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A BERNSTEIN–VON MISES THEOREM IN THE
NONPARAMETRIC RIGHT-CENSORING MODEL1

BY YONGDAI KIM AND JAEYONG LEE

Seoul National University

In the recent Bayesian nonparametricliterature, many examples have
been reported in which Bayesian estimators and posterior distributions do
not achieve the optimal convergence rate, indicating that the Bernstein–von
Mises theorem does not hold. In this article, we give a positive result in this
direction by showing that the Bernstein–von Mises theorem holds in survival
models for a large class of prior processes neutral to the right. We also show
that, for an arbitrarily given convergence raten−α with 0 < α ≤ 1/2, a prior
process neutral to the right can be chosen so that its posterior distribution
achieves the convergence raten−α .

1. Introduction. The asymptotic properties of posterior distributions and
Bayes estimators in nonparametric models have been given much attention in
the recent literature. Diaconis and Freedman (1986)opened the discussion in this
area by showing that in nonparametric models even an innocent looking prior can
produce an inconsistent posterior. This disturbing result stirred Bayesians, because
it says that a Bayesian can be more and more sure of a wrong parameter value as
the sample size increases. It also initiated research efforts to garner “safe” priors
in the asymptotic sense. For the research work regarding posterior consistency, see
Freedman (1963), Schwartz (1965), Barron, Schervish and Wasserman (1999) and
Ghosal, Ghosh and Ramamoorthi (1999). In the context of survival models, Kim
and Lee (2001) showed that not all the prior processes neutral to the right have
consistent posterior distributions and gave sufficient conditions for the consistency.

Cox (1993) and Zhao (2000) showed that this unfortunate phenomenon
continues to occur in the posterior convergence rate. For example, Zhao (2000)
showed that in an infinite dimensional normal model, there is no independent
normal prior supported on the parameter space that has a Bayes estimator that
attains the optimal minimax rate. (In the same article, however, she constructed
a class of priors, mixtures of normal priors supported on the parameter space,
which achieves the optimal minimax rate.) These examples cast doubt on the
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Bernstein–von Mises theorem in nonparametric models even with the prior that
has a consistent posterior.

The Bernstein–von Mises theorem states that the posterior distribution centered
at the maximum likelihood estimator (MLE) is asymptotically equivalent to the
sampling distribution of the MLE. Due to the recent advent of the Markov
chain Monte Carlo method, Bayesians’ computational ability exceeds that of
frequentists. In the situations where frequentists do not have a computational tool
while Bayesians do, frequentists often use the Bayesian credible set as a frequentist
confidence interval. The theoretical justification of this practice is the Bernstein–
von Mises theorem. Hence, if the Bernstein–von Mises theorem does not hold, this
practice is not warranted. The Bernstein–von Mises theorem is squarely important
to Bayesians as well, because invalidity of the Bernstein–von Mises theorem often
means that a Bayesian credible set has zero efficiency relative to the frequentist
confidence interval.

In this article we provide a positive result in this direction by showing that
the Bernstein–von Mises theorem does hold in survival models for a large class
of prior processes. Indeed, for popular prior processes such as Dirichlet, beta
and gamma processes, the Bernstein–von Mises theorem holds. The situation is
subtle, however. In an example provided in Section 4, we also show that for any
given 0< α ≤ 1/2, there is a consistent prior process neutral to the right that
has a posterior convergence rate that is exactlyn−α . This result suggests that,
for a given model and data, one prior process can be much slower extracting
information from the data than another. This confirms the findings in the literature
that posterior consistency does not guarantee the optimal convergence rate and
in practice a prior must be carefully examined before it is used. In the same
example, an interesting prior process is found. This prior process achieves the
optimal posterior convergence rate, but its posterior distribution is not equivalent
to the sampling distribution of the MLE; hence, the Bernstein–von Mises theorem
does not hold. This example shows that the optimal convergence rate does not
guarantee the Bernstein–von Mises theorem.

The Bernstein–von Mises theorem for parametric models is a well-known
result. See, for instance, Section 7.4.2 of Schervish (1995) and references therein.
Previous research on the Bernstein–von Mises theorem for nonparametric models
includes Lo (1983, 1986, 1993), Brunner and Lo (1996), Diaconis and Freedman
(1998), Conti (1999) and Freedman (1999). Among them, Lo (1983, 1986, 1993),
Brunner and Lo (1996) and Conti (1999) reported some of the earlier positive
results on the Bernstein–von Mises theorem for some nonparametric models. See
also Ghosal, Ghosh and van der Vaart (2000) and Shen and Wasserman (2001) for
a related theory of posterior convergence rates.

In Section 2 the survival model and prior processes neutral to the right are briefly
introduced. In Section 3 the main result of this article, the Bernstein–von Mises
theorem of survival models, is given. In Section 4 a class of prior processes with
arbitrary posterior convergence raten−α , 0< α ≤ 1/2, and a simulation study are
given. The proof of the Bernstein–von Mises theorem is given in Section 5.
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2. Survival models and processes neutral to the right. Let X1, . . . ,Xn

be i.i.d. survival times with cumulative distribution function (c.d.f.)F and let
C1, . . . ,Cn be independent censoring times with c.d.f.G, independent of the
Xi ’s. Since the observations are subject to right censoring, we observe only
(T1, δ1), . . . , (Tn, δn), whereTi = min(Ci,Xi) and δi = I (Xi ≤ Ci). Let Dn =
{(T1, δ1), . . . , (Tn, δn)}. Let A be the cumulative hazard function (c.h.f.) ofF ,
A(t) = ∫ t

0 dF (s)/(1− F(s−)).

We say that a prior process on c.d.f.F is a process neutral to the right if the
corresponding c.h.f.A is a nonstationary subordinator (a positive nondecreasing
independent increment process) such thatA(0) = 0, 0≤ �A(t) ≤ 1 for all t with
probability 1 and either�A(t) = 1 for somet > 0 or limt→∞ A(t) = ∞ with
probability 1. See Doksum (1974) for the original definition of processes neutral
to the right and see Hjort (1990), Kim (1999) and Kim and Lee (2001) for the
connection between the definition given here and Doksum’s definition. In what
follows, the termsubordinator is used for a prior process of c.h.f.A which induces
a process neutral to the right onF .

