
The Annals of Statistics
2004, Vol. 32, No. 5, 1841–1857
DOI 10.1214/009053604000000634
© Institute of Mathematical Statistics, 2004

ROBUST NONPARAMETRIC INFERENCE FOR THE MEDIAN

BY VÍCTOR J. YOHAI1 AND RUBEN H. ZAMAR 2

University of Buenos Aires and CONICET, and University of British Columbia

We consider the problem of constructing robust nonparametric confi-
dence intervals and tests of hypothesis for the median when the data distribu-
tion is unknown and the data may contain a small fraction of contamination.
We propose a modification of the sign test (and its associated confidence in-
terval) which attains the nominal significance level (probability coverage) for
any distribution in the contamination neighborhood of a continuous distribu-
tion. We also define some measures of robustness and efficiency under con-
tamination for confidence intervals and tests. These measures are computed
for the proposed procedures.

1. Introduction. Often, a fraction of the data is contaminated by outliers
and other type of low quality observations. For example, a slight shift in one
of several similar instruments used in an experiment may cause a small but
consistent bias in a few observations. We are often interested in drawing inference
from the uncontaminated part of the data, which distribution we call the “target
distribution.” It is well known that robust point estimates successfully limit the
effect of a small fraction of contamination in the data. Unfortunately, naive
“robust” confidence intervals constructed around robust point estimates are not
that successful. See Fraiman, Yohai and Zamar (2001).

To allow for a fractionε of contamination in the data we assume that the
actual distributionG belongs to thecontamination neighborhood of the target
distributionF,

Fε(F ) = {G :G = (1− ε)F + εH },(1.1)

whereH is arbitrary and 0≤ ε < 1/2.

Robust inference (beyond point estimation) means that the inference procedure
achieves its intended goal over the entire contamination neighborhood. For in-
stance, robust confidence intervals must achieve the nominal coverage probability
of the target parameter for all the distributions in a contamination neighborhood.
Similarly, the rejection probability of robust tests when the null hypothesis is true
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must be smaller than or equal to the nominal significance level under all the distri-
butions in the neighborhood.

Robust tests and confidence intervals have been proposed and studied by
several researchers. Huber (1965) introduced censored likelihood ratio tests to
robustify the Neyman–Pearson optimal test. Huber (1968) considered robust
confidence intervals for a location parameterθ which cover the true parameter
with the nominal probability for all distributions in a neighborhood of the target
distribution. The intervals are of the form(Tn − a,Tn + a), where Tn is a
location estimate. He found the estimateTn that minimizesa subject to the
conditionsP (Tn < θ − a) ≤ α/2 andP (Tn > θ + a) ≤ α/2—instead of the more
natural but less tractable conditionP (Tn < θ − a) + P (Tn > θ + a) ≤ α—for
finite samples coming from distributions in the contamination neighborhood. The
optimal estimate is an M-estimate with Huber type score function. In Huber’s
approach the scale parameter is assumed known. Fraiman, Yohai and Zamar
(2001) solved a related problem: find robust intervals(T − a,T + a) of minimum
length and asymptotically correct coverage for all distributions in a contamination
neighborhood.

We now briefly discuss two asymptotic approaches to the problem of robust
inference for the case of smallε. The first, introduced by Huber-Carol (1970),
Rieder (1978) and Bednarski (1982), uses shrinking contamination neighborhoods
(contamination fraction of ordern−1/2) for the null hypothesis and contiguous
alternatives of ordern−1/2. The second, introduced by Rousseeuw and Ronchetti
(1981), is based on the influence function for tests which is used to approximate the
maximum level and the minimum power of a test in a contamination neighborhood
of sizeε, whenε is small. In particular, the approximation of the maximum level
can be used to correct the test so that the maximum level is not larger than a given
valueα for all distributions in a contamination neighborhood. For a full account
of this approach see Hampel et al. (1986) and Markatou and Ronchetti (1997).
A related approach was given by Lambert (1981) who defines an influence function
that measures the effect of the contamination on thep-value of a test.

Morgenthaler (1986) considers a class of robust confidence intervals, called
strong confidence intervals, which keep the nominal coverage probability con-
ditional on the sample configuration, under two or more specified symmetric
distributions. It would seem reasonable to expect that by choosing some extreme
symmetric distributions (e.g., the normal and slash distributions), the coverage of
the interval should remain correct for other “intermediate” symmetric distribu-
tions. Morgenthaler also considers a class of robust confidence intervals, called
bioptimal, which are robust in terms of efficiency for two symmetric distributions.
The case of asymmetric contamination is not considered in Morgenthaler’s ap-
proach.

