed procedures (van der Waerden and Laplace score
tests, sign test, Spearman-type test) with respect to the Gaussian procedure, under
multivariatet-distributions with various degrees of freedom, are reported there. As
usual in rank-based inference, the gain of efficiency over parametricL2 procedures
increases with the tail weight [see Hallin and Paindaveine (2002b)].

In this section, we thus concentrate on the adaptive procedure described in
Proposition 6. As in Randles (1989), consider the family of power-exponential
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TABLE 1
Asymptotic relative efficiencies of the adaptive testφ̂(n) w.r.t. the Gaussian

testφ(n)
N in the elliptically symmetric power-exponential family(23),

for various values of the tail indexν and the space dimensionk

ν

k 0.1 0.2 0.3 0.5 1 2 5 10

1 — — 28.40 2.00 1.00 1.37 3.18 6.43
3 261.24 8.08 2.77 1.33 1.00 1.22 2.30 4.26
4 59.63 4.77 2.16 1.25 1.00 1.18 2.08 3.71
6 14.81 2.84 1.69 1.17 1.00 1.13 1.81 3.03
8 7.51 2.19 1.48 1.13 1.00 1.10 1.65 2.63

10 5.02 1.88 1.37 1.10 1.00 1.09 1.54 2.36
∞ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

distributions with density

fν(x) = Kk,ν

1

(det�)1/2
exp

[−(
(x − θ)′�−1(x − θ)/c0

)ν]
, ν > 0,(23)

with

c0 := k �(k/2ν)

�((k + 2)/2ν)
and Kk,ν := ν�(k/2)

�(k/2ν)(πc0)k/2
.

This family corresponds to radial densities of the formfν(r) := exp[−(r2/c0)
ν],

and allows for considering a variety of tail weights indexed byν. Thek-variate
normal case corresponds toν = 1, while, for 0< ν < 1 (resp.ν > 1), the tails are
heavier (resp. lighter) than in the normal case.

Provided that 4ν + k − 2 > 0, Proposition 8 yields

AREk,fν

(
φ̂(n)/φ

(n)
N

) = 4ν2

k2

�((k + 2)/2ν)�((4ν + k − 2)/2ν)

�2(k/2ν)
.(24)

Table 1 above provides some numerical values of (24).

7.2. A multivariate version of two classical univariate results.Since the AREs
obtained in Proposition 8 for the fixed-score proceduresφ(n)

K andφ
(n)
f�

coincide
with those in Hallin and Paindaveine (2002b), the generalizations obtained there
of the famous Chernoff–Savage and Hodges–Lehmann results still hold here. In
view of their importance, we adapt these results to the present context, referring to
Hallin and Paindaveine (2002b) for proofs and details.

A multivariate serial Chernoff–Savage result.As in the univariate case, the
van der Waerden version of the proposed rank-based procedure is uniformly more
efficient than the corresponding parametric Gaussian procedure. More precisely,
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the following generalization of the results of Chernoff and Savage (1958) and
Hallin (1994) holds.

PROPOSITION9. Let Assumption(A) hold. Denote byφ(n)
vdW andφ

(n)
N the van

der Waerden test, based on the cross-covariance matrices(15), and the Gaussian
test based on the test statistic(22), respectively. For anyf satisfying Assumptions
(B1′) and(B2),

AREk,f

(
φ

(n)
vdW/φ

(n)
N

) ≥ 1,

where equality holds if and only iff is normal.

A multivariate serial Hodges–Lehmann result.Denote by Q
(n)
SP(θ0) the

Spearman-type version of the test statisticsQ
(n)
K (θ0), based on the cross-

covariances (14) associated with linear scores. This statistic can be considered as
the angle-based serial version of Peters and Randles’ Wilcoxon-type test statistic
[see Hallin and Paindaveine (2002c) and Peters and Randles (1990)].

Although the resulting testφ(n)
SP is never optimal [there is nof� such

that Q
(n)
f�

(θ0) coincides withQ
(n)
SP(θ0)], the resulting Spearman-type procedure

exhibits excellent asymptotic efficiency properties, especially for relatively small
dimensionsk. To show this, we extend Hodges and Lehmann’s (1956) celebrated
“0.864 result” by computing, for any dimensionk, the lower bound for the
asymptotic relative efficiency ofφ(n)

SP with respect to the Gaussian procedureφ
(n)
N .