Kim (1999) used the following characterization of subordinators. This charac-
terization can be dated back to Lévy [see the note in Breiman (1968), page 318].
Similar characterization can also be found in Theorem 6.3VIII in Daley and Vere-
Jones (1988) and Theorem 3 in Fristedt and Gray [(1997), page 606]. For any
given subordinatorA(t) on [0,∞), there exists a unique random measureµ on
[0,∞) × [0,1] such that

A(t) =
∫
[0,t]×[0,1]

xµ(ds, dx).(1)

In fact,µ is defined by

µ([0, t] × B) = ∑
s≤t

I
(
�A(s) ∈ B

)

for any Borel subsetB of [0,1] and for all t > 0. Sinceµ is a Poisson random
measure [Jacod and Shiryaev (1987), page 70], there exists a uniqueσ -finite
measureν on [0,∞) × [0,1] such that

E
(
µ([0, t] × B)

) = ν([0, t] × B)(2)

for all t > 0. Conversely, for a givenσ -finite measureν such that∫ t

0

∫ 1

0
xν(ds, dx) < ∞

for all t , there exists a unique Poisson random measureµ on [0,∞)×[0,1] which
satisfies (2) [Jacod (1979)] and so we can construct a subordinatorA through (1).
Conclusively, we can useν to characterize a subordinatorA.
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Suppose that a given subordinatorA has fixed discontinuity points att1 <

t2 < · · · and that the Lévy formula is given by

E
(
exp(−θA(t))

) =
[ ∏

ti≤t

E
(
exp(−θ�A(ti ))

)]
exp

(
−

∫ 1

0
(1− e−θx) dLt(x)

)
,

whereLt(x) is the Lévy measure. Then it can be shown [see Theorem II.4.8 in
Jacod and Shiryaev (1987)] that

ν([0, t] × B) =
∫
B

dLt(x) + ∑
ti≤t

∫
B

dHi(x)

for all t > 0 and for any Borel setB of [0,1], whereHi(x) is the distribution
function of �A(ti). When there are no fixed discontinuities,µ is a Poisson
random measure defined on[0,∞)×[0,1] with intensity measureν anddLt(x) =∫
[0,t] ν(ds, dx). Hence, the measureν simply extendsdLt by incorporating the

fixed discontinuity points. However, this simple extension provides a convenient
notational device. The posterior distribution, which typically has many fixed
discontinuity points, can be summarized neatly by use of the corresponding
measureν without separating out the stochastically continuous part and the fixed
discontinuity points as was done in previous work [Ferguson and Phadia (1979)
and Hjort (1990)]. For this reason, we callν simply theLévy measure of A.

From the Lévy measureν, we can easily calculate the mean and variance of the
subordinator using the formulas [Kim (1999)]

E(A(t)) =
∫ t

0

∫ 1

0
xν(ds, dx)(3)

and

Var(A(t)) =
∫ t

0

∫ 1

0
x2ν(ds, dx) − ∑

s≤t

(∫ 1

0
xν({s}, dx)

)2

.

These formulas constitute basic facts for the asymptotic theory of the posterior and
will be used subsequently herein.

The characterization of subordinators with Lévy measures is also convenient in
representing the posterior distribution, for the class of processes neutral to the right
is conjugate with respect to right censored survival data. Suppose a prioriA is a
subordinator with Lévy measure

ν(ds, dx) = fs(x) dx ds for s ≥ 0 and 0≤ x ≤ 1,(4)

with lim t→∞
∫ t
0

∫ 1
0 xfs(x) dx ds = ∞. Then the posterior distribution ofA given

Dn is again a subordinator with Lévy measureνp given by

νp(ds, dx) = (1− x)Yn(s)fs(x) dx ds + dHs(x)
1

�Nn(s)
dNn(s),(5)
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whereHs(x) is a distribution function on[0,1] and is defined by

dHs(x) ∝ x�Nn(s)(1− x)Yn(s)−�Nn(s)fs(x) dx

andNn(t) = ∑n
i=1 I (Ti ≤ t, δi = 1), Yn(t) = ∑n

i=1 I (Ti ≥ t), �Nn(t) = Nn(t) −
Nn(t−). Note that the posterior process is the sum of stochastically continuous
and discrete parts, which correspond to the first and the second terms in (5),
respectively. Note also thatHs is the distribution of jump size ats if �Nn(s) �= 0.
This fact is used later. For the proof of (5), see Hjort (1990) or Kim (1999).

Let F0 be the true distribution of theXi ’s and letA0 be the c.h.f. ofF0. We will
study the asymptotic behavior ofA on a fixed compact interval[0, τ ]. Throughout
this article we assume the following two conditions:

CONDITION C1. F0(τ−) < 1 andG(τ−) < 1.

CONDITION C2. A0 is continuous on[0, τ ].

Condition C1 guarantees thatYn(τ ) → ∞ asn → ∞ with probability 1, which
is essential for the asymptotic theory of survival models. Condition C2 implies that
�Nn(s) has a value of either 0 or 1.

3. Bernstein–von Mises theorem. Assume that a prioriA is a nonstationary
subordinator with Lévy measure

ν([0, t] × B) =
∫ t

0

∫
B

1

x
gs(x) dx λ(s) ds,(6)

where
∫ 1
0 gt (x) dx = 1 for all t ∈ [0, τ ].

REMARK. Comparing (4) and (6), we can see thatλ(t) = ∫ 1
0 xft(x) dx and

gt (x) = xft(x)/λ(t) providedλ(t) > 0.

We need the following conditions for the Bernstein–von Mises theorem:

CONDITION A1. g∗ = supt∈[0,τ ],x∈[0,1](1− x)gt (x) < ∞.