Rieder (1982) addresses the problem of robustifying rank tests preserving
their nonparametric nature. He considers one-sided tests for one and two sample
problems, showing that the least favorable distribution under a given fraction of
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contamination does not depend on the target model. Our two-sided modified sign
test and the corresponding robust confidence interval can be considered extensions
of Rieder’s approach.

The rest of the paper is organized as follows. Section 1.1 briefly reviews
nonparametric intervals obtained by inverting the sign test. Section 1.2 contains
our main result, Theorem 1, which shows that sign-test intervals are not robust and
paves the way for the construction of robust nonparametric intervals for the median
in Section 2. In this section we also discuss coverage robustness of confidence
intervals and the associated concept of level robustness of a test. In Section 3 we
address the concept of length robustness of a confidence interval and the associated
concept power robustness of a test. In this section we show that the nonparametric
robust confidence interval defined in Section 2 has optimal length. In Section 4 we
discuss possible extensions and further research. The last section is the Appendix
with some proofs. Detailed proofs of our results can be found in Yohai and Zamar
(2004).

1.1. Robust nonparametric inference for the median. Let

x(1) ≤ x(2) ≤ · · · ≤ x(n)

be the order statistics of a sampleXn = (x1, . . . , xn) with common distributionF
satisfying the following assumption.

(A1) F is continuous with a unique medianθ(F ) = F−1(1/2).

Consider the null hypothesisH0 : θ = θ0 and the sign test statistic

Tn,θ (Xn) =
n∑

i=1

I (xi − θ > 0).(1.2)

The interval

Iα(Xn) = [
x(k+1), x(n−k)

)
(1.3)

is obtained by inverting the acceptance regionk < Tn,θ0(Xn) < n − k. See, for
instance, Hettmansperger (1984). The interval (1.3) is a distribution-free(1 −
α(k))100% confidence interval forθ , where

α(k) = 2P (Zn ≤ k), Zn ∼ Binomial(n,1/2).(1.4)

For simplicity, we will only consider levels in the set{α(k)}, k = 1,2, . . . , [n/2].
Hettmansperger and Sheather (1986) show how general levels can be obtained by
interpolating between the order statistics.

Interval (1.3) yields valid inference for the median of the contaminated
distribution, but not for the median of the target distribution. In general,
distribution-free methods do not yield validinference for the target distribution
in the presence of asymmetric contamination. Since the median is a very robust
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location parameter,θ(G) andθ(F ) are generally close for allG in Fε(F ). Still,
as shown by Table 1 computed using the result of Theorem 1, the probability that
(1.3) covers the target medianθ(F )—and the significance level of the associated
sign test—may be severely upset.

1.2. Our main result. Theorem 1 shows that the nonparametric interval (1.3)
is not robust because its probability of covering the median ofF can be much
smaller than 1− α(k) for distributionsG in Fε(F ). More importantly, it gives
a simple way to modify the definition of this interval (see Section 2.2) so that it
remains nonparametric and achieves robustness.

THEOREM 1. Let Xn = (x1, . . . , xn) be a random sample from G ∈ Fε(F )

with F satisfying (A1). Then,

(a)

inf
G∈Fε(F )

PG

(
x(k+1) ≤ θ < x(n−k)

) = 1− α∗(n, k, ε),(1.5)

where

α∗(n, k, ε) = 1− P (k < Zn < n − k),(1.6)

with Zn distributed as Binomial{n, (1− ε)/2}.
(b) The infimum in (1.5) is achieved for any contaminating distribution which

places all its mass to the right or left of θ.

Using Theorem 1, we calculate the minimum coverage probability for the
intervals (1.3) for several values ofn, α andε. The results shown in Table 1 are
disappointingly low, especially for largen. The minimum coverages are not overly
pessimistic since they are caused by any contamination fully supported to the right
(or left) of the target median.

TABLE 1
Minimum coverage probability for contaminated samples

ε

1 − α ≈ 0.95 1 − α ≈ 0.90

n 0 0.05 0.10 0.15 0 0.05 0.10 0.15

20 0.959 0.954 0.938 0.912 0.885 0.876 0.849 0.804
40 0.962 0.952 0.922 0.868 0.919 0.904 0.859 0.784

100 0.943 0.912 0.815 0.655 0.911 0.872 0.755 0.578
200 0.944 0.881 0.689 0.414 0.896 0.811 0.582 0.307
500 0.946 0.789 0.376 0.074 0.902 0.702 0.279 0.043

1000 0.946 0.636 0.108 0.002 0.906 0.537 0.068 0.001
2000 0.948 0.385 0.006 0 0.897 0.273 0.002 0
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2. Coverage and level robustness.