More precisely, we have the following proposition [see Hallin and Paindaveine
(2002b) for the proof ].

PROPOSITION10. Let Assumption(A) hold. Define

ck := inf
{
x > 0|(√xJ√

2k−1/2(x)
)′ = 0

}
,

whereJr denotes the Bessel function of the first kind of orderr . The lower bound
for the asymptotic relative efficiency ofφ

(n)
SP with respect toφ(n)

N is

inf
f

AREk,f

(
φ

(n)
SP/φ

(n)
N

) = 9(2c2
k + k − 1)4/210k2c4

k,(25)

where the infimum is taken over all radial densitiesf satisfying Assumptions
(B1′) and(B2).

Some numerical values are given in Table 2. Note that the sequence of lower
bounds (25) is monotonically decreasing ink for k ≥ 2, and tends to 9/16 =
0.5625 ask → ∞.
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TABLE 2
Some numerical values, for various valuesk of the space

dimension, of the lower bound for the asymptotic relative efficiency

of the Spearman testφ(n)
SP with respect to the Gaussian oneφ

(n)
N

k inff AREk,f (φ
(n)
SP /φ

(n)
N ) k inff AREk,f (φ

(n)
SP /φ

(n)
N )

1 0.856 5 0.818
2 0.913 6 0.797
3 0.878 10 0.742
4 0.845 +∞ 0.563

APPENDIX

A.1. Proofs of Proposition 1 and Lemmas 2 and 3.

PROOF OFPROPOSITION1. Garel and Hallin (1995) show that the linear part
in the quadratic approximation ofL(n)

θ0+n−1/2τ (n)/θ0;�,f
can be written as

τ (n)′	(n)
�,f (θ0) =

n−1∑
i=1

(n − i)1/2 tr
[
d(n)′

i (θ0)�
(n)
i;�,f (θ0)

]
,

where

d(n)
i (θ0) :=

min(p1,i)∑
j=1

i−j∑
k=0

min(q0,i−j−k)∑
l=0

Hkγ
(n)
j Gi−j−k−lBl +

min(q1,i)∑
j=1

Hi−j δ
(n)
j .

Using tr(AB) = (vecA′)′(vecB) and vec(ABC) = (C′ ⊗ A)vecB yields

n−1∑
i=1

(n − i)1/2 tr
[
d(n)′

i (θ0)�
(n)
i;�,f (θ0)

] =
 a(n)

1 + b(n)
1

...

a(n)
n−1 + b(n)

n−1


′

S(n)
�,f (θ0),(26)

with a(n)
i andb(n)

i defined at the end of Section 5.

SinceH′(l)
m B(r)

m H(r)
m,q1 = H′(l)

m,q1, (26) can be written as

τ (n)′	(n)
�,f (θ0) = [(

H(r)
n−1 B′(l)

n−1G′(l)
n−1,p1

|H(r)
n−1,q1

)
τ (n)]′S(n)

�,f (θ0)

= [(
G′(l)

n−1,p1
|H′(l)

n−1,q1

)
τ (n)]′(H(r)

n−1B′(l)
n−1

)′S(n)
�,f (θ0)

=
 ã(n)

1 + b̃(n)
1

...

ã(n)
n−1 + b̃(n)

n−1


′ (

H(r)
n−1B′(l)

n−1

)′S(n)
�,f (θ0),

(27)
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where ã(n)
t := ∑min(p1,t)

j=1 (G′
t−j ⊗ Ik)(vecγ (n)

j ) and b̃(n)
t := ∑min(q1,t)

j=1 (H′
t−j ⊗

Ik)(vecδ(n)
j ); the sequences(ã(n)

t ) and(b̃(n)
t ) clearly satisfy(

ã(n)′
1 + b̃(n)′

1 , . . . , ã(n)′
π0

+ b̃(n)′
π0

)′ = Mθ0τ
(n).(28)

Note that, fort ≥ p0 + q0 + 1,

D(L)G′
t = D(L)

( p0∑
i=1

G′
t−iA

′
i

)
=

p0∑
i=1

(
D(L)G′

t−i

)
A′

i = 0.