CONDITION A2. There exists a functionq(t) defined on[0, τ ] such that
0 < inft∈[0,τ ] q(t) ≤ supt∈[0,τ ] q(t) < ∞ and, for someα > 0 andε > 0,

sup
t∈[0,τ ],x∈[0,ε]

∣∣∣∣gt (x) − q(t)

xα

∣∣∣∣ < ∞.

CONDITION A3. λ(t) is bounded and positive on(0, τ ).
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The convergence rate of the posterior distribution depends mainly on the
behavior of the prior process in the neighborhood of 0. This is because the
jump sizes of the posterior process get smaller asn gets larger. Condition A1
is a technical one to make the posterior mass of the jump sizes of the fixed
discontinuity points outside the neighborhood of 0 be asymptotically negligible.
Condition A2 is the main condition, in whichα measures the smoothness ofgt (x)

in x around 0. The constantα plays a crucial role in determining the convergence
rate of the posterior distribution. In fact, the Bernstein–von Mises theorem may
not hold if α ≤ 1/2. For an example, see Section 4. The boundedness ofλ in
Condition A3 makes the posterior distribution eventually be dominated by data.
The positiveness ofλ in Condition A3 is also necessary. Supposeλ(t) = 0 for
t ∈ [c, d], where 0< c < d < τ . Then both the prior and posterior put mass 1
to the set of c.h.f.sA, with A(d) = A(c). Hence the posterior distribution of
A(d) − A(c) has mass 1 at 0 and the Bernstein–von Mises theorem does not hold
unlessA0(d) = A0(c).

Before stating the theorems, we introduce some notation. For a given random
variableZn, we write Zn = O(nδ) with probability 1 if there exists a constant
M > 0 such that|Zn|/nδ ≤ M for all but finitely manyn with probability 1.
Let δa be the degenerate probability measure ata. Denote byL(X|Y ) the
conditional distribution ofX given Y . Let W be a standard Brownian motion
and letÂn be the Aalen–Nelson estimator defined byÂn(t) = ∫ t

0 dNn(s)/Yn(s).

The sampling distribution of
√

n(Ân − A0) converges in distribution toW(U0(·)),
whereU0(t) = ∫ t

0 dA0(s)/Q(s), with Q(t) = Pr(T1 ≥ t) [see Theorem IV.1.2 in
Andersen, Borgan, Gill and Keiding (1993)]. HereU0 is well defined, because
inft∈[0,τ ] Q(t) > 0 due to Condition C1.

The following theorem is a general result on the convergence of the posterior
distribution. The Bernstein–von Mises theorem and an example of suboptimal
convergent rates in Section 4 will be based on this theorem. Letqn be the number
of distinct uncensored observations and lett1 < t2 < · · · < tqn be the distinct
uncensored observations. LetAd(t) = ∑qn

i=1 �A(ti). Let D[0, τ ] be the space of
cadlag functions on[0, τ ] equipped with the uniform topology and the ballσ -field.

THEOREM 1. Under Conditions A1–A3:

(i) L(
√

n(A(·) − Ad(·))|Dn)
d→ δ0 on D[0, τ ] with probability 1;

(ii) L(
√

n(Ad(·) − E(Ad(·)|Dn))|Dn)
d→ W(U0(·)) on D[0, τ ] with probabil-

ity 1;
(iii) supt∈[0,τ ] |E(Ad(t)|Dn) − Ân(t)| = O(n−min{1,α}) with probability 1.

The proof is given in Section 5.
Part (i) of Theorem 1 states that the stochastically continuous part of the

posterior process,A − Ad, vanishes with a rate faster than the optimal rate,n−1/2.

Part (ii) states that the fixed discontinuous part of the posterior process,Ad,

centered at its mean is asymptotically equivalent to the frequentist sampling
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distribution of Ân since W(U0(t)) in Theorem 1(ii) is the limiting sampling
distribution of

√
n(Ân(t) − A0(t)). Part (iii) states that the difference of the

posterior mean ofAd andÂn vanishes with varying order,n−min{1,α}, for α > 0.

Hence, if α < 1/2, the overall convergence rate of the posterior distribution
could be dominated by the convergence rate of (iii), which results in suboptimal
convergence rates. Indeed, in Section 4 such an example is given.

Although a rigorous proof of Theorem 1 is given in Section 5, we sketch the
proof here. For (i), we first approximate the first two moments of the posterior
distribution ofA by those of the posterior with a beta process prior (see Example 1
for a definition of beta process). Since the closed forms of the first two moments
of the posterior with the beta process prior are known [Hjort (1990)], one can
easily prove (i) using Lemma 7. Part (iii) is proved similarly. For (ii), the posterior
distribution ofAd consists of the sum of independent random variables, and so
the central limit theorem for independent random variables [e.g., Theorem 19 in
Section V.4 in Pollard (1984)] can be applied.

THEOREM 2 (Bernstein–von Mises theorem).Under Conditions A1–A3 with
α > 1/2,

L
(√

n
(
A(·) − Ân(·))∣∣Dn

) d→ W
(
U0(·))

on D[0, τ ] with probability 1.

PROOF. This theorem is an immediate consequence of Theorem 1, because
we can decompose

n1/2(A(t) − Â(t)
) = n1/2(A(t) − Ad(t)

) + n1/2(Ad(t) − E
(
Ad(t)|Dn

))
+ n1/2(E(

Ad(t)|Dn

) − Ân(t)
)
. �

COROLLARY 1. Under the same conditions in Theorem 2,

L
(√

n
(
S(·) − Ŝn(·))∣∣Dn

) d→ −S0(·)W (
U0(·))

on D[0, τ ] with probability 1, where S, Ŝn and S0 are the corresponding survival
functions of A, Ân and A0.