2.1. Coverage robustness of a confidence interval. In connection with the pre-
ceding discussion, we now formally state the desired robustness and nonparametric
properties for the coverage probability of confidence intervals.

DEFINITION I1 (Coverage robustness). We say that a confidence interval
In = [an(Xn), bn(Xn)) hasε-robust coverage 1− α atF if

inf
G∈Fε(F )

PG{an(Xn) ≤ θ < bn(Xn)} = 1− α.(2.1)

A related concept of robust confidence interval was introduced by Huber (1968).
Although Huber’s objective function is not exactly equal to the minimum coverage
probability, it is closely related to it. The following definition seems natural to
convey the nonparametric nature of an interval.

DEFINITION I2 (Nonparametric coverage robustness). We say that a confi-
dence intervalIn = [an(Xn), bn(Xn)) has nonparametricε-robust coverage 1− α

if it has ε-robust level 1− α atF for all F satisfying (A1).

2.2. An exact nonparametric ε-robust interval for θ . We wish to construct
robust and nonparametric confidence intervals for the median of the target
distribution. Theorem 1 derives the exact finite sample least favorable distribution
(under contamination neighborhoods) for (1.3) and shows that this distribution
does not depend on the target distributionF . This theorem also tells us how to
modify the interval (1.3) so that it attains nonparametricε-robust level 1− α.
Namely, the integerk must satisfy the equation

α∗(n, k, ε) = α.(2.2)

Note that the definition (2.2) ofk is based on the distribution Binomial{n, (1 −
ε)/2} instead of the Binomial(n,1/2). As in the classical case, it is not possible
to achieve all the desired exact coverage probabilities 1− α. For simplicity, we
restrict attention to integers

kn = kn(n,α) = argmin|α∗(n, k, ε) − α|,(2.3)

which clearly satisfies

lim
n→∞α∗(n, kn, ε) = α.

In summary, the modified interval covers the median of the target distribution
with a guaranteed confidence level for eachn and for all the distributions in a
contamination neighborhood of a general target distribution.
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2.3. Level robustness of a test. Given the well-known duality between
confidence interval and tests, it is natural to expect that the nonparametric robust
confidence intervals introduced in the previous section will automatically yield
nonparametric tests with good robustness properties.

Following Huber (1965), we next define the concept ofε-robust level-α test.

DEFINITION T1 (Level robustness). LetF be a fixed distribution satisfy-
ing (A1) with θ = θ0. A nonrandomized testϕθ0 hasε-robust levelα (for H0
versusH1) atF if

sup
G∈Fε(F )

PG

{
ϕθ0(Xn) = 1

} = α.

This property ensures the validity of the test over the entire neighbor-
hoodFε(F ). That is, the probability of rejectingH0 is less than or equal toα
not only atF , but also at anyG in Fε(F ).

DEFINITION T2 (Nonparametric level robustness). We say that a nonrandom-
ized testϕθ0 has nonparametricε-robust levelα (for H0 versusH1) if ϕθ0 has
ε-robust levelα atF for all F satisfying (A1) withθ = θ0.

2.4. An exact nonparametric ε-robust test. It is immediate that T1 (T2) holds
for a family of tests if and only if I1 (I2) holds for the associated sequence of
intervals. In particular, theε-robust sign testϕθ0 of levelα can be derived from the
nonparametricε-robust intervalIα(Xn) as follows:

ϕθ0(Xn) =
{

1, if θ0 /∈ Iα(Xn),

0, if θ0 ∈ Iα(Xn),

and, therefore,

ϕθ0(Xn) =
{

1, if Tn,θ0(Xn) ≤ k or Tn,θ0(Xn) ≥ n − k,

0, if k < Tn,θ0(Xn) < n − k,
(2.4)

whereTn,θ (Xn) is given by (1.2) andα∗(n, k, ε) = α.

2.5. Contamination tolerance of a test. In some cases a test may be significant
due to the presence of a small fraction of contamination in the data. To what extent
might this be the case in a given application? The significance of the test would
deliver a stronger message if we could discard the possibility that the results are
due to contamination in the data. This motivates the following definition.

DEFINITION T3 (Contamination tolerance). Consider a family of testsϕθ0,ε

for H0 : θ = θ0 versusH1 : θ �= θ0, 0 ≤ ε < 0.5, such that (i)ϕθ0,ε is ε-robust
of level α and (ii) ε1 < ε2 implies ϕθ0,ε1(Xn) ≥ ϕθ0,ε2(Xn). Given a sampleXn
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such thatϕθ0,0(Xn) = 1, the contamination tolerance for significance levelα atXn

[denoted byτα = τα(Xn)] is defined as

τα(Xn) = sup
{
ε :ϕθ0,ε(Xn) = 1

}
.