Therefore,D(L)G′
t = 0 for all t ≥ q0 + 1. In the same way, we obtain that

D(L)H′
t = 0 for t ≥ p0+1. Now, consider thek2-dimensional operatorD(l)(L) :=

Ik2 + ∑p0+q0
i=1 (Di ⊗ Ik)L

i . This operator is such that, fort − p1 ≥ q0 + 1,

D(l)(L)ã(n)
t = ∑p1

j=1(D(L)G′
t−j ⊗ Ik)(vecγ (n)

j ) = 0. Similarly, one can check that

for t − q1 ≥ p0 + 1, D(l)(L)b̃(n)
t = ∑q1

j=1(D(L)H′
t−j ⊗ Ik)(vecδ(n)

j ) = 0. This

implies thatã(n)
t + b̃(n)

t satisfiesD(l)(L)(ã(n)
t + b̃(n)

t ) = 0 for all t ≥ max(p1 +
q0 + 1, q1 + p0 + 1) = π + (p0 + q0) + 1. Since{�(1)

t ⊗ Ik, . . . ,�
(p0+q0)
t ⊗ Ik}

is a fundamental system of solutions of the homogeneous difference equation
associated withD(l)(L), we have ã(n)

π+1 + b̃(n)
π+1

...

ã(n)
n−1 + b̃(n)

n−1

 = �̄n−1C−1
�

 ã(n)
π+1 + b̃(n)

π+1
...

ã(n)
π0 + b̃(n)

π0

(29)

[see, e.g., Hallin (1986)]. Combining (28) and (29), we obtain(
ã(n)′

1 + b̃(n)′
1 , . . . , ã(n)′

n−1 + b̃(n)′
n−1

)′ = (
Ik2π 0

0 �̄n−1C−1
�

)
Mθ0τ

(n),

which, together with (27), establishes the result.�

PROOF OFLEMMA 2. Under
⋃

f H (n)(θ0,�, f ), the residualsZ1(θ0), . . . ,

Zn(θ0), from which C(n)
Tyl is computed, are i.i.d. and elliptically symmetric, with

mean 0 and scatter matrix�. Tyler (1987) showed thatC(n)
Tyl then is root-n

consistent forC0 := c−1�−1/2, wherec denotes the upper left element in�−1/2.
The result follows, since for any random vectorX,∥∥∥∥ C(n)

TylX

‖C(n)
TylX‖ − �−1/2X

‖�−1/2X‖
∥∥∥∥

≤
∣∣∣∣ 1

‖C(n)
TylX‖ − 1

‖C0X‖
∣∣∣∣∥∥C(n)

TylX
∥∥ + 1

‖C0X‖
∥∥C(n)

TylX − C0X
∥∥

≤ 2
‖C(n)

TylX − C0X‖
‖C0X‖ ≤ 2

‖C(n)
Tyl − C0‖L

‖X‖
‖C0X‖ ≤ 2

∥∥C(n)
Tyl − C0

∥∥
L
‖C−1

0 ‖L,
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where ‖T‖L := sup{‖Tx‖|‖x‖ = 1} denotes the operator norm of the square
matrix T. �

PROOF OFLEMMA 3. The definition ofW(n)
t (M) and (12) directly yield

W(n)
t (M) = C(n)

Tyl(M)MZ(n)
t

‖C(n)
Tyl(M)MZ(n)

t ‖ = dOC(n)
TylZ

(n)
t

‖dOC(n)
TylZ

(n)
t ‖ = OW(n)

t .
�

A.2. Proofs of Propositions 2 and 3. The following lemma, which follows
along the same lines as Lemma 4 in Hallin and Paindaveine (2002b), will be used
in the proof of Proposition 2.

LEMMA 5. Let i ∈ {1, . . . , n − 1} and t, t̃ ∈ {i + 1, . . . , n} be such thatt �= t̃ .
Assume thatg :Rnk = R

k × · · · × R
k → R is even in all its arguments, and such

that the expectation below exists. Then, under
⋃

f H (n)(θ0,�, f ),

E
[
g
(
Z(n)

1 (θ0), . . . ,Z(n)
n (θ0)

)
(P′

tQt̃ )(R
′
t−iSt̃−i )

] = 0,

wherePj ,Qj ,Rj andSj are any four statistics amongW(n)
j (θ0) andW(n)

j (θ0) −
U(n)

j (θ0,�).