PROOF. Note that the survival function is recovered from the cumulative haz-
ard function by the product integration operator which is Hadamard differentiable.
The result follows from the functional delta method. See Gill (1989).�

REMARK. If Conditions A1–A3 as well as Condition C1hold for all τ > 0,
Theorem 2 and Corollary 1 are valid onD[0,∞), because the weak convergence
on D[0,∞) is defined by the weak convergence onD[0, τ ] for all τ > 0 [Pollard
(1984)].
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A convenient sufficient condition for Condition A2 withα = 1 can be given as
follows. Suppose that for someε > 0

sup
t∈[0,τ ],x∈(0,ε)

∣∣g(1)
t (x)

∣∣ < ∞,(7)

whereg
(1)
t (x) is the first derivative ofgt (x) in x on [0,1]. Then, by the mean value

theorem, Condition A2 holds withα = 1 andq(t) = gt (0).

In the next three examples, we illustrate that the Bernstein–von Mises theorem
holds for beta, Dirichlet and gamma prior processes.

EXAMPLE 1 (Beta processes). The beta process with mean
 and scale
parameterc is a nonstationary subordinator with Lévy measureν, ν(dt, dx) =
c(t)x−1(1− x)c(t)−1 dx d
(t). Suppose
(t) = ∫ t

0 λ(s) ds, whereλ(t) is positive
continuous on(0, τ ) and 0< inft∈[0,τ ] c(t)(= c∗) ≤ supt∈[0,τ ] c(t)(= c∗) < ∞.

Condition A1 is true because

sup
t∈[0,τ ],x∈[0,1]

|(1− x)gt (x)| = sup
t∈[0,τ ],x∈[0,1]

∣∣c(t)(1− x)c(t)
∣∣ ≤ c∗ < ∞.

For Condition A2, sinceg(1)
t (x) = c(t)(c(t) − 1)(1− x)c(t)−2, we have

sup
t∈[0,τ ],x∈(0,ε)

∣∣g(1)
t (x)

∣∣ ≤ c∗(c∗ + 1)max{1, (1− ε)c∗−2}.

Thus, by (7), Condition A2 holds withq(t) = c(t). Since Condition A3 is assumed,
the Bernstein–von Mises theorem holds.

EXAMPLE 2 (Dirichlet processes). Hjort (1990) showed that when the prior
of the distributionF is the Dirichlet process with base measureα, the induced
prior of the c.h.f. is the beta process withc(t) = α([0,∞))(1 − H(t)) and
(t),

the c.h.f. ofH(t), whereH(t) = α([0, t])/α([0,∞)). Suppose
(t) = ∫ t
0 λ(s) ds.

Then if λ(t) is positive bounded on(0, τ ) andH(τ) < 1, then, as in Example 1, it
can be shown that Conditions A1–A3 are satisfied.

EXAMPLE 3 (Gamma processes). A priori, assume thatY (t) = − log(1 −
F(t)) is a gamma process with parameters(H(t), d(t)) with H(t) = ∫ t

0 h(s) dx.

Here the gamma process with parameters(H(t), d(t)) is defined byY (t) =∫ t
0

1
d(s)

dX(s), whereX(t) is a subordinator that has a marginal distribution ofX(t)

that is a gamma distribution with parameters(
∫ t
0 d(s) dH(s),1). See Lo (1982) for

details. This prior process was used by Doksum (1974), Kalbfleisch (1978) and
Ferguson and Phadia (1979) . Since

log E
(
exp(−θY (t))

) =
∫ t

0

∫ ∞
0

(e−θx − 1)
d(s)

x
exp(−d(s)x) dx dH(s),
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it can be shown that the c.h.f.A of F is a subordinator with Lévy measureν given
by

ν([0, t] × B) =
∫ t

0
c(s)

∫
B

1

− log(1− x)
(1− x)d(s)−1 dx d
(s),

where

c(t) =
(∫ 1

0

x

− log(1− x)
(1− x)d(t)−1 dx

)−1

and


(t) =
∫ t

0

d(s)

c(s)
dH(s).

Therefore, we have

gt (x) = c(t)
x

− log(1− x)
(1− x)d(t)−1, 0 ≤ x ≤ 1,

andλ(t) = d(t)h(t)/c(t).

Supposeh(t) is positive and bounded ont ∈ (0, τ ) and 0< inft∈[0,τ ] d(t)(=
d∗) ≤ supt∈[0,τ ] d(t)(= d∗) < ∞. We will show that Conditions A1–A3 hold under
these conditions. First, we show that 0< inft∈[0,τ ] c(t)(= c∗) ≤ supt∈[0,τ ] c(t)(=
c∗) < ∞. Note that

inf
t∈[0,τ ] c(t) =

(∫ 1

0

x

− log(1− x)
(1− x)d∗−1 dx

)−1

=
(∫ 1

0

x(1− x)d∗/2

− log(1− x)
(1− x)d∗/2−1dx

)−1

≥
(

m

d∗/2

)−1

> 0,

wherem = supx∈[0,1] −x(1 − x)d∗/2/ log(1 − x). By a similar argument, we can
show that supt∈[0,τ ] c(t) < ∞. Now, Condition A1 follows because

sup
t∈[0,τ ],x∈[0,1]

|(1− x)gt (x)| = sup
t∈[0,τ ],x∈[0,1]

∣∣∣∣c(t) x

− log(1− x)
(1− x)d(t)

∣∣∣∣
≤ sup

t∈[0,τ ],x∈[0,1]

∣∣∣∣c(t) x

− log(1− x)
(1− x)d∗

∣∣∣∣
≤ c∗ sup

x∈[0,1]

∣∣∣∣ x(1− x)d∗

− log(1− x)

∣∣∣∣ < ∞.

Similarly, Condition A2 can be shown by (7) withq(t) = c(t) and Condition A3
follows from inft∈[0,τ ] c(t) > 0.
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4. An example: suboptimal convergence rates. In this section, we show
that, for a given convergence raten−α with 0 < α ≤ 1/2, there exists a prior
process neutral to the right whose posterior convergence rate isn−α . Consider
the class of prior processes neutral to the right with Lévy measure

να(dt, dx) = 1

x
(1+ xα) dx dt, x ∈ (0,1], t ≥ 0.(8)

In the next theorem we show that, for each 0< α ≤ 1/2, the posterior with the
prior processνα achieves convergence raten−α.