In other words, the contamination tolerance for significance levelα is the
maximum level of contaminationε such that theε-robust test of levelα still rejects
the null hypothesis. Therefore, if we believe that the fraction of contamination in
the data is smaller thanτα, it is safe to reject the null hypothesis, even if we do not
know the exact contamination size. Consequently, a largeτα (with smallα) can be
taken as strong evidence against the null hypothesis.

Consider now the family ofε-robust sign tests given by (2.4). Then the value of
τa(Xn) satisfies the equation

α∗{n, rn(Xn), τa} = α,(2.5)

where rn(Xn) = min{Tn,θ0(Xn), n − Tn,θ0(Xn)}. Notice that equation (2.5) has
a solution if and only ifα∗{n, rn(Xn),0} < α, that is, if and only if the null
hypothesis is rejected under the assumption of a zero fraction of contamination
(perfect data). If this condition is not satisfied, we would not rejectH0 even if the
classical sign test is used.

3. Length and power robustness. Definitions I1 and I2 guarantee the correct
coverage level of the interval. However, robust confidence intervals should not only
have correct level but also remain informative under contamination. Definition
I3 formalizes this robustness requirement in terms of the concept ofmaximum
asymptotic length of the interval introduced below.

For the following discussion we must distinguish between thedesign contam-
ination sizeε used to construct the confidence interval (so that it satisfies Defini-
tion I1) and thereal contamination size denoted byδ.

Given a sequence of intervalsIn = [an(Xn), bn(Xn)), we consider the maxi-
mum asymptotic length under contamination of sizeδ atF ,

L{In,F, δ} = sup
G∈Fδ(F )

essuplim sup
n

(
bn(Xn) − an(Xn)

)
,(3.1)

where essup stand for essential supremum. The essup is applied for greater
generality; however, in all cases we are aware of (including the interval based on
the revised sign test), lim supn(bn(Xn) − an(Xn)) is a constant (finite or infinite)
and, therefore, essup is not necessary. Notice that if the interval length is location
invariant, so is the above definition.

The intuitive notion of remaining “informative under contamination of sizeδ”
is captured by the following definition. Notice that our definition of length
breakdown point is the confidence interval counterpart of Hampel’s (1971)
breakdown point of a point estimate.
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DEFINITION I3 (Length robustness). We say that the sequence of intervals
In = [an(Xn), bn(Xn)), n ≥ n0, hasδ-robust length atF if L{In,F, δ} < ∞. The
corresponding length breakdown point atF is given by

δ∗{In,F } = sup{δ :L{In,F, δ} < ∞}.

The next theorem establishes the asymptotic length-robustness of the modified
sign test interval.

THEOREM 2. Suppose that F is continuous and has a symmetric (around θ )
and unimodal density. Let 0 < α < 1 and 0 ≤ ε < 1/2 be fixed and consider the
sequence of intervals In = [x(kn+1), x(n−kn)), with kn given by (2.3).Then:

1. For 0 ≤ δ < (1− ε)/2,

L{In,F, δ} = F−1
{

1+ ε

2(1− δ)

}
− F−1

{
1− ε

2(1− δ)

}
.

2. δ∗{(In),F } = (1− ε)/2.
3. The sequence of intervals In has ε-robust length if and only if ε < 1/3.

4. Let In = [An(Xn),Bn(Xn)) be a sequence of confidence intervals such that

inf
G∈Fε(G0)

PG{An(Xn) ≤ G−1
0 (1/2) < Bn(Xn)} = 1− α

for any continuous distribution G0. Suppose that limn→∞ An(Xn) = A0, and
limn→∞ Bn(Xn) = B0 almost surely when the sample comes from F. Then
B0 ≥ F−1((1+ ε)/2) and A0 ≤ F−1((1− ε)/2).

As one may have expected, the maximum asymptotic length of the sign-test-
based intervals depends on the design and actual fractions of contamination,
ε andδ. Finite maximum lengths are obtained providedδ < (1− ε)/2. Therefore,
length-breakdown point occurs whenδ = (1 − ε)/2. Since the length-breakdown
point δ∗ = (1 − ε)/2 is a decreasing function ofε, there is a trade-off between
the coverage-robustness and the length-robustness of the sign-test-based intervals.
This naturally sets an upper bound of 1/3 on the possible choices of design-
contamination fractions in practice. Part 4 shows that in the case of uncontaminated
data (i.e.,δ = 0), our interval is efficient in that it has the smallest possible
asymptotic length among all nonparametricε-robust confidence intervals for the
median, which upper and lower limits converge. Notice that convergence of the
interval limits is a weak assumption satisfied by all known confidence intervals.