PROOF OF PROPOSITION 2. Throughout, we writed(n)
t , R

(n)
t , R̂

(n)
t , W(n)

t

and U(n)
t for d

(n)
t (θ0,�), R

(n)
t (θ0,�), R̂

(n)
t (θ0), W(n)

t (θ0) and U(n)
t (θ0,�),

respectively; all convergences and mathematical expectations are taken asn → ∞,
underH (n)(θ0,�, f ). Decompose

(n − i)1/2[(C(n)
Tyl ⊗

(
C(n)′

Tyl
)−1)vec�̃

(n)
i;K(θ0) − (�−1/2 ⊗ �′1/2)vec�(n)

i;K;�,f (θ0)
]

into vec(T(n)
1 + T(n)

2 + T(n)
3 ), where

T(n)
1 := (n − i)−1/2

n∑
t=i+1

(
K1

(
R̂

(n)
t

n + 1

)
K2

(
R̂

(n)
t−i

n + 1

)

− K1

(
R

(n)
t

n + 1

)
K2

(
R

(n)
t−i

n + 1

))
W(n)

t W(n)′
t−i ,

T(n)
2 := (n − i)−1/2

n∑
t=i+1

K1

(
R

(n)
t

n + 1

)
K2

(
R

(n)
t−i

n + 1

)(
W(n)

t W(n)′
t−i − U(n)

t U(n)′
t−i

)
and

T(n)
3 := (n − i)−1/2

n∑
t=i+1

(
K1

(
R

(n)
t

n + 1

)
K2

(
R

(n)
t−i

n + 1

)

− K1
(
F̃k

(
d

(n)
t

))
K2

(
F̃k

(
d

(n)
t−i

)))
U(n)

t U(n)′
t−i .



2672 M. HALLIN AND D. PAINDAVEINE

We proceed by proving that vecT(n)
1 ,vecT(n)

2 and vecT(n)
3 all converge to0 in

quadratic mean, asn → ∞. Slutsky’s classical argument then concludes the proof.
Let us start withT(n)

3 . Using the fact that(vecA)′(vecB) = tr(A′B) and the
independence between thedt ’s and theUt ’s, we obtain

∥∥vecT(n)
3

∥∥2
L2 =

n∑
t=i+1

(
c
(n)
t;i

)2E
[(

K1

(
R

(n)
t

n + 1

)
K2

(
R

(n)
t−i

n + 1

)

− K1
(
F̃k

(
d

(n)
t

))
K2

(
F̃k

(
d

(n)
t−i

)))2]
,

wherec
(n)
t;i = (n − i)−1/2 for all t = i + 1, . . . , n. Hájek’s projection result thus

implies that‖vecT(n)
3 ‖2

L2 = o(1) asn → ∞. The same result also implies that, for
all t = i + 1, . . . , n,

E
[(

K1

(
R

(n)
t

n + 1

)
K2

(
R

(n)
t−i

n + 1

)
− K1

(
F̃k

(
d

(n)
t

))
K2

(
F̃k

(
d

(n)
t−i

)))2]
= o(1).(30)

For T(n)
2 , decomposingW(n)

t W(n)′
t−i − U(n)

t U(n)′
t−i into (W(n)

t − U(n)
t )W(n)′

t−i +
U(n)

t (W(n)
t−i − U(n)

t−i )
′, then using the identity(vecA)′(vecB) = tr(A′B) again and

Lemma 5, one obtains∥∥vecT(n)
2

∥∥2
L2

≤ 2(n − i)−1
n∑

t=i+1

E
[(

K1

(
R

(n)
t

n + 1

)
K2

(
R

(n)
t−i

n + 1

))2∥∥W(n)
t − U(n)

t

∥∥2
]

+ 2(n − i)−1
n∑

t=i+1

E
[(

K1

(
R

(n)
t

n + 1

)
K2

(
R

(n)
t−i

n + 1

))2∥∥W(n)
t−i − U(n)

t−i

∥∥2
]
.