THEOREM 3. A priori let A be a subordinator with Lévy measure να in (8).
Then:

(i) For 0 < α < 1/2, L(nα(A(·) − Ân(·))|Dn)
d→ δJα(·) on D[0, τ ] with

probability 1, where Jα(t) = α�(α + 1)
∫ t
0 dA0(s)/Q

α(s).

(ii) For α = 1/2, L(n1/2(A(·)− Ân(·))|Dn)
d→ W(U0(·))+J1/2(·) on D[0, τ ]

with probability 1.

(iii) For α > 1/2, L(n1/2(A(·) − Ân(·))|Dn)
d→ W(U0(·)) on D[0, τ ] with

probability 1.

REMARK 1. When 0< α < 1/2, the posterior convergence rate isn−α, which
is slower than the optimal raten−1/2.

REMARK 2. Whenα = 1/2, the posterior convergence rate is optimal, but the
limiting posterior distribution is the limiting sampling distribution of the Aalen–
Nelson estimator plus a bias termJ1/2. So the Bayesian credible set does not have
appropriate frequentist coverage probability, although it has the optimal posterior
convergence rate.

REMARK 3. The Bernstein–von Mises theorem holds whenα > 1/2. Al-
though we do not know whether Conditions A1–A3 are necessary and sufficient
conditions for the Bernstein–von Mises theorem, this example shows that these
conditions are fairly minimal.

To prove Theorem 3 we need the following lemma, the proof of which can be
found in Appendix A.

LEMMA 1. For 0 < α ≤ 1/2,

sup
t∈[0,τ ]

∣∣nα
(
E

(
Ad(t)|Dn

) − Ân(t)
) − Jα(t)

∣∣ → 0

with probability 1.
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PROOF OF THEOREM 3. It is easy to see thatνα in (8) satisfies Condi-
tions A1–A3 withq(t) = (α + 1)/(α + 2) andλ(t) = 1. Now note that

nα
(
A(t) − Ân(t)

) = nα
(
A(t) − Ad(t)

) + nα
(
Ad(t) − E

(
Ad(t)|Dn

))
+ nα(

E
(
Ad(t)|Dn

) − Ân(t)
)
.

The first term of the right-hand side converges weakly to 0 for allα > 0; the second
term converges weakly to 0 forα < 1/2 and converges weakly toW(U0(·)) for
α ≥ 1/2 by Theorem 1. Finally, the third term converges weakly toJα for α ≤ 1/2
and converges weakly to 0 forα > 1/2 by Lemma 1. Hence, the proof is complete
by Slutsky’s theorem. �

Theorem 3 shows that the posterior with the prior (8) withα > 1/2 can be
used to construct an asymptotically valid frequentist confidence interval, while the
posterior withα ≤ 1/2 cannot. A simulation study was conducted to see the effect
of α and sample sizen on empirical coverage probability. Right censored data
were generated from Exponential(1) for the survival time and Exponential(0.25)
for the right-censoring times, which amounts to censoring probability 0.2. For
each of seven sample sizesn = 10,50,100,500,1000,2000,5000, 1000 data
sets were generated. The posterior distribution was computed, based on an
algorithm modified from Lee and Kim (2004), for each data set with the prior (8)
for α = 0.25,0.5,1,5. The empirical coverage probability is the proportion of
the data sets that have credible sets ofA(2), the c.h.f. att = 2, that contain
the true valueA(2) = 2. The simulation result is reported in Figure 1. The

FIG. 1. Empirical coverage probabilities of the Bayesian credible set of A(2), the c.h.f. at t = 2,
with nominal level 90%.Empirical coverage probabilities are based on 1000data sets for each of
sample sizes n = 10,50,100,500,1000,2000,5000 with the prior (8) at α = 0.25,0.5,1,5. The
three solid lines represent the nominal level and 2 standard errors away from it. The dotted lines are
the empirical coverage probabilities.



BERNSTEIN–VON MISES THEOREM 1503

three solid lines represent the nominal coverage probability 0.9 and 2 standard
errors 2

√
0.9 · 0.1/1000= 0.01897 away from it. The coverage probability with

α = 0.25 gets worse as the sample size grows. Whenα = 0.5, the coverage
probability shows a difference from the nominal level which does not get smaller
as the sample size increases. However, withα = 1 and 5, the coverage probability
is inside the error bounds fromn = 100 on. All of these agree with Theorem 3.

5. Proof of Theorem 1. Throughout this section, the statements of Theorem 1
are assumed. LetB(a, b) = ∫ 1

0 xa−1(1− x)b−1 dx. Then Stirling’s formula yields
that, forα > 0,

lim
n→∞nαB(α,n) = �(α).(9)

LEMMA 2. Let Wn be a sequence of nonnegative stochastic processes on [0, τ ]
such that

sup
t∈[0,τ ]

|Wn(t)/n − Q(t)| → 0(10)

with probability 1. Then

sup
t∈[0,τ ]

∣∣nkB
(
k,Wn(t)

) − �(k)/Qk(t)
∣∣ → 0

with probability 1 as n → ∞, for every integer k ≥ 1.

PROOF. We can write

nkB
(
k,Wn(t)

) =
(

n

Wn(t)

)k

Wk
n (t)B

(
k,Wn(t)

)
.

Since (10) implies inft∈[0,τ ] Wn(t) → ∞ with probability 1, (9) yields

sup
t∈[0,τ ]

∣∣Wk
n (t)B

(
k,Wn(t)

) − �(k)
∣∣ → 0

with probability 1. Also (10) implies

sup
t∈[0,τ ]

∣∣∣∣
(

n

Wn(t)

)k

− 1

Qk(t)

∣∣∣∣ → 0

with probability 1, which completes the proof.�

Let Y+
n (t) = Yn(t) − �Nn(t) andCk(t) = ∫ 1

0 xk(1− x)Y
+
n (t)gt (x) dx.