3.1. Numerical results. We wrote a simple S-PLUS function, available on-line
at http://hajek.stat.ubc.ca/˜ruben/code1, which for a given sampleXn, significance
level α, and design contamination fractionε, reports the integerkn, the robust
interval [x(kn+1), x(n−kn)) and its exact minimum coverage probability, 1−
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TABLE 2
Coverage probability (CP) and expected length (EL) for robust confidence interval

with approximate 95%coverage probability

ε = 0 ε = 0.05 ε = 0.10

n CP ELU CP ELU ELC CP ELU ELC

20 0.959 1.22 0.954 1.22 1.3 0.938 1.24 2.52
40 0.962 0.84 0.952 0.83 0.89 0.960 0.97 1.13
60 0.948 0.64 0.961 0.72 0.76 0.955 0.81 0.92
80 0.943 0.54 0.949 0.60 0.64 0.955 0.73 0.84

100 0.943 0.48 0.941 0.53 0.56 0.957 0.69 0.78
200 0.944 0.34 0.947 0.42 0.44 0.949 0.55 0.61
500 0.946 0.22 0.947 0.31 0.32 0.952 0.44 0.50

1000 0.946 0.15 0.947 0.25 0.27 0.948 0.38 0.43
2000 0.948 0.11 0.949 0.22 0.23 0.950 0.34 0.39

α∗(n, kn, ε). Using this function, we carried out a Monte Carlo simulation study
to determine the increase in expected length for the robust nonparametric intervals
[x(kn+1), x(n−kn)) with kn given by (2.3).

We consider two approximate coverage probabilities, 95% (Table 2) and 90%
(Table 3) and three contamination levelsε = 0, 0.05 and 0.10. The caseε = 0
corresponds to confidence intervals based on the classical sign-test. The tables
display the exact infimum coverage probabilities (CP) and average lengths (EL).
The average lengths of the robust confidence intervals are computed under two
scenarios: uncontaminated (ELU) and contaminated samples (ELC). In the latter
case, the fraction of contamination (δ) equals the design contamination (ε). The
contamination is placed at the least favorable location, which, as shown in the

TABLE 3
Coverage probability (CP) and expected length (EL) for robust confidence interval

with approximate 90%coverage probability

ε = 0 ε = 0.05 ε = 0.10

n CP ELU CP ELU ELC CP ELU ELC

20 0.885 0.89 0.876 0.90 0.96 0.938 1.20 2.40
40 0.919 0.70 0.904 0.70 0.74 0.922 0.83 0.95
60 0.908 0.55 0.883 0.55 0.58 0.923 0.72 0.82
80 0.907 0.47 0.918 0.54 0.57 0.891 0.60 0.68

100 0.911 0.43 0.912 0.48 0.51 0.904 0.58 0.66
200 0.896 0.29 0.908 0.36 0.39 0.912 0.49 0.56
500 0.902 0.19 0.895 0.27 0.28 0.904 0.40 0.45

1000 0.906 0.13 0.903 0.23 0.24 0.904 0.36 0.40
2000 0.897 0.09 0.899 0.20 0.21 0.900 0.32 0.36
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TABLE 4
Expected length of parametric (P) and nonparametric (NP) robust intervals

ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

Distribution P NP P NP P NP P NP

Standard Normal 0.132 0.125 0.279 0.251 0.446 0.378 0.637 0.507
Least Favorable 0.132 0.132 0.279 0.282 0.446 0.458 0.637 0.674

proof of Theorem 2, corresponds toH = δy in (1.1) with y → ±∞. Naturally,
the percent increase in average length is larger for larger samples sizes, when the
effect of sampling variability is overcome by the effect of contamination bias. The
average lengths are computed using 8000 replications.

In Table 4 we compare the asymptotic length of the nonparametric robust
confidence intervals with the limiting length of the asymptotic parametric robust
confidence intervals proposed by Huber (1968) and Fraiman, Yohai and Zamar
(2001). The latter were proposed for a contamination neighborhood of the normal
distribution and have limiting length equal to 2�−1[1/{2(1− ε)}], which is twice
the maximum asymptotic bias of the median over the contamination neighborhood.
We calculated the limiting lengths forboth proposals under the normal model and
under the least favorable contaminating distribution inFε(�).

Notice that under Standard Normal, the nonparametric robust intervals have
smaller expected length for all the considered values ofε. The expected lengths
are practically equal for the least favorable contamination with a small advantage
for the parametric interval.