(31)

Consider the first term in the right-hand side of (31) (the second term can be
dealt with in the same way). LetA(n)

t;i := K1(R
(n)
t /(n + 1))K2(R

(n)
t−i/(n + 1)) and

B
(n)
t;i := K1(F̃k(d

(n)
t ))K2(F̃k(d

(n)
t−i )). Using (30) and the independence between the

d
(n)
t ’s and theU(n)

t ’s, we obtain

E
[(

A
(n)
t;i

)2∥∥W(n)
t − U(n)

t

∥∥2] = E
[(

B
(n)
t;i

)2∥∥W(n)
t − U(n)

t

∥∥2] + o(1)

= ‖K1(U)‖2
L2 ‖K2(U)‖2

L2

∥∥W(n)
t − U(n)

t

∥∥2
L2

+ o(1),

whereU is uniformly distributed over]0,1[. Lemma 2 thus implies that vecT(n)
2

converges to0 in quadratic mean.
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Finally, using Lemma 5 again,

∥∥vecT(n)
1

∥∥2
L2 = (n − i)−1

n∑
t=i+1

(
K1

(
R̂

(n)
t

n + 1

)
K2

(
R̂

(n)
t−i

n + 1

)

− K1

(
R

(n)
t

n + 1

)
K2

(
R

(n)
t−i

n + 1

))2

.

This entails that vecT(n)
1 also isoqm(1), provided that

K1

(
R̂

(n)
t

n + 1

)
K2

(
R̂

(n)
t−i

n + 1

)
− K1

(
R

(n)
t

n + 1

)
K2

(
R

(n)
t−i

n + 1

)
L2→0 asn → ∞.(32)

Now, Lemma 1 establishes the same convergence as in (32), but in probabil-
ity. On the other hand, it follows from (30) that[K1(Rt/(n + 1))K2(Rt−i/

(n + 1))]2 is uniformly integrable, which (in view of the invariance of Tyler’s
estimator of scatter under permutations of the residuals) implies that[K1(R̂t /(n +
1))K2(R̂t−i/(n + 1))]2 also is. TheL2 convergence in (32) follows.

Summing up, we have shown that(n − i)1/2[(C(n)
Tyl ⊗ (C(n)′

Tyl )
−1)vec�̃

(n)
i;K(θ0) −

(�−1/2 ⊗�′1/2)vec�(n)
i;K;�,f (θ0)] is oqm(1) asn → ∞. This concludes the proof,

since, from a multivariate application of Slutsky’s theorem,

(n − i)1/2[(C(n)
Tyl ⊗

(
C(n)′

Tyl

))−1 vec�̃
(n)
i;K(θ0)

− (�−1/2 ⊗ �′1/2)vec�̃
(n)
i;K(θ0)

] = oP(1),

underH (n)(θ0,�, f ). �

PROOF OF PROPOSITION 3. UnderH (n)(θ0,�, f ), one can use the same
argument as in Lemma 4.12 in Garel and Hallin (1995). The result under the
sequence of alternatives is obtained as usual, first establishing the joint normality
of S(n)

m;K,�,f (θ0) and L
(n)

θ0+n−1/2τ/θ0;�,f
under H (n)(θ0,�, f ), then applying

Le Cam’s third Lemma; the required joint normality easily follows from a routine
application of the classical Cramér–Wold device.�

A.3. Proofs of Propositions 4 and 5.

PROOF OF PROPOSITION 4. (i) Let {�(1)
t , . . . ,�

(p0+q0)
t } and {�(1)

t , . . . ,

�
(p0+q0)
t } be two fundamental systems of solutions associated withD(L). The

vector structure of the space of solutions ofD(L)xt = 0, xt ∈ Rk implies that,
for all j = 1, . . . , p0 + q0, there exists ak(p0 + q0) × k matrix j such that
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�
(j )
t = (�

(1)
t , . . . ,�

(p0+q0)
t )j . Letting := (1, . . . ,p0+q0), this implies that

�
(1)
π+1 · · · �

(p0+q0)
π+1

�
(1)
π+2 · · · �

(p0+q0)
π+2

...
...

�(1)
m · · · �

(p0+q0)
m

 =


�

(1)
π+1 · · · �

(p0+q0)
π+1

�
(1)
π+2 · · · �

(p0+q0)
π+2

...
...