LEMMA 3. For k ≥ 0,

sup
t∈[0,τ ]

∣∣Ck(t) − q(t)B
(
k + 1, Y+

n (t) + 1
)∣∣ = O

(
n−(k+1+α)

)
(11)
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and

sup
t∈[0,τ ]

∣∣nk+1Ck(t) − q(t)�(k + 1)Q−(k+1)(t)
∣∣ → 0(12)

with probability 1.

PROOF. For (11), letpt(x) = (1− x)(gt (x) − q(t))/xα. Then Conditions A1
and A2 together imply supt∈[0,τ ],x∈[0,1] |pt(x)|(= p∗) < ∞. Now∣∣Ck(t) − q(t)B

(
k + 1, Y+

n (t) + 1
)∣∣

=
∣∣∣∣
∫ 1

0
xk+α(1− x)Y

+
n (t)−1pt(x) dx

∣∣∣∣
≤ p∗B

(
k + α + 1, Y+

n (t)
)
.

Since supt∈[0,τ ] |Y+
n (t)/n − Q(t)| → 0 with probability 1, Lemma 2 yields

sup
t∈[0,τ ]

∣∣Ck(t) − q(t)B
(
k + 1, Y+

n (t) + 1
)∣∣ = O

(
n−(k+1+α)

)

with probability 1. Equation (12) is an easy consequence of (11) and Lemma 2.
�

LEMMA 4. We have

sup
t∈[0,τ ]

∣∣∣∣Ck(t)

C0(t)
− B(k + 1, Y+

n (t) + 1)

B(1, Y+
n (t) + 1)

∣∣∣∣ = O
(
n−(k+α))(13)

and

sup
i=1,...,qn

E
((

�Ad(ti)
)k|Dn

) = O(n−k).(14)

PROOF. For (13), we can write∣∣∣∣Ck(t)

C0(t)
− B(k + 1, Y+

n (t) + 1)

B(1, Y+
n (t) + 1)

∣∣∣∣
≤

∣∣∣∣Ck(t) − q(t)B(k + 1, Y+
n (t) + 1)

C0(t)

∣∣∣∣(15)

+
∣∣∣∣B(k + 1, Y+

n (t) + 1)(C0(t) − q(t)B(1, Y+
n (t) + 1))

C0(t)B(1, Y+
n (t) + 1)

∣∣∣∣.(16)

Since (12) yields

inf
t∈[0,τ ]nC0(t) → inf

t∈[0,τ ]q(t)Q−1(t) > 0,(17)
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(11) implies

nk+α sup
t∈[0,τ ]

∣∣∣∣Ck(t) − q(t)B(k + 1, Y+
n (t) + 1)

C0(t)

∣∣∣∣
≤ nk+α+1 supt∈[0,τ ] |Ck(t) − q(t)B(k + 1, Y+

n (t) + 1)|
inft∈[0,τ ] nC0(t)

= O(1)

with probability 1, and hence(15) is O(n−(k+α)). On the other hand, since (11)
yields

inf
t∈[0,τ ]nB

(
1, Y+

n (t) + 1
) → inf

t∈[0,τ ]Q
−1(t) > 0,

(11) together with Lemma 2 and (17) implies

nk+α sup
t∈[0,τ ]

∣∣∣∣B(k + 1, Y+
n (t) + 1)(C0(t) − q(t)B(1, Y+

n (t) + 1))

C0(t)B(1, Y+
n (t) + 1)

∣∣∣∣
≤ supt∈[0,τ ] |nk+1B(k + 1, Y+

n (t) + 1)|
inft∈[0,τ ] nC0(t)

× supt∈[0,τ ] |n1+α(C0(t) − q(t)B(1, Y+
n (t) + 1))|

inft∈[0,τ ] nB(1, Y+
n (t) + 1)

= O(1)

with probability 1, and so(16) is O(n−(k+α)), which completes the proof of (13).
For (14), note that the distribution function of�Ad(ti) is Hti (x). Hence

E((�Ad(ti))
k|Dn) = Ck(ti)/C0(ti), which together with (14) completes the proof.

�

PROOF OF THEOREM 1(i). Since a posterioriA − Ad is a Lévy process
with Lévy measureνc given by νc(dt, dx) = x−1(1 − x)Yn(t)gt (x) dx λ(t) dt,

Condition A1 and Lemma 2 with (3) imply

E
(
A(t) − Ad(t)|Dn

) ≤ g∗
∫ τ

0
λ(s) dsB

(
1, Yn(τ )

) = O(n−1)

with probability 1. Similarly,

V
(
A(t) − Ad(t)|Dn

) ≤ g∗
∫ τ

0
λ(s) dsB

(
2, Yn(τ )

) = O(n−2)

with probability 1. Hence the proof is completed by Lemma 7 (in Appendix B).
�

PROOF OF THEOREM 1(ii). Let Zn(t) = √
n(Ad(t) − E(Ad(t)|Dn)). Since

Zn is a Lévy process, we can utilize Theorem 19 in Section V.4 in Pollard (1984).
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We first prove the convergence of finite dimensional distributions by showing
Lyapounov’s condition. Suppose 0≤ s < t ≤ τ are given. Note that

Zn(t) − Zn(s) = ∑
s<ti≤t

√
n
(
�Ad(ti ) − E

(
�Ad(ti)|Dn

))
.

Let

sup
i=1,...,qn

E
[(√

n
(
�Ad(ti) − E

(
�Ad(ti)|Dn

)))4∣∣Dn

]
= Vn.

Then (14) in Lemma 4 impliesVn = O(n−2) with probability 1. Because
supt∈[0,τ ]

∫ t
0 dNn(u) = O(n),

∑
s<ti≤t

E
[(√

n
(
�Ad(ti ) − E

(
�Ad(ti )|Dn

)))4∣∣Dn

]

≤
∫ t

s
Vn dNn(u) → 0

(18)

with probability 1.
On the other hand, let

Wni = E
((

�Ad(ti)
)2|Dn

) − (
E

(
�Ad(ti)|Dn

))2

−
(

B(3, Y+
n (ti) + 1)

B(1, Y+
n (ti) + 1)

−
(

B(2, Y+
n (ti ) + 1)

B(1, Y+
n (ti ) + 1)

)2)
.