3.2. Power robustness of a test. As in the case of confidence intervals, we must
distinguish between the design contaminationε used to construct the test and the
actual contaminationδ. The following definition formalizes the concept ofrobust
power behavior of a test under contamination of sizeδ.

DEFINITION T4 (Power robustness). LetF be a fixed distribution satisfy-
ing (A1) with θ = θ0 and letFλ(x) = F(x −λ). We say that a sequence of nonran-
domized tests{ϕn,θ0}, n ≥ n0, hasδ-robust power (forH0 versusH1) atF if there
existsK such

inf
G∈Fδ(Fλ)

lim
n→∞PG{ϕn,θ0(Xn) = 1} = 1 for all |λ| > K.(3.2)

This property ensures the consistency of the sequence of nonrandomized
tests{ϕn,θ0}, uniformly over the neighborhoodFε(Fλ), providedλ = θ − θ0 is
large enough. Definition T4 suggests the following measure of asymptotic power
robustness of the sequence{ϕn,θ0(Xn)} of tests, under contamination of sizeδ.
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DEFINITION T5 (Power distance). LetF be a fixed distribution satisfy-
ing (A1) with θ = θ0. The δ-consistency distance of a sequence of testsϕn,θ0,

n ≥ n0, at F denoted byK{ϕn,θ0,F, δ} is the infimum of the set of valuesK for
which (3.2) holds.

The concept of breakdown point of a test was first consider by Ylvisaker
(1977) and Rieder (1982). The latter defined and computed the breakdown point
of rank and M-tests. Our Definition T5 is closely related to the concept of power
breakdown point of a test introduced by He, Simpson and Portnoy (1990). In fact,
for a givenθ �= θ0, the power breakdown point atθ is the value ofδ such that
|θ − θ0| = K{(ϕn,θ0),F, δ}.

Next we define a new concept of breakdown point for a test which does not
depend on a particular value ofθ and is directly associated with the definition of
length breakdown point of a confidence interval given in Section 3.

DEFINITION T6 (Power breakdown). LetF be a fixed distribution satisfying
θ0 = F−1(1/2). The power breakdown pointδ∗ of the sequence of nonrandomized
testsϕn,θ0, n ≥ n0, at F is the supremum of the set of valuesδ for which the
sequence of tests isδ-robust.

The power-robustness properties of the robustified sign test given by (2.4) are
established in the next theorem. They are closely related to the length-robustness
properties of the confidence intervals established in Theorem 2.

THEOREM 3. Let 0 < α < 1 and 0 ≤ ε < 1/2 be fixed and consider the
sequence of tests ϕθ0,n, n ≥ n0, for H0 : θ = θ0 versus H1 : θ �= θ0 given by (2.4)and
kn given by (2.3).Suppose that F is continuous and has a symmetric (around θ )
and unimodal density. Then:

1. The δ-consistency distance for the sequence of tests ϕn,θ0, n ≥ n0, is

K
{(

ϕn,θ0

)
,F, ε

} = F−1
{

1+ ε

2(1− δ)

}
.

2. The power breakdown point of the sequence of tests ϕn,θ0, n ≥ n0, is δ∗ =
(1− ε)/2.

3. The sequence of tests ϕn,θ0, n ≥ n0, has ε-robust power if and only if ε < 1/3.

4. Possible extensions and further research. Robust nonparametric confi-
dence intervals and tests for a location parameter could be defined using other rank
statistics such as the signed Wilcoxon test statistics. In this case the parameter of
interest would be defined as the center of symmetry of the target distribution, and,
therefore, the target distribution (but not the observed distribution) would need to
be symmetric. The main theoretical problem, which we were not able to solve,
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is the derivation of the least favorable distribution that gives the minimum cover-
age. We conjecture that this distribution is the one that puts all its mass at+∞ or
at−∞.

We are currently studying possible extensions of our procedure to the case
of two samples and to the case of simple linear regression. For the two-sample
problem, we wish to construct robust nonparametric confidence intervals for the
shift parameter, based on the two sample median test statistic. For the simple
linear regression problem, we wish to construct robust nonparametric confidence
intervals for the slope parameter, based on the Brown and Mood (1951) test
statistic, which is a natural extension of the sign test statistic.

APPENDIX

Lemma 1 is needed to prove Theorem 1. The proof of this lemma can be found
as Lemma 4 of Yohai and Zamar (2004).

LEMMA 1. Suppose that X is Bin(n,p) and let

h(p) =
n−k∑
i=k

(
n

i

)
pi(1− p)n−i .