�(1)
m · · · �

(p0+q0)
m

,

so that�̄m = �̄m( ⊗ Ik), where�̄m is the equivalent of̄�m, but computed from
the�

(j )
t ’s. Thus, with obvious notation,Q(m)

θ0;� = Q(m)
θ0;�̄ for all m, wherē :=( I

k2π
0

0 ⊗Ik

)
, yielding (note that since the�(j )

t ’s and�
(j )
t ’s constitute fundamental

systems,, and hencē, are nonsingular)

T̃(n)′
K;�(θ0)

(
J(n)

θ0,�̂;�
)−1T̃(n)

K;�(θ0) = [
T̃(n)′

K;�(θ0)̄
][

̄
′
J(n)

θ0,�̂;�̄
]−1[

̄
′
T̃(n)

K;�(θ0)
]

= T̃(n)′
K;�(θ0)

(
J(n)

θ0,�̂;�
)−1T̃(n)

K;�(θ0),

as was to be proved. The statement about the dependence onp1 andq1 is trivial,
sinceT̃(n)

K (θ0), J(n)

θ0,�̂
, as well asπ0, depend onp1 andq1 only throughπ .

(ii) Letting

n1/2T̃(n)
K;�(θ0) := Q(n)′

θ0

(
(n − 1)1/2(vec�̃

(n)
1;K;�(θ0)

)′
, . . . ,

(
vec�̃

(n)
n−1;K;�(θ0)

)′)′
,

with

�̃
(n)
i;K;�(θ0) := C(n)′

Tyl

(
1

n − i

n∑
t=i+1

K1

(
R

(n)
t (θ0,�)

n + 1

)
K2

(
R

(n)
t−i (θ0,�)

n + 1

)

× W(n)
t (θ0)W

(n)′
t−i (θ0)

)(
C(n)′

Tyl

)−1
,

one can verify (proceeding as for the first term in the decomposition argument
in the proof of Proposition 2) thatn1/2(T̃(n)

K (θ0) − T̃(n)
K;�(θ0)) tends to zero in

quadratic mean asn → ∞ under
⋃

f H (n)(θ0,�, f ). This entails that

Q
(n)
K (θ0) = k2

E[K2
1(U)]E[K2

2(U)]
× (

n1/2T̃(n)
K;�(θ0)

)′(J(n)

θ0,�̂

)−1(
n1/2T̃(n)

K;�(θ0)
) + oP(1)

is asymptotically invariant with respect toG(n)
� under

⋃
f H (n)(θ0,�, f ), since

n1/2T̃(n)
K;�(θ0) andJ(n)

θ0,�̂
are strictly invariant with respect to the same group.

(iii), (iv) Proposition 2 and the multivariate Slutsky theorem show thatQ
(n)
K (θ0)

has the same asymptotic behavior [underH (n)(θ0,�, f ), as well as under the
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sequence of local alternativesH (n)(θ0 + n−1/2τ ,�, f )] as

k2

E[K2
1(U)]E[K2

2(U)]
(
n1/2T(n)

K;�,f (θ0)
)′J−1

θ0,�

(
n1/2T(n)

K;�,f (θ0)
)
,

where n1/2T(n)
K;�,f (θ0) := Q(n)′

θ0
S(n)

n−1;K;�,f (θ0) [see (16)]. Now, Proposition 3
and a classical result on triangular arrays [Brockwell and Davis (1987), Proposi-
tion 6.3.9] imply thatn1/2T(n)

K;�,f (θ0) is asymptoticallyk2π0-variate normal, with

mean0 underH (n)(θ0,�, f ), and mean

1

k2
Dk(K2;f )Ck(K1;f )Jθ0,�Pθ0Mθ0τ

under H (n)(θ0 + n−1/2τ ,�, f ), and with covariance matrix(E[K2
1(U)] ×

E[K2
2(U)]/k2)Jθ0,� under both. The result follows.

(v) It follows from Le Cam [(1986), Section 11.9] and the LAN property in
Proposition 1 that the testφ(n)

�,f�
rejecting the null hypothesis whenever

	
(n)′
�,f�

(θ0)
(
��,f�(θ0)

)−
	

(n)
�,f�

(θ0) > χ2
s,1−α,

whereA− denotes any arbitrary generalized inverse ofA ands := rank(��,f�(θ0)),
is locally and asymptotically maximin, at probability levelα, for H (n)(θ0,�, f�)

against
⋃

θ �=θ0
H (n)(θ,�, f�). Note that rank(��,f�(θ0)) = rank(M′

θ0
P′

θ0
×

Jθ0,�Pθ0Mθ0) = min(k2(p1 + q1), k
2π0) = k2π0, sinceMθ0, Pθ0 andJθ0,� have

maximal rank. Of course, the same optimality property holds for the asymptoti-
cally equivalent [underH (n)(θ0,�, f�), as well as under contiguous alternatives]
testφ(n)

f�
that rejects the null hypothesis whenever

	
(n)′
Kf�

(θ0)
(
�̂

(n)

f�
(θ0)