Lemma 2 together with (12) in Lemma 3 and (13) in Lemma 4 yields
supi=1,...,qn

|Wni| = O(n−2−α). Hence

Var
(
Zn(t) − Zn(s)|Dn

)
= ∑

s<ti≤t

n
[
E

((
�Ad(ti)

)2|Dn

) − (
E

(
�Ad(ti)|Dn

))2]

=
∫ t

s

n

Yn(u)

[
Y 2

n (u)(Y+
n (u) + 1)

(Y+
n (u) + 2)2(Y+

n (u) + 3)

]
dNn(u)

Yn(u)
+ ∑

s<ti≤t

nWni.

Since

sup
u∈[0,τ ]

∣∣∣∣
[

Y 2
n (u)(Y+

n (u) + 1)

(Y+
n (u) + 2)2(Y+

n (u) + 3)

]
− 1

∣∣∣∣ → 0

and

sup
u∈[0,τ ]

∣∣∣∣ n

Yn(u)
− Q(u)−1

∣∣∣∣ → 0

with probability 1, we have by Lemma 6,∫ t

s

n

Yn(u)

[
Y 2

n (u)(Y+
n (u) + 1)

(Y+
n (u) + 2)2(Y+

n (u) + 3)

]
dNn(u)

Yn(u)
→ U0(t) − U0(s)
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uniformly in s andt with probability 1. Since∑
s<ti≤t

n|Wni| ≤ n2 sup
i=1,...,qn

|Wni| = O(n−α),

we obtain

sup
s,t∈[0,τ ]

∣∣Var
(
Zn(t) − Zn(s)|Dn

) − (
U0(t) − U0(s)

)∣∣ → 0(19)

with probability 1. Now (18) and (19) imply the convergence of the finite
dimensional posterior distributions ofZn to those ofW(U0) with probability 1.

Finally, note that

Pr
{|Zn(t) − Zn(s)| ≥ ε|Dn

} ≤ 1

ε2 Var
(
Zn(t) − Zn(s)|Dn

)
.

By (19), we have

Var
(
Zn(t) − Zn(s)|Dn

) = U0(t) − U0(s) + o(1)

with probability 1. SinceU0(t) is continuous, with probability 1 we can make
Pr{|Zn(t)−Zn(s)| ≥ ε|Dn} as small as possible for sufficiently largen by choosing
t ands sufficiently close. Hence by Theorem 19 in Section V.4 in Pollard (1984)
we conclude thatZn given Dn converges weakly toW(U0) on D[0, τ ] with
probability 1. �

PROOF OF THEOREM 1(iii). Let Wni = E(�Ad(ti )|Dn) − 1/Y+
n (ti). Then

Lemma 4 yields supi=1,...,qn
|Wni| = O(n−1−α). Since

E
(
Ad(t)|Dn

) =
∫ t

0

Yn(s)

Y+
n (s)

dNn(s)

Yn(s)
+ ∑

ti≤t

Wni,

we have

sup
t∈[0,τ ]

∣∣E(
Ad(t)|Dn

) − Ân(t)
∣∣ ≤

∫ τ

0

∣∣∣∣1− Yn(s)

Y+
n (s)

∣∣∣∣dNn(s)

Yn(s)
+ O(n−α).(20)

Since the first term on the right-hand side of (20) isO(n−1) by Lemma 6, the proof
is done. �

APPENDIX A

Proving Lemma 1. Let

Bα(s) =
∫ 1

0
xα(1− x)Y

+
n (s) dx = �(α + 1)�(Y+

n (s) + 1)

�(Y+
n (s) + α + 2)

.

Then Lemma 2 yields that

sup
s∈[0,τ ]

∣∣(Y+
n (s) + 1

)α+1
Bα(s)

∣∣ → �(α + 1)(21)
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and

sup
s∈[0,τ ]

∣∣(Y+
n (s) + 1

)
Bα(s)

∣∣ = O(n−α)(22)

with probability 1 forα > 0.

LEMMA 5. With probability 1, we have:

(i)

sup
s∈[0,τ ]

∣∣∣∣ Yn(s)B1(s)

B0(s) + Bα(s)
− 1

∣∣∣∣ = O
(
n−min{1,α});(23)

(ii) if α ≤ 1/2,

sup
s∈[0,τ ]

∣∣∣∣nα

(
Yn(s)B1(s)

B0(s) + Bα(s)
− 1

)
+ �(α + 1)Q(s)−α

∣∣∣∣ → 0;(24)

(iii)

sup
s∈[0,τ ]

∣∣∣∣n
αYn(s)Bα+1(s)

B0(s) + Bα(s)
− �(α + 2)Q(s)−α

∣∣∣∣ → 0(25)

for α > 0.

PROOF. For (23), (22) yields∣∣∣∣ Yn(s)B1(s)

B0(s) + Bα(s)
− 1

∣∣∣∣
=

∣∣∣∣ Yn(s) − Y+
n (s) − 2

(Y+
n (s) + 2)(1+ (Y+

n (s) + 1)Bα(s))
− (Y+

n (s) + 1)Bα(s)

1+ (Y+
n (s) + 1)Bα(s)

∣∣∣∣
≤ 2

Yn(τ )
+ sup

s∈[0,τ ]
∣∣(Y+

n (s) + 1
)
Bα(s)

∣∣
= O(n−1) + O(n−α)

= O
(
n−min{1,α})

with probability 1.
For (24), note that

nα

(
Yn(s)B1(s)

B0(s) + Bα(s)
− 1

)
+ �(α + 1)Q(s)−α

= nα(Yn(s) − Y+
n (s) − 2)