Then (i) h(p) = h(1 − p), (ii) h(p) is nondecreasing on 0 ≤ p ≤ 1/2 for all
k = 0,1, . . . , [n/2].

PROOF OFTHEOREM 1. We have

PG

(
x(k+1) ≤ θ < x(n−k)

) = PG{k < Tn,θ (Xn) < n − k}
= P (k < Zn < n − k),

whereZn is distributed as Binomial{n,1 − G(θ)}. On the other hand,G(θ) =
(1− ε)F (θ) + εH(θ) and so

1− ε

2
= (1− ε)F (θ) ≤ G(θ) ≤ (1− ε)F (θ) + ε = 1+ ε

2
.

Therefore, for allG ∈ Fε(F ), (1 − ε)/2 ≤ 1 − G(θ) ≤ (1 + ε)/2 with the lower
and upper bounds attained whenH(θ) concentrates all its mass to the left and right
of θ, respectively. The theorem now follows from Lemma 1.�

The following lemma is needed to prove Theorem 2. For a proof of Lemma 2
see Lemma 5 in Yohai and Zamar (2004).

LEMMA 2. Let Xn = (x1, . . . , xn) be i.i.d. random variables with distrib-
ution G. Consider the sequence of intervals In(Xn) = [x(kn+1), x(n−kn)) with
lengths ln(Xn) = x(n−kn) − x(kn+1) and levels α∗(n, kn, ε) → α, 0< α < 1. Then
limn→∞ l(Xn) = G−1(1+ε

2 ) − G−1(1−ε
2 ) = L(G,ε).
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PROOF OFTHEOREM 2. PutL∗(G, ε) = G−1{(1+ ε)/2} − G−1{(1− ε)/2}.
By Lemma 2, to prove part 1 it is enough to show

sup
G∈Fδ(F )

L∗(G, ε) = F−1
{

1+ ε

2(1− δ)

}
− F−1

{
1− ε

2(1− δ)

}
.(A.1)

We start by showing that

sup
G∈Fδ(F )

L∗(G, ε) ≤ F−1
{

1+ ε

2(1− δ)

}
− F−1

{
1− ε

2(1− δ)

}
.(A.2)

Let G = (1− δ)F + δH . Then

a1 = G−1
(

1− ε

2

)
, a2 = G−1

(
1+ ε

2

)
,

a3 = F−1
{

1− ε

2(1− δ)

}
= 0, a4 = F−1

{
1+ ε

2(1− δ)

}
.

We will show first that

F(a2) − F(a1) ≤ F(a4) − F(a3).(A.3)

This follows because by definition of quantiles,

ε = G(a2) − G(a1) = (1− δ)F (a2) + δH(a2) − (1− δ)F (a1) − δH(a1)

= (1− δ){F(a2) − F(a1)} + δ{H(a2) − H(a1)}
≥ (1− δ){F(a2) − F(a1)},

and, therefore,

F(a2) − F(a1) ≤ ε

1− δ
.(A.4)

On the other hand,

F(a4) − F(a3) = 1+ ε

2(1− δ)
− 1− ε

2(1− δ)
= ε

1− δ
.(A.5)

Therefore, (A.3) follows from (A.4) and (A.5). To complete the proof of (A.2), we
consider two cases:

Case 1 (δ ≤ ε). First notice that:

(i) 1/2≥ (1− ε)/{2(1− δ)} implies that

0 = F−1
(

1

2

)
≥ F−1

{
1− ε

2(1− δ)

}
= a3.

(ii) (1− ε)/2 = F(a1) ≥ (1− δ)F (a1) implies that

a1 ≤ F−1
{

1− ε

2(1− δ)

}
= a3.
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By (A.3),

F(a4) − F(a2) ≥ F(a3) − F(a1).(A.6)

Given the symmetry and unimodality ofF, (A.2) follows from (A.6) if we can
show that

a2 ≥ −a3.(A.7)

To prove (A.7), we first notice the identity

(ε − δ)

2(1− δ)
= 1

2
− 1− ε

2(1− δ)
= 1+ ε − 2δ

2(1− δ)
− 1

2
.(A.8)

Symmetry ofF and (A.8) imply

F−1
{

1+ ε − 2δ

2(1− δ)

}
= −F−1

{
1− ε

2(1− δ)

}
= −a3.(A.9)

Moreover,(1+ ε)/2 = G(a2) ≤ (1− δ)F (a2) + δ implies

a2 ≥ F−1
{

1+ ε − 2δ

2(1− δ)

}
.(A.10)

Equation (A.7) follows now from (A.9) and (A.10).
Case 2 (δ > ε). Since in this case 1/2 < (1− ε)/{2(1− δ)}, we have