)−
	

(n)
Kf�

(θ0) > χ2
k2π0,1−α

,

where	(n)
Kf�

(θ0) := n1/2M′
θ0

P′
θ0

T̃(n)
K (θ0), with K1 := ϕf� ◦F̃−1

�k andK2 = F̃−1
�k , and

�̂
(n)

f�
(θ0) := µk+1;f�Ik,f�

k2µk−1;f�

M′
θ0

P′
θ0

J(n)

θ0,�̂
Pθ0Mθ0 = ��,f�(θ0) + oP(1)

underH (n)(θ0,�, f�). But, in view of Lemma 2.2.5(c) of Rao and Mitra (1971),

	
(n)′
Kf�

(θ0)
(
�̂

(n)

f�
(θ0)

)−
	

(n)
Kf�

(θ0)

= k2nµk−1;f�

µk+1;f�Ik,f�

T̃(n)′
K (θ0)Pθ0Mθ0

(
M′

θ0
P′

θ0
J(n)

θ0,�̂
Pθ0Mθ0

)−M′
θ0

P′
θ0

T̃(n)
K (θ0)

= k2n

E[(ϕf�(F̃
−1
�k (U)))2]E[(F̃−1

�k (U))2] T̃(n)′
K (θ0)

(
J(n)

θ0,�̂

)−1T̃(n)
K (θ0);

φ
(n)
f�

andφ
(n)
f�

, thus, are the same test. The result follows.�
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PROOF OFPROPOSITION5. (i) Model (1) underH (n)(θ0) can be written in
the form

MA(L)M−1MXt = MB(L)M−1Mεt ,

whereM is an arbitrary full-rankk×k matrix. This null hypothesis is thus invariant
under the group of affine transformationsεt �→ Mεt if and only if MAiM−1 = Ai

for all i = 1, . . . , p0 andMBj M−1 = Bj for all j = 1, . . . , q0, that is, iff eachAi

and eachBj commutes with any invertible matrixM, which holds true iff they are
proportional to thek × k identity matrix.

(ii) Let M be some nonsingulark × k matrix. For any statisticT = T (X(n)
−p0+1,

. . . ,X(n)
n ), write T (M) := T (MX(n)

−p0+1, . . . ,MX(n)
n ). It follows from Lemma 3

and from the equivariance properties ofC(n)
Tyl that�̃(n)

i;K(M) = M′−1�̃
(n)
i;KM′. Hence,

S̃(n)
K (M) = [In−1 ⊗ (M ⊗ M′−1)]̃S(n)

K . In the same way,[
In−1 ⊗ (

�̂
(n)

(M) ⊗ (
�̂

(n)
(M)

)−1)]
= [In−1 ⊗ (M ⊗ M′−1)][In−1 ⊗ (

�̂
(n) ⊗ (

�̂
(n))−1)][In−1 ⊗ (M ⊗ M′−1)]′.

Now, Ai = aiIk clearly implies that the Green matrices of the operatorA(L) all
are proportional to the identity matrix. The same property holds forB(L). It is then
easy to verify that the operatorD(L) also is scalar (meaning thatDi is proportional
to the identity matrix for alli = 1, . . . , p0 + q0). This implies that the fundamental
system of solutions provided by Green’s matrices ofD(L) contains only matrices
that are proportional to the identity matrix. Hence,Q(n)

θ0
= W(n) ⊗ Ik2 for some

(n − 1) × π0 matrix W(n). It follows that

[In−1 ⊗ (M ⊗ M′−1)]′ Q(n)
θ0

= Q(n)
θ0

[
Iπ0 ⊗ (M ⊗ M′−1)

]′
,

which entails̃T(n)
K (M) = [Iπ0 ⊗ (M ⊗ M′−1)]T̃(n)

K and

J(n)

θ0,�̂
(M) = [

Iπ0 ⊗ (M ⊗ M′−1)
]
J(n)

θ0,�̂

[
Iπ0 ⊗ (M ⊗ M′−1)

]′
.

Consequently,Q(n)
K (M) = Q

(n)
K . �
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