(Y+
n (s) + 2)(1+ (Y+

n (s) + 1)Bα(s))
(26)

−
[

nα(Y+
n (s) + 1)Bα(s)

1+ (Y+
n (s) + 1)Bα(s)

− �(α + 1)Q(s)−α

]
.(27)
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Sinceα ≤ 1/2, sups∈[0,τ ] |(26)| ≤ 2nα/Yn(τ ) → 0 with probability 1. For (26), let
p(s) = �(α + 1)Q(s)−α. Then

|(27)| ≤ ∣∣nα(
Y+

n (s) + 1
)
Bα(s) − p(s)

∣∣ + ∣∣p(s)
(
Y+

n (s) + 1
)
Bα(s)

∣∣.
Here

∣∣nα(
Y+

n (s) + 1
)
Bα(s) − p(s)

∣∣
≤ �(α + 1)

(Y+
n (s) + 1)α+1�(Y+

n (s) + 1)

�(Y+
n (s) + α + 2)

×
∣∣∣∣
(

n

Y+
n (s) + 1

)α

− Q(s)−α

∣∣∣∣
+ �(α + 1)Q(s)−α

∣∣∣∣(Y
+
n (s) + 1)α+1�(Y+

n (s) + 1)

�(Y+
n (s) + α + 2)

− 1
∣∣∣∣.

Since supt∈[0,τ ] Y+
n (t) = O(n), we conclude sups∈[0,τ ] |nα(Y+

n (s) + 1)Bα(s) −
p(s)| → 0 with probability 1 by (9). Also we have sups∈[0,τ ] |p(s)(Y+

n (s) +
1)Bα(s)| → 0 with probability 1 by (22) and the proof is done.

For (25), (21) yields

nαYn(s)Bα+1(s)

B0(s) + Bα(s)

= (n/Yn(s))
α

1+ (Y+
n (s) + 1)Bα(s)

(
Yn(s)

Y+
n (s) + 1

)1+α(
Y+

n (s) + 1
)2+α

Bα+1(s)

→ �(α + 2)Q(s)−α

uniformly in s ∈ [0, τ ] with probability 1. �

PROOF OFLEMMA 1. Note that

E
(
Ad(t)|Dn

) =
∫ t

0

1

B0(s) + Bα(s)

∫ 1

0
x(1− x)Y

+
n (s)(1+ xα) dx dNn(s).

Hence, we have

E
(
Ad(t)|Dn

) − Ân(t)

=
∫ t

0

B1(s) + Bα+1(s)

B0(s) + Bα(s)
dNn(s) − Ân(t)

=
∫ t

0

(
Yn(s)B1(s)

B0(s) + Bα(s)
− 1

)
dNn(s)

Yn(s)
+

∫ t

0

Yn(s)Bα+1(s)

B0(s) + Bα(s)

dNn(s)

Yn(s)
.
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For 0< α ≤ 1/2, (24) in Lemma 5 and Lemma 6 yield

sup
t∈[0,τ ]

∣∣∣∣
∫ t

0
nα

(
Yn(s)B1(s)

B0(s) + Bα(s)
− 1

)
dNn(s)

Yn(s)

+
∫ t

0
�(α + 1)Q(s)−α dA0(s)

∣∣∣∣ → 0

(28)

with probability 1, and (25) in Lemma 5 and Lemma 6 imply

sup
t∈[0,τ ]

∣∣∣∣
∫ t

0
nα Yn(s)Bα+1(s)

B0(s) + Bα(s)

dNn(s)

Yn(s)

−
∫ t

0
�(α + 2)Q(s)−α dA0(s)

∣∣∣∣ → 0

(29)

with probability 1. Combining (28) and (29), we have

sup
t∈[0,τ ]

∣∣∣∣nα(
E

(
Ad(t)|Dn

)

− Ân(t)
) −

∫ t

0

(
�(α + 2) − �(α + 1)

)
Q(s)−α dA0(s)

∣∣∣∣ → 0

with probability 1.
Forα > 1/2, (23) in Lemma 5 and Lemma 6 yield

sup
t∈[0,τ ]

∣∣∣∣
∫ t

0
n1/2

(
Yn(s)B1(s)

B0(s) + Bα(s)
− 1

)
dNn(s)

Yn(s)

∣∣∣∣ → 0(30)

with probability 1, and (25) in Lemma 5 and Lemma 6 imply

sup
t∈[0,τ ]

∣∣∣∣
∫ t

0
n1/2 Yn(s)Bα+1(s)

B0(s) + Bα(s)

dNn(s)

Yn(s)

∣∣∣∣ → 0(31)

with probability 1. Combining (30) and (31), we have

sup
t∈[0,τ ]

∣∣n1/2(E(
Ad(t)|Dn

) − Ân(t)
)∣∣ → 0

with probability 1. �

APPENDIX B

Technical lemmas.

LEMMA 6. Let X1(t),X2(t), . . . be stochastic processes defined on [0, τ ].
Suppose that there exists a continuous function X(t) defined on [0, τ ] such that

lim
n→∞ sup

t∈[0,τ ]
|Xn(t) − X(t)| = 0
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with probability 1. Then

sup
t∈[0,τ ]

∣∣∣∣
∫ t

0
Xn(s)

1

Yn(s)
dNn(s) −

∫ t

0
X(s) dA0(s)

∣∣∣∣ → 0

with probability 1.

PROOF. This lemma is an easy consequence of the Glivenko–Cantelli theorem
and Lemma A.2 in Tsiatis (1981).�

LEMMA 7. Let Xn be a sequence of subordinators such that E(Xn(t)) →
X0(t) and Var(Xn(t)) → 0 for some continuous function X0(t) and all t ∈ [0, τ ].
Then L(Xn)

d→ δX0 on D[0, τ ].

PROOF. Note thatX0 should be a monotonically increasing function since
Xn are subordinators. Hence, the continuity ofX0 together with the assumptions
implies that supt∈[0,τ ] |Xn(t) − X0(t)| → 0 in probability. �
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