0 = F−1
(

1

2

)
≤ F−1

{
1− ε

2(1− δ)

}
= a3.(A.11)

Moreover,(1− ε)/2 = G(a1) ≤ (1− δ)F (a1) + δ implies

a1 ≥ F−1
{

1− ε − 2δ

2(1− δ)

}
.(A.12)

We have the identity

ε + δ

2(1− δ)
= 1

2
− 1− ε − 2δ

2(1− δ)
= 1+ ε

2(1− δ)
− 1

2
.(A.13)

Equations (A.12) and (A.13) give

a1 ≥ F−1
{

1− ε − 2δ

2(1− δ)

}
= −F−1

{
1+ ε

2(1− δ)

}
= −a4.(A.14)

The inequality(1− ε)/2 = G(a1) ≥ (1− δ)F (a1) implies

a1 ≤ F−1
{

1− ε

2(1− δ)

}
= a3.(A.15)

Equations (A.14) and (A.15) give

−a4 ≤ a1 ≤ a3.(A.16)
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Then (A.2) follows now from (A.16) and the unimodality and the symmetry ofF.

Let δm be the point mass distribution atm. Then

lim
m→∞L∗{(1− ε)F + εδm, ε} = F−1

{
1+ ε

2(1− δ)

}
− F−1

{
1− ε

2(1− δ)

}
.

This together with (A.2) implies (A.1). The proofs of parts 2 and 3 are
straightforward. To prove part 2 just notice that the maximum interval length is
finite provided that(1+ε)/{2(1−δ)} < 1. Part 3 follows immediately from part 2.

Finally, to prove part 4, letG0 be defined by

G0(x) =



0, if x < F−1(ε),
F(x) − ε

1− ε
, if x ≥ F−1(ε),

andH be defined by

H(x) =



F(x)

ε
, if x < F−1(ε),

1, if x ≥ F−1(ε).

Then observe thatF = (1 − ε)G0 + εH, and, therefore,F ∈ Fε(G0). Conse-
quently,G−1

0 (1/2) = F−1((1 + ε)/2) ∈ [A0,B0] and, therefore,B0 ≥ F−1((1 +
ε)/2).

Put

G0(x) =



F(x)

1− ε
, if x < F−1(1− ε),

1, if x ≥ F−1(1− ε),

H(x) =



0, if x < F−1(1− ε),
F(x) − (1− ε)

ε
, if x ≥ F−1(1− ε).

We also have thatF = (1 − ε)G0 + εH, and, therefore,F ∈ Fε(G0). Then
G−1

0 (1/2) = F−1((1− ε)/2) ∈ [a0, b0] and, therefore,A0 ≤ F−1((1− ε)/2). �

PROOF OF THEOREM 3. We can assume without loss of generality that
θ0 = 0. We start by showing that given anyF , we have

lim
n→∞PG(ϕn,0 = 1) =




1, if G−1{(1− ε)/2} > 0,

0, if G−1{(1− ε)/2} < 0 < G−1{(1+ ε)/2},
1, if G−1{(1+ ε)/2} < 0.

(A.17)

We have

PG{ϕn,0(Xn) = 1} = PG

{
0 /∈ [

x(kn), x(n−kn)

)}
.(A.18)
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In Lemma 2 we have shown thatx(kn) → G−1{(1−ε)/2} andx(n−kn) → G−1{(1+
ε)/2}. Therefore, (A.17) follows from (A.18). Then

inf
G∈Fδ(Fλ)

lim
n→∞PG{ϕn,0(Xn) = 1} = 1 for all |λ| > K

holds either if

sup
G∈Fδ(Fλ)

G−1
(

1+ ε

2

)
= λ + sup

G∈Fδ(F )

G−1
(

1+ ε

2

)
< 0(A.19)

or

inf
G∈Fδ(Fλ)

G−1
(

1− ε

2

)
= λ + inf

G∈Fδ(F )
G−1

(
1− ε

2

)
> 0.(A.20)

As in Theorem 2, we can show that

sup
G∈Fδ(F )

G−1
(

1+ ε

2

)
= F−1

{
1+ ε

2(1− δ)

}

and

inf
G∈Fδ(F )

G−1
(

1− ε

2

)
= F−1

{
1− ε − 2δ

2(1− δ)

}
= −F−1

{
1+ ε

2(1− δ)

}
.

In order for either (A.19) or (A.20) to hold, it is required that

|λ| > F−1
{

1+ ε

2(1− δ)

}
,

proving part 1 of the theorem. The proofs of parts 2 and 3 are straightforward.�
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